Quillen-Suslin theorem: algorithms and applications

Alban Quadrat

INRIA Sophia Antipolis, APICS Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr
http://www-sop.inria.fr/members/Alban.Quadrat/index.html
KIAS Winter School on Algebraic Systems Theory KIAS, Seoul, 15/12/08

Introduction

- In Talk 1, we have shown how to check whether or not a left module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ over a certain Ore algebra D was:
(1) torsion,
(2) admits non-trivial torsion elements,
(3) torsion-free,
(4) reflexive,
(3) projective.
- In this talk, we study stably free and free modules.
- We shall focus on the so-called Quillen-Suslin theorem proving that projective modules over $D=k\left[x_{1}, \ldots, x_{n}\right]$ (k a field) are free.
(1) Constructive computation of bases of free D-modules:
package QuillenSuslin.
(2) Applications in mathematical systems theory.

Shorter free resolutions

- Theorem: Let us consider a finite free resolution of M :
$0 \longrightarrow D^{1 \times p_{m}} \xrightarrow{. R_{m}} D^{1 \times p_{m-1}} \xrightarrow{R_{m-1}} \ldots \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0$.

1. If $m \geq 3$ and there exists $S_{m} \in D^{p_{m-1} \times p_{m}}$ such that
$R_{m} S_{m}=I_{p_{m}}$, then we have the finite free resolution of M :
$0 \longrightarrow D^{1 \times p_{m-1}} \xrightarrow{T_{m-1}} D^{1 \times\left(p_{m-2}+p_{m}\right)} \xrightarrow{\xrightarrow{T_{m-2}}} D^{1 \times p_{m-3}} \xrightarrow{. R_{m-3}} \ldots \xrightarrow{\pi} M \longrightarrow 0$,
where $\quad T_{m-1}=\left(\begin{array}{ll}R_{m-1} & S_{m}\end{array}\right), \quad T_{m-2}=\binom{R_{m-2}}{0}$.
2. If $m=2$ and there exists $S_{2} \in D^{p_{1} \times p_{2}}$ such that $R_{2} S_{2}=I_{p_{2}}$, then we have the finite free resolution

$$
\begin{equation*}
0 \longrightarrow D^{1 \times p_{1}} \xrightarrow{T_{1}} D^{1 \times\left(p_{0}+p_{2}\right)} \xrightarrow{\tau} M \longrightarrow 0, \tag{2}
\end{equation*}
$$

where $T_{1}=\left(\begin{array}{ll}R_{1} & S_{2}\end{array}\right)$ and $\tau=\binom{\pi}{0}$.

Example: annihilator of $\dot{\delta}$

- $\dot{\delta}$ satisfies the system: $\quad t^{2} y(t)=0, \quad t \dot{y}(t)+2 y(t)=0$.
- We consider $D=\mathbb{Q}[t]\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$ and the left D-module:

$$
M=D /\left(D t^{2}+D(t \partial+2)\right)
$$

- M admits the following finite free resolution of M :

$$
\begin{aligned}
& 0 \longrightarrow D \xrightarrow{. R_{2}} D^{1 \times 2} \xrightarrow{R_{1}} D \xrightarrow{\pi} M \longrightarrow 0, \\
& R_{1}=\left(\begin{array}{ll}
t^{2} & t \partial+2
\end{array}\right)^{T}, \quad R_{2}=\left(\begin{array}{ll}
\partial & -t
\end{array}\right) .
\end{aligned}
$$

- $S_{2}=\left(\begin{array}{ll}t & \partial\end{array}\right)^{T}$ is a right-inverse of R_{2}, and thus, we get:

$$
0 \longrightarrow D^{1 \times 2} \xrightarrow{. T_{1}} D^{1 \times 2} \xrightarrow{\tau} M \longrightarrow 0, \quad T_{1}=\left(\begin{array}{cc}
t^{2} & t \\
t \partial+2 & \partial
\end{array}\right) .
$$

Example: contact transformations

- $D=A_{3}(\mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]\left[\partial_{1} ; \mathrm{id}, \frac{\partial}{\partial x_{1}}\right]\left[\partial_{2} ; \mathrm{id}, \frac{\partial}{\partial x_{2}}\right]\left[\partial_{3} ; \mathrm{id}, \frac{\partial}{\partial x_{3}}\right]$,

$$
R_{1}=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right) \in D^{3 \times 3} .
$$

- If $R_{2}=\left(\partial_{2}-\left(\partial_{1}+x_{3} \partial_{3}\right) \quad x_{2} \partial_{2}+2\right)$, then the left D-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R_{1}\right)$ admits the finite free resolution:

$$
0 \longrightarrow D \xrightarrow{\cdot R_{2}} D^{1 \times 3} \xrightarrow{. R_{1}} D^{1 \times 3} \xrightarrow{\pi} M \longrightarrow 0 .
$$

- $S_{2}=\left(\begin{array}{lll}-x_{2} & 0 & 1\end{array}\right)^{T}$ is a right-inverse of R_{2} and we get:

$$
\begin{gathered}
0 \longrightarrow D^{1 \times 3} \xrightarrow{T_{1}} D^{1 \times 4} \xrightarrow{\tau} M \longrightarrow 0, \\
T_{1}=\left(\begin{array}{cccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} & -x_{2} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} & 0 \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3} & 1
\end{array}\right) .
\end{gathered}
$$

Projective dimensions

- Definition: A projective resolution of a left D-module M is an exact sequence of the form

$$
0 \longrightarrow P_{n} \xrightarrow{\delta_{n}} P_{n-1} \xrightarrow{\delta_{n-1}} \ldots \xrightarrow{\delta_{1}} P_{0} \xrightarrow{\delta_{0}} M \longrightarrow 0, \quad(\star)
$$

where the $P_{i}^{\prime} s$ are projective left D-modules.

- Definition: We call left projective dimension of a left D-module M, denoted by $\operatorname{lpd}_{D}(M)$, the smallest n such that there exists a projective resolution of the form (\star).
- Proposition: $\operatorname{lpd}_{D}(M)=n$ iff there exists a finite projective resolution (\star) of M, where δ_{n} is nonsplit, i.e., there exists no D-morphism $\tau_{n}: P_{n-1} \longrightarrow P_{n}$ such that $\tau_{n} \circ \delta_{n}=\operatorname{id}_{P_{n}}$, with the convention $P_{-1}=M$.

Computation of left projective dimensions

- Algorithm: 1. Compute a finite free resolution of M.

2. Set $j=m$ and $T_{j}=R_{m}$.
3. Check if R_{j} admits a right-inverse S_{j} over D.
\Rightarrow If not, then exit and $\operatorname{lpd}_{D}(M)=j$.
\Rightarrow If yes and:
(a) If $j=1$, then exit with $\operatorname{lpd}_{D}(M)=0$.
(b) If $j=2$, then compute (2) and return to 3 with $j \leftarrow j-1$.
(c) If $j \geq 3$, then compute (1) and return to 3 with $j \leftarrow j-1$.

- Example: The left $A_{1}(\mathbb{Q})$-module M associated with the annihilator of $\dot{\delta}$ has $\operatorname{lpd}_{D}(M)=1$.
- Example: The left $A_{3}(\mathbb{Q})$-module M associated with the contact transformations has $\operatorname{lpd}_{D}(M)=0$.

Shortest free resolutions

- If M is a projective left D-module, then $\operatorname{lpd}_{D}(M)=0$.
- Moreover, if M admits a finite free resolution
$0 \longrightarrow D^{1 \times p_{m}} \xrightarrow{. R_{m}} D^{1 \times p_{m-1}} \xrightarrow{. R_{m-1}} \ldots \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0$, then the previous algorithm returns a matrix $R \in D^{q \times p}$ such that

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 \quad(\star)
$$

is a split finite free resolution of M, i.e., (\star) is exact and R admits a right-inverse $S \in D^{p \times q}$, i.e., $R S=I_{q}$. In particular, we have $D^{1 \times p} \cong M \oplus D^{1 \times q}$, which proves that M is a stably free left D-module (Serre's theorem).

- The matrix R will be called a minimal presentation matrix of M.

Example: contact transformations

- We consider the left $D=A_{3}(\mathbb{Q})$-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R_{1}\right)$:

$$
R_{1}=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right)
$$

- M is a stably free left D-module defined by the minimal presentation matrix $T_{1}: 0 \longrightarrow D^{1 \times 3} \xrightarrow{T_{1}} D^{1 \times 4} \xrightarrow{\tau} M \longrightarrow 0$,

$$
\begin{gathered}
T_{1}=\left(\begin{array}{cccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} & -x_{2} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} & 0 \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3} & 1
\end{array}\right), \\
S_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & x_{2} \\
0 & -x_{2} & 0 \\
\partial_{2} & -\partial_{1}-x_{2} \partial_{3} & x_{2} \partial_{2}+2
\end{array}\right), \quad T_{1} S_{1}=I_{3} .
\end{gathered}
$$

Existence of finite free resolutions

- Theorem: Let A be a left noetherian ring of finite left projective dimension $\operatorname{lgld}(A)$ and whose finitely generated projective left A-module are stably free. Let $D=A\left[\partial_{1} ; \alpha_{1}, \beta_{1}\right] \ldots\left[\partial_{m} ; \alpha_{m}, \beta_{m}\right]$ be an Ore algebra where the α_{i} 's are automorphisms. Then, we have:
(1) Every finitely generated left D-module admits a finite free resolution of length $\operatorname{lpd}(D)+1$.
(2) Every finitely generated projective left D-module is stably free.
- Example: $D=A\left[x_{1}, \ldots, x_{n}\right]$, where A is a principal ideal domain (e.g., $A=\mathbb{Z}, A=k$ a field).
- Example: The Weyl algebras $D=A_{n}(k)$ and $B_{n}(k)$.

Characterization of free modules

- Let M be a stably free left D-module defined by a minimal presentation matrix R :

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0, \quad R S=I_{q} .
$$

- $\mathrm{GL}_{p}(D)=\left\{U \in D^{p \times p} \mid \exists V \in D^{p \times p}: U V=V U=I_{p}\right\}$.
- Theorem: Let $R \in D^{q \times p}$ be a matrix admitting a right-inverse over D. Then, the left D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is free of rank $p-q$ iff there exists $U \in \mathrm{GL}_{p}(D)$ satisfying:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

Then, $U^{-1}=\binom{R}{T}$, where $T \in D^{(p-q) \times p}$, and the family $\left\{\pi\left(T_{i \bullet}\right)\right\}_{i=1, \ldots, p-q}$ forms a basis of the free left D-module M.

Proof

- Let us suppose that there exists $U \in \mathrm{GL}_{p}(D)$ such that:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

- We obtain the following commutative exact diagram

which proves that $M \cong D^{1 \times(p-q)}$, i.e., M is a free of rank $p-q$.

Proof

- Let M be a free left D-module, i.e., $\phi: M \stackrel{\cong}{\cong} D^{1 \times(p-q)}$.
- We have the following exact commutative diagram (. $Q=\phi \circ \pi$)

where the first horizontal exact sequence splits, namely:
$R Q=0, \quad R S=I_{q}, \quad T Q=I_{p-q}, \quad T S=0, \quad S R+Q T=I_{p}$,
i.e., $\binom{R}{T}\left(\begin{array}{ll}S & Q\end{array}\right)=\left(\begin{array}{cc}I_{q} & 0 \\ 0 & I_{p-q}\end{array}\right)=I_{p}, \quad\left(\begin{array}{ll}S & Q\end{array}\right)\binom{R}{T}=I_{p}$.

Proof

$$
\begin{array}{ccccccl}
& & \stackrel{. S}{\longleftrightarrow} & & \stackrel{. T}{\overleftrightarrow{Q}} & & \\
0 & D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{. Q} & D^{1 \times(p-q)} & \longrightarrow 0 \\
\| & & \| & & \uparrow \phi \downarrow \phi^{-1} & \\
0 \longrightarrow & D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0,
\end{array}
$$

The isomorphism ϕ is defined by:

$$
\begin{aligned}
\phi: M & \longrightarrow D^{1 \times(p-q)} & \phi^{-1}: D^{1 \times(p-q)} & \longrightarrow M \\
\pi(\lambda) & \longmapsto \lambda & \longmapsto & \longmapsto \pi(\mu T) .
\end{aligned}
$$

- If we denote by $\left\{h_{k}\right\}_{k=1, \ldots, p-q}$ the standard basis of $D^{1 \times(p-q)}$, then $\left\{\phi^{-1}\left(h_{k}\right)=\pi\left(h_{k} T\right)=\pi\left(T_{k}\right)\right\}_{k=1, \ldots,(p-q)}$ is a basis of M
\Rightarrow the residue classes of the rows of T in M define a basis of M.

Injective parametrizations

- Let $\left\{f_{j}\right\}_{j=1, \ldots, p}$ be the standard basis of $D^{1 \times p}$ and $\left\{y_{j}=\pi\left(f_{j}\right)\right\}_{j=1, \ldots, p}$ a family of generators of $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$.
- For $j=1, \ldots, p$, we have
$y_{j}=\phi^{-1}\left(\phi\left(y_{j}\right)\right)=\phi^{-1}\left(f_{j} Q\right)=\phi^{-1}\left(\sum_{k=1}^{p-q} Q_{j k} h_{k}\right)=\sum_{k=1}^{p-q} Q_{j k} z_{k},(\star)$
which shows that Q defines a parametrization of M.
- The elements $z_{k}=\phi^{-1}\left(h_{k}\right)=\pi\left(T_{k}\right)$ of the basis of M satisfy

$$
z_{k}=\pi\left(\sum_{j=1}^{p} T_{k j} f_{j}\right)=\sum_{j=1}^{p} T_{k j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} T_{k j} y_{j}
$$

which proves that (\star) is an injective parametrization of M.

Injective parametrizations

- Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a torsion-free left D-module.
- From the vanishing of $\operatorname{ext}_{D}^{1}(N, D)$, where $N=D^{q} /\left(R D^{p}\right)$ is the Auslander transpose of M, we obtain $Q \in D^{p \times m}$ such that

$$
\begin{array}{rcccccc}
D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
0 \longleftarrow N & D^{q} & \stackrel{R}{\longleftrightarrow} & D^{p} & \stackrel{Q}{\longleftrightarrow} & D^{m} & \\
& D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} & \xrightarrow{Q} & D^{1 \times m}, &
\end{array}
$$

$$
\operatorname{ext}_{D}^{1}(N, D)=\operatorname{ker}_{D}(. Q) /\left(D^{1 \times q} R\right)=0 \Leftrightarrow M \cong D^{1 \times p} Q \subseteq D^{1 \times m}
$$

- If $. Q: D^{1 \times p} \longrightarrow D^{1 \times m}$ is surjective, i.e, Q admits a left-inverse $T \in D^{m \times p}$, i.e., $T Q=I_{m}$, then we have

$$
M \cong D^{1 \times p} Q=D^{1 \times m}
$$

i.e., M is a free left D-module of rank $m,\left\{\pi\left(T_{k \bullet}\right)\right\}_{k=1, \ldots, m}$ is a basis and Q an injective parametrization of M.

Example: contact transformations

- We consider the left $D=A_{3}(\mathbb{Q})$-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R\right)$:

$$
R=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right) .
$$

- Checking the vanishing of $\operatorname{ext}_{D}^{1}(\widetilde{N}, D)=0$, we obtain that

$$
Q=\left(-\partial_{2} \quad x_{2} \partial_{3}+\partial_{1} \quad-\left(x_{2} \partial_{2}+2\right)\right)^{T}
$$

defines a parametrization of M, i.e., $M \cong D^{1 \times 3} Q \subseteq D$.

- Q admits the left-inverse $T=\frac{1}{2}\left(\begin{array}{lll}x_{2} & 0 & -1\end{array}\right)$, which proves that $M \cong D^{1 \times 3} Q=D$ and $z=\pi(T)$ is a basis of M.
- The generators $\left\{y_{i}=\pi\left(f_{j}\right)\right\}_{j=1,2,3}$ of M satisfying the relations $R y=0$, where $y=\left(y_{1}, y_{2}, y_{3}\right)^{T}$, satisfy $y=Q z$ and $z=T y$:

$$
\begin{gathered}
y_{1}=-\partial_{2} z, \quad y_{2}=\left(x_{2} \partial_{3}+\partial_{1}\right) z, \quad y_{3}=-\left(x_{2} \partial_{2}+2\right) z \\
z=\frac{1}{2}\left(x_{2} y_{1}-y_{3}\right) .
\end{gathered}
$$

Minimal parametrizations

- We generally have $m \geq \operatorname{rank}_{D}(M)$ (e.g., $\left.\operatorname{ker}_{D}(Q) \neq 0.\right)$.
- Theorem: Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a torsion-free left D-module. Then, there exists a parametrization $P \in D^{p \times I}$ of M such that $I=\operatorname{rank}_{D}(M)$, i.e., $L=D^{1 \times I} /\left(D^{1 \times p} P\right)$ is torsion.
- P is called a minimal parametrization of M.
- Algorithm: P can be obtained by selecting $\operatorname{rank}_{D}(M)$ right D-linearly independent columns of a parametrization Q of M.
- Heuristic method for computing basis of a free left D-modules:
(1) Compute $Q \in D^{p \times m}$ such that $\operatorname{ker}_{D}(R)=.Q D^{m}$.
(2) Define $P \in D^{p \times \operatorname{rank}_{D}(M)}$ by selecting $\operatorname{rank}_{D}(M)$ right D-linearly independent columns of Q.
(3) Check whether or not P admits a left-inverse over D.

Example

We consider the $D=\mathbb{Q}\left[x_{1}, x_{2}\right]$-module $M=D^{1 \times 3} /(D R)$, where:

$$
R=\left(x_{1} x_{2}^{2}+1 \quad 3 x_{2} / 2+x_{1}-1 \quad 2 x_{1} x_{2}\right), \quad \operatorname{rank}_{D}(M)=2 .
$$

- Checking $\operatorname{ext}_{D}^{1}\left(D /\left(D^{1 \times 3} R^{T}\right), D\right)=0$, we obtain that

$$
Q=\left(\begin{array}{ccc}
-4 x_{1}-6 x_{2}+4 & 6 x_{2}^{2}-4 x_{2} & 0 \\
4 & -4 x_{2} & 4 x_{1} x_{2} \\
2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{2} & -3 x_{2}^{3}+2 x_{2}^{2}+2 & -2 x_{1}-3 x_{2}+2
\end{array}\right)
$$

is a parametrization of M, i.e., $M \cong D^{1 \times 3} Q \subseteq D^{1 \times 3}$.

- Selecting the first two columns of Q, we obtain that

$$
P=\left(\begin{array}{cc}
-4 x_{1}-6 x_{2}+4 & 6 x_{2}^{2}-4 x_{2} \\
4 & -4 x_{2} \\
2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{2} & -3 x_{2}^{3}+2 x_{2}^{2}+2
\end{array}\right),
$$

is a minimal parametrization of M, i.e.:

$$
M \cong D^{1 \times 3} Q \subseteq D^{1 \times 2}=D^{1 \times \operatorname{rank}_{D}(M)}
$$

Example

- The parametrization P of M admits a left-inverse defined by:

$$
T=\frac{1}{4}\left(\begin{array}{ccc}
x_{2}^{2} & 1 & 2 x_{2} \\
x_{2} & 0 & 2
\end{array}\right)
$$

- The set of generators $\left\{y_{j}=\pi\left(f_{j}\right)\right\}_{j=1,2,3}$ of M satisfies

$$
\left(x_{1} x_{2}^{2}+1\right) y_{1}+\left(3 x_{2} / 2+x_{1}-1\right) y_{2}+2 x_{1} x_{2} y_{3}=0,
$$

and a basis $\left\{z_{1}, z_{2}\right\}$ of M is defined by:

$$
\left\{\begin{array}{l}
z_{1}=\frac{1}{4}\left(x_{2}^{2} y_{1}+y_{2}+2 x_{2} y_{3}\right), \\
z_{2}=\frac{1}{4}\left(x_{2} y_{1}+2 y_{3}\right) .
\end{array}\right.
$$

- The generators $\left\{y_{1}, y_{2}, y_{3}\right\}$ can be written in the basis $\left\{z_{1}, z_{2}\right\}$:

$$
\left\{\begin{array}{l}
y_{1}=\left(-4 x_{1}-6 x_{2}+4\right) z_{1}+\left(6 x_{2}^{2}-4 x_{2}\right) z_{2} \\
y_{2}=4 z_{1}-4 x_{2} z_{2} \\
y_{3}=\left(2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{2}\right) z_{1}+\left(-3 x_{2}^{3}+2 x_{2}^{2}+2\right) z_{2}
\end{array}\right.
$$

Computation of bases of general free modules

- Let $P \in D^{p \times m}$ and $D^{1 \times p} \xrightarrow{. P} D^{1 \times m}$.

1. If $U=D^{1 \times p} P$ is free, then compute $R \in D^{q \times p}$ such that:

$$
\begin{array}{rllllll}
& 0 \longrightarrow & D^{1 \times q} & \xrightarrow{. R} D^{1 \times p} \xrightarrow{. P} D^{1 \times m} & \text { is exact. } \\
& 0 \longrightarrow & D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{. P} & D^{1 \times p} P
\end{array} \quad \longrightarrow 0
$$

where $\psi(\pi(\lambda))=\lambda P, \forall \lambda \in D^{1 \times p}$. We get $U=\psi(M)$ and:

$$
\Rightarrow U=D^{1 \times(p-q)}(T P), \quad \text { where } \quad\binom{R}{T}\left(\begin{array}{ll}
S & Q
\end{array}\right)=I_{p} .
$$

2. If $V=\operatorname{ker}_{D}(. P)$ is free, then compute $R \in D^{q \times p}$ such that $\operatorname{ker}_{D}(. P)=D^{1 \times q} R$ and go to 1 with $V=D^{1 \times p} R$.
3. If $W=D^{1 \times p} / \operatorname{ker}_{D}(. P)$, then $W=D^{1 \times p} /\left(D^{1 \times q} R\right) \equiv M_{1}$

Quillen-Suslin theorem

- Theorem: Every finitely generated projective module over the ring $D=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field, is free.
- Corollary: For every stably free D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ defined by a minimal presentation matrix $R \in D^{q \times p}$, there exists $U \in \mathrm{GL}_{p}(D)$, i.e., $\operatorname{det} U \in k \backslash\{0\}$, such that:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

- Corollary: For every stably free D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ defined by a minimal presentation matrix $R \in D^{q \times p}$, there exists $T \in D^{(p-q) \times p}$ such that:

$$
\operatorname{det}\left(\binom{R}{T}\right) \in k \backslash\{0\} .
$$

- Constructive proofs of the Quillen-Suslin have been given in the literature (e.g., Logar-Sturmfels, Park, Lombardi-Yengui).

Particular case: principal ideal domain D

- Let D be a principal ideal domain D (e.g., $D=k[x], k$ a field).
- Computing a Smith normal form of $R \in D^{q \times p}$ satisfying $R S=I_{q}$, we obtain $F \in \mathrm{GL}_{q}(D)$ and $G \in \mathrm{GL}_{p}(D)$ satisfying:

$$
\begin{gathered}
R=F\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right) G=F\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)\binom{G_{1}}{G_{2}}=F G_{1} \Leftrightarrow G_{1}=F^{-1} R \\
\binom{F^{-1} R}{G_{2}} G^{-1}=I_{p} \Rightarrow\left(\begin{array}{cc}
F^{-1} & 0 \\
0 & I_{p-q}
\end{array}\right)\binom{R}{G_{2}} G^{-1}=I_{p} \\
\Rightarrow\binom{R}{G_{2}} G^{-1}\left(\begin{array}{cc}
F^{-1} & 0 \\
0 & I_{p-q}
\end{array}\right)=I_{p}
\end{gathered}
$$

Then, the matrix $U=G^{-1}\left(\begin{array}{cc}F^{-1} & 0 \\ 0 & I_{p-q}\end{array}\right) \in \operatorname{GL}_{p}(D)$ satisfies:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

Particular case: $R \in D^{(p-1) \times p}$

- Let D be a commutative ring and $R \in D^{(p-1) \times p}$ admitting a right-inverse $S \in D^{p \times(p-1)}$.
- Let us denote by m_{i} the $(p-1) \times(p-1)$-minor of R obtained by removing the $i^{\text {th }}$ column of R.
- The m_{i} 's satisfy a Bézout identity $\sum_{i=1}^{p} n_{i} m_{i}=1$, with $n_{i} \in D$.
- Then, we can check that the matrix

$$
V=\left(\begin{array}{ccc}
& R & \\
(-1)^{p+1} n_{1} & \ldots & (-1)^{2 p} n_{p}
\end{array}\right) \in D^{p \times p}
$$

is such that $\operatorname{det} V=1$ and its inverse $U=V^{-1} \in D^{p \times p}$ satisfies:

$$
R U=\left(\begin{array}{ll}
I_{p-1} & 0
\end{array}\right)
$$

Reduction to the case of a single row

- Let $R \in D^{q \times p}$ a matrix admitting a right-inverse $S \in D^{p \times q}$.
- The computation of $U \in \mathrm{GL}_{p}(D)$ satisfying $R U=\left(\begin{array}{ll}I_{q} & 0\end{array}\right)$ can be reduced to the case of row vectors with entries in D :
Let $U_{1} \in \mathrm{GL}_{p}(D)$ be such that $R_{1} \bullet U_{1}=\left(\begin{array}{lll}1 & 0 & \ldots\end{array}\right)$

$$
\Rightarrow R U_{1}=\left(\begin{array}{cc}
1 & 0 \\
C_{1} & R_{2}
\end{array}\right)
$$

$R S=I_{q} \Leftrightarrow\left(R U_{1}\right)\left(U_{1}^{-1} S\right)=I_{q}$

$$
\begin{aligned}
& \Leftrightarrow\left(\begin{array}{cc}
1 & 0 \\
C_{1} & R_{2}
\end{array}\right)\left(\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & I_{q-1}
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
W=1 \\
X=0 \\
C_{1}+R_{2} Y=0 \\
R_{2} Z=I_{q-1}
\end{array}\right. \\
& \Rightarrow U_{2}=\left(\begin{array}{cc}
1 & 0 \\
Y & I_{p-1}
\end{array}\right) \in \operatorname{GL}_{p}(D): R\left(U_{1} U_{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right) \ldots
\end{aligned}
$$

Particular case: one invertible entry in R

- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- If one entry of R is invertible over D, e.g., $R_{1} \in \mathrm{U}(D)$, then

$$
\left(\begin{array}{lll}
R_{1} & \ldots & R_{p}
\end{array}\right) \overbrace{\left(\begin{array}{cc}
R_{1}^{-1} & 0 \\
0 & I_{p-1}
\end{array}\right)}^{W}=\left(\begin{array}{llll}
1 & R_{2} & \ldots & R_{p}
\end{array}\right)
$$

and $\operatorname{det} W=R_{1}^{-1} \in D$. Denoting by $L=\left(R_{2} \ldots R_{p}\right)$, we get:

$$
\left(\begin{array}{ll}
1 & L
\end{array}\right)\left(\begin{array}{cc}
1 & -L \\
0 & I_{p-1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right)
$$

Then, the matrix $U=\left(\begin{array}{cc}R_{1}^{-1} & 0 \\ 0 & I_{p-1}\end{array}\right)\left(\begin{array}{cc}1 & -L \\ 0 & I_{p-1}\end{array}\right) \in \operatorname{GL}_{p}(D)$ satisfies:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right) .
$$

Particular case: 2 entries of R generate D

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- We suppose that two entries of R, e.g., R_{1} and R_{2} generate D : there exist X_{1} and $X_{2} \in D$ such that $R_{1} X_{1}+R_{2} X_{2}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{ccc}
X_{1} & -R_{2} & 0 \\
X_{2} & R_{1} & 0 \\
0 & 0 & I_{p-2}
\end{array}\right)
$$

satisfies det $W=1$ and $R W=\left(\begin{array}{lllll}1 & 0 & R_{3} & \ldots & R_{p}\end{array}\right)$.

- Denoting by $L=\left(R_{3} \ldots R_{p}\right)$, we finally obtain:

$$
\left(\begin{array}{lll}
1 & 0 & L
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -L \\
0 & 1 & 0 \\
0 & 0 & I_{p-2}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right) .
$$

H. A. Park's example

- Let us consider $D=\mathbb{Q}[x, y]$ and $R=\left(\begin{array}{lll}1-x y & x^{2} & y^{2}\end{array}\right)$.
- R admits the right-inverse $S=\left(\begin{array}{lll}x y+1 & y^{2} & 0\end{array}\right)$ over D.
- In particular, the first two entries $R_{1}=1-x y$ and $R_{2}=x^{2}$ of R generate $D: R_{1} X_{1}+R_{2} X_{2}=1$, where $X_{1}=x y+1$ and $X_{2}=y^{2}$.
- Then, the unimodular matrices defined by

$$
W=\left(\begin{array}{ccc}
x y+1 & -x^{2} & 0 \\
y^{2} & 1-x y & 0 \\
0 & 0 & 1
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
1 & 0 & -y^{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

satisfy $\operatorname{det} W=1, R W=\left(\begin{array}{lll}1 & 0 & y^{2}\end{array}\right)$ and $R(W Z)=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.

$$
W Z=\left(\begin{array}{ccc}
x y+1 & -x^{2} & -(x y+1) y^{2} \\
y^{2} & 1-x y & -y^{4} \\
0 & 0 & 1
\end{array}\right) \in \operatorname{GL}_{3}(D)
$$

Particular case: one entry of R is 0

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- We suppose that one entry of R (e.g., $\left.R_{1}\right)$ is $0, \sum_{i=2}^{p} S_{i} R_{i}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{cccc}
1 & & & \\
\left(1-R_{1}\right) S_{2} & 1 & & \\
\vdots & & \ddots & \\
\left(1-R_{1}\right) S_{p} & & & 1
\end{array}\right)
$$

satisfies $\operatorname{det} W=1$ and:

$$
R W=\left(R_{1}+\left(1-R_{1}\right) \sum_{i=2}^{p} S_{i} R_{i}=1 \quad R_{2} \ldots R_{p}\right)
$$

The row vector $R W=\left(\begin{array}{lll}1 & R_{2} \ldots & R_{p}\end{array}\right)$ can then be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Particular case: first condition on the right-inverse

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- Let us suppose that one entry of S, e.g., S_{1} is invertible.
- The matrix defined by

$$
W=\left(\begin{array}{cccc}
S_{1} & & & \\
S_{2} & 1 & & \\
\vdots & & \ddots & \\
S_{p} & & & 1
\end{array}\right)
$$

satisfies $\operatorname{det} W=S_{1} \in U(D)$ and $R W=\left(\begin{array}{lll}1 & R_{2} & \ldots\end{array} R_{p}\right)$.
The row vector $R W=\left(\begin{array}{lll}1 & R_{2} \ldots & R_{p}\end{array}\right)$ can then be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Particular case: second condition on the right-inverse

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- Let us suppose that two entries of S, e.g., S_{1} and S_{2} generate D : there exist X_{1} and $X_{2} \in D$ such that $X_{1} S_{1}+X_{2} S_{2}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{ccccc}
S_{1} & -X_{2} & & & \\
S_{2} & X_{1} & & & \\
S_{3} & & 1 & & \\
\vdots & & & \ddots & \\
S_{p} & & & & 1
\end{array}\right)
$$

satisfies det $W=1$ and $R W=\left(1 \quad \star \quad R_{3} \ldots R_{p}\right)$, which can be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Example: locally free modules

- Let us consider the $D=\mathbb{Q}\left[x_{1}, x_{2}\right]$-module $M=D^{1 \times 3} /(D R)$:

$$
R=\left(x_{1}^{2}-x_{2}^{2}-1 \quad x_{1}^{2}+x_{2}^{2}-1 \quad x_{1}-x_{2}\right) .
$$

- The matrix $S=\left(\begin{array}{lll}-1 & 0 & x_{1}+x_{2}\end{array}\right)$ is a right-inverse of R, a fact proving that M is a projective, i.e., free D-module of rank 2 .
- Checking that $\operatorname{ext}_{D}^{1}\left(D /\left(D^{1 \times 3} R^{T}\right), D\right)=0$, we obtain that

$$
Q=\left(\begin{array}{ccc}
x_{1}-x_{2} & -x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{2}^{2} & 2 x_{1}^{2}-2 & 0
\end{array}\right)
$$

defines a parametrization of M, i.e., $M \cong D^{1 \times 3} Q \subseteq D^{1 \times 3}$.

- The parametrization Q is not injective because $\operatorname{rank}_{D}(M)=2$.

Example: locally free modules

- We have the following 3 minimal parametrizations of M :

$$
\begin{gathered}
Q_{1}=\left(\begin{array}{cc}
-x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{1}^{2}-2 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
x_{1}-x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{2}^{2} & 0
\end{array}\right) \\
Q_{3}=\left(\begin{array}{cc}
x_{1}-x_{2} & -x_{1}+x_{2} \\
-x_{1}+x_{2} & -x_{1}+x_{2} \\
2 x_{2}^{2} & 2 x_{1}^{2}-2
\end{array}\right)
\end{gathered}
$$

None of them admits a left-inverse over D.

- The annihilators of the torsion D-modules $L_{i}=D^{1 \times 2} /\left(D^{1 \times 3} Q_{i}\right)$

$$
\left\{\begin{array}{l}
\operatorname{ann}_{D}\left(L_{1}\right)=\left(x_{1}^{2}-1\right) \\
\operatorname{ann}_{D}\left(L_{2}\right)=\left(x_{2}^{2}\right), \\
\operatorname{ann}_{D}\left(L_{3}\right)=\left(x_{1}-x_{2}\right)
\end{array}\right.
$$

satisfy the Bézout identity $-p_{1}+p_{2}+\left(x_{1}+x_{2}\right) p_{3}=1$, where:

$$
p_{1}=x_{1}^{2}-1, \quad p_{2}=x_{2}^{2}, \quad p_{3}=x_{1}-x_{2}
$$

Example: locally free modules

- Over the localizations $D_{p_{i}}=\left\{a / p_{i}^{r} \mid a \in D, r \in \mathbb{N}\right\}$ of D, the minimal parametrizations Q_{i} 's admit the following left-inverses:

$$
\begin{gathered}
T_{1}=\frac{1}{2\left(x_{1}^{2}-1\right)}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right), \quad T_{2}=\frac{1}{2 x_{2}^{2}}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \\
T_{3}=-\frac{1}{2\left(x_{1}-x_{2}\right)}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right),
\end{gathered}
$$

i.e., satisfy $T_{i} Q_{i}=I_{2}, i=1,2,3$.

- Projective D-modules are locally free.
- Computation of minimal parametrizations gives us local bases.

A constructive proof of the Quillen-Suslin theorem

- We shortly explain the idea of a constructive proof of the Quillen-Suslin theorem (Logar and Sturmfels).
- Normalization step: Let us consider $a \in k\left[y_{1}, \ldots, y_{n}\right]$ and let us denote by $m=\operatorname{deg} a+1$, where $\operatorname{deg} a$ is the total degree of a. Using the following reversible transformation
$\left\{\begin{array}{l}x_{n}=y_{n}, \\ x_{i}=y_{i}-y_{n}^{m^{n-i}},\end{array}\right.$

$$
\Leftrightarrow\left\{\begin{array}{l}
y_{n}=x_{n} \\
y_{i}=x_{i}+x_{n}^{m^{n-i}}, \quad i=1, \ldots, n-1
\end{array}\right.
$$

we obtain $a\left(y_{1}, \ldots, y_{n}\right)=c b\left(x_{1}, \ldots, x_{n}\right)$, where $0 \neq c \in k$ and b is a monic polynomial in x_{n}, i.e., the leading coefficient of $b \in E\left[x_{n}\right]$ is 1 , where $E=k\left[x_{1}, \ldots, x_{n-1}\right]$.

- If k is a infinite field, then we can obtain this result by means of a simpler transformation.

A constructive proof of the Quillen-Suslin theorem

- A ring A is called local if it contains only one maximal ideal \mathfrak{m}, namely, a proper ideal \mathfrak{m} of A which is not properly contained in any ideal of A other than A itself.
- Computation of local bases (Horrock's theorem): Let A be a commutative local ring and R a row vector admitting a rightinverse over $A[x]$. If one of the components R_{i} of R is monic, then there exists $U \in \mathrm{GL}_{p}(A[x])$, satisfying:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right)
$$

- Constructive proof of Horrock's theorem can easily be obtained and implemented (QuillenSuslin).

A constructive proof of the Quillen-Suslin theorem

- Main algorithm:
- Input: $R \in D^{1 \times p}$ a row vector which admits a right-inverse over D and a monic component in the last variable x_{n}.
- Output: A finite number of maximal ideals $\left\{\mathfrak{m}_{i}\right\}_{i \in l}$ of the ring $E=k\left[x_{1}, \ldots, x_{n-1}\right]$ and unimodular matrices $\left\{H_{i}\right\}_{i \in I}$ over the ring $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$, i.e., $H_{i} \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}_{i}}\left[x_{n}\right]\right)$, satisfying

$$
R H_{i}=(1,0, \ldots, 0)
$$

and such that the ideal defined by the denominators of the matrices H_{i} 's, $i \in I$, generates E.

A constructive proof of the Quillen-Suslin theorem

(1) Let \mathfrak{m}_{1} be an arbitrary maximal ideal of the ring E. Using Horrocks' theorem, compute a unimodular matrix H_{1} over $E_{\mathfrak{m}_{1}}\left[x_{n}\right]$ which satisfies that $R H_{1}=\left(\begin{array}{llll}1 & 0\end{array}\right)$.
(2) Let $d_{1} \in E$ be the common denominator of all the entries of H_{1} and J the ideal of E generated by d_{1}. Set $i=1$.
(3) While $J \neq E$, do:
(1) For $i \longleftarrow i+1$, compute a maximal ideal \mathfrak{m}_{i} of E such that:

$$
J \subset \mathfrak{m}_{i}
$$

(2) Using Horrocks' theorem, compute a matrix H_{i} over the ring $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$ such that det H_{i} is invertible in $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$ and:

$$
R H_{i}=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right)
$$

(3) Let d_{i} be the denominator of the matrix H_{i} and consider the ideal $J=\left(d_{1}, \ldots, d_{i}\right)$.
(9) Return $\left\{\mathfrak{m}_{i}\right\}_{i \in I},\left\{H_{i}\right\}_{i \in I}$ and $\left\{d_{i}\right\}_{i \in I}$.

A constructive proof of the Quillen-Suslin theorem

- Patching the local bases: Let $R \in D^{1 \times p}$ be a vector admitting a right-inverse over $D=k\left[x_{1}, \ldots, x_{n}\right]$ and $U \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}}\left[x_{n}\right]\right)$, where \mathfrak{m} is a maximal ideal of $E=k\left[x_{1}, \ldots, x_{n-1}\right]$, which satisfies:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right) .
$$

Let $d \in E \backslash \mathfrak{m}$ be a common denominator of the entries of U.
Then, the matrix defined by

$$
\Delta\left(\bullet, x_{n}, z\right)=U\left(\bullet, x_{n}\right) U^{-1}\left(\bullet, x_{n}+z\right) \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}}\left[x_{n}, z\right]\right)
$$

is such that

$$
\forall z \in D, \quad R\left(\bullet, x_{n}\right) \Delta\left(\bullet, x_{n}, z\right)=R\left(\bullet, x_{n}+z\right),
$$

d^{p} is a common denominator of the entries of $\Delta\left(\bullet, x_{n}, z\right)$ and:

$$
\Delta\left(\bullet, x_{n}, d^{p} z\right) \in \operatorname{GL}_{p}\left(E\left[x_{n}, z\right]\right)
$$

A constructive proof of the Quillen-Suslin theorem

- Let $\left\{\mathfrak{m}_{i}\right\}_{i \in I},\left\{H_{i}\right\}_{i \in I}$ and $\left\{d_{i}\right\}_{i \in I}$ be the output of the main algorithm, where $I=\{1, \ldots, m\}$. Let us define the matrices:

$$
\Delta_{i}\left(\bullet, x_{n}, z\right)=H_{i}\left(\bullet, x_{n}\right) H_{i}^{-1}\left(\bullet, x_{n}+z\right), \quad i=1, \ldots, m
$$

Let $a_{n} \in k$. We have $\left(d_{1}, \ldots, d_{m}\right)=E=k\left[x_{1}, \ldots, x_{n-1}\right]$

$$
\Rightarrow \exists c_{i} \in E, i=1, \ldots, m, \quad \sum_{i=1}^{m} c_{i} d_{i}^{p}=1
$$

$$
R\left(\bullet, x_{n}\right) \Delta_{1}\left(\bullet, x_{n},\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right)=R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right),
$$

$$
R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right) \Delta_{2}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p},\left(a_{n}-x_{n}\right) c_{2} d_{2}^{p}\right)
$$

$$
=R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{2} c_{i} d_{i}^{p}\right)\right)
$$

$$
R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{m-1} c_{i} d_{i}^{p}\right)\right)
$$

$$
\Delta_{l}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{m-1} c_{i} d_{i}^{p}\right),\left(a_{n}-x_{n}\right) c_{l} d_{l}^{p}\right)=R\left(\bullet, a_{n}\right)
$$

A constructive proof of the Quillen-Suslin theorem

- We finally obtain that the matrix

$$
\begin{gathered}
U\left(\bullet, x_{n}\right)=\Delta_{1}\left(\bullet, x_{n},\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right) \Delta_{2}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p},\left(a_{n}-x_{n}\right) c_{2} d_{2}^{p}\right) \\
\ldots \Delta_{I}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{l-1} c_{i} d_{i}^{p}\right),\left(a_{n}-x_{n}\right) c_{l} d_{l}^{p}\right) \in \operatorname{GL}_{p}(D)
\end{gathered}
$$

satisfies $R\left(\bullet, x_{n}\right) U\left(\bullet, x_{n}\right)=R\left(\bullet, a_{n}\right)$.

- Theorem: Let $D=k\left[x_{1}, \ldots, x_{n}\right]$ be a commutative polynomial ring over a field k and $R \in D^{1 \times p}$ a row vector admitting a rightinverse over D. Then, for all $a_{n} \in k$, there exists $U \in \operatorname{GL}_{p}(D)$ s.t.:

$$
R\left(\bullet, x_{n}\right) U\left(\bullet, x_{n}\right)=R\left(\bullet, a_{n}\right) .
$$

- Implementation of the previous theorem was done in the package QuillenSuslin (Fabiańska, Aachen University):
http://wwwb.math.rwth-aachen.de/QuillenSuslin/

Example

- We consider the $D=\mathbb{Q}\left[x_{1}, x_{2}\right]$-module $M=D^{1 \times 3} /(D R)$, where:

$$
R=\left(x_{1} x_{2}^{2}+1 \quad 3 x_{2} / 2+x_{1}-1 \quad 2 x_{1} x_{2}\right) .
$$

- Normalized entry $3 x_{2} / 2+x_{1}-1$ over $D=E\left[x_{2}\right]\left(E=\mathbb{Q}\left[x_{1}\right]\right)$.
- We consider the maximal ideal $\mathfrak{m}_{1}=\left(x_{1}\right)$ of E. Using an effective version of Horrocks' theorem, we get that the matrix

$$
\begin{gathered}
H_{1}= \\
\frac{1}{d_{1}}\left(\begin{array}{ccc}
4 & -2\left(3 x_{1}+2 x_{2}-2\right) & 4 x_{1}\left(3 x_{1}-2\right) \\
2 x_{1}\left(3 x_{1}-2 x_{2}-2\right) & 4\left(x_{1} x_{2}^{2}+1\right) & -4 x_{1}\left(3 x_{1}^{2} x_{2}-2 x_{1} x_{2}+2\right) \\
0 & 0 & 9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4
\end{array}\right),
\end{gathered}
$$

where $d_{1}=9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4 \notin \mathfrak{m}_{1}$, is such that:

$$
\left\{\begin{array}{l}
\operatorname{det} H_{1}=4 / d_{1} \Rightarrow H_{1} \in \operatorname{GL}_{3}\left(E_{\mathfrak{m}_{1}}\left[x_{2}\right]\right) \\
R H_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right.
\end{array}\right.
$$

Example

- We have $J=\left(d_{1}\right) \subsetneq E$. Then, we consider another maximal ideal \mathfrak{m}_{2} such that $J \subseteq \mathfrak{m}_{2}$, e.g., $\mathfrak{m}_{2}=\left(9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4\right)$.
- Using an effective version of Horrocks' theorem, we obtain that

$$
H_{2}=\frac{1}{d_{2}}\left(\begin{array}{ccc}
0 & 0 & 4 x_{1}\left(3 x_{1}-2\right) \\
8 x_{1} & -8 x_{1} x_{2} & -4 x_{1}\left(3 x_{1}^{2} x_{2}-2 x_{1} x_{2}+2\right) \\
-4 & 2\left(3 x_{1}+2 x_{2}-2\right) & 9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4
\end{array}\right)
$$

where $d_{2}=4 x_{1}\left(3 x_{1}-2\right) \notin \mathfrak{m}_{2}$, is such that:

$$
\left\{\begin{array}{l}
\operatorname{det} H_{2}=-1 /\left(x_{1}\left(3 x_{1}-2\right)\right) \Rightarrow H_{2} \in \operatorname{GL}_{3}\left(E_{\mathfrak{m}_{2}}\left[x_{2}\right]\right), \\
R H_{2}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
\end{array}\right.
$$

- We have the Bézout identity

$$
c_{1} d_{1}+c_{2} d_{2}=1, \quad c_{1}=1 / 4, \quad c_{2}=-\left(3 x_{1}-2\right) / 16
$$

i.e., $\left(d_{1}, d_{2}\right)=E$ and the main algorithm stops.

Example

- The matrix defined by

$$
\begin{aligned}
& \Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right)=H_{1}\left(x_{1}, x_{2}\right) H_{1}^{-1}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right), \\
& \left(9 x_{1}^{4} / 4-3 x_{1}^{3}+x_{1}^{2}\right) x_{2}^{2}+\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 \\
& -\left(18 x_{1}^{4}-24 x_{1}^{3}+8 x_{1}^{2}\right) x_{1} x_{2}^{3} / 8+\left(27 x_{1}^{5}-54 x_{1}^{4}+36 x_{1}^{3}-20 x_{1}^{2}+8 x_{1}\right) x_{1} x_{2}^{2} / 8-x_{1} x_{2} \\
& 0 \\
& \left.\begin{array}{cc}
-x_{2} & -2 x_{1} x_{2} \\
x_{1} x_{2}^{2}+\left(-3 x_{1}^{2} / 2+x_{1}\right) x_{2}+1 & 2 x_{1}^{2} x_{2}^{2}-x_{1}^{2}\left(3 x_{1}-2\right) x_{2} \\
0 & 1
\end{array}\right),
\end{aligned}
$$

satisfies:

$$
\left\{\begin{array}{l}
\Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}\right) \Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right)=R\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right)
\end{array}\right.
$$

Example

- The matrix defined by

$$
\begin{aligned}
& \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right)=H_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right) H_{2}\left(x_{2}, 0\right)^{-1}, \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 & x_{1}^{2}\left(3 x_{1}-2\right) x_{2} \\
\left(9 x_{1}^{2}-12 x_{1}+4\right) x_{1} x_{2} / 8 & \left(-3 x_{1}+2\right) x_{2} / 4 & \left(-3 x_{1}^{2} / 2+x_{1}\right) x_{2}+1
\end{array}\right),
\end{aligned}
$$

satisfies:

$$
\begin{gathered}
\left\{\begin{array}{l}
\Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right) \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right)=R\left(x_{1}, 0\right)
\end{array}\right. \\
U_{1}=\Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right) \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}\right) U_{1}=R\left(x_{1}, 0\right)=\left(\begin{array}{lll}
1 & 3 x_{1} / 2-1 & 0
\end{array}\right) .
\end{gathered}
$$

Example

- We easily check that the matrix

$$
U_{2}=\left(\begin{array}{ccc}
1 & -3 x_{1} / 2+1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \operatorname{GL}_{3}(D)
$$

satisfies $R\left(x_{1}, 0\right) U_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.

- Finally, if we define the matrix $U=U_{1} U_{2} \in \mathrm{GL}_{3}(D)$, namely,

$$
U=\left(\begin{array}{cc}
\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 & \left(-9 x_{1}^{3} / 4+3 x_{1}^{2}-x_{1}-1\right) x_{2}-3 x_{1} / 2+1 \\
\left(-3 x_{1}^{3} / 2+x_{1}^{2}\right) x_{2}^{2}-x_{1} x_{2} & \left(9 x_{1}^{4} / 4-3 x_{1}^{3}+x_{1}^{2}+x_{1}\right) x_{2}^{2}+\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 \\
\left(9 x_{1}^{2}-12 x_{1}+4\right) x_{1} x_{2} / 8 & \left(-27 x_{1}^{4} / 16+27 x_{1}^{3} / 8-9 x_{1}^{2} / 4-x_{1} / 4+1 / 2\right) x_{2} \\
-2 x_{1} x_{2} \\
2 x_{1}^{2} x_{2}^{2} \\
& \left(-3 x_{1}^{2} / 2+x_{1}\right) x_{2}+1
\end{array}\right),
$$

we obtain $R U=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$!

Application: flat linear OD time-delay control system

- Let us consider the following OD time-delay linear system:

$$
\left\{\begin{array}{l}
\dot{y}_{1}(t)-y_{1}(t-h)+2 y_{1}(t)+2 y_{2}(t)-2 u(t-h)=0, \\
\dot{y}_{1}(t)+\dot{y}_{2}(t)-\dot{u}(t-h)-u(t)=0
\end{array}\right.
$$

- We consider $D=\mathbb{Q}(a)\left[\partial ; \mathrm{id}, \frac{d}{d t}\right][\delta ; \sigma, 0]$ and the two matrices:

$$
R=\left(\begin{array}{ccc}
\partial-\delta+2 & 2 & -2 \delta \\
\partial & \partial & -\partial \delta-1
\end{array}\right), S=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2}(\partial \delta+1) & -\delta \\
\frac{1}{2} \partial & -1
\end{array}\right)
$$

- We can easily check that $R S=I_{2}$, which proves that the D-module $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$ is free (Quillen-Suslin theorem), and thus, (\star) admits an injective parametrisation.

Application: flat linear OD time-delay control system

- We have the following system equivalence

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{y}_{1}(t)-y_{1}(t-h)+2 y_{1}(t)+2 y_{2}(t)-2 u(t-h)=0, \\
\dot{y}_{1}(t)+\dot{y}_{2}(t)-\dot{u}(t-h)-u(t)=0
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
\dot{z}_{1}(t)+2 z_{1}(t)+2 z_{2}(t)=0 \\
\dot{z}_{1}(t)+\dot{z}_{2}(t)-v(t)=0
\end{array}\right.
\end{gathered}
$$

defined by the following reversible transformations:

$$
\left\{\begin{array}{l}
y_{1}(t)=z_{1}(t), \\
y_{2}(t)=\frac{1}{2}\left(\dot{z}_{1}(t-2 h)+z_{1}(t-h)\right)+z_{2}(t)+v(t-h), \\
u(t)=\frac{1}{2} \dot{z}_{1}(t-h)+v(t) . \\
\quad \Leftrightarrow\left\{\begin{array}{l}
z_{1}(t)=y_{1}(t), \\
z_{2}(t)=-\frac{1}{2} y_{1}(t-h)+y_{2}(t)-u(t-h), \\
v(t)=-\frac{1}{2} \dot{y}_{1}(t-h)+u(t),
\end{array}\right.
\end{array}\right.
$$

Application: flat linear OD time-delay control system

- Moreover, we have the following system equivalence

$$
\left\{\begin{array} { l }
{ \dot { z } _ { 1 } (t) + 2 z _ { 1 } (t) + 2 z _ { 2 } (t) = 0 , } \\
{ \dot { z } _ { 1 } (t) + \dot { z } _ { 2 } (t) - v (t) = 0 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
2 x_{1}(t)+2 x_{2}(t)=0, \\
-w(t)=0,
\end{array}\right.\right.
$$

defined by the following reversible transformations:

$$
\left\{\begin{array} { l }
{ z _ { 1 } (t) = x _ { 1 } (t) , } \\
{ z _ { 2 } (t) = x _ { 2 } (t) - \frac { 1 } { 2 } \dot { x } _ { 1 } (t) , } \\
{ v (t) = w (t) - \frac { 1 } { 2 } \ddot { x } _ { 1 } (t) + \dot { x } _ { 1 } (t) + \dot { x } _ { 2 } (t) , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{1}(t)=z_{1}(t), \\
x_{2}(t)=z_{2}(t)+\frac{1}{2} \dot{z}_{1}(t), \\
w(t)=v(t)+\dot{z}_{1}(t)+\dot{z}_{2}(t) .
\end{array}\right.\right.
$$

- We finally obtain the following injective parametrisation:

$$
\left\{\begin{array}{l}
y_{1}(t)=x_{1}(t) \\
y_{2}(t)=\frac{1}{2}\left(-\ddot{x}_{1}(t-h)+\dot{x}_{1}(t-2 h)-\dot{x}_{1}(t)+x_{1}(t-h)-2 x_{1}(t)\right) \\
u(t)=\frac{1}{2}\left(\dot{x}_{1}(t-h)-\ddot{x}_{1}(t)\right)
\end{array}\right.
$$

Application: δ-flat linear OD time-delay systems

- Flexible rod with a mass:

$$
\left\{\begin{array}{l}
\sigma^{2} \frac{\partial^{2} q(\tau, x)}{\partial \tau^{2}}-\frac{\partial^{2} q(\tau, x)}{\partial x^{2}}=0 \\
\frac{\partial q}{\partial x}(\tau, 0)=-u(\tau) \\
\frac{\partial q}{\partial x}(\tau, L)=-J \frac{\partial^{2} q}{\partial \tau^{2}}(\tau, L) \\
y(\tau)=q(\tau, L)
\end{array}\right.
$$

- $q(\tau, x)=\phi(\tau+\sigma x)+\psi(\tau-\sigma x), t=(\sigma / J) \tau, v=\left(2 J / \sigma^{2}\right) u$,

$$
\begin{aligned}
(\star) & \Rightarrow \ddot{y}(t+1)+\ddot{y}(t-1)+\dot{y}(t+1)-\dot{y}(t-1)=v(t) \\
& \Leftrightarrow\left\{\begin{array}{l}
y(t)=\xi(t-1), \\
v(t)=\ddot{\xi}(t)+\ddot{\xi}(t-2)+\dot{\xi}(t)-\dot{\xi}(t-2) .
\end{array}\right.
\end{aligned}
$$

- If y_{r} is a desired trajectoire, then $\xi_{r}(t)=y_{r}(t+1)$ and:

$$
v_{r}(t)=\ddot{y}_{r}(t+1)+\ddot{y}_{r}(t-1)+\dot{y}_{r}(t+1)-\dot{y}_{r}(t-1) .
$$

Application: π-flat linear OD time-delay systems

- Wind tunnel model (Manitius, IEEE TAC 84):

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}_{1}(t)+a x_{1}(t)-k a x_{2}(t-h)=0, \\
\dot{x}_{2}(t)-x_{3}(t)=0, \\
\dot{x}_{3}(t)+\omega^{2} x_{2}(t)+2 \zeta \omega x_{3}(t)-\omega^{2} u(t)=0,
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
x_{1}(t)=\omega^{2} a k \xi(t-h), \\
x_{2}(t)=\omega^{2} \dot{\xi}(t)+\omega^{2} a \xi(t), \\
x_{3}(t)=\omega^{2} \dot{\xi}(t)+\omega^{2} a \dot{\xi}(t), \\
u(t)=\xi^{(3)}(t)+(2 \zeta \omega+a) \ddot{\xi}(t)+\left(\omega^{2}+2 a \zeta \omega\right) \dot{\xi}(t)+a \omega^{2} \xi(t) .
\end{array}\right.
\end{gathered}
$$

- Simple network model (Fliess-Mounier, IFAC TDS98):

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } _ { 1 } (t) + u _ { 1 } (t) - u _ { 2 } (t - h _ { 1 }) = 0 , } \\
{ \dot { x } _ { 2 } (t) - u _ { 1 } (t - h _ { 2 }) = 0 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{1}(t)=\xi_{1}\left(t-h_{1}\right)-\xi_{2}(t), \\
x_{2}(t)=\xi_{2}\left(t-h_{2}\right), \\
u_{1}(t)=\dot{\xi}_{2}(t), \\
u_{2}(t)=\dot{\xi}_{1}(t) .
\end{array}\right.\right. \\
& \xi_{1}(t)=x_{1}\left(t+h_{1}\right)+x_{2}\left(t+h_{1}+h_{2}\right), \xi_{2}(t)=x_{2}\left(t+h_{2}\right)
\end{aligned}
$$

Conclusion

- We have studied stably free and free modules.
- We have briefly explained the Quillen-Suslin theorem.
(1) Constructive computation of bases of free D-modules can be obtained by means of the package QuillenSuslin: http://wwwb.math.rwth-aachen.de/QuillenSuslin/
(2) More applications in mathematical systems theory: constructive solutions of the Lin-Bose's conjectures, effective computation of (weakly) coprime factorizations of rational transfer matrices, reduction and decomposition problems...
A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem to multidimensional systems theory", in Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger, Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106.

