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Abstract. We describe a new approach of the generalized Bezout identity
for linear time-varying ordinary differential control systems. We also explain
when and how it can be extended to linear partial differential control systems.
We show that it only depends on the algebraic nature of the differential module
determined by the equations of the system. This formulation shows that the
generalized Bezout identity is equivalent to the splitting of an exact differential
sequence formed by the control system and its parametrization. This point of
view gives a new algebraic and geometric interpretation of the entries of the
generalized Bezout identity.
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1 Introduction

Let us denote = %, R[s] the polynomial algebra iz and M,,, the set of
m x p matrices with entries ilR[s]. It is well known that if

P(s)y + Q(s)u =0, )

is a left-coprime polynomial system, i.e. controllable [2, 9], wheére M,,,,,
det P(s) # O andQ € M,,, then we can find four polynomial matrices
X € My, X, Y € My, P € My, Y, Q € M, such that

F(s) Q(S)} [xm Fm]

X&) Y || ve) o6 |~ 2)

* The authors thank two anonymous referees for their helpful comments.
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wherel isthe(m + p) x (m + p) identity matrix. This identity, generally called
generalized Bezout identjtis useful in control theory [16, 39, 42].

Recently, it has been shown in [8, 9, 10, 19, 24, 27, 29] that controllability
of a control system was a “built-in” property of the system and thus did not
depend on a separation of the system variables between inputs and outputs.
So, we are led to revisit the generalized Bezout identity with a more intrinsic
point of view. For controllablesurjectivelinear time-varying control system,
the generalized Bezout identity is reformulated in termshef splitting of a
short exact differential sequenfrmed by the system and its parametrization.
Moreover, in[11, 22, 27, 29, 30], the algebraic and geometric concepts of ordi-
nary differential control theory (OD control theory) have been extended within
the framework of partial differential control theory (PD control theory) or de-
lay control theory, that is, linear or nonlinear input/output relations defined by
systems of partial differential equations or differential and delay equations. See
also [19, 24] for az-dimensional control systems theory. Then, we can wonder
if such a generalized Bezout identity exists for PD control systems. However,
the existence of the generalized Bezout identity for (1) is deeply based on Be-
zout theorem which is not true in general for multivariable polynomial algebra.
So (2) does not seem to have a generalization for PD control systems. We shall
show that its existence only depends on the algebraic nature of the differential
module determined by the equations of the system. Such a generalized Bezout
identity exists for aurjectivelinear PD control system generatiadreediffer-
ential module. In this case, the generalized Bezout identity can be reformulated
in terms of the splitting of a short exact differential sequence made by the sys-
tem and its parametrization. In case the differential module is no longer free
but projective then only the upper part of (2) is satisfied, or in other words, the
system admits parametrizationand aright-inverse Finally, if the system is
controllable, i.e. if it generatestorsion-freedifferential module, we only have
the right upper part of (2), that is, the system admits a parametrization. Tests are
known for checking whether a finitely generated differential module is torsion-
free, projective or free [29, 30, 40, 41]. Thus for linear PD control systems, we
are able to know which parts of the generalized Bezout identity exist and to
compute them. Moreover, the extension of the generalized Bezout identity in
the case of non surjective linear OD and PD control systems is obtained. In
this case, we have to build and split a long exact differential sequence. Many
explicit examples will illustrate the main results.

2 Controllability

The use of the module language for control systems was initiated by Kalman
thirty years ago [17] and it took a new insight with Blomberg and Ylinen [2].
Recently, its use seems to have given new results on structural properties of the
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system like controllability, observability, poles and zeros, motion planning...
See for example [5, 8, 9, 10, 22, 24, 27, 29]. We recall a few results.

Definition 1 A differential fieldK with » commuting derivations,, ..., 9, is
a field which satisfieSa, b € K, Vi, j=1,...,n:

8,’& e K,

8l(a+b) :aia—i-a,-b,
di(ab) = (0;a)b+a9; b,
9 9; =0, 0.

See [20, 27, 36] for more details.

Inthe course of the text, we will always consider differential figldontain-
ing Q. We form the ring of linear differential operators with coefficientkiand
denote it byD = K[ds, ..., d,]. Any element ofD has the form ¢ ... a* d..
whereu = (u1, ..., i, is a multi-index with length w |= w1+ ... + w,
anda” € K. D is a non commutative integral domain which satisfies

Va,beK:ad (bd;) =abd;d;+a (3 b)d;,
and possesses the Ore propevtyp, ¢) € D?, 3 (u, v) € D? such that: p =
vg.

Example 1 The field of rational functiondR(z) is a differential field with
derivativeE. Indeed¥ a(r), 0 # b(t) € R(¢), we have:

i (a(l)) _ a@®)b(t) —a() b() ¢ RO).
dt \ b(t) b2(t)

WhenD = R(¢) [ 4]is the ring of linear operators with coefficientsirir),
every elemenp € D has the formp = ) ;0 ai () (%)’, with a; € R(1).

We introduce the differential indeterminates= {y* | k =1, ..., m} and
denote byDy = Dy + ... 4+ Dy” or by [y] = [y%, ..., y""] the left D-module
spanned by the set Every element oDy has the form) ;. ai d, y*. If
we have a finite se# of linear OD or PD equations (ODE or PDE), we form
the finitely generated lefd- module 7] of linear differential consequences of
the system generators and the differential residdahodule M = [y]/[#].
See [1, 21, 26] for much details an-modules.

Remark 1In the examples, we shall use either the language of jet theory for
systems of PDE or the language of section for operators [27]. In the first case,
we haved; yl’i = y/]i+1[ while in the second casé must be replaced b§: on
sections.



94 J.F. Pommaret, A. Quadrat

Definition 2 We call observableany element ofM, or in other words, any
linear combination of the system variables and their derivatives satisfying the
eqguations of the control system.

Only two possibilities may happen for an observable: it may or may not verify
an OD or a PD equation by itself. An observable which does not satisfy any
OD or PD equation is calleftee We find in [27] the following definition of
controllability.

Definition 3 A system is controllable if every observable is free.

A characterization of the controllability in termsdifferential closuras shown
in[27].In[8, 9, 19, 22, 24, 27], the equivalent notiontofsion-freeD-module
has been used for linear time-varying OD, delagimensional and PD control
systems. We recall the definition.

Definition 4 A torsion elementm of a D—module M is an element which
satisfies3 0 # a € D suchthatam = 0 [37]. We denote by (M) the
submodule of\f made by all the torsion elements &f. A module istorsion-
freeif r(M) = 0.

From Definition 3 and Definition 4, we obtain the following theorem.

Theorem 1 A linear OD or PD system is controllable iff tHe-moduleM de-
termined by its equations is torsion-free. In any cdde; (M) is a torsion-free
module, a result leading to the concept of minimal realization [12, 19, 24, 27].

Let us give an illustrating example.

Example 2 We takeD = R [4] and letM be the residuaD-module of

D y* + D y? with respect to theéd-submodule generated by + y! + y! —
y2+ ay®, $%+ y? — y1 — y3. In the language of systems of ODE (see remark
1), we have the two equations:

{551+y1—y2+01y3=0, (3)
¥+ y2-yt=y*=0.

e Fora = —1, if we substract the first equation from the second of (3) and set
z =yt —y?, we find7 4+ 2z = 0. The image of in M is a torsion element.

e Fora = 1,ifwe add the first equation to the second of (3) and sety+y?,
we findz = 0 and thus the image afin M is a torsion element.

We recall two other definitions of module properties which will be at the
core of this paper (see [37] for more details).
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Definition 5 1. A D-module M is free if there is a set of elements which
generateV and are independent dn. 2. A D-moduleM is projectiveif there
exists a freeD-module F and aD-moduleN such thatF = M @ N. Hence,
the moduleN is also a projectivéD-module.

Remark 21t is quite easy to verify that a fre®-module is a projectiveD-
module and that a projectivi@-module is a torsion-fre®-module, which can
be summed up by the following module inclusions:

free C projectiveC torsion-free

Moreover, any submodule of a frd&module is a torsion-fre®-module. We

will see that the reciprocity is true and we will describe a way to construct a
free D-module containing a given torsion-fréemodule (see th&orsion-free
Testdescribed in the sectidrormal Testsaand p. 18 of [18]).

In [10, 22], the basis of a fre®-module determined by a control system
is calledflat outputor linearizing outputand plays an important role for the
motion planning. We have the useful theorem [37].

Theorem 2 1. If D is a principal ideal ring (for exampla’K[%]) the D-module
M is torsion-free iffM is free 2. Over a polynomial ring[ x1, . .., x.], where
k is a field, any projective module is also a free module.

The last part of the previous theorem has been conjecturated in 1950 by
Serre and demonstrated independently in 1976 by Quillen and Suslin [37, 41].
We can find in [22, 40, 41] tests permitting to know if a finitely generated
k[d1, ..., d,]—module M, with k a field of constants (i.eva € k : Vi =
1,...,n, 9;a = 0), isrespectively torsion-free, projective and free (see [25] for
more deeper results). Remark that in this case, we can use the Quillen-Suslin
theorem and any projective module is a free module. Recently, formal tests
have been found in [27, 30] permitting to treat the more general situation of
D = K|ds, ...,d,] whereK is a differential field with subfield of constants
(for exampleD = R(x1, ..., x")[d4, ..., d,]). We will recall these tests.

3 Linear Differential Operators

From a geometric point of view, a linear PD control system witterivatives
may be defined as a linear PD operator : Fo — F; where Fy, F1 are
vector bundles over a manifol¥ of dimension:, with local coordinates =
(x1, ..., x™). In other words - is a PD linear operator acting on sections of
Fo, i.e. acting on functiong : X — Fy. We define its sheaf of solutions by
21n = 0 (see remark 1).
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Remark 3 A fundamental idea is to associate to each operatarn — ¢ the
D-moduleM = [n]/[21n] and we shall say that the operateg determines
the D-moduleM.

Example 3 Let us take the operatar; : n — ¢ defined by:

A i
n“+nt—n—n =7

The operatoz; determined théd = R [

]-moduleM = [»*, n%, n31/[i* +
nt—n?+ an® i?+n*—nt—n3.

d
dt
By an abuse of language, we shall say that an opeat@s controllable if the
D-moduleM determined by, is torsion-free.

Definition 6 1. An operatorZ, is formally injectiveif 217 = 0 = n =

0. 2. The operatogz, is formally surjectiveif the equationsz;n = 0 are
differentially independent (see [20, 36]), i.e. independenboar equivalently

if 217 = ¢ has no compatibility conditions, that is, if there does not exist an
operatorz, such thatzin = ¢ = %,¢ = 0.

In the course of the text, we shall say injective (resp. surjective) operator for
formally injective (resp. formally surjective) operator. Moreover, a control sys-
tem defined byz; will be calledsurjective(resp.injective) if Z; is a surjective
(resp. injective) operator.

Example 4 e The operatoe; : n — ¢ defined by

x2n+n=2¢t

where(x!, x?) are local coordinates oH, is an injective operator as we
may easily verified thay = —(x?)29;¢2 — x?9, ¢ + ¢* — x%¢2. Thus,
(¢t1.¢»=(0,0=n=0.

o We take theSpencer operatofsee [34] for more detailsy; : n — ¢
defined by:

hnt—n?=7¢t
dont—n=1¢2 (5)
dn?—oand=7:3

It is not a surjective operator. Indeed, if differentiatinhwith respect to
3> and¢? to 9; and substracting them, we firtd ¢2 — 9,¢% — ¢3 = 0.
The operato, : ¢ — yx, defined by the compatibility conditiody ¢2 —
3 ¢t — ¢3 = x of 24, is surjective because it has only one equation.
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e The operato; : (v, u)" — ¢ defined by

P@s)y+ Q(s)u =2,
with det P(s) # O is a surjective operator.

We recall that a differential sequence of operatars, i = 0,...,1} is
locally exactif ker ;.1 = im %;. We have in particulavi = O,...,![:
Z:i+1 0 2; = 0. A differential sequence is callddrmally exactif each op-
erator generates all the compatibility conditions of the preceding one. Such a
situation is met in particular if all the corresponding sequences on the jet level
at any order are exact [27, 34], but the converse may not be true (see example
12). An injective operatog WI|| be denoted by the following formally exact

differential sequence 6— E —> F, whereas the formally exact differential
sequence i F — 0 will mean thatz is a surjective operator.

7, G
Definition 7 The formally exact sequence0—> E 2% Fo 25 F; —>» 0
is said to be a&plit exact differential sequendewe have one of the following
equivalent properties [37]:

o there exists an operatet; : F; —> Fp such thatz, o 21 = idp,,
o there exists an operatoty : Fp —> E such that?g o 2o = idpg,
o [h = E @ Fi (on the level of sections).

A system of partial differential equatiods n = 0 is said to bdormally in-
tegrablewhenever the formal power series of the solutions can be determined
step by step by successive derivations without obtaining backwards new in-
formations on lower-order derivatives [27, 32, 34]. For a sufficiently regular
operatorZ,, we are always able to add to its equations new equations, made
by differential consequences of the given ones, in order to have a formally in-
tegrable system with ainvolutivesymbol (see [27, 32, 34] for more details).
Such an operator is callédvolutive In the course of the text, we shall always
suppose that these regularity conditions are satisfied. We can find in [38] a sym-
bolic package which completes a system of PDE to an involutive one, using
algorithms based on the formal integrability theory or some other packages,
based on Janet-Riquier theory [15, 35], can be found in [13, 14, 33]. See also
the symbolic packages in [3, 6, 7] using the effective methods of differential
algebra [20, 36]. Now, if7; is an involutive operator, then the sequence starting
with 2; and in which each operator exactly describes the compatibility con-
ditions of the preceding one, is finite and stops after at mostl operators
wheren is the dimension oK. This sequence

D, 9 2, D,
F0—>F1—2> _)E1_+)1Fn+l_)0

is formally exact and it is usually called tHanet sequencef 2, [27].
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Remark 4 As both the initial (not involutive) and final (involutive) operators
have the same solutions, if the original operataris injective, then the final
equations contain the zero order equatipr= 0 which can therefore be a
differential consequence of the initial equations. Thus, we have obtaieétd a
inversen = #,¢ which is however not uniquely determined. Indeed, we can
take?] = 21 + 2 o 9, with 21 0 21 = idp, and2 : F» — Fp any operator
and we easily verify tha#; o 21 = 210 21 = idp, (220 21 = 0).

We recall the duality for differential operators [27, 29]. We denotefby
a vector bundle over a manifol®, 7* the cotangent bundle of, E* the
dual bundle ofE and E = A" T* ® E* its adjoint bundle. This is the right
generalization of the concept of tensor density in physics.

Definition 8 If 7, : Fo — Fiis alinear differential operator, its formal adjoint
2, . F1 — Fy is defined by the following formal rules equivalent to the
integration by parts:

o the adjoint of a matrix (zero order operator) is the transposed matrix,
o the adjoint ofo; is —a;, _ o
o for two linear PD operator®, Q that can be compose®. o Q = Qo P.

_ We easily verified tha?él = 9. It can be proved that, for any sectiarof
F1, we have the relation

< )\'5 @ln > =< 921)"7 n== d()7

expressing a difference pfforms . e A" T* Q@ Ff = < A, Z1n >€ A" T%),
whered is the standard exterior derivative. Equivalently, we can directly com-
pute the adjoint of an operator by multiplying it by test functions on the left
and integrating by parts.

Example 5 We compute the adjoint operator of the Spencer operator (5). We
multiply 2171 on the left by a row vectok = (A1, 22, A3) and integrate the
result by parts, we obtain the operator : A — u defined by:

—01A1 — O2A2 = g,
—02A3 — A1 = U2, (6)
01A3 — A2 = 3.

Definition 9 We call an operator; parametrizableif there exists a set of
arbitrary functionss = (&%, ..., £") or “potentials” and a linear operata,
such that all the compatibility conditions of the inhomogenous systgin= n

)

. . 9 9 .
areexactlygenerated by, n = 0, i.e., if the sequencE —> Fy —> Fy is
formally exact.
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4 Formal Tests

We can find in [22, 40, 41] tests to know whether a finitely generafgd, ...,
xn]-moduleM (k is a field) has torsion elements or if it is respectively torsion-
free or free. We give formal tests which can check those module properties
over ringsD of the form D = K|[ds, ..., d,] where K is a differential field
containing® (for exampleR (x?, ..., x")[d4, ..., d,]). All the calculations can

be effectively performed by means of existing symbolic packages.

4.1 Torsion-freeD-modules

We describe a formal test checking if the operatgidetermines a torsion-free
D-moduleM or not (compare with p. 18 of [18]):

Torsion-free Test

1. Start with2,. N

2. Construct its adjoind;. .

3. Find the compatibility conditions a#,4 = n and denote this operator by
. _

4. Construct its adjointzo (= Zo).

5. Find the compatibility conditions afo & = n and call this operataw’.

We are led to two different cases.4f is exactly the compatibility condi-
tionsZ] of %y, then the systerr; determines a torsion-fre@-moduleM and
90 is a parametrization a¥, in sense of the definition 9. Otherwise, the opera-
tor 2, is among, but not exactly, the compatibility conditionsgf The torsion
elements ofM are all the new compatibility conditions modulo the equations
910 = 0.

Proof. The operato, describes exactly the compatibility conditions of the
operatorZ, and we have in particula®y o 7, = 0 = 21 0 99 = 0. Hence,
2, is among the compatibility conditions afy, which are described by the
operatorz;. Now, computing the rank of the operatars and 2, we find
that rank2; = rank 2, (see [30] for more details). i, is strictly among the
compatibility conditions 0z, then any new single compatibility conditigh

in 7] is a differential consequence of (rank2; = rankZ;) and we can find
an operatoy € D such thaly ¢’ = 0 wheneverz; n = 0. Hence, any new
single compatibility condition o (not in 1) determines a torsion element.
If 2, describes exactly the compatibility conditions @&, i.e. the sequence

9 . .
E = F % F1 is formally exact, then th®-moduleM determined byz;
is torsion-free becaus®d C D & andD ¢ is a freeD-module (see remark 2).
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We can represent the test by the following differential sequences where the
number indicates the different stages:

5
gl
=5 F,
Pp D
4 1
- Dy ~ Dy =
E «— 0o <— I'1
3 2

Inthe preceding sequences, only the dual sequence and the sequence made with
20 andZ/ are formally exact. Thus, the defect of controllability of the operator

27, may be seen as a defect of the formal exactness of the upper sequence formed
by 2o andZ;. This fact will lead to a future introduction of the functor Ext (see

[4, 18, 25, 37]) in control theory, organized around the following two central
results obtained one from the other by reversing the arrows:

1. Controllability of 2; amounts to the cancellation of the first extension of
the D-module determined by, with value in the ringD of differential
operators.

2. Obervability of 2, amounts to the cancellation of ég/, D), the first
extension of theD-moduleM determined by, with value in the ringD
of differential operators.

In this framework, an operator is naturally controllable (observable) iff its for-
mal adjoint is observable (controllable).
Using theorem 1, we obtain the following useful corollary.

Theorem 3 A linear PD control system is controllable iff it is parametrizable.

Proof. The operatog is controllable iffitdetermines a torsion-fré&emodule.

By the previous testy; determines a torsion-fre@-module iff there exists an

operatorZg : E — Fy parametrizingZ1, i.e. the sequencé — Fy 2y Fy

is formally exact.

We now illustrate the test by an example.

Example 6 We wonder if the Spencer operator (5) determines a torsion-free
D-moduleM (see example 3). The adjoint operator of the Spencer operator is
(6). Differentiating the second equation®f with respect td, the third with
respect tad, and adding them, we obtain the operater: 1 — v defined by

— 1o — dopz + p1 = v. We multiply o by £ and after one integration by
parts, we obtain the operatag : £ — 5 defined by:
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£ =nt
815 = 772’ (7)
@& =n

We find the compatibility conditions o¥q by differentiating the second
eqguation byd,, the third byo; and subtracting them, we obtain the third equation
of 2. Differentiating the first equation afq by respectivelys; andd, and
subtracting it by respectively the second and the third equation, we obtain the
firstand the second equation®f. Thus, all the compatibility conditions o/
are exactly generated iy, and the Spencer operator determines a torsion-free
D-moduleM.

We now describe how to compute the torsion elements ifloes not de-
termine a torsion-fre®-module M.

Computation of torsion elements

1. Computez; and check that is strictly amongz;.
2. For any new single compatibility condition of the formin = ¢’ of &},
compute the compatibility conditions of the following system:

711 =0,
21 n = ¢’ (one equation only

3. Wefindthat’is atorsion elementd¥ satisfyingg ¢’ = OwithO## g € D.

We now give a theoretical but non-trivial example of a computation of a
torsion element.

Example 7 We consider the system
i +a() n? + e n’ + it —nt =0,

wherea(¢) is a non zero function satisfying(r) + «(r)> — 1 = 0. See [31] for
the general situation. We let the reader check that the operaton — ¢’ is:

: : a(t) ,

P +at—amnt ———0*+nH =¢

(1)

(be careful, the adjoint af(¢) y is —a(¢) A — &(¢) ). The compatibility condi-
tion of 2y is not the operata®; and thus the system is not controllable. If we
want to find the torsion element of the associatedhoduleM, we only have
to compute the compatibility conditions of the system:

i +a@)n?+a@)n®+ it —nt =0,

P+ it —a@nt = SE 07 +nh) = ¢,
After straightforward but tedious computations, we find that the torsion element
¢’ satisfiesx(r)¢’ + ¢’ = 0.
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4.2 ProjectiveD-modules

Let 2, be a surjective operator with an injective adjaint As 7, is an injective
operator, among the differential consequences of the equatiphs= ., we
must findx = 2, 1 (see remark 4). A natural way to compu#e is to bring

74 to formal integrability, that is, roughly speaking to saturate the system by
lower order consequences of the equations [27]. Thus, bringin formal
integrability, we form an operater; satisfying?,0%, = idz Whereid isthe
identity operator of";. The operato#; is then a left-inverse of;. Dualizing
P10y = idg, we obtain1 o 1 = idp, or in other wordsz; admits a
right-inverse#;. It is equivalent to say that thB-module M, determined by

the surjective operatars, is a projectiveD-module [22, 30, 41].

Theorem 4 A surjective differential operatog, : Fy — F; determines a
projectiveD-module iff its adjoint is injective, i.e., if there exists : F1 — Fy
such thatZ1 o 21 = idp,.

We shall represent the operata; : F;, — Fy by the following upper left

arrow:
P
%

2
F0—1>F1—>O.

Example 8 To illustrate what has been said, we show that the system
02n° — x?d1nt +n' =0, (8)

where(x!, x?) are local coordinates 0N, determines a projectiv®-module
and we find a right-inverse. Its adjoigt : A — w is just (4), i.e.,

X2 A+ A= pa,
—32)» = U2.

Bringing this system to formal integrability, we obtain by derivating the first
equation with respect & and the second by, the new lower order equation:

A= —(xA)201 o — x%8p 1 + w1 — x3puo.

ThusZ; is an injective operator and; determines a projectivB-module. If
we denote by?; : 1 — 1 the operator defined by (x2)20, o — x205 o1 +
n1 — x%pup = A then?; o 41 = idy, and its adjoint?y : ¢ — 7, given by

X200 4+ 2¢ =t
(231 ¢ — x?¢ = n?,

is a right-inverse of (8). Indeed, we easily verify thiato 21 = idp,.
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In the general case;; is no longer a surjective operator and a characteriza-
tion of projective module in the language of operator can be foundin [4, 23, 30].
We recall it.

Theorem 5 An operatorZ, : Fp — F; determines a projectiv®-module if
there exists an operato?; : F; — Fp such thatz; o 21 0 27 = 21. The
operator2; is then called a lift-operator.

Proof. As 2, is not a surjective operator, there exists an operator F; —

F, describing the compatibility conditions of;. The operatorz; defines a
projective D-module M iff there exists an operater, : F; —> Fy such that
91021 = idy, g, = idp, moduloZy, i.e., if there exists?, : F, — Fy such
that, o 21 + 22 0 9, = idr,. However,z, o 21 = id, ¢, is equivalent to:

P10P1091 = Y. (9)

Indeed, the direct way is trivial whereas the reciprocity can be demonstrated
as follows. From (9), we havédr, — 210 21) 021 = 0 and thusdy, — 21021
must factorize througly, (see p. 150 of [28]), that is to say, there exists an
operator?, such that

910914—@2092:&1&, (10)
which proves the inverse way.

Moreover, the identity (10) implieg, o 2, o ¥, = 2, and %, defines, in
its turn, a projectiveD-module. In a similar way, all the successive operators
of compatibility conditions define a projective-module. Now, if we dualize
(9), we obtainz, o 21 0 71 = %4 and thusZ, defines a projectivé®-module.
Moreover, we have?; o 71 + 72 0 7, = idy, and %1 o 7, = 0. The first
identity shows that inw, C kerZ, whereas if we take € kerZ4, the second
shows thatz, (#,)) = A and thusk € im %, = im 2, = kerZ,. Hence, we
have the following locally exact sequence:

&;x

- G - .
Fo <= F| << Fo.

|

For anon surjective operatar, we give a test checking whether the module
M determines by the operator is a projectiveD-module or not [30].

Projective Test

1. Construct the Janet sequence starting with

2. Check if the adjoint of the last operator of the sequence is injective.

3. Check if the backward sequence, made with the adjoint of the operators of
the Janet sequence @t is a formally exact sequence.
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Example 9 The Spencer operatar; is not a surjective operator as we have
seen in the example 4. The operator : ¢ — x defining the compatibility
conditions of%, is

Mne2—dpct -3 =y, (11)

and it is surjective. Dualizing the operatep by multiplying it by 8 and inte-
grating the result by parts, we obtain the injective operator 8 — A defined
by:

02 B = Aq,
—018 = A2,
B =

Thus, we only have to verify that all the compatibility conditions of the
operatorZ, are exactly defined by the operatey. Up to a change of sign, it
is the same as verifying that all the compatibility conditionszgfare defined
by 2, (see the example 6). We conclude that the Spencer operator determines a
projectiveD-moduleM. As the Spencer operator is a PD system with constant
coefficients, then according to the theorem of Quillen-Suslin, it determines a
free D-module. Indeed, thé®-module M determined by the Spencer opera-
tor is equal to the modul® & = D ' which is a freeD-module (see the
parametrization (7) of,).

Let us describe now how to compute the lift-operaters Let 21 be an
operator defining a projectiv®-module. Thus, we have the two following
locally exact sequences:

9y Y 9 Dy

Fh—Fh—...— F, — F,;1,—0,
7 5 ’"’911 =
F0<9—F1<9— <J—F <_+1Fn+1<_0

As 7,1 is a surjective operator with an injective adjoin. 1, there ex-
ists an operato®?, 1 : F,.1 — F, such thatZ,,1 0 2,.1 = idg,,, =
Dp+1 © Ppy1 © D1 = Zyia. Let us denote2, = idp, — Ppi1 0 Zpy1. We
haveZ, 410 2, = Zpi1 — Dny10 Pas10 Zppa = 0 and thus2, o 7,41 = O.
However, we havez, o 7,,1 = 0 which implies that2, factorizes through
Di 2, = P, o@ =2 =9,0Py = D,0Py+ Ppy10Dpy1 = idp, =
Ypo Py, 09, = Z,.Inasimilar way, we can fing; fori € {1, ..., n} satisfy-
iNgZ;02;0%; = %. Hence, the lift-operata?; _, can be computed as follows:

Computation of the lift-operator®;

1. Compute an operatar, 1 such that?,,1 o 7,41 = id; , and take its
adjoint2,, 1.

Fori=n+1,...,2:
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2. Compute2; 1 = idr_, — ?i 0 Z; and2;_;.
3. As before,2;_1 must factorize througly;_; and we find%;_, such that
9;_1 = 2;_10%;_1 and dualizing, we have;_;.

Example 10 We have seen that the Spencer operator defined a projdegtive
module. We show how to compute,. We easily find thav, : x — ¢ defined

by
0=¢
0=2¢? (12)

is aright-inverse of7,. We start by definin@1 = idr, — #20 %,. The operator
01:¢ — yisthus:
1_ .1
e
qe?—dct=y2

Taking its adjoint, we obtai®; : A — ¢

—01A3 + A2 = ¢,
0= ¢3,

whereasz is given by (6). We easily find tha; is defined by
{ —u2 = ¢1,

: dor3 + A1 = ¢1,

—uU3 = @2,
0= ¢3,

and we have the operatet, : ¢ — n given by:
0=n',
_é‘l = 772’ (13)
—2=pd
We let the reader check that o 21 0 21 = 2.
4.3 FreeD-modules

We have seen in 1. of definition 8 that for a principal ribg(for example
K[%]), a torsion-freeD-module is a freeD-module. Hence, we state a very
useful theorem [27, 29].

Theorem 6 A surjective linear time-varying OD control system is controllable
iff its adjoint is injective.
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Proof. Ina principal ring, the notions of torsion-free and projective module are
equivalent. Thus, a linear OD control system is controllable iff Ehenodule

M is projective. The operata?, is surjective and its adjoin® is injective,
then%, determines a projectiv®-module M and the system is controllable.
Conversely, ifZ4 is not injective then we can find a test vectoet 0 which
satisfiesz,a = 0. Thus< A, Z1n > is atotal derivative of an observable which
is therefore a torsion element, as its derivative is null as sogrisaa solution

of the system and the system is not controllable.

Remark 5Even in the case of time-varying system, we deduce that there is a
bijective correspondence between torsion elements and first integrals of mo-
tions.

Example 11 We take again the first example. Multiplying it by a row vector
A = (A1, A») and integrating the result by parts, we obtain: A — u defined
by:
A+ A1 — A2 = g,
A2+ A2 — A1 = Uo,
—A2+a A1 = us.
Differentiating twice the zero-order equation and substituting it, we obtain

(¢+D(x—Dr =0,

and the operataw; is injective i.e. controllable ifer # —1 ando # 1.

Theorem 7 An operatorZ; determines a fre®-moduleM iff there exists an
injective parametrization a;.

Proof. Let2¢& = n be a parametrization af1n = ¢ thenwe havél C D &.
Now, if 20& = n is an injective parametrization @f,, then there exists a
left-inverse?, of g suchthat = g0 %pé < & = Pogn = D& C 4. Thus,
M = D& andM is a freeD-module. The reciprocity is obvious.

Example 12 The operatom, : ¢ — x, generating the compatibility condition
of the Spencer operator, is defineddy? — 9, ¢t — ¢2 = x. We know that
the operatorz, determines a fre®-module (see example 9). However, the
operatorZ; is a parametrization o, which is not injective. We have in (6)
the relationu; = 012 + dous and if we take only the second and the third
equations ofz, as a new operator, we easily see that its adj@ii‘nt 0 — ¢,
defined by

—0> =2,

—0% =1¢2,

—3192 + 8291 = Cg,
is an injective parametrization ofs.
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5 Split Exact Sequences

5.1 Main Result

The following theorem is at the core of the generalization of the generalized
Bezout identity for non surjective operators. It shows how we can construct
the lift-operators in order to split a long formally exact sequence of differential
operators.

Theorem 8 Let ¢, : Fy —> F; be an operator determining a projective
D-module and let

9 9 D, D,
F0—1>F1i>...—>Fn—+>1Fn+1—>0,

be its Janet sequence. Then there exists lift-operatprsF; — F;_1 such that
the sequence

P P 2, 2,
F0<—1F1<—2...<—Fn<—+1Fn+1<—0,

is locally exactandVi =1..n+1:2; 0 Z; 0o #; = 2;.

Proof. Let %, : Fo — F; be an operator determining a projectidemodule
M and let 0 p
s rnZe. . Zup 2 —o0,
be the Janet sequence @f. Let us suppose that we have found operators
Z; such thatz; c 2, 0 2; = 9; fori = 1...nand%,41 0 #,41 = idp,,,.
Let us focus, only for the moment, on the locally exact differential sequence

gi @,’ .
F,_1— F; - Fiiq with Dit102i4109i41 = Dit1 andZ; o 2,0 9; = ;.

We haVGVT] e F; I 9i110 (ldF, — Piy109i41)n = 0= 3d& € F;_; :
(idp, — ?i41 0 Ziv1)n = 2;& as the sequence formed I and 2,1 is
locally exact. However, we haweé € F,_1 : (9, 0 #; —idp) 0 2;§ = 0=
(Z; o P; —idp,) o (idp, — ?iy10 Zi+1)n = 0,Vn € F;. Finally, we obtain
the new IdentltydE =9%;i0P +Piy10%i4y1— Yo P;o0oPit10Yiq1. This
identity can be rewritten under the two different following forms:

P, =20 (idp, — Pi4+10 Dis1), (14)
idFi =Y%;0 @; + 2i110 Diy1,

or
P! 1= (idp, — Zi 0 P;) 0 Piy1, (15)
idF,- =%, 02 + 9:/_’_1 0 Yiq1.

Now, letus supposeth& 10Z; 102,11 = 211, thenwe haver,o?; 1 =
0= im2,;1 C kerz;. Let us takey € kerZ; then, from the second equation
of (14), we have) = 2;,1(2;11n) = n € im 2,1 showing that
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Fi1 i F; :ﬂ Fiia,
is a locally exact differential sequence. Moreover, from the second equation of
(14), we have?; o ; o 2, = 2;. For showing tha®; .1 0 Z; 110 2i11 = Pi11,
we only have to prove it for = n (the above demonstration has shown that
PnoDnoPy = Py = Py_10Dy_10P,_1 =P,_,...).Howeverg, 102,11 =
id}:"H = 21+10 ZDp4+1 0 Ppt1 = Pyy1.

Finally, we have shown that, starting with,,,, we can change?, into
another lift-operata#’;,, according to (14), in order to have the sequence formed
by 2,11 andZ,, locally exact. Now, starting witk, , we can change, _; using
(14), in which we have substituted), by 2, , to have the sequence made®y
andZ, _, locally exact. We can do similary for all the lift-operatars and we
obtain the following locally exact differential sequence

y/ g/ y/ 9”
F0<—1F1<—2...<—”Fn<—+1Fn+1<—O,

with 2, o,@; 09; = 9; and,@; 0 9; 09; = ?;

Corollary 1 Let2, : Fy — Fi be an operator determining a projective-
module, then there exists an operateg : E — Fy and lift-operators2; :
F; — F;_1 such that the sequence

P, P P 2, 2,
E<—°F0<—1F1<—2...<—Fn<—+1Fn+1<—O,

is locally exactandVi =0...n +1:2;,09; 0 2?; = 2;.

Proof. As 2, determines a projectiv®-module, there exists a parametrization
%0 . E — F1 andZ; determines a projectiv®-module. Thuszy and 2¢
determine also a projectivB-module, which implies the existence of a lift-
operator?, such thatzg o 24 0 29 = Zo. Applying the previous theorem, we
have the locally exact differential sequence

2, 2, 2 P,

F0<—1F1<—2...<—"Fn<—+1Fn+1<—0,

with #0202, = 2.. We can prolong, as in the previous proof, this differential
seqguence to have the following locally exact differential sequence

P, 2, 74 2, 2,
E<—°F0<—1F1<—2...<—F,,<—+1Fn+1<—0,

with &g o 97‘6 o099 = Yo and% o9go 96 = @6.
5.2 Applications to the Generalized Bezout Identity

We now explain the link of the preceding result with the generalized Bezout
identity.
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5.2.1 PD Control Systems with Variable Coefficiemtse following theorem is

the generalization of the generalized Bezout identity for non surjective operator
2, describing the control system. We insist on the fact that everything that
follows can be computed explicitly using symbolic packages. See the examples
illustrating the main results.

Theorem 9 Let 2, : Fy — Fi be a PD control system with variable coeffi-
cients.

1. If 2, determines a fre®-moduleM then there exists three operatars :
E — Fy, 29 : Fp — E and2; : F; — Fpsuch that:

91 o @0 = 0,

90 (¢] ,@0 = ldE,

Y10P109Y1 = Y1,

ProY10PL =P,

Poo P, =0.

q, 7).
The differential sequencés—> E ﬂ F ﬁ F,and0 «<— E ﬁ
2,
Fy <— F; are locally exact.
2. If 2, determines a projectivB-moduleM , then there exists three operators

90 E — Fy, 2. Fp — E and2, : F; — Fy such that:

91090 =0,

Yoo Poyo Yo = Y,
Po o Yoo Py = P,
Y10P10 Y1 = YD1,
Pr10Y1 0P = P,

?)0 (¢] 971 = O
7] 177/
The differential sequencds & Fo & F,and E i Fo <ﬁ F, are

locally exact.
3. If 2; determines a torsion-fre®-moduleM, i.e. 21 is controllable, then
there exists one operatary : E — Fp such that:

P10 99=0.

g
The differential sequencgé ﬂ Fo % F; is formally exact.

Example 13 Let us take again the Spencer operatpdefined by (5). We have
shown thatz; determined a fre®-module and that the following differential
sequence

) g
O—)E&)FO%)F]_ﬁ)FZ—)O, (16)
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was locally exact, whergg and2, are defined respectively by (7) and by (11).
The operator?, defined by (12) is a right-inverse af, and 24, defined by
(13), satisfiesz, o 21 0 21 = 1. We let the reader check tha#f, = 2, and
Py = Po .1 — & defined byn! = £ satisfies?y o 2o = idp,. Thus, we have:

:@1090:0,
@20@120,
eﬁooQ@OZl'dE,

9D10P10D1 = Y1,
<@1 o @1 o ,“71 = ,@1,

@2 o 92 = isz,
Pr0Py =0,
?fo o ,Jfl = 0

Moreover, the differential sequence

P 4 9
0<—E<—°F0<‘7—1F1<&F2<—0,

is locally exact.

In the casez; is a surjective operator, the previous theorem leads to the
existence of the generalized Bezout identity.

Corollary 2 Let 2, : Fp —> F; be a surjective PD control system with
variable coefficients.

1. If the operatorz,; determines a fre®-moduleM, then we have

91 y idrp, O
|:g,0i| o [71 90] = |:0 R idEi| )

and the generalized Bezout identity is equivalent to the splitting of the
following locally exact differential sequence:

Py 78
<« <~

O_)E%)FO%FJ__)O.

In such a situation, we notice that the use of the formula (14) for i=0 in
Corollary 1 is nothing else but what is called in the literature as reversed
Bezoutidentity (16, lemma 6.3-9) which has thus been extended to variable
coefficients case.

2. If 21 determines a projectiv®-moduleM, then we have:

[@1] o} [?/1 gjo] = [idpl 0] .
3. If 21 determines a torsion-freB-moduleM, then we have:
@1 (¢} @0 = 0

In the next example, we illustrate each situation for a surjective operator.
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Example 14 1. The systend, n* — x23; n? — n® = 0 determines a free-module

and we have:
d —x%9 —1 0 -1 0
0 1 0 -1 —32 —x281
2. We have seen that the system (8), definedhy — x29; n* + n* = 0,

was generating a projective module and we found a right-inverse. We let
the reader check that:

2 292
2 X0, +2 x°05 + 202 .
[ x99 +1 82] © |:(x2)281 _ x2 (x2)28182 _ x282 11 [1’ O]

3. The systend, n?> —x13; n* +n' = 0 determines only a torsion-free module
and we have:

_82
[—xlal+ 1 82] o |:—X181+ 1i| = 0.

Remark 6 Projective module and right-inverse are useful if we want to know
whether a system of polynomial equations admits solutions. Indeed, the Hilbert
theorem claims that the system of polynomial equations

P1(x1, -y xn) =0,
PZ(Xl, ey Xn) = 09

(17)

Pm(Xl’ ceey Xl’l) = 07

wherePy, ..., P, € k[x1, ..., x.), has no solution iff there exist®, ...,
On €k[x1, ..., xs] such that:

PLO1+P,Q0s+...+P, 0, =1

We can reformulate the Hilbert theorem saying that the system of polynomial
equations (17) has no solution iff the adjoint of the surjective operaior
n — ¢ defined by

Pl(al’ ceey 811) 771 +...+ Pm(817 ceey an) Um = é"

where we have substituteg by o; in P;, is injective, i.e., the modulds
determined byz, is a projective and thus a freB-module (Quillen-Suslin
theorem).

We give an example.
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Example 15 We search the common solutions of the following set of polyno-
mials:

Pr=x3+ xixs+1,
P> = x5+ x2x3 (18)
P3 = x5 + x1.

We define the operatar, : n — ¢ by:
(05 + 0103 + D™ + (95 + 0203)n° + (05 + d)n® = ¢,
It is quite easy to see that we obtain frami = u the equation:

A= 1+ 032 — 02 2 + 03 3.

Thus, the operatar, : ¢ — n, defined by
¢ =nt ,
02¢ — 03¢ =%,
—d3¢ =n?,
is a right-inverse of7;, i.e. 21 o 21 = idp,. We have
Pi+ P(x2—x3) — Prxa=1,

and the system (18) has no solution.

5.2.2 Time-varying OD Control Systen$e following theorem leads to the
existence of the generalized Bezout identity.

Theorem 10 o Let 2, : Fy — F1 be a controllable time-varying OD control
system, then there exists three operategs: E — Fo, 2o : Fo — E and
21 . F1 — Fysuch that:

@10@020,
9’0090=id5,
Y10P109D1 = Y1,
,@10@1091291,
Poo 21 =0.

. . 9 9
Moreover, the differential sequences— E —> Fy — F; and0 «—
17/ 7
E ﬁ Fy <ﬁ F; are locally exact.

o If 24 is a surjective operator, then we have

9 idrp, O
[?;:| O[,@l @o] = |:0 I idEj| ,
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andthe generalized Bezoutidentity is equivalent to the splitting of the locally
exact differential sequence:

go 0}1
<« pa

0—E-2 g2y p,— 0.

We now give examples of a computation of the generalized Bezout identity
for a time-varying OD control system.

Example 16 1. If we start with the left-coprime system (1), i.e. controllable
[2, 5, 9] we can rewrite it under the foremn = ¢ wherez, = [P(s), Q(s)],

s =< andn = (v, u)". The assumption of dét(s) # 0 amounts to the surjec-
tivity of 2, (see example 4) and by theorem 10, we have (2). 2. We compute a
generalized Bezout identity for the following time-varying OD control system

it +amnt+nt -0 —a@®n?=0

with o a function of time. We take the surjective operatgrassociated with the
previous system and dualizing it, we obtain the operator » — u defined

by: . .
i a0k — (A + 1 = pa,
A—a(t)r = .

It is easy to see thak, is an injective operator as we obtain, by saturating the
preceding OD system by low-order equations, the zero-order new equation:

A= —p2+ (1.
The operatoe?; : u — A defined by
—f2 + 1= A,
satisfies?, o 7, = id; and thus the adjoint oP, is the operatop?, : ¢ — 7
{§ =,
¢ =n?
and we let the reader check that is a right-inverse of7;. Substituting. =
21 v in 24, we find the following operato?g : 1« — v defined by:

fip —a(t)rz + p2 — pa + a() g = v.
Dualizing Zo, we obtain a parametrizatiang : £ — 7 of Z4:

{%‘ +a()E =7,
E+aE + A+ a@)é =n2

This parametrization is injective as we have

E = _7;]1+772’
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and we have a left-inverse efy given by:
Pon = —nt+9° =&

Hence, the modul@/ is a freeD-module with basig = —»* + 7. We easily
check thatz, = 2, generates exactly the compatibility conditions #f.
Finally, we have the following generalized Bezout identity

sS+at)s+1—s—a() 1 s+ al(r) _ 7
—s 1 “lss?+at)s+A+a@) |~ "

where the time derivative of the coefficiemtr) explicitly appears. This sit-
uation is much general than the classical one (constant coefficients systems),
where the composition of matrix operators is just the ordinary multiplication
of polynomial matrices.

6 Conclusion

We have seen how the generalized Bezout identity could be extended to non
surjective linear time-varying OD control systems. If the linear time-varying
OD control system is defined by a surjective operator, we have shown that the
generalized Bezout identity was, in fact, the well-known algebraic notion of the
splitting of a short exact sequence made with the system and its parametrization.
We have seen when and how it could be extended for general linear PD control
systems with variable coefficients. We have shown that it only depended on the
algebraic nature of the differential module determined by the system. This new
formulation has the advantage of bringing the generalized Bezout identity and
its computation closer to algebraic and geometric concepts. In particular, we
have made clear that it did not depend on a separation of the system variables
between inputs and outputs. The formal tests, developped in this paper, can be
used for any control systems over the ring of polynomiigty, ..., x.] with k

a field (delay control systems;dimensional systems, ...). Applications of the
generalized Bezout identity for the parametrization of controllers [39, 42] will
be treated in future communications.
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