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Sponsored search auctions constitute one of the most successful applications of microeconomic mechanisms.
In mechanism design, auctions are usually designed to incentivize advertisers to bid their truthful valua-
tions and, at the same time, to assure both the advertisers and the auctioneer a non–negative utility. None-
theless, in sponsored search auctions, the click–through–rates (CTRs) of the advertisers are often unknown
to the auctioneer and thus standard incentive compatible mechanisms cannot be directly applied and must
be paired with an effective learning algorithm for the estimation of the CTRs. This introduces the critical
problem of designing a learning mechanism able to estimate the CTRs as the same time as implementing a
truthful mechanism with a revenue loss as small as possible compared to an optimal mechanism designed
with the true CTRs. Previous works showed that in single–slot auctions the problem can be solved using a
suitable exploration–exploitation mechanism able to achieve a per–step regret of order O(T−1/3) (where T
is the number of times the auction is repeated). In this paper we extend these results to the general case of
contextual multi–slot auctions with position– and ad–dependent externalities. In particular, we prove novel
upper–bounds on the revenue loss w.r.t. to a VCG auction and we report numerical simulations investigating
their accuracy in predicting the dependency of the regret on the number of rounds T , the number of slots K,
and the number of advertisements n.
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General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION
Sponsored search auctions (SSAs) constitute one of the most successful applications
of microeconomic mechanisms, producing a revenue of about $6 billion dollars in the
US alone in the first half of 2010 [IAB 2010]. In a SSA, a number of advertisers (from
here on advs) bid to have their sponsored links (from here on ads) displayed in some
slot alongside the search results of a keyword. Sponsored search auctions adopt a pay–
per–click scheme, requiring positive payments to an adv only if its ad has been clicked.
Given an allocation of ads over the slots, each ad is associated with a click–through–
rate (CTR) defined as the probability that such ad will be clicked by the user. CTRs
are estimated by the auctioneer and play a crucial role in the auction, since they are
used by the auctioneer to find the optimal allocation (in expectation) and to compute
the payments for each ad.

There is a large number of works formalizing SSAs as a mechanism design prob-
lem [Narahari et al. 2009], where the objective is to design an auction mechanism
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that incentivizes advs to bid their truthful valuations (needed for stability) and that
assures both the advs and the auctioneer to have a non–negative utility. The most
common SSA mechanism is the generalized second price (GSP) auction [Edelman et al.
2007; Varian 2007]. This mechanism is proved not to be incentive compatible (advs may
gain more by bidding non–truthful valuations) and different bidding strategies are in-
vestigated in [Edelman et al. 2007]. A generalization of the Vickrey–Clarke–Groves
(VCG) mechanism (assuring incentive compatibility) for SSAs has been investigated
in [Narahari et al. 2009]. Although the VCG mechanism is not currently adopted by the
search engines, a number of scientific theoretical results builds upon it. Interestingly,
there is a strict relationship between GSP and VCG: the worst (for the auctioneer) ex
post equilibrium with GSP is payoff–equivalent to the truthful equilibrium with the
VCG [Edelman et al. 2007]. This implies that any result derived for the VCG mech-
anism also applies to a GSP whenever the bidders converge to an equilibrium. Other
works focus instead on modeling the user behavior. Among these models, the one that
better predicts the human behavior and is most commonly used, is the cascade model,
which assumes that the user scans the links from the top to the bottom in a Marko-
vian way [Aggarwal et al. 2008; Kempe and Mahdian 2008]. These models introduce
negative externalities in the auction whereby the click probability, and therefore the
adv’s profit, depends on which ads are displayed at the same time on the other slots.

In this paper, we focus on the problem of how to design a truthful mechanism when
the CTRs are not known and need to be estimated. This problem is particularly rel-
evant in practice because the assumption that all the CTRs are known beforehand
is rarely realistic. Furthermore, it also poses interesting scientific challenges since it
represents one of the first examples where learning theory is paired with mechanism
design techniques to obtain effective methods to learn under equilibrium constraints
(notably the incentive compatibility property). The problem of estimating the CTRs
and to identify the best allocation of ads is effectively formalized as a multi–arm bandit
problem [Robbins 1952] where each ad is an arm and the objective is to minimize the
cumulative regret (i.e., the revenue loss w.r.t. an optimal allocation defined according
to the true CTRs). The problem of budgeted advs (i.e., auctions where the total amount
of money each adv is willing to pay is limited) with multiple queries is considered
in [Pandey and Olston 2006]. This problem is formalized as a budgeted multi–bandit
multi–arm problem, where each bandit corresponds to a query, and an algorithm is pro-
posed with explicit bounds over the regret on the revenue. Nonetheless, the proposed
method works in a non–strategic environment, where the advs do not try to influence
the outcome of the auction and always bid their true values. The strategic dimension of
SSAs is partially taken into consideration in [Langford et al. 2010] where the advs are
assumed to play a bidding strategy at the equilibrium w.r.t. a set of estimated CTRs
which are available to both the auctioneer and the advs. The authors introduce a learn-
ing algorithm which explores different rankings on the ads so as to improve the CTR
estimates and, at the same, not to introduce incentives for the advs to deviate from the
previous equilibrium strategy. A more complete notion of truthfulness for bandit algo-
rithms in multi–slot SSAs is studied in [Gonen and Pavlov 2007b]. In particular, they
build on the action elimination algorithm in [Even-Dar et al. 2006] and they report a
probably approximately correct (PAC) analysis of its performance. Unfortunately, as
pointed in [Devanur and Kakade 2009] and [Babaioff et al. 2008] the mechanism is
not guaranteed to be truthful and thus it only works when the advertisers bid their
true values. An extension to the action elimination algorithm is also proposed in [Go-
nen and Pavlov 2007a] for the more general setting where budgeted advs are allowed
to enter and exit the auction at different time instants that they declare along with
their bid. The authors derive an algorithm that approximately achieves the best social
welfare under the assumption that the gain of untruthful declarations is limited. Fi-



nally, single–slot online advertising is studied also in [Nazerzadeh et al. 2008] where
the notion of Bayesian incentive compatibility (BIC) is taken into consideration and an
asymptotically BIC and ex ante efficient mechanism is introduced. The most complete
study of truthful bandit mechanisms so far is reported in [Devanur and Kakade 2009]
and [Babaioff et al. 2008]. These recent works first provided a complete analysis on
the constraints truthfulness forces on the multi–arm bandit algorithm, showing that
no truthful bandit mechanism can achieve a regret smaller than Ω̃(T 2/3). Furthermore,
they also suggest nearly–optimal algorithms for the simple case of single–slot SSAs.

In this paper, we build on the exploration–exploitation mechanisms introduced and
analyzed in [Devanur and Kakade 2009] and [Babaioff et al. 2008] and we report a
regret analysis for an adaptive VCG mechanism for the general case of contextual
multi–slot auctions with externalities. More precisely, the main contributions of the
present paper can be summarized as follows:

Multi–slot auctions with position–dependent externalities. We extend the ex-
isting exploration–exploitation mechanism to multi–slot auctions and we derive a re-
gret bound for position–dependent externalities. The main finding is that previous
single–slot results smoothly extend to the multi–slot case and the regret RT has a
sub–linear dependency on the number of slots K, i.e., RT = Õ(T 2/3n1/3K2/3). Numer-
ical simulations confirm the accuracy of the bound (in a worst–case scenario w.r.t. the
qualities).

Multi–slot auctions with position/ad–dependent externalities. We derive re-
gret bounds for the general case of position/ad–dependent externalities in which
CTRs depend on the ads’ allocation. In this case, the regret analysis is more com-
plicated and needs different steps than in the position–dependent case. The regret
bound shows that the learning problem is more difficult and the regret now scales
as Õ(T 2/3K2/3n). Nonetheless, numerical simulations suggest that this dependency
might be over–estimated and we conjecture that a more accurate bound would be
Õ(T 2/3K4/3n1/3), thus implying a worse dependency in the number of slots w.r.t. to
the position–dependent case.1

Contextual multi–slot auctions. Finally, we report a regret analysis for auctions
which are characterized by a context x summarizing information such as user’s profile,
webpage content, etc. The resulting bound displays similar characteristics as for the
no–context position/ad–dependent externalities case.

The paper is organized as follows. In Section 2 we introduce the notation and the
learning mechanism problem. From Section 3 to Section 5 we report and discuss the
main regret bounds and in Section 6 we analyze simple numerical simulations to test
the accuracy of the theoretical bounds. Section 7 concludes the paper and proposes
future directions of investigation. The detailed proofs of the theorems are reported in
Appendix.

2. NOTATION AND BACKGROUND
In this section we introduce the basic notation used throughout the rest of the paper,
we review the definition of the VGC mechanism for SSAs, and we report the main
technical results available for the learning problem.

We consider a standard model of SSAs. We denote by N = {1, . . . , n} the set of ads
(i ∈ N is a generic ad) and by ai the adv of ad i (we assume each adv has only one ad).
Each ad i is characterized by a quality ρi, defined as the probability that i is clicked
once observed by the user, and by a value vi ∈ V, with V = [0, V ], that ai receives once
i is clicked (ai receives a value of zero if not clicked). While qualities ρi are common

1Notice that Õ(T 2/3K4/3n1/3) ≤ Õ(T 2/3K2/3n), since K ≤ n.



knowledge, values vi are private information of the advs. We denote by K = {1, . . . ,K},
with K < n,2 the set of available slot (k denotes a generic slot). Although at each round
only K ads can be actually displayed, for notational convenience we define an ad–slot
allocation rule α as a full bijective mapping from n ads to n slots (i.e., α : N → N ) such
that α(i) = k if ad i ∈ N is displayed at slot k. We assume that for all the non–allocated
ads, α(i) takes an arbitrary value from K + 1 to n so as to preserve the bijectivity of α.
We also define the inverse slot–ad allocation rule β = α−1 such that β(k) = i if slot k
displays ad i (i.e., α(i) = k). We denote by A and B the set of all the possible ad–slot
and slot–ad mappings respectively. Finally, we define A−i = {α ∈ A, α(i) = n} as the
set of allocations where ad i is never displayed.

In order to describe the user’s behavior, we adopt the popular cascade model defined
by [Kempe and Mahdian 2008; Aggarwal et al. 2008]. The user is assumed to look
through the list of slots from the top to the bottom and the probability that the user
observes the next ad i depends on the slot in which i is displayed at (position–dependent
externalities) and/or on the ad that precedes i in the allocation (ad–dependent external-
ities). We define the discount factor γk(i) as the probability that a user observing ad i in
the slot k−1 will observe the ad in the next slot (γ1 is set to 1 by definition). The cumu-
lative discount factors Γk(β), i.e., the probability that a user observes the ad displayed
at slot k given a slot–ad allocation β, is defined as:

Γk(β) =


1 if k = 1∏k
l=2 γl(β(l − 1)) if 2 ≤ k ≤ K

0 otherwise
(1)

With abuse of notation, we use interchangeably Γk(β) and Γk(α) (for β = α−1). Given
an allocation rule α, Γα(i)(α)ρi is the click through rate (CTR), representing the proba-
bility of ad i to be clicked. We notice that, according to this model, the user might click
multiple ads at each impression. As a result, the expected value (w.r.t. the user’s click)
of adv ai for an allocation α is Γα(i)(α)ρivi. Finally, we define the social welfare of an
allocation α (equivalently, β = α−1) as the cumulative advs’ expected values

SW(α) = SW(β) =

n∑
i=1

Γα(i)(α)ρivi =

n∑
k=1

Γk(β)ρβ(k)vβ(k).

At each round, advs submit bids {v̂i}i∈N and the auction defines an allocation rule
α and payment functions pi(v̂1, . . . , v̂n). The expected utility of adv ai is defined as
Γα(i)(α)ρivi − pi(v̂1, . . . , v̂n). Each adv is an expected utility maximizer and therefore,
if it can gain more by misreporting its value (i.e., v̂i 6= vi), it will do that. Mechanism
design aims at finding α and {pi}i∈N such that some properties are satisfied (see [Mas-
Colell et al. 1995] for more formal and detailed definitions):

Incentive Compatibility (IC). This assures that no adv can increase its utility by
misreporting its true value. This property is necessary to have stable mechanisms.

Individual Rationality (IR). This assures that each adv receives a non–negative
utility in taking part to the auction (given truthful reporting).

Weak Budget Balance (WBB). This assures that the auctioneer has always a non–
negative revenue.

Allocative Efficiency (AE). This assures that the allocation maximizes the social
welfare.

The unique mechanism for SSAs satisfying the above properties is the Vickrey–
Clark–Groves mechanism (VCG) where ads are allocated according to the efficient al-

2Although K < n is the most common case, the results could be smoothly extended to K > n.



location α∗, i.e., the the social welfare maximizer:

α∗ = arg max
α∈A

SW(α). (2)

and payments are defined as

pi = SW(α∗−i)− SW−i(α∗), (3)

where SW−i(α) = SW(α) − Γα(i)(α)ρivi and α∗−i is the efficient allocation in A−i. In
words, the payment for adv ai is the difference between the social welfare that could be
obtained by an efficient allocation α∗−i computed removing ad i and the social welfare of
the efficient allocation α∗ without the contribution of adv ai. This mechanism is IR in
expectation, but not for every possible realization (an adv may have a positive payment
even when its ad has not been clicked). Anyway, the mechanism can be easily modified
to satisfy IR for every possible realization by using click–contingent payments that are
zero if the ad is not clicked and

p̃i =
SW(α∗−i)− SW−i(α∗)

Γα(i)(α)ρi
, (4)

if the ad is clicked (so that E[p̃i] = pi).
In many practical problems, the qualities ρi are not known in advance and must

be estimated at the same time as the auction is deployed. This introduces a tradeoff
between exploring different possible allocations so as to collect information about the
quality of the advs and exploiting the estimated qualities so as to implement a truthful
high–revenue auction (i.e., a VCG mechanism). This problem could be easily casted as
a multi–arm bandit problem [Robbins 1952] and standard techniques could be used to
solve it (see e.g., [Auer et al. 2002]). Nonetheless, such an approach would completely
overlook the strategic dimension of the problem where advs may choose their bids so as
to influence the outcome of the auction and increase their utility. As a result, here we
face the more challenging problem where the exploration–exploitation dilemma must
be solved so as to maximize the revenue of the auction under the hard constraint of
incentive compatibility. Let A be an IC mechanism run over T rounds. At each round
t, A defines an allocation α̂t and prescribes an expected payment pit for each ad i. The
objective of A is to obtain a revenue as close as possible to a VCG mechanism computed
on the true qualities {ρi}i∈N .3 More precisely, we measure the performance of A as its
cumulative regret over T rounds:

RT (A) = T

n∑
i=1

pi −
T∑
t=1

n∑
i=1

pit,

where pi is as defined in (3). We notice that the regret does not compare the actual
payments asked on a specific sequence of clicks (p̃it) but the expected payments pit.
Furthermore, since the learning mechanism A estimates the qualities from the ob-
served (random) clicks, the expected payments pit are random as well. Thus, in the
following we will study the expected regret

RT (A) = E[RT (A)], (5)

where the expectation is taken w.r.t. random sequences of clicks. The mechanism A
is a no–regret mechanism if its per–round regret decreases to 0 as T increases, i.e.,
limT→∞RT /T = 0. Another popular definition of performance [Gonen and Pavlov

3We refer to reader to Appendix D for a slightly different definition of regret measuring the deviation from
the revenue of a VGC mechanism.



Input: Length of exploration phase τ , confidence δ, cumulative factors {Γk(·)}k∈K

Exploration phase
for t = 1, . . . , τ do

Allocate ads according to an arbitrary allocation rule αt
Set the payments p̂i = 0
Observe the clicks {ciαt(i)(t)}

n
i=1

end for
Compute the estimated quality ρ̂i = 1

Si

∑Si
s=1

ciαt(i)
(t)

Γαt(i)

Compute ρ̂+
i = ρ̂i + η (see (8) and (12))

Exploitation phase
for t = τ + 1, . . . , T do

Allocate ads according to α̂ (see Sect. 3 and 4)
if Ad i is clicked then

Ask for payment p̃i (see (9) and (13))
end if

end for

Fig. 1. Pseudo–code for the A–VCG mechanism.

2007b; Babaioff et al. 2008] is the social welfare regret, measured as the difference
between the social welfare of the optimal allocation α∗ and of the best estimated al-
location α̂ (i.e., SW(α∗) − SW(α̂)). We notice that minimizing the social welfare regret
does not coincide with minimizing RT . In fact, once the quality estimates are accurate
enough, α̂t is equal to α∗, and the social welfare regret drops to zero. On the other
hand, since pit is defined according to the estimated qualities, even if α̂t = α∗, RT
might still be positive.

The properties required to have a truthful mechanism in single–slot auctions (K = 1)
are studied in [Devanur and Kakade 2009] and it is shown that any learning algorithm
must split the exploration and the exploration in two separate phases in order to in-
centivize advs to bid their true values. This condition has a strong impact on the regret
of the mechanism. In fact, while in a standard bandit problem the distribution–free re-
gret is of order Ω(T 1/2), in single–slot auctions, truthful mechanisms cannot achieve a
regret smaller than Ω(T 2/3). In [Devanur and Kakade 2009] a truthful learning mech-
anism is designed with a nearly optimal regret of order Õ(T 2/3).4 Similar structural
properties for truthful mechanisms are also studied in [Babaioff et al. 2008] and lower–
bounds are derived for the social welfare regret. In this paper we build on these the-
oretical results for truthful mechanisms and we extend the exploration–exploitation
algorithm in [Devanur and Kakade 2009] to the general case of contextual multi–slot
auctions with position– and position/ad–dependent externalities.

3. POSITION–DEPENDENT EXTERNALITIES
In this section we consider multi–slot auctions with position–dependent externali-

ties where the discount factors γk, and the corresponding cumulative factors Γk (see
equation (1)), do not depend on the ads displayed in the previous slots but only on the
position k (i.e., γk(β) = γk). In this case, the efficient allocation α∗ (β∗) can be easily
computed by allocating the ads to the slots in decreasing order w.r.t. their expected

4The Õ notation hides both constant and logarithmic factors, that is RT ≤ Õ(T 2/3) if there exist a and b
such that RT ≤ aT 2/3 logb T .



value ρivi. More precisely, for any k, let maxi(ρivi; k) be the operator returning the k-th
largest value in the set, then β∗ is such that β∗(k) = arg maxi(ρivi; k). This condition
also simplifies the definition of the efficient allocation α∗−i when i is removed fromN . In
fact, for any j ∈ N , if α∗(j) < α∗(i) (i.e., ad j is displayed before i) then α∗−i(j) = α∗(j),
while if α∗(j) > α∗(i) then α∗−i(j) = α∗(j)− 1 (i.e., ad j is moved one slot upward), and
α∗−i(i) = n. By recalling the definition of payment in (3), in case of position–dependent
externalities the payment for the adv in slot k ≤ K reduces to

pβ∗(k) =

K+1∑
l=k+1

(Γl−1 − Γl) max
i

(ρivi; l), (6)

while it is equal to 0 for any k > K.
Similar to [Devanur and Kakade 2009], we define an exploration–exploitation algo-

rithm to approximate the VCG. The algorithm receives as input the cumulative factors
Γk and it estimates the quality of each adv during a pure exploration phase of length
τ when all the payments are set to 0. Then, quality estimates are used to set up a
VCG for all the remaining T − τ rounds. Unlike the single–slot case, here we can ex-
ploit the fact that each ad i has a non-zero CTR Γα(i)ρi whenever it is allocated to a
slot α(i) ≤ K. As a result, at each round, we can collect K samples (click or not–click
events), one from each slot. Let αt (for t ≤ τ ) be an explorative allocation rule defined
in an arbitrary way completely independent from the bids. The number of samples
collected for each ad i is Si =

∑τ
t=1 I{αt(i) ≤ K}. We denote by ciαt(i)(t) ∈ {0, 1} the

click–event at time t for ad i when displayed at slot αt(i). Depending on the slot we
have different CTRs, thus we reweigh each sample by the cumulative discount factor
of the slot the sample is obtained from. We compute the estimated quality ρ̂i as

ρ̂i =
1

Si

Si∑
s=1

ciαt(i)(t)

Γαt(i)
.

such that ρ̂i is an unbiased estimate of ρi (i.e., Ec[ρ̂i] = ρi). By applying the Hoeffding’s
inequality we obtain a bound on the error of the estimated quality ρ̂i for each ad i.

PROPOSITION 3.1. For any ad i ∈ N

|ρi − ρ̂i| ≤

√√√√( Si∑
s=1

1

Γ2
αs(i)

)
1

2S2
i

log
n

δ
, (7)

with probability 1− δ (w.r.t. the click events).

It is easy to see that it is possible to define a sequence of explorative allocation
strategies {αt}τt=1 such that Si = bKτ/nc, and (7) becomes5

|ρi − ρ̂i| ≤

√√√√( K∑
k=1

1

Γ2
k

)
n

2K2τ
log

n

δ
:= η, (8)

After the exploration phase, an upper–confidence bound on each quality is computed
as ρ̂+

i = ρ̂i + η. From round τ on, the allocation α̂ (β̂) simply sorts the advs according to
their value ρ̂+

i vi and allocates them in inverse order on each slot. Whenever the link

5From now on we drop the rounding and we use τK/n.



at slot k is clicked, the corresponding ad β̂(k) is charged with a payment

p̃β̂(k) =

∑K
l=k+1(Γl−1 − Γl) maxi(ρivi; l)

Γkρ̂
+

β̂(k)

, (9)

which results in an expected payment p̂β̂(k) = p̃β̂(k)Γkρβ̂(k). The general form of the
algorithm, which we refer to as A–VCG (Adaptive–VCG), is sketched in Figure 1.

We now move to the analysis of the performance of A–VCG in terms of the regret it
cumulates through T rounds.

THEOREM 3.2. Let us consider an auction with n advs, K slots, and T rounds. The
auction have position–dependent externalities and cumulative discount factors {Γk}Kk=1.
For any parameter τ and δ, the A–VCG is always truthful and it achieves a regret

RT ≤ V
( K∑
k=1

Γk

)(
2(T − τ)η + τ + δT

)
. (10)

By setting the parameters to

δ = n1/3(TK)−1/3

τ = 21/3T 2/3Γ
−2/3
min K−1/3n1/3(log (n2/3(KT )1/3))1/3,

where Γmin = mink Γk ≥ 0, then the regret is

RT ≤ 181/3V T 2/3Γ
−2/3
min K2/3n1/3(log (n2KT ))1/3. (11)

Remark 1 (The bound). Up to numerical constants and logarithmic factors, the
previous bound is RT ≤ Õ(T 2/3K2/3n1/3). We first notice that A–VCG is a zero–regret
algorithm since its per–round regret (RT /T ) decreases to 0 as T−1/3, thus implying
that it asymptotically achieves the same performance as the VCG. Furthermore, we
notice that for K = 1 the bound reduces (up to constants) to the single–slot case
analyzed in [Devanur and Kakade 2009]. Unlike the standard bound for multi–arm
bandit algorithms, the regret scales as Õ(T 2/3) instead of Õ(T 1/2). As pointed out
in [Devanur and Kakade 2009] and [Babaioff et al. 2008] this is the unavoidable
price the bandit algorithm has to pay to be truthful. Finally, the dependence of the
regret on n is sub-linear (n1/3) and this allows to increase the number of advs without
significantly worsening the regret.

Remark 2 (Distribution–free bound). The bound derived in Thm. 3.2 is a distribution–
free (or worst–case) bound, since it holds for any set of advs (i.e., for any {ρi}i∈N and
{vi}i∈N ). This generality comes at the price that, as illustrated in other remarks and
in the numerical simulations, the bound could be inaccurate for some specific sets
of advs. On the other hand, distribution–dependent bounds (see e.g., the bounds of
UCB [Auer et al. 2002]), where ρs and vs appear explicitly, would be more accurate
in predicting the behavior of the algorithm. Nonetheless, they could not be used to
optimize the parameters δ and τ , since they would then depend on unknown quantities
(e.g., the qualities).

Remark 3 (Dependence on K). The most interesting property of the algorithm is
its dependency on the number of slots K. According to the bound (11) the regret has
a sublinear dependency Õ(K2/3), meaning that whenever one slot is added to the
auction, the performance of the algorithm does not significantly worsen. By analyzing



the difference between the payments of the VCG and A-VCG, we notice that during
the exploration phase the regret is O(τK) (e.g., if all K slots are clicked at each
explorative round), while during the exploitation phase the error in estimating the
qualities sum over all the K slots, thus suggesting a linear dependency on K for
this phase as well. Nonetheless, as K increases, the number of samples available per
each ad increases as τK/n, thus improving the accuracy of the quality estimates by
Õ(K−1/2) (see Proposition 3.1). As a result, as K increases, the exploration phase can
be shortened (the optimal τ actually decreases as K−1/3), thus reducing the regret
during the exploration, and still have accurate enough estimations to control the
regret of the exploitation phase.

Remark 4 (Parameters). The choice of parameters τ and δ reported in Thm. 3.2 is
obtained by a rough minimization of the upper–bound (10) and can be computed by
knowing the characteristics of the auction (number of rounds T , number of slots K,
number of ads n, and cumulative discount factors Γk). Since they optimize an upper–
bound, these values provide a good guess but they might not be the optimal parameter-
ization for the problem at hand. Thus, in practice, the parameters could be optimized
by searching the parameter space around the values suggested in Thm. 3.2.

PROOF. (sketch) (Theorem 3.2) The full proof is reported in the online appendix.
Here we just focus on the per–round regret during the exploitation phase. According
to the definition of payments in Sect. 3, at each round of the exploitation phase, the
regret is the difference in the revenue, that is the difference in the expected payments.
We bound the difference r between the payments in a slot k as

r =

K∑
k=1

(pβ∗(k) − p̂β̂(k))

=

K∑
k=1

K∑
l=k

∆l

(
max
i

(ρivi; l + 1)− maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)

ρβ̂(k)

)

≤
K∑
k=1

K∑
l=k

∆l
maxi(ρ̂

+
i vi; l + 1)

ρ̂+

β̂(k)

(
maxi(ρivi; l + 1)

maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)
− ρβ̂(k)

)

=

K∑
k=1

K∑
l=k

∆l

v−1

β̂(k)

maxi(ρ̂
+
i vi; l + 1)

maxi(ρ̂
+
i vi; k)

(
maxi(ρivi; l + 1)

maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)
− ρβ̂(k)

)
,

where ∆l = Γl − Γl+1. By definition of the max operator, it follows that for any l ≥ k,
maxi(ρ̂

+
i vi;l)

maxi(ρ̂
+
i vi;k)

≤ 1. Using vβ̂(k) ≤ V , Lemma A.1 (see online appendix), and Proposi-
tion 3.1, it follows that

r ≤
K∑
k=1

K∑
l=k

V∆l(ρ̂
+

β̂(k)
− ρβ̂(k)) ≤ V

K∑
k=1

(ρ̂+

β̂(k)
− ρβ̂(k))

K∑
l=k

∆l

≤ 2V η

K∑
k=1

Γk = V
( K∑
k=1

Γk

)√√√√( K∑
k=1

1

Γ2
k

) 2n

K2τ
log

n

δ

with probability at least 1 − δ. In order to get the final regret bound we need to
consider the whole time horizon T and turn the bound into expectation. During the



first τ rounds A–VCG sets all the payments to 0 and the per–round regret is at most
V
∑K
k=1 Γk, while in the remaining T − τ rounds the regret is bounded by r with prob-

ability 1− δ. By adding all these terms, the statement follows.

(Comments to the proof). The proof uses relatively standard arguments to bound the
regret of the exploitation phase. As discussed in Remark 2, the bound is distribution–
free and some steps in the proof are conservative upper–bounds on quantities that
might be smaller for specific auctions. For instance, the inverse dependency on the
smallest cumulative discount factor Γmin in the final bound could be a quite inaccu-
rate upper–bound on the quantity

∑K
k=1 1/Γ2

k. In fact, the parameter τ itself could be
optimized as a direct function of

∑K
k=1 1/Γ2

k, thus obtaining a more accurate tuning of
the length of the exploration phase and a slightly tighter bound (in terms of constant
terms). Furthermore, we notice that the step maxi(ρ̂

+
i vi;l)

maxi(ρ̂
+
i vi;k)

≤ 1 is likely to become less
accurate as the difference between l and k increases. For instance, if the qualities ρi
are drawn from a uniform distribution in (0, 1), as the number of slots increases this
quantity reduces as well (on average) thus making the upper–bound by 1 less and less
accurate. The accuracy of the proof and the corresponding bound are further studied
in the simulations in Sect. 6.

4. POSITION/AD–DEPENDENT EXTERNALITIES
We now move to the general multi–slot model introduced in Sect. 2 where the discount
factor of a slot k depends on the actual adv allocated on all the slots up to k. In this
case the efficient allocation is α∗ = arg maxα SW(α). We notice that such maximization
problem is often intractable since all the possible allocations of n ads over K slots
should be tested in order to find the best one. The structure of the A–VCG algorithm
(Figure 1) does not change. Nonetheless, the explorative allocations αt have an impact
on the discount Γk(αt) and Proposition 3.1 becomes

|ρi − ρ̂i| ≤

√√√√( Si∑
s=1

1

Γαs(i)(αs)
2

)
1

2S2
i

log
n

δ
.

Similar to the previous section, we set Si = Kτ/n and we redefine η as

|ρi − ρ̂i| ≤
1

Γmin

√
n

2Kτ
log

n

δ
:= η, (12)

where Γmin = minα,k Γk(α). We define the upper–confidence bound ρ̂+
i = ρ̂i + η and the

estimated social welfare as

ŜW(α) = ŜW(β) =

n∑
i=1

Γα(i)(α)ρ̂+
i vi =

n∑
k=1

Γk(β)ρ̂+
β(k)vβ(k).

The corresponding efficient allocation is denoted by α̂ = arg maxα∈A ŜW(α). Once the
exploration phase is over, if ad i ∈ N is clicked, then the adv is charged

p̃i =
ŜW(α̂−i)− ŜW−i(α̂)

Γα̂(i)ρ̂
+
i

(13)

which corresponds to an expected payment p̂i = p̃iΓα̂(i)ρi.
We are interested in bounding the regret of the A–VCG compared to the VCG.

THEOREM 4.1. Let us consider an auction with n advs, K slots, and T rounds.
The auction have position/ad–dependent externalities and cumulative discount factors



{Γk(α)}Kk=1. For any parameter τ and δ, the A–VCG is always truthful and it achieves
a regret

RT ≤ V K

[
(T − τ)

(
3
√

2n

Γminρmin

√
n

Kτ
log

n

δ

)
+ τ + δT

]
, (14)

where ρmin = mini ρi. By setting the parameters to

δ = n(TK)−1/3

τ = 181/3T 2/3Γ
−2/3
min K−1/3n(log ((KT )1/3))1/3,

the corresponding regret is

RT ≤ 61/3 V

ρmin
T 2/3Γ

−2/3
min K2/3n(log (KT ))1/3. (15)

Remark 1 (Differences with bound (11)). Up to constants and logarithmic factors, the
previous distribution–free bound is RT ≤ Õ(T 2/3K2/3n). We first notice that moving
from position– to position/ad–dependent externalities does not change the dependency
of the regret on the number of rounds T . The main difference w.r.t. the bound in
Thm. 3.2 is in the dependency on n and on the smallest quality ρmin. While the regret
still scales as K2/3, it has now a much worse dependency on the number of ads (from
n1/3 to n). We believe that it is mostly due to an intrinsic difficulty of the position/ad–
dependent externalities. The intuition is that now in the computation of the payment
for each ad i, the errors in the quality estimates cumulate through the slots (unlike
the position–dependent case where they are scaled by Γk − Γk+1). Nonetheless, this
cumulated error should impact only on a portion of the ads (i.e., those which are actu-
ally impressed according to the optimal and the estimated optimal allocations), while
in the proof they are summed over all the advs. We conjecture that this additional n
term is indeed a rough upper–bound on the number of slots K. If this were the case,
we would obtain a regret Õ(T 2/3K4/3n1/3), where the dependency on the number
of slots becomes super–linear. We postpone a more detailed analysis of this issue to
Sect. 6. The other main difference is that now the regret has an inverse dependency
on the smallest quality ρmin. Inspecting the proof, this dependency appears because
the error of a quality estimation for an ad i might be amplified by the inverse of
the quality itself ρ−1

i . We investigate whether this dependency is an artifact of the
proof or it is intrinsic in the algorithm in the numerical simulations reported in Sect. 6.

Remark 2 (Optimization of the parameter τ ). We remark that whenever a guess
about the value of ρmin is available, it could be used to better tune τ by multiplying it
by ρ−2/3

min , thus reducing the regret from Õ(ρ−1
min) to Õ(ρ

−2/3
min ).

Remark 3 (Externalities–dependent bound). We notice that the current bound does
not reduce to (11) and thus it obviously over–estimates the dependency on K and
n whenever the auction has position–dependent externalities. It is an interesting
open question whether it is possible to derive an auction–dependent bound where the
specific values of the discount factors γk(α) explicitly appear in the bound and that it
reduces to (11) for position–dependent externalities.

(Comment to the proof). For the lack of space we do not report the proof, which can
be found in the online appendix. While the proof of Thm. 3.2 could exploit the spe-
cific definition of the payments for position–dependent slots and it is a fairly standard



extension of [Devanur and Kakade 2009], in this case the proof is more complicated
because of the dependency of the discount factors on the actual allocations and decom-
poses the regret of the exploitation phase in components due to the different allocations
(α̂ instead of α∗) and the different qualities as well (ρ̂+ instead of ρ).

5. CONTEXTUAL MULTI–SLOT AUCTIONS
In real–world SSAs, the characteristics of the auctions (e.g., the quality) highly depend
on contextual information such as the content of the webpage, the query submitted
by the user, and her profile. In this section, we further generalize the auction with
externalities to the case of contextual auctions. More precisely, we denote by X a subset
of the Euclidean space Rs and we assume that x ∈ X summarizes all the contextual
information necessary to define the auction. In particular, for each ad i, the quality is
a function ρi : X → [0, 1], while we assume that the values vi and the discount factors
Γk(α) are independent from x.6 When the functions ρi are known in advance, for each
x we can still apply the VCG and charge adv ai with a payment

pi(x) = SW(α∗−i;x)− SW−i(α∗;x),

where SW(α;x) is defined according to the qualities ρi(x). The learning algorithm
should now approximate each quality function over the whole domain X . Although
any regression algorithm could be employed to approximate ρi, here we consider a
least squares approach for which performance bounds are available (see e.g., [Györfi
et al. 2002]). We denote by φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)> a d-dimensional feature vector
with features ϕi : X → [0, 1], and by F = {fw(·) = φ(·)>w} the linear space of functions
spanned by the basis functions in φ. Similar to the previous settings, the algorithm
first explores all the advs for τ rounds with an arbitrary exploration allocation αt. At
each round t, we assume a context xt to be independently drawn from a stationary
distribution µ over the context space X . At the end of the exploration phase, each ad
i has been impressed Si = Kτ/n times and we build the training set {xs, ciαs(i)(s)}

Si
s=1

where ciαs(i)(s) is the click–event for ad i when displayed at slot αs(i) in context xs, and
we compute the approximation

ρ̂i = fŵi = arg min
f∈F

Si∑
s=1

(
f(xs)−

ciαs(i)(s)

Γαs(i)(αs)

)2

.

Since F is linear, we can easily compute the coefficient vector ŵi in closed form. Let
Φi = [φ(xs)

>; . . . ;φ(xSi)
>] be the feature matrix corresponding to the training set and

ci = (
ciα1(i)(1)

Γα1(i)(α1) , . . . ,
ciα1(Si)

(Si)

ΓαSi (i)
(αSi )

) be the re-weighted vector of observations. Then we have

ŵi = (Φ>i Φi)
−1Φ>i ci. (16)

During the exploitation phase, for any x, the A–VCG uses the quality ρ̂i(x) to compute
the allocation and define the payments. In particular, the estimated social welfare in
a context x is defined as ŜW(α;x) =

∑n
i=1 Γα(i)(α)ρ̂i(x)vi and the expected payments

become

p̂i(x) =
(
ŜW(α̂−i;x)− ŜW−i(α̂;x)

)ρi(x)

ρ̂i(x)
.

6The generalization to vi(x) and Γk(α;x) is straightforward.



Unlike the settings considered in the previous sections, we cannot expect to minimize
the regret in each possible context x ∈ X , thus we redefine the regret as the expectation
w.r.t. the context distribution µ

RT,µ = TEx∼µ
[ n∑
i=1

pi(x)
]
−

T∑
t=1

Ex∼µ
[ n∑
i=1

pit(x)
]
,

where pit is equal to 0 for the first t ≤ τ explorative rounds and is equal to p̂i during
the exploitation phase.

In order to derive the regret bound, we need two technical assumptions (we further
discuss them in the remarks).

ASSUMPTION 1. The function space F contains all the quality functions ρi (i.e., the
approximation error of F is 0), that is for any i

inf
f∈F
||f − ρi||µ = 0.

ASSUMPTION 2. The function space F is such that for any f ∈ F ,
∥∥1/f2

∥∥
µ
≤ ξ.

It is worth noting that here we no longer use an upper–confidence bound on ρi as
before. In fact, it is not possible to build an upper–confidence bound for each context
x since the accuracy of the approximated functions ρ̂i can only be bounded in expecta-
tion w.r.t. the context distribution µ, as reported in the following lemma [Györfi et al.
2002].7

LEMMA 5.1. Let fŵi be computed as in (16) with Si = Kτ/n samples in a d-
dimensional linear space F , then for any i ∈ N

||fŵi − ρi||µ ≤
64

Γmin

√
(d+ 1)n

Kτ
log
(324nTe2

δ

)
:= χ (17)

with probability 1−δ (w.r.t. the random contexts and clicks), where Γmin = minα,k Γk(α).

Given the two assumptions and Lemma 5.1, we can now derive the following regret
bound.

THEOREM 5.2. Let us consider a contextual auction on the domain X with n adv,
K slots, and T rounds. Let µ be a distribution over X . The auction have position/ad–
dependent externalities and cumulative discount factors {Γk(α)}Kk=1. For any parameter
τ and δ, the A–VCG is always truthful and it achieves a regret

RT,µ ≤ V K [6ξ(T − τ)χ+ τ + δT ] .

By setting the parameters to

δ = n(TK)−1/3

τ = 241/3T 2/3Γ
−2/3
min K−1/3n(d+ 1)1/3(log (K1/3T 4/3))1/3,

the corresponding regret is

RT,µ ≤ 241/3V ξT 2/3Γ
−2/3
min K2/3n(d+ 1)1/3(log (KT ))1/3.

Remark 1 (Bound). As we can notice, the bound obtained in the contextual case
has exactly the same dependency on T , K, and n as in the regret in (15). The main
difference is that two additional terms appear in the bound, the dimensionality of the

7We recall that the µ–weighted L2–norm of a function f is defined as ||f ||2µ = Ex∼µ[f(x)2].



space d and the lower–bound ξ on the functions in F . It is interesting to notice that
the regret grows as Õ(d1/3) implying that the larger the number of features in F , the
worse the regret. This dependency is an immediate result of the fact that in (16) we
learn a d-dimensional vector ŵi and as d increases, the number of samples needed to
have an accurate estimate of ρi increases as well, thus lengthening the exploration
phase. Finally, the term ξ (see Assumption 2) plays a similar role as ρ−1

min since it
bounds the norm of the inverse of the functions in F .

Remark 2 (Assumptions). Assumption 1 is the so–called realizable assumption,
which implies that the functions to be approximated (the qualities ρi) belong to the
function space F . This assumption is reasonable whenever some prior knowledge
about the ads is available and the features can be properly designed. Similarly,
Assumption 2 is strictly related to the way the function space F is designed. In fact,
it requires any function f ∈ F to be lower–bounded away from 0. This could be easily
achieved by thresholding the prediction of each f . It is also worth noting that the
two assumptions together imply that for any i, minx∈X ρi(x) ≥ ξ, i.e., the advs have a
quality which is at least ξ over the whole context space X , thus suggesting that below
a certain threshold the advs would not participate to the auction at all.

Remark 3 (Regression algorithm). Although in describing the algorithm we refer to
least squares, any regression algorithm such as neural networks or logistic regression
could be used. Nonetheless, in order to derive the regret bound, a specific replacement
for Lemma 5.1 is needed.

6. NUMERICAL SIMULATIONS
In this section we report preliminary numerical simulations whose objective is to vali-
date the theoretical results reported in the previous sections. In particular, we want to
analyze how much the bounds accurately predict the dependency of the regret on the
main characteristics of the auctions such as T , n, K, and ρmin. The advs are generated
as follows. The qualities ρi are drawn from a uniform distribution in [0.01, 0.1], while
the values are randomly drawn from a uniform distribution on [0, 1] (V = 1). Since the
main objective is to test the accuracy of the bounds, we report the relative regret

RT =
RT

B(T,K, n)
,

where B(T,K, n) is the value of the bound for the specific setting (i.e., position–
dependent (11) and position/ad–dependent externalities (15)). We expect the relative
regret to be always smaller than 1 (i.e., we expect B to be an actual upper–bound on
the real regret RT ) and its value to be constant while changing one parameter and
keeping all the others fixed. All the following results have been obtained by setting τ
and δ as suggested by the bounds derived in the previous sections and by averaging
over 100 independent runs. We leave the study of the contextual auction as a future
work.

6.1. Position–Dependent Externalities
We first investigate auctions with position–dependent externalities. The discount fac-
tors are constant for all the positions (i.e., γk = γ) and are computed so that Γ1 = 1 and
ΓK = 0.8, thus having Γmin = 0.8 in all the experiments. The left plot in Figure 2 shows
the value of the relative regret RT for different values of K and n when T increases.
We notice that the three curves are completely flat and do not change as T increases.
This suggests that the bound in Thm. 3.2 effectively predicts the dependency of the
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Fig. 3. Position–dependent externalities. Dependency of the relative regret on K for two different choice of
the the qualities ρ.

regret RT w.r.t. the number of rounds T of the auction, i.e., Õ(T 2/3). The second plot in
Figure 2 shows the dependency on the number of ads n. In this case we notice that it
is relatively accurate as n increases but there is a transitory effect for smaller values
of n where the regret grows faster than predicted by the bound (although B(T,K, n)
is still an upper–bound to RT ). Finally, the first plot in Figure 3 on the left suggests
that the dependency on K in the bound of Thm. 3.2 is over–estimated, since the rel-
ative regret RT decreases as K increases. As discussed in the comment to the proof
in Sect. 3 this might be explained by the over–estimation of the term maxi(ρ̂

+
i vi;l)

maxi(ρ̂
+
i vi;k)

in
the proof. In fact, this term is likely to decrease as K increases. In order to test this
intuition, we ran an additional experiment where ρs are such that ρ1 = 0.1, ρ2 = 0.095,
and all the others are equal to 0.09. As a result, the ratio between the qualities ρi is
fixed (on average) and does not change with K. We report the result in the second plot
of Figure 3. For different choices of n the ratio RT is constant, implying that in this
case the bound accurately predicts the behavior of RT . This result confirms Remark 2
in Section 5, suggesting that K2/3 is the right dependency of RT on the number of slots
in the worst–case w.r.t. the qualities, while it could be better for some specific ρs.

6.2. Position/Ad–Dependent Externalities
We now study the accuracy of the bound derived in Thm. 4.1 where the regret RT
displays a linear dependency on n and an inverse dependency on the smallest quality
ρmin. The relative regret RT is now defined as RT /B with B the bound (15). In the first
plot of Figure 4 we report RT as T increases. As it can be noticed, the bound accu-
rately predict the behavior of the regret w.r.t. T as in the case of position–dependent
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externalities. In the second plot of Figure 4 we report RT as we change ρmin. According
to the bound in (15) the regret should decrease as ρmin increases (i.e., RT ≤ Õ(ρ−1

min))
but it is clear from the plot that RT has a much smaller dependency on ρmin, if any8.
Finally, we study the dependency on n. As conjectured in Sect. 4, we believe that (15)
is over–estimating the actual dependency on n. We set τ = Õ(n1/3) which, according
to the bound (14), should lead to a regret RT = Õ(n4/3). As reported in the left plot of
Figure 5 this dependency is largely over–estimated and as n increases RT actually de-
creases. Thus we tried to study whether the bound (10) for position–dependent could be
used also in this setting. Since τ = Õ(n1/3) is the optimal choice for position–dependent
externalities, we expect to obtain RT = Õ(n1/3). Thus we recompute the relative RT by
dividing RT by the bound (11) of Theorem 3.2 when τ = Õ(n1/3). As it can be noticed
in Figure 5, RT now slightly increases and then it tends to flat as n increases. This re-
sembles the same behavior as in the second plot of Figure 2, suggesting that RT might
indeed have a similar dependency n1/3 w.r.t. the number of ads. Nonetheless, this does
not exclude the possibility that the dependency on the number of slots K might get
worse (from K2/3 to K4/3) as conjectured in Remark 1 of Theorem 4.1. We believe that
further experiments and a more detailed theoretical analysis are needed. In fact, as
commented in Remark 2 of Sect. 3, all the upper–bounds are distribution–free and
consider worst–case auctions (in terms of qualities, values, and discount factors). As a

8From this experiment is not clear whether RT = Õ(ρmin), thus implying that RT does not depend on ρmin

at all, or RT is sublinear in ρmin, which would correspond to a dependency RT = Õ(ρ−αmin) with α < 1.



result, it is difficult to claim whether the linear dependency n could be indeed obtained
for some specific auctions or it is due to a rough maximization of the number of slots as
conjectured in Remark 1 of Thm. 4.1. Finally, we mention that we do not report results
on K since the complexity of finding the optimal allocation α∗ becomes intractable as
for K > 5.

7. CONCLUSIONS AND FUTURE WORK
Multi–arm bandit is an effective framework to study the quality estimation problem
in sponsored search auctions. In this paper, we extended the truthful exploration–
exploitation mechanism defined in [Devanur and Kakade 2009] to the general case of
contextual multi–slot auctions with position/ad–dependent externalities. The upper–
bounds on the revenue regret show an explicit dependency on the number of advs n and
slots K in the auction and they have been largely confirmed by numerical simulations.
This work open several questions:

Estimation of the cumulative discount factors. Through all the paper we as-
sumed that A–VCG receives as input the (exact) cumulative discount factors and only
the qualities {ρi}i are estimated. This assumption is reasonable in the case of position–
dependent externalities where the coefficients {Γk}k can be easily estimated using his-
torical data on any other similar auctions (independently from which advs actually
participated in it). On the other hand, for position/ad–dependent externalities the co-
efficients {Γk}k depend on the actual advs and they might not be easier to estimate
than the qualities themselves. Nonetheless, the algorithm and the analysis illustrated
in the paper could both be extended to the general case where {Γk}k are estimated at
the same time as the qualities. The main difficulty is that each ad should be displayed
on all the slots in order to distinguish between the probability of click which strictly
depend on the ad (i.e., ρi) and the probability due to the specific slot and allocation
wherein it is impressed. This would result in a significant lengthening of the explo-
ration phase and a corresponding worsening of the regret.

Truthfulness. As shown in [Devanur and Kakade 2009] and [Babaioff et al.
2008], truthfulness has a major impact in the achievable regret. It is interesting
to understand whether relaxed notions of truthfulness (e.g., with high probabil-
ity, ε–truthfulness) or moving to a characterization of ex post implementation (see
e.g., [Langford et al. 2010]) could lead to recover the standard multi–arm bandit Õ(

√
T )

regret (see also [Slivkins 2011] for similar issues in the case of monotone multi–armed
bandit allocations).

Auction–dependent bound. As discussed in Remark 2 of Thm. 3.2 and Remark 3
of Thm. 4.1, it would be interesting to derive auction–dependent bounds where the
qualities, values, and discount factors, explicitly appear.

Lower bounds. Although a lower bound on the regret as a function of T is available
for the single–slot case, it is crucial to derive lower bounds for the multi–slot case with
an explicit dependency on n and K.

Approximated auctions. As pointed out in Sect. 4, the computation of the effi-
cient allocation α∗ is intractable. In [Kempe and Mahdian 2008] a quasi–polynomial
ε–approximation of efficient allocation is derived. An interesting direction of future
work is to derive a regret analysis for such an approximated mechanism.

Experiments. The numerical simulations reported here are simple experiments to
study the accuracy of the bounds we derived in the paper. It is important to test the
A–VCG on real datasets, in particular in the contextual case.
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Online Appendix to:
A Truthful Learning Mechanism for Contextual Multi–Slot Sponsored
Search Auctions with Externalities
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A. PROOFS OF SECTION 3
Before stating the main result of this section, we need the following technical lemma.

LEMMA A.1. For any slot k

maxi(ρivi; k)

maxi(ρ̂
+
i vi; k)

≤ 1, (18)

with probability 1− δ.

PROOF. (Lemma A.1) The proof is a straightforward application of Proposition 3.1.
In fact, we have that ρ̂+

i ≥ ρi for any i ∈ N with probability 1− δ. As a result, for any k

maxi(ρivi; k)

maxi(ρ̂
+
i vi; k)

≤ maxi(ρivi; k)

maxi(ρivi; k)
≤ 1. (19)

PROOF. (Theorem 3.2)
Step 1 (truthfulness). The proof of truthfulness is exactly the same as in [Deva-

nur and Kakade 2009]. We first notice that each round during the exploration phase is
incentive compatible. In fact, the exploration allocation rules αt are arbitrary and in-
dependent from the bids, and all the payments are set to 0. Thus the advs do not have
any incentive to deviate from bidding their true values. During the exploitation phase
A–VCG actually implements a VCG with fixed weights ρ̂+

i . As a result, each step in the
exploitation phase is also incentive compatible (since the VCG is). Finally, A–VCG is
also truthful over the whole time horizon. In fact, the weights ρ̂+

i are completely inde-
pendent from the bids submitted during the exploration phase, thus the advs cannot
find any sequence of bids with a utility (in the long run) which is better than bidding
their true values. Since this reasoning holds for any realization of the click–events, we
conclude that A–VCG is always truthful.

Step 2 (regret). The proof follows similar steps as in [Devanur and Kakade 2009].
Given the definition of A–VCG in Section 3, we notice that the expected payments are
such that for any slot k ≤ K

p̂β̂(k)t =

{
0 if t ≤ τ (exploration)
p̂β̂(k) if t > τ (exploitation)

Thus we can just focus on the per–round regret during the exploitation phase. Accord-
ing to the definition of payments in Section 3, at each round of the exploitation phase
we bound the difference r between the payments as (where ∆l = Γl − Γl+1)

EC’12, June 4–8, 2012, Valencia, Spain. Copyright 2012 ACM 978-1-4503-1415-2/12/06...$10.00.



r =

K∑
k=1

(pβ∗(k) − p̂β̂(k))

=

K∑
k=1

K∑
l=k

∆l

(
max
i

(ρivi; l + 1)− maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)

ρβ̂(k)

)

≤
K∑
k=1

K∑
l=k

∆l
maxi(ρ̂

+
i vi; l + 1)

ρ̂+

β̂(k)

(
maxi(ρivi; l + 1)

maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)
− ρβ̂(k)

)

=

K∑
k=1

K∑
l=k

∆l
maxi(ρ̂

+
i vi; l + 1)

maxi(ρ̂
+
i vi; k)

vβ̂(k)

(
maxi(ρivi; l + 1)

maxi(ρ̂
+
i vi; l + 1)

ρ̂+

β̂(k)
− ρβ̂(k)

)
.

By definition of the max operator, it follows that for any l ≥ k, maxi(ρ̂
+
i vi;l)

maxi(ρ̂
+
i vi;k)

≤ 1.
Finally, from Lemma A.1 and vβ̂(k) ≤ V , it follows that

r ≤
K∑
k=1

K∑
l=k

V∆l(ρ̂
+

β̂(k)
− ρβ̂(k)) ≤ V

K∑
k=1

(ρ̂+

β̂(k)
− ρβ̂(k))

K∑
l=k

∆l,

with probability at least 1− δ. Recalling the definition of the cumulative discount fac-
tors we have that

∑K
l=k ∆l = Γk − ΓK+1 = Γk. Furthermore, from the definition of ρ̂+

i

and using Proposition 3.1 we have that for any advertisement i, ρ̂+
i −ρi = ρ̂i−ρi+2η ≤

2η, with probability at least 1− δ. Thus, the difference between the payments becomes

r ≤ 2V η

K∑
k=1

Γk ≤ V
( K∑
k=1

Γk

)√√√√( K∑
k=1

1

Γ2
k

)
2n

K2τ
log

n

δ
.

The difference r represents the regret at each round of the exploitation phase. In order
to get the final regret bound we need to consider the whole time horizon T and turn the
bound into expectation. During the first τ rounds the A–VCG sets all the payments to
0 and the per–round regret is at most V

∑K
k=1 Γk, while in the remaining T − τ rounds

the regret is bounded by r with probability 1− δ. Thus we obtain

RT ≤ V
( K∑
k=1

Γk

)(
(T − τ)

√√√√( K∑
k=1

1

Γ2
k

)
2n

K2τ
log

n

δ
+ τ + δT

)
.

We can simplify the bound by considering
∑K
k=1 Γk ≤ 1 and

∑K
k=1 1/Γ2

k ≤ K/Γ2
min, with

Γmin = mink Γk, thus obtaining

RT ≤ V K

(
(T − τ)

1

Γmin

√
2n

Kτ
log

n

δ
+ τ + δT

)
.



Now we can choose both τ and δ so as to minimize the bound. A rough optimization
leads to the choice of parameters

δ = n1/3(TK)−1/3

τ = 21/3Γ
−2/3
min T 2/3K−1/3n1/3(log (n2/3(KT )1/3))1/3,

thus obtaining

RT ≤ 3V 21/3Γ
−2/3
min T 2/3K2/3n1/3(log (n2/3(KT )1/3))1/3

≤ 181/3V Γ
−2/3
min T 2/3K2/3n1/3(log (n2KT ))1/3.

B. PROOFS OF SECTION 4
PROOF. (Theorem 4.1) Similar to the proof of Theorem 3.2 we first compute the

regret ri = pi − p̂i at each round of the exploitation phase for each advertisement i.
According to the definition of payments we have

ri = SW(α∗−i)− ŜW(α̂−i)
ρi

ρ̂+
i︸ ︷︷ ︸

r1i

+ ŜW−i(α̂)
ρi

ρ̂+
i

− SW−i(α∗)︸ ︷︷ ︸
r2i

.

We bound the first term through the following inequalities

r1
i = SW(α∗−i)− ŜW(α∗−i)

ρi

ρ̂+
i

+ ŜW(α∗−i)
ρi

ρ̂+
i

− ŜW(α̂−i)
ρi

ρ̂+
i

≤ max
α∈A−i

(
SW(α)− ŜW(α)

ρi

ρ̂+
i

)
+

(
ŜW(α∗−i)− max

α∈A−i
ŜW(α)

)
︸ ︷︷ ︸

≤0

ρi

ρ̂+
i

≤ max
α∈A−i

∑
j:α(j)≤K

Γα(j)vj

(
ρj − ρ̂+

j

ρi

ρ̂+
i

)

≤ V max
α∈A−i

∑
j:α(j)≤K

(
ρj − ρj

ρi

ρ̂+
i

+ ρj
ρi

ρ̂+
i

− ρ̂+
j

ρi

ρ̂+
i

)

= V max
α∈A−i

∑
j:α(j)≤K

[
ρj

(
ρ̂+
i − ρi
ρ̂+
i

)
+ (ρj − ρ̂+

j )︸ ︷︷ ︸
≤0

ρi

ρ̂+
i

]

≤ V

ρmin
max
α∈A−i

∑
j:α(j)≤K

(ρ̂i − ρi + η) ≤ 2KV

ρmin
η,

with probability 1− δ. We rewrite the second regret as

r2
i =

(
ŜW(α̂)− Γα̂(i)(α̂)ρ̂+

i vi

) ρi

ρ̂+
i

− SW(α∗) + Γα∗(i)(α
∗)ρivi

= ŜW(α̂)
ρi

ρ̂+
i

− SW(α∗)︸ ︷︷ ︸
r3i

+(Γα∗(i)(α
∗)− Γα̂(i)(α̂))ρivi.



We now focus on the term r3
i

r3
i = ŜW(α̂)

ρi

ρ̂+
i

− SW(α̂) + SW(α̂)−max
α∈A

SW(α)︸ ︷︷ ︸
≤0

≤ max
α∈A

(
ŜW(α)

ρi

ρ̂+
i

− SW(α)

)
= max

α∈A

∑
j:α(j)≤K

(
Γα(j)(α)ρ̂+

j vj
ρi

ρ̂+
i

− Γα(j)(α)ρjvj

)

≤ V max
α∈A

∑
j:α(j)≤K

(
ρ̂+
j

ρi

ρ̂+
i

− ρj
)

≤ V max
α∈A

∑
j:α(j)≤K

(ρ̂+
j − ρj) ≤ 2kV η.

By summing over all the ads, the regret r at each exploitative round is

r ≤
n∑
i=1

(r1
i + r2

i )

≤
n∑
i=1

(2KV

ρmin
η + 2KV η

)
+

n∑
i=1

(Γα∗(i)(α
∗)− Γα̂(i)(α̂))ρivi

≤ 4KnV

ρmin
η + SW(α∗)− SW(α̂)

=
4KnV

ρmin
η + SW(α∗)− ŜW(α∗) + ŜW(α∗)−max

α∈A
ŜW(α)︸ ︷︷ ︸

≤0

+ŜW(α̂)− SW(α̂)

=
4KnV

ρmin
η + SW(α∗)− ŜW(α∗)︸ ︷︷ ︸

r1

+ ŜW(α̂)− SW(α̂)︸ ︷︷ ︸
r2

The two remaining terms r1 and r2 can be easily bounded as

r1 = SW(α∗)− ŜW(α∗) ≤ max
α∈A

(
SW(α)− ŜW(α)

)
= max

α∈A

∑
j:α(j)≤K

(
Γα(i)(α)ρivi − Γα(i)(α)ρ̂+

i vi
)

≤ V max
α∈A

∑
j:α(j)≤K

(ρi − ρ̂+
i ) ≤ 0,

and



r2 = ŜW(α̂)− SW(α̂) ≤ max
α∈A

(
ŜW(α)− SW(α)

)
= max

α∈A

∑
j:α(j)≤K

(
Γα(i)(α)ρ̂+

i vi − Γα(i)(α)ρivi
)

≤ V max
α∈A

∑
j:α(j)≤K

(
ρ̂+
i − ρi

)
= V max

α∈A

∑
j:α(j)≤K

(ρ̂i + η − ρi) ≤ 2KV η.

Summing up all the terms we finally obtain r ≤ 6KnV
ρmin

η with probability 1− δ. By con-
sidering the regret and the length of the exploration phase and taking the expectation,
we have the final bound on the cumulative regret RT

RT ≤ V K

[
(T − τ)

(
3
√

2n

Γminρmin

√
n

Kτ
log

n

δ

)
+ τ + δT

]
.

Optimizing the bound for τ and δ leads to the final statement.

C. PROOFS OF SECTION 5
PROOF. (Theorem 5.2) The proof follows similar steps as for Theorem 4.1. The main

difference is that the regret is now defined in expectation w.r.t. the distribution µ.
At each round during the exploitation phase, the regret for each ad i ∈ N can be
decomposed as (the expectation is w.r.t. x ∼ µ)

ri = E[pi(x)− p̂i(x)]

= E
[
SW(α∗−i;x)− ŜW(α̂−i;x)

ρj(x)

ρ̂j(x)

]
︸ ︷︷ ︸

r1i

+E
[
ŜW−i(α̂;x)

ρj(x)

ρ̂j(x)
− SW−i(α∗;x)

]
︸ ︷︷ ︸

r2i

.

We now study the two terms separately.

r1
i = E

[
SW(α∗−i;x)− ŜW(α∗−i;x)

ρi(x)

ρ̂i(x)
+ ŜW(α∗−i;x)

ρi(x)

ρ̂i(x)
− ŜW(α̂−i;x)

ρi(x)

ρ̂i(x)

]
= max
α∈A−i

E
[
SW(α;x)− ŜW(α;x)

ρi(x)

ρ̂i(x)

]
+ E

[(
ŜW(α∗−i;x)− max

α∈A−i
ŜW(α;x)

)]
︸ ︷︷ ︸

≤0

ρi(x)

ρ̂i(x)

≤ V max
β∈B−i

∑
j:β(j)≤K

E
[
ρj(x)− ρ̂j(x)

ρi(x)

ρ̂i(x)

]

≤ V max
β∈B−j

∑
j:β(j)≤K

E
[
ρj(x)− ρj(x)

ρi(x)

ρ̂i(x)
+ ρj(x)

ρi(x)

ρ̂i(x)
− ρ̂j(x)

ρi(x)

ρ̂i(x)

]

= V max
β∈B−j

∑
j:β(j)≤K

{
E
[
ρj(x)

(
ρ̂i(x)− ρi(x)

ρ̂i(x)

)]
+ E

[
(ρj(x)− ρ̂j(x))

ρi(x)

ρ̂i(x)

]}



We use the Cauchy-Shwarz inequality9 to split the products inside the two expecta-
tions, thus obtaining

r1
i ≤ V max

β∈B−j

∑
j:β(j)≤K

{√√√√E
[
ρ2
j (x)︸ ︷︷ ︸
≤1

(ρ̂i(x)− ρi(x))2
]√

E
[ 1

ρ̂2
i (x)

]

+

√√√√E
[
(ρj(x)− ρ̂j(x))2 ρ2

i (x)︸ ︷︷ ︸
≤1

]√
E
[ 1

ρ̂2
i (x)

]}

≤ V max
f∈F

∥∥∥∥ 1

f2

∥∥∥∥
µ

(
K
√

E [(ρ̂i(x)− ρi(x))2] + max
β∈B−i

∑
j:β(j)≤K

√
E [ρ̂j(x)− ρj(x))2]

)

≤ V ξ
(
K||ρi − ρ̂i||µ + max

β∈B−i

∑
j:β(j)≤K

||ρj − ρ̂j ||µ
)

≤ 2KV ξχ,

where we used the fact that E[1/ρ̂2
j (x)] ≤ maxf∈F ||1/f2||µ ≤ ξ by Assumption 2 and we

bounded ||ρi − ρ̂i||µ with Lemma 5.1. We now bound the second term in the regret.

r2
i = E

[
ŜW−i(α̂;x)

ρi(x)

ρ̂i(x)
− SW−i(α∗;x)

]
= E

[ (
ŜW(α̂;x)− Γβ∗(i)(β

∗)ρ̂i(x)vi

) ρi(x)

ρ̂i(x)
− SW(α∗;x) + Γβ̂(i)(β̂)ρi(x)vi

]
= E

[
ŜW(α̂;x)

ρi(x)

ρ̂i(x)
− SW(α∗;x)

]
︸ ︷︷ ︸

r3i

+E
[
Γβ∗(i)(β

∗)ρi(x)vi − Γβ̂(i)(β̂)ρi(x)vi

]
.

The additional term r3
i can be bounded as

9Given two random variables X and Y , E[XY ] ≤
√

E[X2]
√

E[Y 2].



r3
i = E

[
ŜW(α̂;x)

ρi(x)

ρ̂i(x)
− SW(α̂;x)

]
+ E

[
SW(α̂;x)−max

α∈A
SW(α;x)︸ ︷︷ ︸

≤0

]

≤ max
α∈A

E
[
ŜW(α;x)

ρi(x)

ρ̂i(x)
− SW(α;x)

]
≤ max

β∈B

∑
j:β(j)≤K

E
[
Γβ(j)(β)ρ̂j(x)vj

ρi(x)

ρ̂i(x)
− Γβ(j)(β)ρj(x)vj

]

≤ V max
β∈B

∑
j:β(j)≤K

E
[
ρ̂j(x)

ρi(x)

ρ̂i(x)
− ρj(x)

ρi(x)

ρ̂i(x)
+ ρj(x)

ρi(x)

ρ̂i(x)
− ρj(x)

]

≤ V max
β∈B

∑
j:β(j)≤K

E
[
(ρ̂j(x)− ρj(x))

ρi(x)

ρ̂i(x)

]
+ E

[
(ρi(x)− ρ̂i(x))

ρj(x)

ρ̂i(x)

]

≤ V max
β∈B

∑
j:β(j)≤K

{√√√√E
[
(ρ̂j(x)− ρj(x))2 ρ2

i (x)︸ ︷︷ ︸
≤1

]√√√√E

[
1

ρ̂2
i (x)

]

+

√√√√E
[
(ρi(x)− ρ̂i(x))2 ρ2

j (x)︸ ︷︷ ︸
≤1

]√√√√E

[
1

ρ̂2
j (x)

]}

≤ V ξmax
β∈B

∑
j:β(j)≤K

(‖ρ̂j(x)− ρj(x)‖µ + ‖ρ̂i(x)− ρi(x)‖µ)

≤ 2KV ξχ

Now we can compute the regret at each round during the exploitation phase

r ≤
n∑
i=1

r1
i + r2

i

≤ 4nKV ξχ+

n∑
i=1

E
[
Γβ∗(i)(β

∗)ρi(x)vi − Γβ̂(i)(β̂)ρi(x)vi

]
≤ 4nKV ξχ+ E

[
SW(α∗;x)− SW(α̂;x)

]
≤ 4nKV ξχ+ E

[
SW(α∗;x)− ŜW(α∗;x) + ŜW(α∗;x)− ŜW(α̂;x) + ŜW(α̂;x)− SW(α̂;x)

]
≤ 4nKV ξχ+ 2 max

β∈B
E[|SW(β;x)− ŜW(β;x)|]

≤ 4nKV ξχ+ 2V max
β∈B

∑
i:β(i)≤K

E[|ρi(x)− ρ̂i(x)|]

≤ 4nKV ξχ+ 2V max
β∈B

∑
i:β(i)≤K

||ρi − ρ̂i||µ

≤ 4nKV ξχ+ 2KV χ ≤ 6nKV ξχ.



The previous regret bound holds with probability 1− δ for each step over the exploita-
tion phase. We now move to the final regret bound we becomes

RT ≤ V K [(T − τ)6nξχ+ τ + δT ] .

By recalling the definition of ξ and χ and by optimizing τ and δ the statement fol-
lows.

D. DEVIATION REGRET
The definition of regret in (5) measures the cumulative difference between the rev-
enue of a VCG compared to the one obtained by A–VCG over T rounds. Upper–bounds
on this quantity guarantees that the loss in terms of revenue does not linearly in-
crease with T . As illustrated in the previous sections, the key passage in the proofs
is the upper–bounding of the regret at each round of the exploitation phase (i.e.,
r =

∑n
i=1(pi − p̂i)). Nonetheless, we notice that this quantity could be negative. Let

us consider the following simple example. Let n = 3, K = 1, vi = 1 for all the ads,
and ρ1 = 0.1, ρ2 = 0.2, and ρ3 = 0.3. Let assume that after the exploration phase we
have ρ̂+

1 = 0.1, ρ̂+
2 = 0.29, ρ̂+

3 = 0.3. A standard VCG mechanism allocates adv a3 and
asks for a payment p = 0.2. During the exploitation phase A − −V CG also allocates
a3 but asks for an (expected) payment p̂ = (ρ̂+

2 /ρ̂
+
3 )ρ3 = 0.29. Thus, the regret in each

exploitation round is r = p − p̂ = −0.09. Although this result might seem surprising,
it is due to the fact that while both A–VCG and VCG are truthful, in general A–VCG
is not efficient. We recall that a mechanism is efficient if for any set of advs it always
maximizes the social welfare. In the example, if for instance the true quality of adv
a3 is ρ3 = 0.28, then the allocation induced by ρ̂+s is not efficient anymore. By drop-
ping the efficiency constraint, it is possible to design mechanisms with larger revenues
than the VCG. For this reason, we believe that a more complete characterization of the
behavior of A–VCG compared to the VCG should consider the deviation between their
payments and not only the loss in the revenue. In particular, let us define the regret
as the deviation between the VCG and the approximated VCG:

R̃T (A) =

T∑
t=1

∣∣∣ n∑
i=1

(pi − pit)
∣∣∣, (20)

We prove an upper–bound for the single–slot case (the extension of the multi–slot
results is straightforward).

THEOREM D.1. Let us consider an auction with n advs and T rounds. For any
parameter τ and δ, the A–VCG is always truthful and it achieves a regret

R̃T ≤ V (τ +
2η

ρmin
+ δT ) (21)

where ρmin = mini ρi. By setting the parameters to

δ = 1/T

τ = τ = 21/3T 2/3n1/3(log nT )1/3,

the regret is

R̃T ≤ V

(
25/3

ρmin
T 2/3n1/3(log nT )1/3 + 1

)
. (22)



PROOF. We bound the difference between p and p̂ during the exploitation phase. We
consider the two sides separately. Let i∗ = arg maxi ρ̂

+
i vi. We have

r1 = p− p̂

= smaxi(ρivi)−
smaxi(ρ̂+

i vi)

ρ̂+
i∗

ρi∗

=
smaxi(ρ̂+

i vi)

ρ̂+
i∗

(
smaxi(ρivi)
smaxi(ρ̂+

i vi)
ρ̂+
i∗ − ρi∗

)

= vi∗
smaxi(ρ̂+

i vi)

ρ̂+
i∗vi∗

(
smaxi(ρivi)
smaxi(ρ̂+

i vi)
ρ̂+
i∗ − ρi∗

)

≤ V

(
smaxi(ρivi)
smaxi(ρivi)

ρ̂+
i∗ − ρi∗

)
≤ V

(
ρ̂+
i∗ − ρi∗

)
≤ 2V η,

with probability 1− δ.
Now we bound the other side.

r2 = p̂− p

=
smaxi(ρ̂+

i vi)

ρ̂+
i∗

ρi∗ − smaxi(ρivi)

= smaxi(ρivi)

(
smaxi(ρ̂+

i vi)

smaxi(ρivi)
ρi∗

ρ̂+
i∗
− 1

)

≤ smaxi(ρivi)

(
smaxi((ρi + 2η)vi)

smaxi(ρivi)
ρi∗

ρi∗
− 1

)

≤ smaxi(ρivi)

(
smaxi(ρivi) + 2ηsmaxi(vi)

smaxi(ρivi)
− 1

)

≤ V

(
smaxi((ρivi) + 2ηsmaxi(vi)

smaxi(ρivi)
− 1

)

≤ V

(
1 + 2η

smaxi(vi)
smaxi(ρivi)

− 1

)

≤ V 2η

1
ρmin

smaxi(ρivi)
smaxi(ρivi)

= 2V
η

ρmin
,

with probability 1− δ. As a result we have

|p− p̂| ≤ 2V
η

ρmin
,

with probability 1− δ. The final bound on the expected regret is thus

R̃T ≤ V (τ +
2η

ρmin
+ δT ) (23)



By optimizing τ = 21/3T 2/3n1/3(log nT )1/3 and setting δ = 1/T we have the final bound

R̃T ≤ V

(
25/3

ρmin
T 2/3n1/3(log nT )1/3 + 1

)
. (24)

Remark (the bound). We notice that the bound is very similar to the bound for the
regret RT but now an inverse dependency on ρmin appears. This suggests that bound-
ing the deviation between the two mechanisms is more difficult than bounding the
revenue loss and that as the qualities become smaller, the A–VCG could be less and
less efficient and, thus, have a larger and larger revenue. This result has two impor-
tant implications. (i) If social welfare maximization is an important requirement in
the design of the learning mechanism, we should analyze the loss of A–VCG in terms
of social welfare and provide (probabilistic) guarantees about the number of rounds
the learning mechanism need in order to be efficient (see [Gonen and Pavlov 2007b]
for a similar analysis). (ii) If social welfare is not a priority, this result implies that
a learning mechanism could be preferable w.r.t. to a standard VCG mechanism. We
believe that further theoretical analysis and experimental validation are needed to
understand better both aspects.


