Optimistic planning of deterministic systems

Jean-Francgois Hren and Rémi Munos

SequeL project, INRIA Lille - Nord Europe
40 avenue Halley, 59650 Villeneuve d’Ascq, France
jean-francois.hren@inria.fr and remi.munos@inria.fr

Abstract. If one possesses a model of a controlled deterministic system,
then from any state, one may consider the set of all possible reachable
states starting from that state and using any sequence of actions. This
forms a tree whose size is exponential in the planning time horizon.
Here we ask the question: given finite computational resources (e.g. CPU
time), which may not be known ahead of time, what is the best way
to explore this tree, such that once all resources have been used, the
algorithm would be able to propose an action (or a sequence of actions)
whose performance is as close as possible to optimality? The performance
with respect to optimality is assessed in terms of the regret (with respect
to the sum of discounted future rewards) resulting from choosing the
action returned by the algorithm instead of an optimal action. In this
paper we investigate an optimistic exploration of the tree, where the most
promising states are explored first, and compare this approach to a naive
uniform exploration. Bounds on the regret are derived both for uniform
and optimistic exploration strategies. Numerical simulations illustrate
the benefit of optimistic planning.

1 Introduction

This paper is concerned with the problem of making the best possible use of
available numerical resources (such as CPU time, memory, number of calls to
a black-box model, ...) in order to solve a sequential decision making problem
in deterministic domains. We aim at designing anytime algorithms, i.e. which
return higher accuracy solutions whenever additional resources are provided.
To fix the setting, we are interested in generating a near-optimal policy for a
deterministic system with discounted rewards, under finite action space but large
state space (possibly infinite). We assume that we have a generative model of
the state dynamics and rewards.

The approach consists in considering at each time-step ¢, the look-ahead tree
(which may be constructed from our model) of all possible reachable states when
using any sequence of actions, starting from x;. Then a search is performed in
this tree by using a specific exploration strategy. We address the question of how
should one explore this tree such that after a finite number of numerical resources
(here we will consider the number of node expansions or node transitions, which
is directly related to the CPU time, or the number of calls to our model), we
would be able to make the best possible decision about the action (or sequence

of actions) to choose from state x;. This action (or sequence) is subsequently ex-
ecuted in the real world, and the overall process is repeated from the next state
x¢+1. This is close in spirit to the sparse sampling algorithm of [KMNO02], where
a sampling device is used to explore the look-ahead tree and generate a near op-
timal action with high probability. Their setting is more general than ours since
they consider general Markov Decision Processes, whereas we restrict ourself to
deterministic dynamics and rewards (we will consider the stochastic case in fu-
ture work). However the purpose of our study is the possible clever exploration
of the tree, whereas they only consider uniform exploration. Empirical works,
such as [PG04], suggest that non-uniform exploration may greatly improve the
performance of the resulting policy, given a fixed amount of computation.

The bounds on the performance we obtain here do not depend on the di-
mension of the state space, contrarily to usual (possibly approximate) Dynamic
Programming and Reinforcement Learning approaches (where a close-to-optimal
policy results from the approximation of a value function over the whole domain),
see [Put94,BT96,SB98], which are subject to the curse of dimensionality. How-
ever our bounds scale with the branching factor of some related trees and the time
horizon 1/(log1/7) (where « is the discount factor). The performance measure
we consider here is the regret R(n), which is the performance loss (with respect
to optimality) of the decision returned by the algorithm after having explored
the tree using n units of computational resources. This notion will be made pre-
cise in the next section. If we consider a uniform exploration of the tree, one

obtains the (upper and lower) bounds on the regret: R(n) = @(nilfgﬁl/ﬁ), where
K is the number of actions (the branching factor of the full look-ahead tree). We
thus expect such approaches to be interesting (compared to value function-based
approaches) when the state space is huge but the number of actions is relatively
small.

In this paper we investigate an optimistic exploration of the tree, where
the most promising nodes are explored first. The idea is to explore at each
round the node that has a possibility of being the best (which motivates the
term “optimistic”), in the sense of having the highest upper-bound. The idea
of selecting actions based on upper confidence bounds (UCB) dates to early
work in multi-armed bandit problems, see e.g. [Rob52,LR85], and more recently
[ACBF02]. Planning under uncertainty using UCB has been considered in [KS06]
and the resulting algorithm UCT (UCB applied to Trees) has been successfully
applied to the large scale tree search problem of computer-go, see [GWMT06].
However, regret analysis shows that UCT may perform very poorly because of
overly-optimistic assumptions of the bounds, see [CMO07]. Our work is close in
spirit to the BAST (Bandit Algorithm for Smooth Trees) algorithm of [CMO07],
where we use the inherent smoothness of the look-ahead tree (which comes from
the fact that we consider the sum of discounted rewards along the paths) to
settle true upper-bounds on the nodes value. Using this optimistic exploration,

log 1/
our main result is an upper-bound on the regret R(n) = O(n~ liglfj) where
k € (1, K] is the branching factor of a related subtree, composed of all the nodes
that will eventually have to be evaluated in order to decide whether they belong

to an optimal path or not. In particular, the optimistic exploration is never
worst than the uniform one (in some sense made precise later), and much better
whenever « is smaller than K and close to 1. We show that « is also related
to the proportion of near-optimal paths in the full look-ahead tree, and that in
hard instances of search problems, k is small compared to K, which increases the
benefit of using optimistic rather than uniform exploration for complex problems.
We further show that in some non-trivial cases, x = 1, and exponential rates are
derived.

In the next section, we introduce the notations and motivations for the tree
exploration problem. Then we consider the uniform and optimistic exploration
strategies. We conclude the paper by numerical experiments illustrating the ben-
efit of the optimistic exploration.

2 Planning under finite numerical resources

We are interested in making the best possible use of available numerical resources
for decision making. For that purpose, we assume that we possess a generative
model that can be used to generate simulated transitions and rewards. The
action-selection procedure (call it A) takes as input the current state of the
system and outputs an action A(n) (or a sequence of actions, but we will focus
in this paper on the single output action case) using a finite number n of available
numerical resources. The term resource refers to a piece of computational effort
which may be measured e.g. in terms of CPU time or number of calls to the
generative model. The amount n of available resources may not be known before
they are all used, so we wish to design anytime algorithms. Our goal is that the
proposed action A(n) be as close as possible to the optimal action in that state,
in the sense that the regret R 4(n) (in the cumulative discounted sum of rewards
to come) of choosing this action instead of the optimal one should be small. Let
us now introduce some notations to define more precisely this notion of regret.

We consider here a deterministic controlled problem defined by the tuple
(X, A, f,r), where X is the state space, A the action space, f : X x A — X the
transition dynamics, and 7 : X x A — R the reward function. If at time ¢, the
system is in state x; € X and the action a; is chosen, then the system jumps to
the next state x441 = f(x4,a;) and a reward r(xy, a;) is received. In this paper
we will assume that all rewards are in the interval [0,1]. We assume that the
state space is large (possibly infinite), and the action space is finite, with K
possible actions. We consider an infinite time horizon problem with discounted
rewards (0 <~ < 1 is the discount factor). For any policy 7 : X — A we define
the value function V™ : X — R associated to that policy:

V(@) €N ytr(ar, w(x)),

t>0

where x; is the state of the system at time ¢ when starting from x (i.e. g = z)
and following policy .

We also define the Q-value function Q™ : X x A — R associated to a policy
7, in state-action (z,a), as:

Q" (z,0) = r(x,a) + V7 (f(z,a)).
We have the property that V7™ (z) = Q™ (z,7(z)). Now the optimal value
function (respectively Q-value function) is defined as: V*(x) def sup,. V™ (x) (re-

spectively Q*(z, a) def sup, Q™ (z, a)). From the dynamic programming principle,
we have the Bellman equations:

V() = max [r(z,0) + 2V (f (.)]

Q*(xz,a) =r(z,a) + ’yrgj[eaj(Q" (f(x,a),b).

Now, let us return to the action-selection algorithm A. After using n units
of numerical ressources the algorithm A returns the action A(n). The regret
resulting from choosing this action instead of the optimal one is:

Ra(n) = max Q"(z,a) = Q" (z, A(n)). (1)

From an action-selection algorithm .4 one may define a policy 74 which would
select in each state encountered along a trajectory the action .A(n) proposed by
the algorithm A using n resources. The following result motivates our choice of
the previous definition for the regret in the sense that an algorithm with small
regret will generate a close-to-optimal policy.

Proposition 1. Consider a control algorithm using an action-selection proce-
dure with regret € (i.e. for each state x, the action-selection procedure returns an
action a such that Q*(x,a) > V*(x) —€). Then the performance of the resulting

policy w4 is 1f7 -optimal, i.e. for all x,

Vi) = V) €
Proof. Let T and T™ be operators over bounded functions on X, defined as
follows: for any bounded V : X — R, TV (x) 2 maxeea [r(z,a) +vV(f(z,a))],

TV (2) € r(z,m(@) + AV (f (2, 7(2))).

‘We have the properties that 7" and T™ are contraction operators in sup norm,
and that V* is the fixed point of T' (i.e. V* = TV*) and V7™ is the fixed point of
T (i.e. VT =T7V™), see e.g. [Put94].

Using these notations, the assumption that A is an action selection procedure
with regret e writes that for all z, T™AV*(z) > TV*(x) —e. Thus we have: ||[V*—
V7Aoo < [TV = TRAV* || + [[TT4V* = TRAVTA||g < e 44|V — V4|,
from which we deduce the proposition. O

Our goal is thus to define clever action-selection algorithms A such that, if
provided with n units of computational resource, would return an action with
minimal regret Ra(n).

The next section describes a method based on the construction of a uniform
look-ahead tree.

3 Uniform planning

3.1 Look-ahead tree search

Given a state x, we describe a way to select an almost-optimal action, based
on the construction of a uniform look-ahead tree. We consider the (infinite) tree
T composed of all possible reachable states from z: the root corresponds to x
and each node of depth d correspond to a state that is reachable from x after
a sequence of d transitions. Each node i (associated to some state y), has K
children C(7) (associated with the states {f(y,a)}qca). Write 0 the root node,
and 1... K its K children (nodes of depth 1).

We call a path of 7 a (finite or infinite) sequence of connected nodes starting
from the root. We define the value v; of a node i as the supremum, over all
infinite paths going through node 4, of the sum of discounted rewards obtained
along such paths. We have the property that v; = max;cc(;) v;, and the optimal
value (value of the root) v* = vy = max;er v; = max{vy,..., vk}

We consider numerical resources expressed in terms of the number of ex-
panded nodes. This is directly related to the CPU time required to explore the
corresponding part of the tree, or the amount of memory required to store infor-
mation about the expanded nodes. This is also equivalent to the number of calls
to the generative-model, providing the next-state f(z,a) and the reward r(z, a).

We say that a node is expanded when some numerical resources are allocated
to this node and to the computation of the transitions to its children (by a call
to the generative model for each actions). At any round n, the expanded tree
7, denotes the set of nodes already expanded. The set of nodes in 7 that are
not in 7, but whose parents are in 7, is written S,: this represents the set of
possible nodes that may be expanded at the next round (see fig. 1).

Fig. 1. Set of expanded nodes 7, (black dots) at round n = 5 and set of nodes S,
(gray dots) that may be expanded next. Here K = 2.

For any node i € §,, we define the value u; to be the sum of discounted
rewards obtained along the (finite) path from the root to node ¢ (this information
is available at round n since the parent of ¢ has been expanded and thus the
transition to node i has been computed). Now, for any node ¢ € 7,,, we define in
a recursive way u; = maX;ec(;) Uj- Since these u-values are defined in S, they
are also well defined in 7,,.

Note that since the u-values depend on 7,,, we will write them u;(n) whenever
the dependency with respect to (w.r.t.) n is relevant. From their definition, we
have the property that u;(n) is an increasing function of n.

Since the sum of discounted rewards from a node of depth d is at most

Aoyt = % (recall that all rewards are in [0,1]), we have: for all
1€, US andn >t >1, ui(n)gvigui(n)—ﬁ—%.

3.2 The algorithm

Here we consider a uniform exploration policy, defined as follows. We first expand
the root. Then, at each round n, we expand a node in S,, having the smallest
depth. See Algorithm 1.

Algorithm 1 Uniform planning algorithm Ay
Set n = 0. Expand the root.
while Numerical resource available do
Expand a node i € S,, with the smallest depth.
n=n+1
end while

return Action arg max ux(n)
ke{l,...,K}

Thus, at all rounds, a uniform tree is expanded: Hence, at round n = 1 +
K+K?’+.. .+ Ki= K;<+i1_17 all nodes of depth d or less have been expanded.
The uniform action-selection algorithm, written Ay, returns, after n rounds,
the action which corresponds to the children of the root k € {1... K} that has

the highest uyg, i.e.:

def
Ay(n) = arg max ur(n),
v(n) 8 omax, k(1)
(ties broken arbitrarily). In words, after n rounds, where we expanded the tree
uniformly, Ay selects the action corresponding to the branch where we found

the (finite) path with highest sum of rewards.

3.3 Analysis

Theorem 1. Consider the uniform planning algorithm described above. Then
for any reward function, the regret of the uniform algorithm is bounded by

R, (n) < i [n(K —1)+1] : 2)

Moreover, for all n > 2, there exists a reward function, such that the regret of
this algorithm on this problem is at least

vy 710;;31/')/
T [=)] (3)

Ra, (n) 2

_logl/~y

We deduce the dependency (in a worst-case sense): R4, (n) = ©O(n~ Tek).

Proof. For any n > 2, let d be the largest integer such that

K+t —1
nZ T)
Thus all nodes of depth d have been expanded. Thus for all k € {1,..., K}, we
have v, < uyp + %, since all rewards up to depth d have been seen. Thus:
d+1 d+1 A1
~ =UAy(n) T 1—~ < VAy(n) T 1

v = max v < max ug +
ke{1,.. K} ke{l,.. K} 1-—

— /y !
Now, from (4), we have d > logy[n(K — 1) 4+ 1] — 2, from which we deduce

that
d+1 1

v — V Ay (n) < 1—

—logg 1/

ng(l_w[n(K 1) +1] .
For the second part of the Theorem, consider a fixed n. Define d as the largest
integer such that (4) holds. Thus, from (4), we have d < logy[n(K —1)+1] — 1.
Define the following reward function: all rewards are 0 except in a branch (say

branch 1) where the rewards of all transitions from nodes of depth p to depth
p+ 1, where p > d+1,is 1. Thus v* =v; = g and vy = 0.

Thus at the time of the decision, all uy, (for k € {1,..., K}) equal zero (only
0 rewards have been observed), and an arbitrary action (say action 2) is selected
by the algorithm. s

Wj, and (3) follows from the bound on d. O

Thus v* —v4,m) =v1 —v2 = 7

As a consequence of Theorem 1 and Proposition 1, we deduce that in order

to guarantee that the performance of the uniform planning policy 74y is €

log K
optimal (i.e. |[|[V* — V™M || < €), we need to devote n = Q(ﬁ)“’;{il/7
units of resource per decision-step.

In this paper, we sought for other action-selection algorithms A that could
make better use of available resources in the sense of minimizing the regret
R.(n) for a fixed amount n of computational resources. Note that the worst-
case analysis considered in the second part of the proof of the previous Theorem
may discourage us for searching for better bounds, since a similar analysis could
be pursued on any specific algorithm. However we would like to define relevant
classes of problems for which one would expect to obtain better convergence
rates (for the regret) when using other action-selection algorithms than uniform:
One cannot hope to achieve better rates for all problems but this may be possible
for specific classes of problems.

4 Optimistic planning

In this section, we present an algorithm building an asymmetric look-ahead tree
aiming at exploring first the most promising parts of the tree.

4.1 The algorithm
We define the b-value of each node i € S,, of depth d by b; ef u; + %, and for
any node i € 7,,, its b-value is defined recursively by: b; def maxX;ec () b;-

Note that like the u-values, the b-values are also well-defined and also depend
on n, so we will write them b;(n) whenever the explicit dependency w.r.t. n is
relevant. A property is that b;(n) is a decreasing function of n. Now, since all
rewards are assumed to be in [0, 1], we have the immediate property that these
b-values are upper-bounds on the values of the nodes: for all i € 7, U S;, for all
n>t,

ui(n) <wv; < bi(n).

The optimistic exploration policy consists in expanding in each round a node
1 € S, which possesses the highest b-value. See Algorithm 2. The returned
action corresponds to the child of the root with highest u-value: Ap(n) e
arg maxpeq1,... k) Uk(n) (ties broken arbitrarily).

Algorithm 2 Optimistic planning algorithm Ap
Set n = 0. Expand the root.
while Numerical resource available do
Expand a node i € Sy, s.t. Vj € Sy, bi(n) > bj(n).
n=n+1
end while
return Action arg max ur(n)
kef{l

4.2 Analysis

Theorem 2. Consider the optimistic planning algorithm described above. At
round n, the regret is bounded by

yn
<
Ry, (n) < T (5)

where d,, is the depth of the expanded tree T, (mazimal depth of nodes in Ty,).

As a consequence, for any reward function, the upper bound on the regret for
the optimistic planning is never larger than that of the uniform planning (since
the uniform exploration is the exploration strategy which minimizes the depth
d, for a given n, the depth obtained when using an optimistic algorithm is at
least as high as that of the uniform one).

Proof. First let us notice that the action returned by the optimistic algorithm
corresponds to a deepest explored branch. Indeed, if this was not the case, this
would mean that if we write ¢ € 7,, a node of maximal depth d,,, there exists a
node j € 7, of depth d < d,, such that u;(n) > u;(n). Thus there would exist a
round ¢ < n such that node ¢ has been expanded at round ¢, which would mean
that b;(¢) > b;(t). But this is impossible since b;(t) = ui(t)—i-% < uz(n)—i—% <
dn d

w5 (n) + T < uy(n) + 7o = by(n) < by(0).

Thus the action returned by the algorithm corresponds to a branch that has
been the most deeply explored. Let i € 7,, be a node of maximal depth d,,. Node
1 belongs to one of the K branches connected to the root, say branch 1. If the
optimal action is 1 then the loss is 0 and the upper bound holds. Otherwise, the
optimal action is not 1, say it is 2. Let t < n be the round at which the node
was expanded. This means that b;(t) > b;(t) for all nodes j € S, thus also for
all nodes j € 7;. In particular, by (t) = b;(t) > b2(t). But ba(t) > ba2(n). Now, the
u-values are always lower bounds on the v-values, thus uy(t) < vy, and from the
definition of u-values, u;(t) < uq(t). We thus have:

V= Vg (n) = V2 — U1 < ba(n) — vy < ba(t) —vr

< bi(t) —wn(t) < bi(t) —wi(t) = ;

which concludes the proof. O

Remark 1 This result shows that the upper bound for optimistic planning can-
not be worst than the upper bound for uniform planning. This does not mean
that for any problem, the optimistic algorithm will perform at least as well as
a uniform algorithm. Indeed, this is not true since, if we consider the example
mentioned in the proof of Theorem 1, if at time n all observed rewards are 0, any
algorithm (such as the optimistic one) would deliver an arbitrary decision, which
may be worst than another arbitrary decision (made for example by the uniform
algorithm). However, if we consider equivalent classes of problems, where classes
are defined by trees having the same reward function up to possible permutations
of branches, then we conjecture that we have the stronger result that for any
problem, the optimistic planning is never worse than the uniform planning per-
formed on a problem of the same class. However we will not pursue this research
further in this paper.

Note that the lower bound obtained for the uniform planning also holds for
the optimistic planning (the proof is the same: since, up to round n all rewards
are 0, the optimistic planning will also build a uniform tree). This shows that no
improvement (over uniform planning) may be expected in a worst-case setting,
as already mentioned. In order to quantify possible improvement over uniform
planning, one thus needs to define specific classes of problems.

For any € € [0,1], define the proportion p4(€) of e-optimal nodes of depth d:

pale) def |{node i of depth d s.t. v; > v* — e}|K ¢,

and write p(e) def limg o0 pa(€) the proportion of e-optimal paths in the tree
(note that this limit is well defined since pq(€) is a decreasing function of d).

Theorem 3. Let 3 € |0, l(l)zgli/{v] be such that the proportion of e-optimal nodes
of depth d > do (for some depth dy) in the tree T is O(e®). More precisely, we

assume that there exists positive constants dy and c, such that ¥d > dy Ve > 0,

pale) < c®. Now let us define K ef K~®, which belongs to the interval [1, K].
If g < % (i.e. k > 1), then the regret of the optimistic algorithm is

Rag(n) = O(n)

Ifp = % (i.e. k =1), then we have the exponential rate:

a-vFf
RAo(n):O(W c ”)

Proof. Let us define the sub-tree 7o C 7 of all the nodes ¢ of depth d that are
d
l—v—optimal, ie.

d
T def U {node 1 of depth d s.t. v; + 17 > U*}-
d>0

Let us prove that all nodes expanded by the optimistic algorithm are in 7.
Indeed, let i be a node of depth d expanded at round n. Then b;(n) > b; for all
Jj € Sy UT,, thus b;(n) = by(n) (b-value of the root). But bg(n) > vy = v*, thus
v; > ui(n) = bi(n) — % >v* — %, thus i € To.

Now, from the definition of 3, there exists dy such that the proportion of
e-optimal nodes of depth d > dy is at most ce®, where c is a constant. We thus
have that the number ny of nodes of depth d in 7., is bounded by c(%)ﬁKd.

Now, write d,, the depth of the expanded tree 7, at round n. Let ng =

% the number of nodes in 7 of depth less than dg. We have:
dn dn 'Yd g dn
d __ / d
n<mng-+ Z ng <ng+c Z (1_7)K—n0+c Z K
d=dp+1 d=dp+1 d=dp+1

with ¢/ = ¢/(1 —7)? and k = Y°K.
First, if k > 1 then we have n < ng + c’ndf’“w. Thus d,, > do +

rk—1
log % Now, from Theorem 2, we have the regret:

log v
d
v 1 [(n—mng)(k—1)] %"
R.Ao(n)S 177_ 17,}/ |: ¢ kdo+1
— O(n—l‘iigﬁ)
Now, if kK = 1, let ng = % Following the same arguments as above,

we deduce that n < ng + W(d” — dp), and the regret: R, (n) < i—: =

0(7"%). O

Remark 2 Let us notice that the proportion of e-optimal paths is bounded by
ceP. B lies necessarily in the interval [0, logy /., K], and two extreme cases are:

— The case when all paths are optimal (i.e. all rewards are equal). This corre-
sponds to B =0, or k = K.

— The case where there is only one path where rewards are 1, all other rewards
being 0. Then, for any €, the proportion of e-optimal nodes of depth d is
1/K? for d < dy for some depth dy for which % <€, and for all d > dy the
proportion of e-optimal nodes remains constant. Since dy > log,y(l — 7)€, the
proportion of e-optimal nodes of depth d > dy is at most [(1 — 'y)e} 1081/ K,
i.e. which corresponds to 3 = log, ;. K. This is the highest possible value for
8. This corresponds to k = 1.

From this result, we see that when x > 1, the decrease rate of the regret

for the optimistic algorithm is nf% instead of the n*hffgil/K7 for the uniform
one. By looking at the proof, we observe that x plays the role of the branching
factor of the tree 7., of the expandable nodes, similarly to K being the
branching factor of the full tree 7. k belongs to the interval [1, K], thus the
decrease rate for the regret of the optimistic planning is always at least as good
as that of the uniform one. The bound for the optimistic planning is better than
uniform whenever k < K, and greatly better when « is close to 1. Note that the
tree 7o, represents the set of nodes i such that given the observed rewards from
the root to node i, one cannot decide whether ¢ lies in an optimal path or not.
This represents the set of nodes which would have to be expanded for finding an
optimal path. Thus the performance of the optimistic algorithm is expressed in
terms of the branching factor of the subtree 7, composed of all the nodes that
have to be expanded eventually. We believe this is a strong optimality result,
although we do not have lower bounds expressed in terms of (3, yet.

Remark 3 The case k = 1 is also interesting because it provides rates that are
exponential in n instead of polynomial ones. This case would hold for example
if there exists dy such that for each node ig of depth d > dy along an optimal
path, if we write x4 the state corresponding to that node iq, we require that the
gap between the optimal value function at x4 and the Q-value of all suboptimal
actions are larger than some constant value A > 0, i.e., A > 0, for all d > dy,

V*(xq) — “(xg,a) > A. (6)

max
a st Q*(xq,a)<V*(xq)
Indeed, if this was true, we would have for all d > dy, for any non-optimal
child j of ia, v; < v* — Ay? (since v;, = v* because the nodes iy are optimal).
Now, the number of nodes in the branch j that belong to the expandable tree T,
h
is bounded by K"=9=1 where h is the mazimal depth such that v + 11—7 > vr,
i.e., Y"1 > A(1—7). Thus K471 = L](1-~)A] -7 with B = log K/ log(1/7).
Thus the number of nodes of depth d > dy in T is bounded by a constant

independent of d, i.e. 7=[A(1—~)]7". Thuspd(%) < %[A(l—’y)]_ﬂ/l(d. Thus

pn(e) < £[e/A]P. Thus p(e) < +[e/A]® and we have k = 1 and the constant

Remark 4 A natural extension of the previous case (for which we deduced k =
1) is when from each state x4 corresponding to a node of depth d > dy, for some
dy, there exist a small number m of A-optimal sequences of h actions, where
A >0 is a fired constant and h a fixed integer. This means that from xy4 there

exist at most m sequences of actions ai,...,ap, leading to states (Ty+i)i1<i<h,
such that

h—1

D oA r(@ari 1) + 7"V (@asn) = Vi(xa) - A

i=0

Then one can prove that the branching factor k of the expandable tree is
at most m*'". Notice that in the case presented in the previous remark we had
m=1andh =1 (and we deduced that kK = 1). However note that in the previous
remark, we only assumed the property (6) along the optimal path (whereas we
impose here that it holds for all nodes). The proof of this result is rather technical
and not included here.

5 Numerical experiments

We have done some numerical experiments to compare uniform and optimistic
planning algorithms. We consider the system {j; = a;, where a point defined by
its position y; and its velocity v; is controlled by a force (action) a; € {—1,1}.
The dynamics are: (Yri1,ve+1) = (Y, 0t) + (e, ar)’ At, where At = 0.1 is the
time discretization step. The reward of state (y;, v¢) action a; is defined by
max (1 — yt2+1, 0) where y;41 is the position of the resulting next state.

In figure 2 we show the trees resulting from the uniform and optimistic al-
gorithms using the same number of numerical resources n = 3000. The initial
state is (yo = —1,v9 = 0) and the discount factor v = 0.9. The optimistic tree
is not deeply explored on the left side of the initial state since this corresponds
to states with low rewards, however it is more deeply expanded along some
branches which provide high rewards, and in particular, the branch leading the
states around the origin is very deeply (and sharply) expanded (maximal depth
of 49).

We computed an average regret of both algorithms for n = 29+ —1 with d €
{2,...,18} (full trees of depth d), where the average is performed over 1000 trees
where the initial state have been uniformly randomly sampled in the domain
[—1,1] x [-2,2]. Figure 3 shows the regret (in log scales) for both algorithms.
The slope % of these curves indicate the exponent in the regret polynomial
dependency. For the uniform curve, we calculate a numerical slope of about —1,
thus the regret R4, (n) ~ 1/n. For the optimistic curve, the numerical slope is
about —3 = —% which corresponds to the branching factor x = 1.04. The
regret of optimistic planning is thus of order 1/n® which is significantly a better
rate than the uniform one, and explains the great improvement of the optimistic

Velocity

Velocity

Position

‘Position

Fig. 2. Expanded trees with n = 3000 calls to the generative model using the uniform
(left figure) and optimistic (right) planning algorithms. The depth of the trees is 11 for
the uniform and 49 for the optimistic.

=1 T T T — T T T
2 Uniform ———
5 Optimistic -------
2
0.1 .
0.01 1
0.001 .
0.0001 | 1
1le-05 R P P Ll i Ll A L.l n
1 10 100 1000 10000 100000 le+06

Fig. 3. Average regret R(n) for both algorithms as a function of n = 29! — 1 with
d € {2,...,18}, in logarithmic scales. The slope of each curve indicates the exponent
in the actual polynomial dependency of the regret.

planning over the uniform approach. For illustration, achieving a regret of 0.0001
with uniform planning requires more than n = 262142 expanded nodes whereas
optimistic planning only requires n = 4094 such nodes.

We do not have space to describe more challenging applications here but other
simulations, including the double inverted pendulum linked by a spring, are de-
scribed at the address: http://sequel.futurs.inria.fr/hren/optimistic/.

6 Conclusions and future works

An immediate remaining work is the derivation of [-dependant lower bounds
for the optimistic planning. An extension of this work would consider the case
of stochastic rewards, like in [CMO07], where an additional term (coming from a
Chernoff-Hoeffing bound) would be added to the b-values to define high prob-
ability upper-confidence bounds. Another, more challenging, extension would
consider the stochastic transitions case. The possibility of combining this pure
search approach with local approximation of the optimal value function is cer-
tainly worth investigating too.

References

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine Learning Journal, 47(2-3):235-256, 2002.

[BT96] Dimitri P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.

[CMOT] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. Uncer-
tainty in Artificial Intelligence, 2007.

[GWMTO06] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with
patterns in Monte-Carlo go. Technical Report INRIA RR-6062, 2006.

[KMNO02] M. Kearns, Y. Mansour, and A.Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markovian decision processes. In Machine
Learning, volume 49, pages 193-208, 2002.

[KS06] L. Kocsis and Cs. Szepesvari. Bandit based monte-carlo planning. Euro-
pean Conference on Machine Learning, pages 282—-293, 2006.

[LR85] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation
rules. Advances in Applied Mathematics, 6:4-22, 1985.

[PGO4] L. Péret and F. Garcia. On-line search for solving large Markov decision

processes. In Proceedings of the 16th European Conference on Artificial
Intelligence, 2004.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, 1994.

[Rob52] H. Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematics Society, 58:527—-535, 1952.

[SBIg] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 1998.

