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Abstract. We describe a new approach of the generalized Bezout identity
for linear time-varying ordinary differential control systems. We also explain
when and how it can be extended to linear partial differential control systems.
We show that it only depends on the algebraic nature of the differential module
determined by the equations of the system. This formulation shows that the
generalized Bezout identity is equivalent to the splitting of an exact differential
sequence formed by the control system and its parametrization. This point of
view gives a new algebraic and geometric interpretation of the entries of the
generalized Bezout identity.
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1 Introduction

Let us denotes = d
dt

, R[s] the polynomial algebra ins andMmp the set of
m× p matrices with entries inR[s]. It is well known that if

P(s)y +Q(s)u = 0, (1)

is a left-coprime polynomial system, i.e. controllable [2, 9], whereP ∈ Mmm,
det P(s) 6= 0 andQ ∈ Mmp, then we can find four polynomial matrices
X ∈ Mmm, X, Y ∈ Mpm, P ∈ Mmp, Y , Q ∈ Mpp such that[

P(s) Q(s)

X(s) Y (s)

] [
X(s) P (s)

Y (s) Q(s)

]
= I, (2)

? The authors thank two anonymous referees for their helpful comments.
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whereI is the(m+p)×(m+p) identity matrix. This identity, generally called
generalized Bezout identity, is useful in control theory [16, 39, 42].

Recently, it has been shown in [8, 9, 10, 19, 24, 27, 29] that controllability
of a control system was a “built-in” property of the system and thus did not
depend on a separation of the system variables between inputs and outputs.
So, we are led to revisit the generalized Bezout identity with a more intrinsic
point of view. For controllablesurjectivelinear time-varying control system,
the generalized Bezout identity is reformulated in terms ofthe splitting of a
short exact differential sequenceformed by the system and its parametrization.
Moreover, in [11, 22, 27, 29, 30], the algebraic and geometric concepts of ordi-
nary differential control theory (OD control theory) have been extended within
the framework of partial differential control theory (PD control theory) or de-
lay control theory, that is, linear or nonlinear input/output relations defined by
systems of partial differential equations or differential and delay equations. See
also [19, 24] for an-dimensional control systems theory. Then, we can wonder
if such a generalized Bezout identity exists for PD control systems. However,
the existence of the generalized Bezout identity for (1) is deeply based on Be-
zout theorem which is not true in general for multivariable polynomial algebra.
So (2) does not seem to have a generalization for PD control systems. We shall
show that its existence only depends on the algebraic nature of the differential
module determined by the equations of the system. Such a generalized Bezout
identity exists for asurjectivelinear PD control system generatinga freediffer-
ential module. In this case, the generalized Bezout identity can be reformulated
in terms of the splitting of a short exact differential sequence made by the sys-
tem and its parametrization. In case the differential module is no longer free
butprojective, then only the upper part of (2) is satisfied, or in other words, the
system admits aparametrizationand aright-inverse. Finally, if the system is
controllable, i.e. if it generatesa torsion-freedifferential module, we only have
the right upper part of (2), that is, the system admits a parametrization. Tests are
known for checking whether a finitely generated differential module is torsion-
free, projective or free [29, 30, 40, 41]. Thus for linear PD control systems, we
are able to know which parts of the generalized Bezout identity exist and to
compute them. Moreover, the extension of the generalized Bezout identity in
the case of non surjective linear OD and PD control systems is obtained. In
this case, we have to build and split a long exact differential sequence. Many
explicit examples will illustrate the main results.

2 Controllability

The use of the module language for control systems was initiated by Kalman
thirty years ago [17] and it took a new insight with Blomberg and Ylinen [2].
Recently, its use seems to have given new results on structural properties of the
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system like controllability, observability, poles and zeros, motion planning...
See for example [5, 8, 9, 10, 22, 24, 27, 29]. We recall a few results.

Definition 1 A differential fieldK with n commuting derivations∂1, . . . , ∂n is
a field which satisfies∀ a, b ∈ K, ∀ i, j = 1, . . . , n :

• ∂i a ∈ K,

• ∂i(a + b) = ∂i a + ∂i b,

• ∂i(ab) = (∂i a) b + a ∂i b,

• ∂i ∂j = ∂j ∂i.

See [20, 27, 36] for more details.

In the course of the text, we will always consider differential fieldK contain-
ingQ. We form the ring of linear differential operators with coefficients inK and
denote it byD = K[d1, . . . , dn]. Any element ofD has the form

∑
finite aµ dµ,

whereµ = (µ1, . . . , µn) is a multi-index with length| µ |= µ1 + . . . + µn

andaµ ∈ K. D is a non commutative integral domain which satisfies

∀ a, b ∈ K : adi (b dj ) = ab di dj + a (∂i b) dj ,

and possesses the Ore property:∀ (p, q) ∈ D2, ∃ (u, v) ∈ D2 such thatu p =
v q.

Example 1 The field of rational functionsR(t) is a differential field with

derivative
d

dt
. Indeed,∀ a(t), 0 6= b(t) ∈ R(t), we have:

d

dt

(
a(t)

b(t)

)
= ȧ(t) b(t)− a(t) ḃ(t)

b2(t)
∈ R(t).

WhenD = R(t)
[

d
dt

]
is the ring of linear operators with coefficients inR(t),

every elementp ∈ D has the formp =∑
finite ai(t)

(
d
dt

)i
, with ai ∈ R(t).

We introduce the differential indeterminatesy = {yk | k = 1, . . . , m} and
denote byDy = Dy1+ . . .+Dym or by [y] = [y1, ..., ym] the leftD-module
spanned by the sety. Every element ofDy has the form

∑
finite a

µ

k dµ yk. If
we have a finite setR of linear OD or PD equations (ODE or PDE), we form
the finitely generated leftD- module [R] of linear differential consequences of
the system generators and the differential residualD-moduleM = [y]/[R].
See [1, 21, 26] for much details onD-modules.

Remark 1.In the examples, we shall use either the language of jet theory for
systems of PDE or the language of section for operators [27]. In the first case,
we havedi y

k
µ = yk

µ+1i
while in the second casedi must be replaced by∂i on

sections.
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Definition 2 We call observableany element ofM, or in other words, any
linear combination of the system variables and their derivatives satisfying the
equations of the control system.

Only two possibilities may happen for an observable: it may or may not verify
an OD or a PD equation by itself. An observable which does not satisfy any
OD or PD equation is calledfree. We find in [27] the following definition of
controllability.

Definition 3 A system is controllable if every observable is free.

A characterization of the controllability in terms ofdifferential closureis shown
in [27]. In [8, 9, 19, 22, 24, 27], the equivalent notion oftorsion-freeD-module
has been used for linear time-varying OD, delay,n-dimensional and PD control
systems. We recall the definition.

Definition 4 A torsion elementm of a D−moduleM is an element which
satisfies∃ 0 6= a ∈ D such thata m = 0 [37]. We denote byt (M) the
submodule ofM made by all the torsion elements ofM. A module istorsion-
free if t (M) = 0.

From Definition 3 and Definition 4, we obtain the following theorem.

Theorem 1 A linear OD or PD system is controllable iff theD-moduleM de-
termined by its equations is torsion-free. In any case,M/t(M) is a torsion-free
module, a result leading to the concept of minimal realization [12, 19, 24, 27].

Let us give an illustrating example.

Example 2 We takeD = R
[

d
dt

]
and letM be the residualD-module of

D y1 + D y2 with respect to theD-submodule generated bÿy1 + y1 + y1 −
y2+ α y3, ÿ2+ y2− y1− y3. In the language of systems of ODE (see remark
1), we have the two equations:{

ÿ1+ y1− y2+ α y3 = 0,

ÿ2+ y2− y1− y3 = 0.
(3)

• Forα = −1, if we substract the first equation from the second of (3) and set
z = y1− y2, we findz̈+ 2z = 0. The image ofz in M is a torsion element.
• Forα = 1, if we add the first equation to the second of (3) and setz = y1+y2,

we find z̈ = 0 and thus the image ofz in M is a torsion element.

We recall two other definitions of module properties which will be at the
core of this paper (see [37] for more details).
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Definition 5 1. A D-moduleM is free if there is a set of elements which
generateM and are independent onD. 2. A D-moduleM is projectiveif there
exists a freeD-moduleF and aD-moduleN such thatF ∼= M ⊕ N . Hence,
the moduleN is also a projectiveD-module.

Remark 2.It is quite easy to verify that a freeD-module is a projectiveD-
module and that a projectiveD-module is a torsion-freeD-module, which can
be summed up by the following module inclusions:

free⊆ projective⊆ torsion-free.

Moreover, any submodule of a freeD-module is a torsion-freeD-module. We
will see that the reciprocity is true and we will describe a way to construct a
freeD-module containing a given torsion-freeD-module (see theTorsion-free
Testdescribed in the sectionFormal Testsand p. 18 of [18]).

In [10, 22], the basis of a freeD-module determined by a control system
is calledflat outputor linearizing outputand plays an important role for the
motion planning. We have the useful theorem [37].

Theorem 2 1. If D is a principal ideal ring (for exampleK[ d
dt

]) theD-module
M is torsion-free iffM is free. 2. Over a polynomial ringk[χ1, . . . , χn], where
k is a field, any projective module is also a free module.

The last part of the previous theorem has been conjecturated in 1950 by
Serre and demonstrated independently in 1976 by Quillen and Suslin [37, 41].
We can find in [22, 40, 41] tests permitting to know if a finitely generated
k[d1, ..., dn]−moduleM, with k a field of constants (i.e.∀ a ∈ k : ∀ i =
1, ..., n, ∂i a = 0), is respectively torsion-free, projective and free (see [25] for
more deeper results). Remark that in this case, we can use the Quillen-Suslin
theorem and any projective module is a free module. Recently, formal tests
have been found in [27, 30] permitting to treat the more general situation of
D = K[d1, ..., dn] whereK is a differential field with subfield of constantsk
(for exampleD = R(x1, ..., xn)[d1, ..., dn]). We will recall these tests.

3 Linear Differential Operators

From a geometric point of view, a linear PD control system withn derivatives
may be defined as a linear PD operatorD1 : F0 → F1 whereF0, F1 are
vector bundles over a manifoldX of dimensionn, with local coordinatesx =
(x1, ..., xn). In other words,D1 is a PD linear operator acting on sections of
F0, i.e. acting on functionsη : X → F0. We define its sheaf of solutions by
D1 η = 0 (see remark 1).
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Remark 3.A fundamental idea is to associate to each operatorD1 : η→ ζ the
D-moduleM = [η]/[D1η] and we shall say that the operatorD1 determines
theD-moduleM.

Example 3 Let us take the operatorD1 : η→ ζ defined by:{
η̈1+ η1− η2+ α η3 = ζ 1,

η̈2+ η2− η1− η3 = ζ 2.

The operatorD1 determined theD = R
[

d
dt

]
-moduleM = [η1, η2, η3]/[η̈1+

η1− η2+ α η3, η̈2+ η2− η1− η3].

By an abuse of language, we shall say that an operatorD1 is controllable if the
D-moduleM determined byD1 is torsion-free.

Definition 6 1. An operatorD1 is formally injectiveif D1 η = 0 ⇒ η =
0. 2. The operatorD1 is formally surjectiveif the equationsD1η = 0 are
differentially independent (see [20, 36]), i.e. independent onD, or equivalently
if D1 η = ζ has no compatibility conditions, that is, if there does not exist an
operatorD2 such thatD1η = ζ ⇒ D2 ζ = 0.

In the course of the text, we shall say injective (resp. surjective) operator for
formally injective (resp. formally surjective) operator. Moreover, a control sys-
tem defined byD1 will be calledsurjective(resp.injective) if D1 is a surjective
(resp. injective) operator.

Example 4 • The operatorD1 : η→ ζ defined by{
x2∂1 η + η = ζ 1,

−∂2 η = ζ 2,
(4)

where(x1, x2) are local coordinates onX, is an injective operator as we
may easily verified thatη = −(x2)2∂1 ζ 2 − x2∂2 ζ 1 + ζ 1 − x2ζ 2. Thus,
(ζ 1, ζ 2) = (0, 0)⇒ η = 0.
• We take theSpencer operator(see [34] for more details)D1 : η → ζ

defined by: ∂1 η1− η2 = ζ 1,

∂2 η1− η3 = ζ 2,

∂2 η2− ∂1 η3 = ζ 3.

(5)

It is not a surjective operator. Indeed, if differentiatingζ 1 with respect to
∂2 andζ 2 to ∂1 and substracting them, we find∂1 ζ 2 − ∂2 ζ 1 − ζ 3 = 0.
The operatorD2 : ζ → χ , defined by the compatibility condition∂1 ζ 2 −
∂2 ζ 1− ζ 3 = χ of D1, is surjective because it has only one equation.
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• The operatorD1 : (y, u)t → ζ defined by

P(s) y +Q(s) u = ζ,

with det P(s) 6= 0 is a surjective operator.

We recall that a differential sequence of operators{Di , i = 0, . . . , l} is
locally exact if ker Di+1 = im Di . We have in particular∀ i = 0, . . . , l:
Di+1 ◦ Di = 0. A differential sequence is calledformally exactif each op-
erator generates all the compatibility conditions of the preceding one. Such a
situation is met in particular if all the corresponding sequences on the jet level
at any order are exact [27, 34], but the converse may not be true (see example
12). An injective operatorD will be denoted by the following formally exact

differential sequence 0−→ E
D−→ F , whereas the formally exact differential

sequenceE
D−→ F −→ 0 will mean thatD is a surjective operator.

Definition 7 The formally exact sequence 0−→ E
D0−→ F0

D1−→ F1 −→ 0
is said to be asplit exact differential sequenceif we have one of the following
equivalent properties [37]:

• there exists an operatorP1 : F1 −→ F0 such thatD1 ◦P1 = idF1,
• there exists an operatorP0 : F0 −→ E such thatP0 ◦D0 = idE,
• F0

∼= E ⊕ F1 (on the level of sections).

A system of partial differential equationsD1η = 0 is said to beformally in-
tegrablewhenever the formal power series of the solutions can be determined
step by step by successive derivations without obtaining backwards new in-
formations on lower-order derivatives [27, 32, 34]. For a sufficiently regular
operatorD1, we are always able to add to its equations new equations, made
by differential consequences of the given ones, in order to have a formally in-
tegrable system with aninvolutivesymbol (see [27, 32, 34] for more details).
Such an operator is calledinvolutive. In the course of the text, we shall always
suppose that these regularity conditions are satisfied. We can find in [38] a sym-
bolic package which completes a system of PDE to an involutive one, using
algorithms based on the formal integrability theory or some other packages,
based on Janet-Riquier theory [15, 35], can be found in [13, 14, 33]. See also
the symbolic packages in [3, 6, 7] using the effective methods of differential
algebra [20, 36]. Now, ifD1 is an involutive operator, then the sequence starting
with D1 and in which each operator exactly describes the compatibility con-
ditions of the preceding one, is finite and stops after at mostn + 1 operators
wheren is the dimension ofX. This sequence

F0
D1−→ F1

D2−→ ...
Dn−→ Fn

Dn+1−→ Fn+1 −→ 0,

is formally exact and it is usually called theJanet sequenceof D1 [27].
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Remark 4.As both the initial (not involutive) and final (involutive) operators
have the same solutions, if the original operatorD1 is injective, then the final
equations contain the zero order equationη = 0 which can therefore be a
differential consequence of the initial equations. Thus, we have obtained aleft-
inverseη = P1ζ which is however not uniquely determined. Indeed, we can
takeP′1 = P1 + Q ◦ D2 with P1 ◦ D1 = idF1 andQ : F2 → F0 any operator
and we easily verify thatP′1 ◦D1 = P1 ◦D1 = idF1 (D2 ◦D1 = 0).

We recall the duality for differential operators [27, 29]. We denote byE

a vector bundle over a manifoldX, T ? the cotangent bundle ofX, E? the
dual bundle ofE and Ẽ = ∧n T ? ⊗ E? its adjoint bundle. This is the right
generalization of the concept of tensor density in physics.

Definition 8 If D1 : F0→ F1 is a linear differential operator, its formal adjoint
D̃1 : F̃1 → F̃0 is defined by the following formal rules equivalent to the
integration by parts:

• the adjoint of a matrix (zero order operator) is the transposed matrix,
• the adjoint of∂i is−∂i ,
• for two linear PD operatorsP, Q that can be composed:̃P ◦Q = Q̃ ◦ P̃ .

We easily verified that̃̃D1 = D1. It can be proved that, for any sectionλ of
F̃1, we have the relation

< λ, D1 η > − < D̃1 λ, η >= d(·),
expressing a difference ofn-forms (λ ∈ ∧n T ?⊗F?

1 ⇒< λ, D1 η >∈ ∧n T ?),
whered is the standard exterior derivative. Equivalently, we can directly com-
pute the adjoint of an operator by multiplying it by test functions on the left
and integrating by parts.

Example 5 We compute the adjoint operator of the Spencer operator (5). We
multiply D1 η on the left by a row vectorλ = (λ1, λ2, λ3) and integrate the
result by parts, we obtain the operatorD̃1 : λ→ µ defined by:{−∂1λ1− ∂2λ2 = µ1,−∂2λ3− λ1 = µ2,

∂1λ3− λ2 = µ3.
(6)

Definition 9 We call an operatorD1 parametrizableif there exists a set of
arbitrary functionsξ = (ξ1, . . . , ξ r) or “potentials” and a linear operatorD0

such that all the compatibility conditions of the inhomogenous systemD0 ξ = η

areexactlygenerated byD1 η = 0, i.e., if the sequenceE
D0−→ F0

D1−→ F1 is
formally exact.
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4 Formal Tests

We can find in [22, 40, 41] tests to know whether a finitely generatedk[χ1, ...,

χn]-moduleM (k is a field) has torsion elements or if it is respectively torsion-
free or free. We give formal tests which can check those module properties
over ringsD of the formD = K[d1, ..., dn] whereK is a differential field
containingQ (for exampleR(x1, ..., xn)[d1, ..., dn]). All the calculations can
be effectively performed by means of existing symbolic packages.

4.1 Torsion-freeD-modules

We describe a formal test checking if the operatorD1 determines a torsion-free
D-moduleM or not (compare with p. 18 of [18]):

Torsion-free Test

1. Start withD1.
2. Construct its adjoint̃D1.
3. Find the compatibility conditions of̃D1λ = µ and denote this operator by
D̃0.

4. Construct its adjointD0 (= ˜̃D0).
5. Find the compatibility conditions ofD0 ξ = η and call this operatorD′1.

We are led to two different cases. IfD1 is exactly the compatibility condi-
tionsD′1 ofD0, then the systemD1 determines a torsion-freeD-moduleM and
D0 is a parametrization ofD1 in sense of the definition 9. Otherwise, the opera-
torD1 is among, but not exactly, the compatibility conditions ofD0. The torsion
elements ofM are all the new compatibility conditions modulo the equations
D1η = 0.

Proof. The operatorD̃0 describes exactly the compatibility conditions of the
operatorD̃1 and we have in particular̃D0 ◦ D̃1 = 0⇒ D1 ◦ D0 = 0. Hence,
D1 is among the compatibility conditions ofD0, which are described by the
operatorD′1. Now, computing the rank of the operatorsD′1 andD1, we find
that rankD′1 = rankD1 (see [30] for more details). IfD1 is strictly among the
compatibility conditions ofD0, then any new single compatibility conditionζ ′

in D′1 is a differential consequence ofD1 (rankD′1 = rankD1) and we can find
an operatorq ∈ D such thatq ζ ′ = 0 wheneverD1 η = 0. Hence, any new
single compatibility condition ofD0 (not inD1) determines a torsion element.
If D1 describes exactly the compatibility conditions ofD0, i.e. the sequence

E
D0−→ F0

D1−→ F1 is formally exact, then theD-moduleM determined byD1

is torsion-free becauseM ⊆ D ξ andD ξ is a freeD-module (see remark 2).
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We can represent the test by the following differential sequences where the
number indicates the different stages:

5
D′1−→ F ′1,

E
D0−→ F0

D1−→ F1,
4 1

Ẽ
D̃0←− F̃0

D̃1←− F̃1.
3 2

In the preceding sequences, only the dual sequence and the sequence made with
D0 andD′1 are formally exact. Thus, the defect of controllability of the operator
D1 may be seen as a defect of the formal exactness of the upper sequence formed
byD0 andD1. This fact will lead to a future introduction of the functor Ext (see
[4, 18, 25, 37]) in control theory, organized around the following two central
results obtained one from the other by reversing the arrows:

1. Controllability of D1 amounts to the cancellation of the first extension of
the D-module determined bỹD1 with value in the ringD of differential
operators.

2. Obervability of D1 amounts to the cancellation of ext1(M, D), the first
extension of theD-moduleM determined byD1 with value in the ringD
of differential operators.

In this framework, an operator is naturally controllable (observable) iff its for-
mal adjoint is observable (controllable).

Using theorem 1, we obtain the following useful corollary.

Theorem 3 A linear PD control system is controllable iff it is parametrizable.

Proof. The operatorD1 is controllable iff it determines a torsion-freeD-module.
By the previous test,D1 determines a torsion-freeD-module iff there exists an

operatorD0 : E → F0 parametrizingD1, i.e. the sequenceE
D0−→ F0

D1−→ F1

is formally exact.

We now illustrate the test by an example.

Example 6 We wonder if the Spencer operator (5) determines a torsion-free
D-moduleM (see example 3). The adjoint operator of the Spencer operator is
(6). Differentiating the second equation ofD̃1 with respect to∂1, the third with
respect to∂2 and adding them, we obtain the operatorD̃0 : µ→ ν defined by
−∂1µ2 − ∂2µ3 + µ1 = ν. We multiply D̃0 by ξ and after one integration by
parts, we obtain the operatorD0 : ξ → η defined by:
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∂1 ξ = η2,

∂2 ξ = η3.

(7)

We find the compatibility conditions ofD0 by differentiating the second
equation by∂2, the third by∂1 and subtracting them, we obtain the third equation
of D1. Differentiating the first equation ofD0 by respectively∂1 and∂2 and
subtracting it by respectively the second and the third equation, we obtain the
first and the second equation ofD1. Thus, all the compatibility conditions ofD0

are exactly generated byD1 and the Spencer operator determines a torsion-free
D-moduleM.

We now describe how to compute the torsion elements ifD1 does not de-
termine a torsion-freeD-moduleM.

Computation of torsion elements

1. ComputeD′1 and check thatD1 is strictly amongD′1.
2. For any new single compatibility condition of the formD′1η = ζ ′ of D′1,

compute the compatibility conditions of the following system:{
D1 η = 0,
D′1 η = ζ ′ (one equation only).

3. We find thatζ ′ is a torsion element ofM satisfyingq ζ ′ = 0 with 0 6= q ∈ D.

We now give a theoretical but non-trivial example of a computation of a
torsion element.

Example 7 We consider the system

η̈2+ α(t) η̇2+ α̇(t) η2+ η̈1− η1 = 0,

whereα(t) is a non zero function satisfyinġα(t)+ α(t)2− 1= 0. See [31] for
the general situation. We let the reader check that the operatorD′1 : η→ ζ ′ is:

η̇2+ η̇1− α(t) η1− α̇(t)

α(t)
(η2+ η1) = ζ ′

(be careful, the adjoint ofα(t) ẏ is−α(t) λ̇− α̇(t) λ). The compatibility condi-
tion ofD0 is not the operatorD1 and thus the system is not controllable. If we
want to find the torsion element of the associatedD-moduleM, we only have
to compute the compatibility conditions of the system:{

η̈2+ α(t) η̇2+ α̇(t) η2+ η̈1− η1 = 0,

η̇2+ η̇1− α(t) η1− α̇(t)

α(t)
(η2+ η1) = ζ ′.

After straightforward but tedious computations, we find that the torsion element
ζ ′ satisfiesα(t)ζ̇ ′ + ζ ′ = 0.



102 J.F. Pommaret, A. Quadrat

4.2 ProjectiveD-modules

LetD1 be a surjective operator with an injective adjointD̃1. AsD̃1 is an injective
operator, among the differential consequences of the equationsD̃1 λ = µ, we
must findλ = P̃1 µ (see remark 4). A natural way to computeP̃1 is to bring
D̃1 to formal integrability, that is, roughly speaking to saturate the system by
lower order consequences of the equations [27]. Thus, bringingD̃1 to formal
integrability, we form an operator̃P1 satisfyingP̃1◦D̃1 = idF̃1

whereidF̃1
is the

identity operator ofF̃1. The operator̃P1 is then a left-inverse of̃D1. Dualizing
P̃1 ◦ D̃1 = idF̃1

, we obtainD1 ◦ P1 = idF1 or in other words,D1 admits a
right-inverseP1. It is equivalent to say that theD-moduleM, determined by
the surjective operatorD1, is a projectiveD-module [22, 30, 41].

Theorem 4 A surjective differential operatorD1 : F0 → F1 determines a
projectiveD-module iff its adjoint is injective, i.e., if there existsP1 : F1→ F0

such thatD1 ◦P1 = idF1.

We shall represent the operatorP1 : F1 → F0 by the following upper left
arrow:

P1←−
F0

D1−→ F1 −→ 0.

Example 8 To illustrate what has been said, we show that the system

∂2 η2− x2∂1 η1+ η1 = 0, (8)

where(x1, x2) are local coordinates onX, determines a projectiveD-module
and we find a right-inverse. Its adjointD̃1 : λ→ µ is just (4), i.e.,{

x2∂1 λ+ λ = µ1,−∂2 λ = µ2.

Bringing this system to formal integrability, we obtain by derivating the first
equation with respect to∂2 and the second by∂1, the new lower order equation:

λ = −(x2)2∂1 µ2− x2∂2 µ1+ µ1− x2µ2.

ThusD̃1 is an injective operator andD1 determines a projectiveD-module. If
we denote byP̃1 : µ → λ the operator defined by−(x2)2∂1 µ2 − x2∂2 µ1 +
µ1− x2µ2 = λ thenP̃1 ◦ D̃1 = idF̃1

, and its adjointP1 : ζ → η, given by{
x2∂2 ζ + 2ζ = η1,

(x2)2∂1 ζ − x2ζ = η2,

is a right-inverse of (8). Indeed, we easily verify thatD1 ◦P1 = idF1.
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In the general case,D1 is no longer a surjective operator and a characteriza-
tion of projective module in the language of operator can be found in [4, 23, 30].
We recall it.

Theorem 5 An operatorD1 : F0 → F1 determines a projectiveD-module if
there exists an operatorP1 : F1 → F0 such thatD1 ◦ P1 ◦ D1 = D1. The
operatorP1 is then called a lift-operator.

Proof. AsD1 is not a surjective operator, there exists an operatorD2 : F1 →
F2 describing the compatibility conditions ofD1. The operatorD1 defines a
projectiveD-moduleM iff there exists an operatorP1 : F1 −→ F0 such that
D1 ◦ P1 = id imD1

= idF1 moduloD2, i.e., if there existsP2 : F2 → F1 such
thatD1 ◦P1+P2 ◦D2 = idF1. However,D1 ◦P1 = id imD1

is equivalent to:

D1 ◦P1 ◦D1 = D1. (9)

Indeed, the direct way is trivial whereas the reciprocity can be demonstrated
as follows. From (9), we have(idF1−D1◦P1)◦D1 = 0 and thusidF1−D1◦P1

must factorize throughD2 (see p. 150 of [28]), that is to say, there exists an
operatorP2 such that

D1 ◦P1+P2 ◦D2 = idF1, (10)

which proves the inverse way.

Moreover, the identity (10) impliesD2 ◦ P2 ◦ D2 = D2 andD2 defines, in
its turn, a projectiveD-module. In a similar way, all the successive operators
of compatibility conditions define a projectiveD-module. Now, if we dualize
(9), we obtainD̃1 ◦ P̃1 ◦ D̃1 = D̃1 and thusD̃1 defines a projectiveD-module.
Moreover, we havẽP1 ◦ D̃1 + D̃2 ◦ P̃2 = idF̃1

and D̃1 ◦ D̃2 = 0. The first
identity shows that im̃D2 ⊆ kerD̃1 whereas if we takeλ ∈ kerD̃1, the second
shows thatD̃2 (P̃2λ) = λ and thusλ ∈ im D̃2 ⇒ im D̃2 = kerD̃1. Hence, we
have the following locally exact sequence:

F̃0
D̃1←− F̃1

D̃2←− F̃2.

For a non surjective operatorD1, we give a test checking whether the module
M determines by the operatorD1 is a projectiveD-module or not [30].

Projective Test

1. Construct the Janet sequence starting withD1.
2. Check if the adjoint of the last operator of the sequence is injective.
3. Check if the backward sequence, made with the adjoint of the operators of

the Janet sequence ofD1, is a formally exact sequence.
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Example 9 The Spencer operatorD1 is not a surjective operator as we have
seen in the example 4. The operatorD2 : ζ → χ defining the compatibility
conditions ofD1 is

∂1 ζ 2− ∂2 ζ 1− ζ 3 = χ, (11)

and it is surjective. Dualizing the operatorD2 by multiplying it byβ and inte-
grating the result by parts, we obtain the injective operatorD̃2 : β → λ defined
by: {

∂2 β = λ1,−∂1 β = λ2,−β = λ3.

Thus, we only have to verify that all the compatibility conditions of the
operatorD̃2 are exactly defined by the operatorD̃1. Up to a change of sign, it
is the same as verifying that all the compatibility conditions ofD0 are defined
byD1 (see the example 6). We conclude that the Spencer operator determines a
projectiveD-moduleM. As the Spencer operator is a PD system with constant
coefficients, then according to the theorem of Quillen-Suslin, it determines a
free D-module. Indeed, theD-moduleM determined by the Spencer opera-
tor is equal to the moduleD ξ = D η1 which is a freeD-module (see the
parametrization (7) ofD1).

Let us describe now how to compute the lift-operatorsPi . Let D1 be an
operator defining a projectiveD-module. Thus, we have the two following
locally exact sequences:

F0
D1−→ F1

D2−→ . . .
Dn−→ Fn

Dn+1−→ Fn+1−→ 0,

F̃0
D̃1←− F̃1

D̃2←− . . .
D̃n←− F̃n

D̃n+1←− F̃n+1←− 0.

As Dn+1 is a surjective operator with an injective adjointD̃n+1, there ex-
ists an operatorPn+1 : Fn+1 −→ Fn such thatDn+1 ◦ Pn+1 = idFn+1 ⇒
Dn+1 ◦ Pn+1 ◦ Dn+1 = Dn+1. Let us denoteQn = idFn

− Pn+1 ◦ Dn+1. We
haveDn+1 ◦ Qn = Dn+1 − Dn+1 ◦ Pn+1 ◦ Dn+1 = 0 and thus̃Qn ◦ D̃n+1 = 0.
However, we havẽDn ◦ D̃n+1 = 0 which implies thatQ̃n factorizes through
D̃n: Q̃n = P̃n ◦ D̃n ⇒ Qn = Dn ◦ Pn ⇒ Dn ◦ Pn + Pn+1 ◦ Dn+1 = idFn

⇒
Dn ◦Pn ◦Dn = Dn. In a similar way, we can findPi for i ∈ {1, . . . , n} satisfy-
ingDi◦Pi◦Di = Di . Hence, the lift-operatorPi−1 can be computed as follows:

Computation of the lift-operatorsPi

1. Compute an operator̃Pn+1 such thatP̃n+1 ◦ D̃n+1 = idF̃n+1
and take its

adjointPn+1.

For i = n+ 1, . . . , 2:
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2. ComputeQi−1 = idFi−1 −Pi ◦Di andQ̃i−1.
3. As before,Q̃i−1 must factorize through̃Di−1 and we findP̃i−1 such that
Q̃i−1 = P̃i−1 ◦ D̃i−1 and dualizing, we havePi−1.

Example 10 We have seen that the Spencer operator defined a projectiveD-
module. We show how to computeP1. We easily find thatP2 : χ → ζ defined
by 0= ζ 1,

0= ζ 2,

−χ = ζ 3,

(12)

is a right-inverse ofD2. We start by definingQ1 = idF1−P2◦D2. The operator
Q1 : ζ → γ is thus:  ζ 1 = γ 1,

ζ 2 = γ 2,

∂1 ζ 2− ∂2 ζ 1 = γ 3.

Taking its adjoint, we obtaiñQ1 : λ→ φ{
∂2λ3+ λ1 = φ1,−∂1λ3+ λ2 = φ2,
0= φ3,

whereasD̃1 is given by (6). We easily find that̃P1 is defined by{−µ2 = φ1,−µ3 = φ2,
0= φ3,

and we have the operatorP1 : ζ → η given by:0= η1,

−ζ 1 = η2,

−ζ 2 = η3.

(13)

We let the reader check thatD1 ◦P1 ◦D1 = D1.

4.3 FreeD-modules

We have seen in 1. of definition 8 that for a principal ringD (for example
K[ d

dt
]), a torsion-freeD-module is a freeD-module. Hence, we state a very

useful theorem [27, 29].

Theorem 6 A surjective linear time-varying OD control system is controllable
iff its adjoint is injective.
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Proof. In a principal ring, the notions of torsion-free and projective module are
equivalent. Thus, a linear OD control system is controllable iff theD-module
M is projective. The operatorD1 is surjective and its adjoint̃D1 is injective,
thenD1 determines a projectiveD-moduleM and the system is controllable.
Conversely, ifD̃1 is not injective then we can find a test vectorλ 6= 0 which
satisfiesD̃1λ = 0. Thus< λ,D1η > is a total derivative of an observable which
is therefore a torsion element, as its derivative is null as soon asη is a solution
of the system and the system is not controllable.

Remark 5.Even in the case of time-varying system, we deduce that there is a
bijective correspondence between torsion elements and first integrals of mo-
tions.

Example 11 We take again the first example. Multiplying it by a row vector
λ = (λ1, λ2) and integrating the result by parts, we obtainD̃1 : λ→ µ defined
by:  λ̈1+ λ1− λ2 = µ1,

λ̈2+ λ2− λ1 = µ2,−λ2+ α λ1 = µ3.

Differentiating twice the zero-order equation and substituting it, we obtain

(α + 1)(α − 1)λ1 = 0,

and the operator̃D1 is injective i.e. controllable iffα 6= −1 andα 6= 1.

Theorem 7 An operatorD1 determines a freeD-moduleM iff there exists an
injective parametrization ofD1.

Proof. LetD0 ξ = η be a parametrization ofD1η = ζ then we haveM ⊆ D ξ .
Now, if D0 ξ = η is an injective parametrization ofD1, then there exists a
left-inverseP0 ofD0 such thatξ = P0◦D0 ξ ⇔ ξ = P0 η⇒ D ξ ⊆M. Thus,
M = D ξ andM is a freeD-module. The reciprocity is obvious.

Example 12 The operatorD2 : ζ → χ , generating the compatibility condition
of the Spencer operator, is defined by∂1 ζ 2 − ∂2 ζ 1 − ζ 3 = χ . We know that
the operatorD2 determines a freeD-module (see example 9). However, the
operatorD1 is a parametrization ofD2 which is not injective. We have in (6)
the relationµ1 = ∂1µ2 + ∂2µ3 and if we take only the second and the third
equations ofD̃1 as a new operator, we easily see that its adjointD

]

1 : θ → ζ ,
defined by −θ1 = ζ 1,

−θ2 = ζ 2,

−∂1 θ2+ ∂2 θ1 = ζ 3,

is an injective parametrization ofD2.
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5 Split Exact Sequences

5.1 Main Result

The following theorem is at the core of the generalization of the generalized
Bezout identity for non surjective operators. It shows how we can construct
the lift-operators in order to split a long formally exact sequence of differential
operators.

Theorem 8 Let D1 : F0 −→ F1 be an operator determining a projective
D-module and let

F0
D1−→ F1

D2−→ . . .
Dn−→ Fn

Dn+1−→ Fn+1 −→ 0,

be its Janet sequence. Then there exists lift-operatorsPi : Fi → Fi−1 such that
the sequence

F0
P1←− F1

P2←− . . .
Pn←− Fn

Pn+1←− Fn+1←− 0,

is locally exact and∀ i = 1... n+ 1 :Pi ◦Di ◦Pi = Pi .

Proof. LetD1 : F0 −→ F1 be an operator determining a projectiveD-module
M and let

F0
D1−→ F1

D2−→ . . .
Dn−→ Fn

Dn+1−→ Fn+1 −→ 0,

be the Janet sequence ofD1. Let us suppose that we have found operators
Pi such thatDi ◦ Pi ◦ Di = Di for i = 1 . . . n andDn+1 ◦ Pn+1 = idFn+1.
Let us focus, only for the moment, on the locally exact differential sequence

Fi−1
Di−→ Fi

Di+1−→ Fi+1 withDi+1◦Pi+1◦Di+1 = Di+1 andDi ◦Pi ◦Di = Di .
We have∀ η ∈ Fi : Di+1 ◦ (idFi

− Pi+1 ◦ Di+1) η = 0 ⇒ ∃ ξ ∈ Fi−1 :
(idFi

− Pi+1 ◦ Di+1) η = Di ξ as the sequence formed byDi andDi+1 is
locally exact. However, we have∀ ξ ∈ Fi−1 : (Di ◦ Pi − idFi

) ◦ Di ξ = 0⇒
(Di ◦ Pi − idFi

) ◦ (idFi
− Pi+1 ◦ Di+1) η = 0,∀ η ∈ Fi . Finally, we obtain

the new identityidFi
= Di ◦ Pi + Pi+1 ◦ Di+1 − Di ◦ Pi ◦ Pi+1 ◦ Di+1. This

identity can be rewritten under the two different following forms:{
P′i = Pi ◦ (idFi

−Pi+1 ◦Di+1),
idFi
= Di ◦P′i +Pi+1 ◦Di+1,

(14)

or {
P′′i+1 = (idFi

−Di ◦Pi) ◦Pi+1,
idFi
= Di ◦Pi +P′′i+1 ◦Di+1.

(15)

Now, let us suppose thatPi+1◦Di+1◦Pi+1 = Pi+1, then we haveP′i◦Pi+1 =
0⇒ imPi+1 ⊆ kerP′i . Let us takeη ∈ kerP′i then, from the second equation
of (14), we haveη = Pi+1(Di+1η)⇒ η ∈ imPi+1 showing that
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Fi−1
P′i←− Fi

Pi+1←− Fi+1,

is a locally exact differential sequence. Moreover, from the second equation of
(14), we haveP′i ◦Di ◦P′i = P′i . For showing thatPi+1 ◦Di+1 ◦Pi+1 = Pi+1,
we only have to prove it fori = n (the above demonstration has shown that
Pn◦Dn◦Pn = Pn ⇒ P′n−1◦Dn−1◦P′n−1 = P′n−1 ...). However,Dn+1◦Pn+1 =
idFn+1 ⇒ Pn+1 ◦Dn+1 ◦Pn+1 = Pn+1.

Finally, we have shown that, starting withPn+1, we can changePn into
another lift-operatorP′n, according to (14), in order to have the sequence formed
byPn+1 andP′n locally exact. Now, starting withP′n, we can changePn−1 using
(14), in which we have substitutedPn byP′n, to have the sequence made byP′n
andP′n−1 locally exact. We can do similary for all the lift-operatorsPi and we
obtain the following locally exact differential sequence

F0
P′1←− F1

P′2←− . . .
P′n←− Fn

Pn+1←− Fn+1←− 0,

with Di ◦P′i ◦Di = Di andP′i ◦Di ◦P′i = P′i .

Corollary 1 LetD1 : F0 → F1 be an operator determining a projectiveD-
module, then there exists an operatorD0 : E → F0 and lift-operatorsPi :
Fi → Fi−1 such that the sequence

E
P0←− F0

P1←− F1
P2←− . . .

Pn←− Fn

Pn+1←− Fn+1←− 0,

is locally exact and∀ i = 0... n+ 1 :Pi ◦Di ◦Pi = Pi .

Proof. AsD1 determines a projectiveD-module, there exists a parametrization
D0 : E → F1 and D̃1 determines a projectiveD-module. ThusD̃0 andD0

determine also a projectiveD-module, which implies the existence of a lift-
operatorP0 such thatD0 ◦P0 ◦D0 = D0. Applying the previous theorem, we
have the locally exact differential sequence

F0
P′1←− F1

P′2←− . . .
P′n←− Fn

Pn+1←− Fn+1←− 0,

withP′i◦Di◦P′i = P′i . We can prolong, as in the previous proof, this differential
sequence to have the following locally exact differential sequence

E
P′0←− F0

P′1←− F1
P′2←− . . .

P′n←− Fn

Pn+1←− Fn+1←− 0,

with D0 ◦P′0 ◦D0 = D0 andP′0 ◦D0 ◦P′0 = P′0.

5.2 Applications to the Generalized Bezout Identity

We now explain the link of the preceding result with the generalized Bezout
identity.
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5.2.1 PD Control Systems with Variable Coefficients.The following theorem is
the generalization of the generalized Bezout identity for non surjective operator
D1 describing the control system. We insist on the fact that everything that
follows can be computed explicitly using symbolic packages. See the examples
illustrating the main results.

Theorem 9 LetD1 : F0 → F1 be a PD control system with variable coeffi-
cients.

1. IfD1 determines a freeD-moduleM then there exists three operatorsD0 :
E→ F0,P0 : F0→ E andP1 : F1→ F0 such that:

D1 ◦D0 = 0,
P0 ◦D0 = idE,
D1 ◦P1 ◦D1 = D1,
P1 ◦D1 ◦P1 = P1,
P0 ◦P1 = 0.

The differential sequences0 −→ E
D0−→ F0

D1−→ F1 and 0 ←− E
P0←−

F0
P1←− F1 are locally exact.

2. IfD1 determines a projectiveD-moduleM, then there exists three operators
D0 : E→ F0,P0 : F0→ E andP1 : F1→ F0 such that:

D1 ◦D0 = 0,
D0 ◦P0 ◦D0 = D0,
P0 ◦D0 ◦P0 = P0,
D1 ◦P1 ◦D1 = D1,
P1 ◦D1 ◦P1 = P1,
P0 ◦P1 = 0.

The differential sequencesE
D0−→ F0

D1−→ F1 andE
P0←− F0

P1←− F1 are
locally exact.

3. If D1 determines a torsion-freeD-moduleM, i.e.D1 is controllable, then
there exists one operatorD0 : E→ F0 such that:

D1 ◦D0 = 0.

The differential sequenceE
D0−→ F0

D1−→ F1 is formally exact.

Example 13 Let us take again the Spencer operatorD1 defined by (5). We have
shown thatD1 determined a freeD-module and that the following differential
sequence

0−→ E
D0−→ F0

D1−→ F1
D2−→ F2 −→ 0, (16)
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was locally exact, whereD0 andD2 are defined respectively by (7) and by (11).
The operatorP2 defined by (12) is a right-inverse ofD2 andP1, defined by
(13), satisfiesD1 ◦ P1 ◦ D1 = D1. We let the reader check thatP′1 = P1 and
P′0 = P0 : η→ ξ defined byη1 = ξ satisfiesP0 ◦D0 = idF0. Thus, we have:

D1 ◦D0 = 0,
D2 ◦D1 = 0,
P0 ◦D0 = idE,
D1 ◦P1 ◦D1 = D1,
P1 ◦D1 ◦P1 = P1,
D2 ◦P2 = idF2,
P1 ◦P2 = 0,
P0 ◦P1 = 0.

Moreover, the differential sequence

0←− E
P0←− F0

P1←− F1
P2←− F2←− 0,

is locally exact.

In the caseD1 is a surjective operator, the previous theorem leads to the
existence of the generalized Bezout identity.

Corollary 2 Let D1 : F0 −→ F1 be a surjective PD control system with
variable coefficients.

1. If the operatorD1 determines a freeD-moduleM, then we have[
D1
P0

]
◦ [
P1 D0

] = [
idF1 0
0 idE

]
,

and the generalized Bezout identity is equivalent to the splitting of the
following locally exact differential sequence:

P0←− P1←−
0−→ E

D0−→ F0
D1−→ F1 −→ 0.

In such a situation, we notice that the use of the formula (14) for i=0 in
Corollary 1 is nothing else but what is called in the literature as reversed
Bezout identity (16, lemma 6.3–9) which has thus been extended to variable
coefficients case.

2. IfD1 determines a projectiveD-moduleM, then we have:[
D1

] ◦ [
P1 D0

] = [
idF1 0

]
.

3. IfD1 determines a torsion-freeD-moduleM, then we have:

D1 ◦D0 = 0.

In the next example, we illustrate each situation for a surjective operator.
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Example 14 1. The system∂2 η1−x2∂1 η2−η3 = 0 determines a free-module
and we have: [

∂2 −x2∂1 −1
−1 0 0
0 1 0

]
◦

[
0 −1 0
0 0 1
−1−∂2 −x2∂1

]
= I.

2. We have seen that the system (8), defined by∂2 η2 − x2∂1 η1 + η1 = 0,

was generating a projective module and we found a right-inverse. We let
the reader check that:[−x2∂1+ 1 ∂2

] ◦ [
x2∂2+ 2 x2∂2

2 + 2∂2

(x2)2∂1− x2 (x2)2∂1∂2− x2∂2− 1

]
= [1, 0].

3. The system∂2 η2−x1∂1 η1+η1 = 0 determines only a torsion-free module
and we have: [−x1∂1+ 1 ∂2

] ◦ [ −∂2

−x1∂1+ 1

]
= 0.

Remark 6.Projective module and right-inverse are useful if we want to know
whether a system of polynomial equations admits solutions. Indeed, the Hilbert
theorem claims that the system of polynomial equations

P1(χ1, ..., χn) = 0,
P2(χ1, ..., χn) = 0,
...

...
Pm(χ1, ..., χn) = 0,

(17)

whereP1, . . . , Pm ∈ k [χ1, . . . , χn], has no solution iff there existsQ1, . . . ,

Qm ∈ k [χ1, . . . , χn] such that:

P1 Q1+ P2 Q2+ . . .+ Pm Qm = 1.

We can reformulate the Hilbert theorem saying that the system of polynomial
equations (17) has no solution iff the adjoint of the surjective operatorD1 :
η→ ζ defined by

P1(∂1, ..., ∂n) η1+ . . .+ Pm(∂1, ..., ∂n) ηm = ζ,

where we have substitutedχi by ∂i in Pj , is injective, i.e., the moduleM
determined byD1 is a projective and thus a freeD-module (Quillen-Suslin
theorem).

We give an example.
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Example 15 We search the common solutions of the following set of polyno-
mials: P1 = χ3

3 + χ1χ3+ 1,

P2 = χ2
3 + χ2χ3,

P3 = χ2
2 + χ1.

(18)

We define the operatorD1 : η→ ζ by:

(∂3
3 + ∂1∂3+ 1)η1+ (∂2

3 + ∂2∂3)η
2+ (∂2

2 + ∂1)η
3 = ζ.

It is quite easy to see that we obtain from̃D1λ = µ the equation:

λ = µ1+ ∂3 µ2− ∂2 µ2+ ∂3 µ3.

Thus, the operatorP1 : ζ → η, defined by ζ = η1,

∂2 ζ − ∂3 ζ = η2,

−∂3 ζ = η3,

is a right-inverse ofD1, i.e.D1 ◦P1 = idF1. We have

P1+ P2 (χ2− χ3)− P1 χ3 = 1,

and the system (18) has no solution.

5.2.2 Time-varying OD Control Systems.The following theorem leads to the
existence of the generalized Bezout identity.

Theorem 10 • LetD1 : F0 → F1 be a controllable time-varying OD control
system, then there exists three operatorsD0 : E → F0, P0 : F0 → E and
P1 : F1→ F0 such that: 

D1 ◦D0 = 0,
P0 ◦D0 = idE,
D1 ◦P1 ◦D1 = D1,
P1 ◦D1 ◦P1 = P1,
P0 ◦P1 = 0.

Moreover, the differential sequences0 −→ E
D0−→ F0

D1−→ F1 and 0 ←−
E
P0←− F0

P1←− F1 are locally exact.

• If D1 is a surjective operator, then we have[
D1
P0

]
◦ [
P1 D0

] = [
idF1 0
0 idE

]
,
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and the generalized Bezout identity is equivalent to the splitting of the locally
exact differential sequence:

P0←− P1←−
0−→ E

D0−→ F0
D1−→ F1 −→ 0.

We now give examples of a computation of the generalized Bezout identity
for a time-varying OD control system.

Example 16 1. If we start with the left-coprime system (1), i.e. controllable
[2, 5, 9], we can rewrite it under the formD1η = ζ whereD1 = [P(s), Q(s)],
s = d

dt
andη = (y, u)t . The assumption of detP(s) 6= 0 amounts to the surjec-

tivity of D1 (see example 4) and by theorem 10, we have (2). 2. We compute a
generalized Bezout identity for the following time-varying OD control system

η̈1+ α(t)η̇1+ η1− η̇2− α(t)η2 = 0,

with α a function of time. We take the surjective operatorD1 associated with the
previous system and dualizing it, we obtain the operatorD̃1 : λ→ µ defined
by: {

λ̈− α(t)λ̇− α̇(t)λ+ λ = µ1,

λ̇− α(t)λ = µ2.

It is easy to see that̃D1 is an injective operator as we obtain, by saturating the
preceding OD system by low-order equations, the zero-order new equation:

λ = −µ̇2+ µ1.

The operator̃P1 : µ→ λ defined by

−µ̇2+ µ1 = λ,

satisfiesP̃1 ◦ D̃1 = idẼ and thus the adjoint of̃P1 is the operatorP1 : ζ → η{
ζ = η1,

ζ̇ = η2,

and we let the reader check thatP1 is a right-inverse ofD1. Substitutingλ =
P̃1 µ in D̃1, we find the following operator̃D0 : µ→ ν defined by:

µ̈2− α(t)µ̇2+ µ2− µ̇1+ α(t)µ1 = ν.

DualizingD̃0, we obtain a parametrizationD0 : ξ → η of D1:{
ξ̇ + α(t)ξ = η1,

ξ̈ + α(t)ξ̇ + (1+ α̇(t))ξ = η2.

This parametrization is injective as we have

ξ = −η̇1+ η2,
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and we have a left-inverse ofD0 given by:

P0 η = −η̇1+ η2 = ξ.

Hence, the moduleM is a freeD-module with basisξ = −η̇1+ η2. We easily
check thatP′0 = P0 generates exactly the compatibility conditions ofP1.
Finally, we have the following generalized Bezout identity[

s2+ α(t) s + 1−s − α(t)
−s 1

]
◦

[
1 s + α(t)

s s2+ α(t) s + (1+ α̇(t))

]
= I,

where the time derivative of the coefficientα(t) explicitly appears. This sit-
uation is much general than the classical one (constant coefficients systems),
where the composition of matrix operators is just the ordinary multiplication
of polynomial matrices.

6 Conclusion

We have seen how the generalized Bezout identity could be extended to non
surjective linear time-varying OD control systems. If the linear time-varying
OD control system is defined by a surjective operator, we have shown that the
generalized Bezout identity was, in fact, the well-known algebraic notion of the
splitting of a short exact sequence made with the system and its parametrization.
We have seen when and how it could be extended for general linear PD control
systems with variable coefficients. We have shown that it only depended on the
algebraic nature of the differential module determined by the system. This new
formulation has the advantage of bringing the generalized Bezout identity and
its computation closer to algebraic and geometric concepts. In particular, we
have made clear that it did not depend on a separation of the system variables
between inputs and outputs. The formal tests, developped in this paper, can be
used for any control systems over the ring of polynomialk [χ1, ..., χn] with k

a field (delay control systems,n-dimensional systems, ...). Applications of the
generalized Bezout identity for the parametrization of controllers [39, 42] will
be treated in future communications.
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