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Abstract. The purpose of this paper is to show that a duality exists between the fractional ideal
approach [23, 26] and the operator-theoretic approach [4, 6, 8, 9, 33, 34] to stabilization problems.
In particular, this duality helps us to understand how the algebraic properties of systems are reflected
by the operator-theoretic approach and conversely. In terms of modules, we characterize the domain
and the graph of an internally stabilizable plant or that of a plant which admits a (weakly) coprime
factorization. Moreover, we prove that internal stabilizability implies that the graph of the plant and
the graph of a stabilizing controller are direct summands of the global signal space. These results
generalize those obtained in [6, 8, 9, 33, 34]. Finally, we exhibit a class of signal spaces over which
internal stabilizability is equivalent to the existence of a bounded inverse for the linear operator
mapping the errors e1 and e2 of the closed-loop system to the inputs u1 and u2.
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1. Introduction

The behavioural approach to linear control systems – defined by ordinary differ-
ential equations – has underlined the role of the system trajectories in the study
of the system structural properties [18]. Based on the mathematical work of Mal-
grange [14], Oberst has shown in [16] that a certain duality existed between the
behavioural approach and the module-theoretic approach to multidimensional lin-
ear systems [19, 36, 38]. The main idea of [16] is to use the standard module duality
[1, 7, 29] in order to pass from the module-theoretic viewpoint to the behavioural
one. Moreover, if the signal space to which the system trajectories lie satisfies
certain properties, we can also recover the module-theoretic approach from the
behavioural one. This duality gives a dictionary between these two frameworks and
allows us to understand which properties of a system come from algebraic proper-
ties or are inherited from the signal space. See [36] for a nice introduction as well
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as [17, 19, 21, 30, 38]. In particular, this duality explains why, in both approaches,
we recover the common philosophy of studying a system in its whole, that is to
say, inputs and outputs together and not as a map from the inputs to the outputs.

A more classical algebraic approach to linear control systems is based on trans-
fer matrices. In [16, 20], it is shown how we can recover this approach for multidi-
mensional linear systems using the concept of localization of modules (i.e., using
vector spaces obtained by inverting nonzero elements of the domain). However,
recovering the transfer matrix approach to linear systems, we are condemned to
work with fields and no more rings. Therefore, we may wonder if a mathematical
framework exists which mimics module theory for transfer matrices.

For single input single output (SISO) systems, we have explained in [23] how
the theory of fractional ideals [2, 7] was a natural algebraic machinery for the
study of transfer functions using the techniques of module theory. In [24, 25],
we show that the lattice theory [2] generalizes the fractional ideal theory to multi
input multi output (MIMO) systems. The main motivation of [23] was to study
the fractional representation approach to analysis and synthesis problems of linear
systems [3, 4, 35]. However, the same techniques can be applied to the study of
multidimensional linear systems [17, 19, 21, 30, 36, 38].

As for multidimensional linear systems, using the fact that the fractional ideal
approach to transfer functions is a module theory, we can try to dualize this ap-
proach. The purpose of this paper is to give a system interpretation of the resulting
theory. The main result of this paper is to show that the dual theory of the fractional
ideal approach is an algebraic interpretation to the operator-theoretic approach
[5, 8, 9, 34, 35]. More precisely, we first define the concepts of the domain and the
graph of a linear operator defined by multiplying a transfer function p = n/d,

0 �= d, n ∈ A (e.g., A = RH∞, H∞(C+) or Â [3]), to elements of a signal
space F , i.e., an A-module F (e.g., F = H2(C+) [3]). We explain why these
concepts generalize the ones classically used in [5, 8, 9, 34, 35] and when we
recover them (conditions on the A-module F ). In particular, we show that these
new definitions are justified by considering a simple example of a linear ordinary
differential control system (A = R[ d

dt
], F = C∞(R)). As in the module-theoretic

and the behavioural approaches to multidimensional linear systems, we find that
the fractional ideal and the operator-theoretic approaches also study a system in
its whole. Indeed, we shall see that the structural properties of a system, defined
by means of a transfer function p = n/d, 0 �= d, n ∈ A, can be characterized by
means of the fractional ideal of the integral domain A

J = A + Ap = {a + bp | a, b ∈ A},
which corresponds to the system (1 −p)(y u)T = 0, or by means of its graph in
the A-module F

graphF (p) = {(u pu)T ∈ F × F | u ∈ domF (p)},
where F = F /{x ∈ F | dx = 0, ∀d ∈ A : dp ∈ A} and domF (p) = {u ∈ F |
pu ∈ F }.
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As in [23], we focus on the fractional representation approach to analysis and
synthesis problems [3, 4, 35] and show how to recover and generalize some results
of the operator-theoretic approach to synthesis problems developed in [5, 8, 9, 34,
35]. For a general A-module F , we completely characterize the domains and the
graphs of a stabilizable plant p and of a stabilizing controller c of p. Moreover, we
prove that there exists a split exact sequence [1, 29] connecting the projections of
these graphs onto a certain A-module F × F built using F , p and c. In particular,
this result shows that these projections of the graphs of p and c are two direct
summands of F × F .

In these results, we do not assume that the stabilizable p admits a coprime
factorization. Indeed, it is well known that internal stabilizability is generally not
equivalent to the existence of a coprime factorization for a plant [22–24, 31, 33].
For instance, the above equivalence is still open for some important classes of
systems such as the ring Â of BIBO-stable infinite-dimensional linear systems [3].
When the plant p admits a (weakly) coprime factorization, we exhibit its domain
and graph. These results generalize the ones obtained by Vidyasagar, Georgiou,
Smith and others for A = RH∞, H∞(C+) (resp., A) and F = H2(C+) (resp.,
Lq(R+), q ∈ [1, +∞]) [6, 8, 9, 34, 35]. We note that for A = A and F =
Lq(R+), q ∈ [1, +∞], we do not need to assume that the stabilizable plant p ad-
mits a coprime factorization as it is done in [34]. Then, depending on the properties
of the A-module F , we discuss how the previous results simplify. In particu-
lar, we prove that H2(C+) is a flat H∞(C+)-module [1, 2, 7, 29] and then show
that the definition of the graph in H2(C+)2 of a weakly coprime transfer function
p = n/d, 0 �= d, n ∈ H∞(C+), given in Section VII of [8] is justified.

Finally, it is known that internal stabilizability implies F -stabilizability for
every torsion-free A-module F , namely, for every u1 and u2 ∈ F , we have e1,
e2, y1 and y2 ∈ F (see Figure 1), i.e., every signal in the closed-loop is F -stable.
The converse problem consisting in finding the signal spaces F for which internal
stabilizability is equivalent to F -stabilizability is an important issue in stabilization
problems. We prove that if F is a faithfully flat A-module [1, 2, 7, 29], then internal
stabilizability is equivalent to F -stabilizability, i.e., there exists a bounded inverse
to the linear operator mapping the errors (e1 e2)

T ∈ domF (p) × domF (c) of the
closed-loop to the inputs (u1 u2)

T ∈ F × F (see Figure 1).

Figure 1. Closed-loop system.
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Notations. We shall always denote by A a commutative integral domain, namely,
a unital ring such that, for all a and b ∈ A, ab = ba and ab = 0, a �= 0 ⇒ b = 0
and by Q(A) = {n/d | 0 �= d, n ∈ A} the field of fractions of A. Aq×p will
denote the set of q × p matrices with entries in A and Ip the identity matrix of
Ap×p. Moreover, (a1, . . . , an) will be the A-module defined by Aa1 + · · · + Aan

and (a1 · · · an) the row vector of A1×n. If M and N are two A-modules, M ∼=
N means that M and N are isomorphic as A-modules. If I is an ideal of A and
F an A-module, then IF denotes the A-module defined by {∑n

i=1 aixi | ai ∈
I, xi ∈ F , n ∈ Z+}. Finally, homA(M, N) denotes the A-module of A-morphisms
(A-linear maps) from M to N and � means ‘by definition’.

2. The Fractional Representation Approach

2.1. INTRODUCTION TO ANALYSIS AND SYNTHESIS PROBLEMS

We briefly recall the fractional representation approach to analysis and synthesis
problems [4, 35]. Within the fractional representation approach, time-invariant lin-
ear systems are defined by means of transfer functions which are elements of the
quotient field Q(A) = {n/d | 0 �= d, n ∈ A} of an integral domain A of single
input single output (SISO) stable plants. Let us give some examples of integral
domains of SISO stable plants commonly used in the literature.

EXAMPLE 1.
1. RH∞ = {n/d ∈ R(s) | 0 �= d, n ∈ R[s], deg n � deg d, d(s�) = 0 ⇒

Re s� < 0} is the ring of proper and stable real rational functions [35]. Then,
p ∈ RH∞ iff p is the transfer function of an exponentially-stable time-invariant
finite-dimensional linear system.

2. H∞(C+) = {f ∈ H(C+) | ‖f ‖∞ = sups∈C+ |f (s)| < +∞} is the ring of
bounded holomorphic functions defined in the open right half plane C+ = {s ∈
C | Re s > 0} [3], where H(C+) denotes the ring of holomorphic functions in
C+. Then, p ∈ H∞(C+) iff p is the transfer function of a L2(R+) − L2(R+)-
stable time-invariant infinite-dimensional linear system.

3. A = {f (t) + ∑+∞
i=0 aiδ(t − ti) | f ∈ L1(R+), (ai)i�0 ∈ l1(Z+), 0 = t0 �

t1 � t2 � · · ·} is the ring of BIBO-stable time-invariant infinite-dimensional
systems [3]. Then, h ∈ A iff h is the impulse response of a L∞(R+)−L∞(R+)-
stable time-invariant infinite-dimensional linear system. If we denote by L(f )

the Laplace transform of f , then Â = {L(f ) | f ∈ A} is the integral domain
formed by the Laplace transform of the elements of A.

4. W+ = {f (z) = ∑+∞
n=0 anz

n ∈ H(D) | ∑+∞
n=0 |an| < +∞} is the ring of analytic

functions on the unit disc D = {z ∈ C | |z| < 1} whose Taylor series converge
absolutely. Then, p(z) ∈ A iff p(z−1) is the z-transform of a l∞(Z+)− l∞(Z+)-
stable linear filter [35]. We shall also denote by l1(Z+) the integral domain of
the absolutely summable sequences.
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5. R(x1, . . . , xn)S = {r/s | 0 �= s, r ∈ R[x1, . . . , xn], s(x) = 0 ⇒ x /∈ D
n}

is the ring of nD systems with structural stability [31] where D
n = {z =

(z1, . . . , zn) ∈ C
n | |zi | � 1, i = 1, . . . , n} denotes the closed unit polydisc of

C
n. See [3, 4, 11, 35] for more examples.

For instance, the transfer function p = 1/(s − 1) has an unstable pole at 1 ∈
C+, and thus, p does not belong to RH∞. But, we have p = n/d where n =
1/(s + 1) and d = (s − 1)/(s + 1) ∈ RH∞, i.e., p belongs to the quotient field
Q(RH∞) = R(s). Similarly, the transfer function p = e−s/(s−1) does not belong
to H∞(C+) but to its quotient field Q(H∞(C+)) because we have p = n/d, where
n = e−s/(s + 1), d = (s − 1)/(s + 1) ∈ H∞(C+). In this approach, the problem
of checking the stability of a transfer function p is equivalent to the membership
problem “p ∈ A or p /∈ A”.

We recall some definitions that will play important roles in what follows.

DEFINITION 1 [4, 22, 23, 35]. Let A be an integral domain of SISO stable plants
and K = Q(A) its quotient field. Then, we have the following definitions:

• A fractional representation of p ∈ K is a representation of the form p = n/d

where 0 �= d, n ∈ A.
• A plant p ∈ K is said to admit a weakly coprime factorization if there exist

0 �= d, n ∈ A such that p = n/d and, for all k ∈ K satisfying kn, kd ∈ A, we
then have k ∈ A.

• A plant p ∈ K is said to admit a coprime factorization if there exist four
elements 0 �= d, n, x, y ∈ A such that p = n/d and dx − ny = 1.

• A plant p ∈ K is said to be internally stabilizable if there exists a controller
c ∈ K which satisfies

H(p, c) =
(

1 c

p 1

)−1

=





1

1 − pc
− c

1 − pc

− p

1 − pc

1

1 − pc




 ∈ A2×2, (1)

i.e., the four entries of the transfer matrix H(p, c) from (u1 u2)
T to (e1 e2)

T

(see Figure 1) belong to A. Such a controller c is then called a stabilizing
controller of p.

We refer the reader to [3, 35] for the definitions of strong (resp., bistably, simul-
taneous, robust, optimal) stabilization as well as to [33] for a detailed treatment of
properness in this algebraic context.

2.2. INTRODUCTION TO THE THEORY OF FRACTIONAL IDEALS

We give a basic introduction to the theory of fractional ideals. We refer to [2, 7, 23]
for more details. In Section 2.3, we shall use this theory in order to characterize the
concepts introduced in Definition 1.
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DEFINITION 2 [2, 7, 29]. Let A be an integral domain and K = Q(A) its
quotient field. Then, we have the following definitions:

• A fractional ideal I of A is an A-submodule of K such that there exists
0 �= a ∈ A satisfying (a)I � {ai | i ∈ I } ⊆ A. The set of nonzero fractional
ideals of A is denoted by F (A).

• If I, J ∈ F (A), then their intersections, sums, products and residuals, name-
ly,

I ∩ J = {a ∈ I, a ∈ J }, I + J = {a + b | a ∈ I, b ∈ J },
IJ =

{
n∑

i=1

aibi | ai ∈ I, bi ∈ J, n ∈ Z+

}

,

I : J = {k ∈ K | (k)J ⊆ I },
belong to F (A).

• A fractional ideal I of A is principal if there exists k ∈ K such that I = (k).
• A fractional ideal I ⊆ A is called integral ideal of A.
• A fractional ideal I of A is invertible if there exists J ∈ F (A) such that
IJ = A.

We note that if I is a fractional ideal, then there exists 0 �= d ∈ A such that
(d)I ⊆ A. Therefore, we have I ⊆ (d−1), i.e., every element i ∈ I has the form
i = a/d for some a ∈ A.

EXAMPLE 2. Let p ∈ K = Q(A) and J = (1, p) � A + Ap = {a + bp |
a, b ∈ A}. Using the fact that p ∈ K , then there exist 0 �= d, n ∈ A such that
p = n/d. Therefore, we have (d)J = (d, n) ⊆ A, i.e., J is a nonzero fractional
ideal of A.

The next proposition plays an important role in what follows.

PROPOSITION 1 [2, 7, 29]. If I is an invertible fractional ideal of A, then we
have:

1. I admits a unique inverse denoted by I−1 and we have I−1 = A : I = {k ∈ K |
(k)I ⊆ A}.

2. I−1 is also invertible and we have (I−1)−1 = I .
3. I is a finitely generated projective A-module, namely, there exist r ∈ Z+ and a

finitely generated A-module P satisfying I ⊕ P ∼= Ar . Then, the A-module P

is also projective.
4. If I = ∑n

i=1 Afi, fi ∈ K , then, for every maximal ideal m of A, then the ideal
Im �

∑n
i=1 Amfi of Am � {n/d | n ∈ A, d ∈ A\m} is a principal ideal, i.e.,

there exists g ∈ Am such that Im = Amg (we recall that a maximal ideal m of
A is an ideal which is not strictly contained in proper ideals of A).
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If I is an invertible fractional ideal of A, then we easily check that I n is also
invertible and its inverse, denoted by I−n, satisfies I−n = A : I n = (I−1)n for all
integer n � 1.

Finally, we shall need the next two arithmetic rules holding in F (A) (see [7]
for more rules).

PROPOSITION 2 [7]. Let I, J and L be fractional ideals of A. Then, we have the
following equalities:

1. I (J + L) = IJ + IL.
2. (I : J ) : L = I : (JL) = (I : L) : J .

2.3. A FRACTIONAL IDEAL APPROACH TO STABILIZATION PROBLEMS

We want to point out the striking similarities in the denominations fractional rep-
resentation approach to analysis and synthesis problems (control theory) and frac-
tional ideal approach (mathematical theory). They are even more amazing when
we know that the theory of fractional ideals can be used in order to obtain simple
and tractable solutions to stabilization problems as it was shown in [23, 27].

Within the fractional ideal approach to stabilization problems [23, 27], the frac-
tional ideal of A defined by J = (1, −p) = {a − bp | a, b ∈ A} is associated with
the SISO system defined by:

y − pu = 0 ⇔ (1 − p)

(
y

u

)

= 0, p ∈ K = Q(A). (2)

In particular, we note that the whole system is considered, i.e., we do not separate
the system variables (i.e., input and output). This point of view is similar to the
module theory approach to stabilization problems [22, 33] and to the behavioural
approach [16–18, 21]. Moreover, we also note that we have J = (1, −p) = (1, p),
and thus, for simplicity reasons, we shall only use J = (1, p) in what follows.

THEOREM 1 [23]. Let A be an integral domain of SISO stable plants, K = Q(A)

its quotient field, p ∈ K and J = (1, p) = A + Ap. Then, we have the following
results:

1. p is stable, i.e., p ∈ A, iff J = A or, equivalently, iff A : J = A.
2. p admits a weakly coprime factorization iff the fractional ideal A : J is a prin-

cipal integral ideal of A, i.e., iff there exists 0 �= d ∈ A such that A : J = (d).
Then, p = n/d, where n = pd ∈ A, is a weakly coprime factorization of p.

3. p is internally stabilizable iff the fractional ideal J is invertible, i.e., iff we have
(A : J )J = A or, equivalently, iff there exist a, b ∈ A satisfying the following
conditions:

{
a − pb = 1,

pa ∈ A.
(3)
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(a) If a �= 0, then c = b/a is a stabilizing controller of p and J−1 = A : J =
(a, b).

(b) If a = 0, then p = (−1)/b is a coprime factorization of p, c = 1 − b is a
stabilizing controller of p, J = (1/b) and J −1 = (b).

Then, we have a = 1/(1 − pc) and b = c/(1 − pc).
4. c ∈ K internally stabilizes p ∈ K iff the following equality of fractional ideals

holds:

(1, p)(1, c) = (1 − pc). (4)

5. p admits a coprime factorization iff the fractional ideal J is principal fractional
ideal of A, i.e., iff there exists 0 �= d ∈ A such that J = (1/d). Then, p = n/d,
where n = dp ∈ A, is a coprime factorization of p.

Equivalent conditions for internal stabilizability and the existence of coprime
factorizations were firstly obtained by Shankar and Sule in [31, 33] using integral
ideals over A. We refer the reader to [23, 27, 31] for characterizations of strong,
bistably, simultaneous and robust stabilizations [35].

It is important to note that the existence of a coprime factorization implies inter-
nal stabilizability (i.e., if J = (k), with 0 �= k ∈ K , then J is invertible and we have
J −1 = (k−1)) but the converse is generally not true (invertible fractional ideals are
not necessarily principal over a general ring A). In particular, it is still not known
whether or not internal stabilizability is equivalent to the existence of coprime
factorizations over the classes A, Â and W+ [3, 4, 22, 23, 35]. This equivalence
holds for RH∞ [35], H∞(C+) [13, 32] and R(x1, . . . , xn)S [24, 26, 31].

2.4. PARAMETRIZATION OF ALL STABILIZING CONTROLLERS

An important issue in stabilization problems is to characterize the set of all sta-
bilizing controllers of an internally stabilizable plant. If a plant admits a coprime
factorization, then a parametrization of all stabilizing controllers exists and is called
Youla–Kučera parametrization [4, 35]. Such parametrization has played an impor-
tant role in the development of the H∞ and H2-optimal problems as it is a linear
fractional transformation of the free parameter, and thus, it can be used in order to
transform such nonlinear optimization problems into affine, and thus, convex ones
[3, 35].

Within the fractional ideal approach to stabilization problems, we have recently
shown in [23, 24] how to parametrize all stabilizing controllers of an internally
stabilizable which does not necessarily admit coprime factorizations. This new
parametrization generalizes the Youla–Kučera parametrization. We shall call it
Q-parametrization of all stabilizing controllers as it is a generalization the Q-
parametrization – developed by Zames and Francis in the eighties [37] – for inter-
nally stabilizable plants which do not necessarily admit coprime factorizations [28].

We give a new proof of the Q-parametrization of all stabilizing controllers using
a mathematical approach which will be used in what follows.
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LEMMA 1. Let p ∈ Q(A) and J = (1, p) be the fractional ideal of A defined by
1 and p. Then, we have the following exact sequence

0 ←− J
f←− A1×2 g←− A : J ←− 0, (5)

where the A-morphisms f and g are defined by:

f : A1×2 −→ J,

(a1 a2) �−→ f ((a1 a2)) = a1 + a2p,

g : (A : J ) −→ A1×2,

l �−→ g(l) = (−lp l).

(6)

Proof. We have A : J = {k ∈ K | k, kp ∈ A} = {d ∈ A | dp ∈ A}, and thus,
we obtain:

ker f = {(a1 a2) ∈ A1×2 | a1 = −a2p}
= {(−a2p a2) ∈ A1×2 | a2 ∈ A, a2p ∈ A}
= {a2(−p 1) | a2 ∈ A : J } = g(A : J ).

Moreover, if l ∈ ker g, then we have (−lp l) = (0 0), and thus, l = 0, i.e.,
ker g = 0. Finally, we have f (A1×2) = (1, p) = J , showing that f is surjective,
and thus, (5) is a short exact sequence. �

The exact sequence (5) will play an important role as well as the following
lemma.

LEMMA 2. Let p ∈ Q(A) and J = (1, p). Then, the following assertions are
equivalent:

1. p is internally stabilizable, i.e., J is invertible and J −1 = (a, b) where a, b ∈ A

satisfy (3).
2. The short exact sequence (5) splits, namely, there exist two A-morphisms h:

J −→ A1×2 and k: A1×2 −→ A : J which satisfy the conditions f ◦ h = idJ ,
k ◦ g = idA:J and h ◦ f + g ◦ k = idA1×2 .

Then, we have the following direct sums

h(J ) ⊕ g(J−1) = A1×2 ⇔ J ⊕ J−1 ∼= A1×2, (7)

and we denote the split exact sequence (5) by

0 ←− J
f←− A1×2 g←− J−1 ←− 0.

h−→ k−→
(8)
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Proof. From 3 of Theorem 1, p is internally stabilizable iff there exist a and
b ∈ A satisfying (3), i.e., iff the fractional ideal J = (1, p) of A is invertible.
Then, we know that J−1 = A : J = (a, b).

1 ⇒ 2. Let a and b ∈ A satisfy (3) and let us define the following A-morphisms:

h: J −→ A1×2, k: A1×2 −→ A : J,

j �−→ h(j) = (ja − bj), v �−→ k(v) = v(b a)T.
(9)

The A-morphisms h and k are well-defined as, for every j ∈ J , we have h(j) ∈
A1×2 because ja and jb ∈ A, and k(A1×2) = (a, b) = A : J . Now, we have
(f ◦ h)(j) = j (a − bp) = j for all j ∈ J , i.e., f ◦ h = idJ . Similarly, we have
(k ◦ g)(l) = l(−pb + a) = l for all l ∈ A : J , i.e., k ◦ g = idA:J . Finally, we have
h ◦ f + g ◦ k = idA1×2 as, for all (a1 a2) ∈ A1×2, we have

(h ◦ f + g ◦ k)((a1 a2)) = (a1 + a2p)(a − b) + (a1b + a2a)(−p 1)

= (a1(a − bp) a2(a − bp)) = (a1 a2).

Therefore, the exact sequence (5) splits, and thus, we easily obtain (7).
2 ⇒ 1. If the exact sequence (5) splits, then there exists an A-morphism

h: J −→ A1×2 such that f ◦ h = idJ . Using the fact that J is generated as an
A-module by 1 and p, then h is completely determined by h(1) = (α −β) ∈ A1×2

and h(p) = (γ − θ) ∈ A1×2. But, for all d ∈ A : J , we have dh(p) = (dγ − dθ)

and dh(p) = h(dp) = (dp)h(1) as dp ∈ A and h is an A-morphism. Therefore, we
obtain (dγ −dθ) = (dpα −dpβ) for all d ∈ A : J , and thus, we have γ = pα ∈ A

and θ = pβ ∈ A. Hence, α and β ∈ A : J and, for all j = u + vp ∈ J , u and
v ∈ A, we have

h(j) = uh(1) + vh(p) = u(α − β) + v(pα − pβ)

= (u + pv)(α − β) = j (α − β).

Finally, using f ◦h = idJ , for all j ∈ J , we have f (h(j)) = j , i.e., j (α−βp) = j

for all j ∈ J . Taking j = 1 ∈ J , we obtain α − βp = 1, and thus, p is internally
stabilizable from 3 of Theorem 1. �

We call right-inverse of the A-morphism f : A1×2 −→ J any A-morphism
h: J −→ A1×2 such that f ◦ h = idJ . We define the set L = {h: J −→ A1×2 |
f ◦ h = idJ } of right-inverses of f and the set S = {(a − b) ∈ A1×2 | ap ∈ A,
a − bp = 1} of a and b ∈ A satisfying (3). Then, the proof of Lemma 2 shows that
there is a one-to-one correspondence between L and S defined by:

L ←→ S

h �−→ h(1)

h(j) = j (a − b) ←− � (a − b).

(10)

The next lemma is a standard result in the theory of the fractional ideals.
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LEMMA 3. [7, 23]. Let I and J be two fractional ideals of A and φ: I −→ J an
A-morphism from I to J . Then, there exists q ∈ Q(A) such that φ(a) = qa for all
a ∈ I . In particular, for every 0 �= i ∈ I , we have q = φ(i)/i ∈ J : I , and thus,
we obtain the following isomorphism:

homA(I, J ) ∼= J : I. (11)

The next lemma gives a parametrization of all right-inverses of f .

LEMMA 4 Let h: J −→ A1×2 be a right-inverse of f : A1×2 −→ J . Then,
every right-inverse of the A-morphism f has the form h + g ◦ φ, where φ is any
A-morphism from J to J−1, i.e., φ ∈ homA(J, J−1) ∼= J−2.

In other words, every right-inverse of f has the following form:

hq : J −→ A1×2

λ �−→ (λ(a − qp) − λ(b − q)), ∀q ∈ J−2.
(12)

Proof. Let us suppose that there exist h, h′: J −→ A1×2 such that f ◦ h = idJ

and f ◦ h′ = idJ . Then, we have f ◦ (h′ − h) = 0, i.e., f ((h′ − h)(a)) = 0
for all a ∈ J . Using the fact that (5) is a short exact sequence, i.e., ker f = im g

and g is injective, then, for all a ∈ J , there exists a unique b ∈ J−1 such that
h′(a) − h(a) = g(b). If we define the A-morphism φ: J −→ J−1 by φ(a) = b,
then we obtain h′ = h + g ◦ φ.

Conversely, if we have f ◦ h = idJ and we define h′ = h + g ◦ φ where
φ: J −→ J−1 is any A-morphism, then, using the fact that f ◦ g = 0, we obtain

f ◦ h′ = f ◦ h + f ◦ g ◦ φ = f ◦ h = idJ .

Therefore, every right inverse of f has the form h′ = h + g ◦ φ, where h is a
particular right-inverse of f and φ: J −→ J−1 is any A-morphism. Now, from 2
of Proposition 2 and (11), we have

homA(J, J−1) ∼= J−1 : J = (A : J ) : J = A : J 2 = J−2,

where the isomorphism is defined by φ ∈ homA(J, J−1) �−→ φ(j)/j ∈ J−2

and 0 �= j ∈ J is a fixed element (see Lemma 3). Thus, every element φ ∈
homA(J, J−1) corresponds to the multiplication map by q = φ(j)/j ∈ J−2.
Finally, for all λ ∈ J , we obtain

h′(λ) = h(λ) + g(qλ) = (λa − λb) + (−qλp qλ)

= (λ(a − qp) − λ(b − q)). �
Let J = (1, p) be an invertible fractional ideal of A and J−1 = (a, b), where a

and b ∈ A satisfy (3). Then, we have J 2 = (1, p, p2) = (1, p2) as, using (3), we
obtain p = (ap) − bp2 ∈ (1, p2). Therefore, on the one hand, we have

J−2 = A : (1, p2) = {l ∈ A | lp2 ∈ A} = (r1, r2),
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where r1 and r2 ∈ A are such that r1 − r2p
2 = 1 and r1p

2 ∈ A and, on the other
hand, we have

J−2 = (J−1)2 = (a2, ab, b2) = (a2, b2),

as, using (3), we obtain ab = ba2 − (ap)b2 ∈ (a2, b2).
We are now in position to give the general parametrization of all stabilizing

controllers of an internally stabilizable plant. We refer to [23] for a different proof.

THEOREM 2 Let A be an integral domain of SISO stable plants, K = Q(A) its
quotient field, p ∈ K a plant and the fractional ideal J = (1, p) of A. If p is
internally stabilizable and c� = b/a is a stabilizing controller of p, i.e., 0 �= a, b ∈
A satisfy (3), a = 1/(1−pc�) and b = c�/(1−pc�), then all stabilizing controllers
of p are defined by

c(q1, q2) = b + q1r1 + q2r2

a + (q1r1 + q2r2)p
= c� + (q1r1 + q2r2)(1 − pc�)

1 + (q1r1 + q2r2)p(1 − pc�)
, (13)

where r1 and r2 ∈ A are such that J−2 = (r1, r2) and q1 and q2 are any elements
of A satisfying:

a + pq1r1 + q2r2 �= 0 or 1 + (q1r1 + q2r2)p(1 − pc�) �= 0.

In particular, we can take r1 = a2 = 1/(1−pc�)
2 and r2 = b2 = c2

�/(1−pc�)
2

and the parametrization (13) of all stabilizing controllers of p becomes

c(q1, q2) = b + q1a
2 + q2b

2

a + (q1a2 + q2b2)p
= (1 − pc�)c� + q1 + q2c

2
�

(1 − pc�) + (q1 + q2c2
�)p

, (14)

where q1 and q2 are any elements of A such that a + q1pa2 + q2pb2 �= 0 or
(1 − pc�) + q1p + q2pc2

� �= 0.
Proof. Let c� be a stabilizing controller of p and let us define a = 1/(1 − pc�)

and b = c�/(1−pc�) ∈ A. Then, we have c� = b/a where a and b ∈ A satisfy (3).
From Lemma 4, it follows that all right-inverses hq of f : A1×2 −→ J are defined
by (12), where q ∈ J−2, i.e., hq(λ) = λ(a − qp −(b − q)) for all λ ∈ J . By 3 of
Theorem 1, we know that all stabilizing controllers c of p are of the form c = β/α,
where α and β ∈ A satisfy α − βp = 1 and αp ∈ A. Therefore, using (10), we
finally obtain that all stabilizing controllers of p have the form:

c(q) = b + q

a + qp
, ∀q ∈ J−2 = (r1, r2) = (a2, b2), a + qp �= 0. (15)

Using the fact that q ∈ J−2 has the form q = q1r1 + q2r2 or q = q1a
2 + q2b

2 for
some q1 and q2 ∈ A, we finally obtain (13) and (14), which proves the result. �

If p admits a coprime factorization p = n/d, dx − ny = 1, x, y ∈ A, then,
by 5 of Theorem 1, we obtain that J = (1/d), and thus, J −2 = (d2). Therefore,
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every element q ∈ J−2 has the form q = q1d
2 where q1 ∈ A. Moreover, we easily

check that a = dx and b = dy, and thus, we have b + q = d(y + q1d) and
a + qp = d(x + q1n). By substituting these two expressions into (15), we find the
Q-parametrization firstly obtained by Zames and Francis in [37]:

c(q1) = d(y + q1d)

d(x + q1n)
= y + q1d

x + q1n
, ∀q1 ∈ A, x + q1n �= 0.

We note that the last member of the previous equalities is nothing else than the
Youla–Kučera parametrization of all stabilizing controllers [4, 35].

We have already proved that J 2 = (1, p2), and thus, by 5 of Theorem 1, J 2 is
a principal fractional ideal of A iff p2 admits a coprime factorization p2 = s/r ,
0 �= s, r ∈ A. Then, J 2 = (1/r), and thus, J−2 = (r) and any q ∈ J−2 has the
form q = q1r where q1 ∈ A. We obtain the following corollary.

COROLLARY 1 [23]. An internal stabilizable plant p admits a parametrization
of all stabilizing controllers with a single free parameter iff p2 admits a coprime
factorization. Then, we have:

1. If p does not admit a coprime factorization but p2 admits a coprime factoriza-
tion p2 = s/r , 0 �= r , s ∈ A, then all stabilizing controllers of p have the
form

c(q) = b + qr

a + qrp
= c� + qr(1 − pc�)

1 + qrp(1 − pc�)
, (16)

where q is any element of A such that a+qrp �= 0 or 1+qrp(1−pc�) �= 0, c� =
b/a is a stabilizing controller of p, a = 1/(1−pc�) and b = c�/(1−pc�) ∈ A

satisfy (3).
2. If p admits a coprime factorization p = n/d, 0 �= d, n ∈ A, dx − ny = 1

(x, y ∈ A), then, all stabilizing controllers of p have the form

c(q) = y + qd

x + qn
, ∀q ∈ A, x + qn �= 0. (17)

We refer to [23] for more details and examples. Finally, we note that the parame-
trizations of all stabilizing controllers (13) and (14) (resp., (16) and (17)) are linear
fractional transformations of the free parameters q1 and q2 ∈ A (resp., q ∈ A).
Therefore, we can use them in order to transform nonlinear optimal problems into
affine, and thus, convex ones. See [26, 27] for more details.

3. An Algebraic Interpretation to the Operator-Theoretic Approach

If instead of (2), we consider the map u �−→ y = pu, then we are led to in-
troduce the fractional ideal (p). But, as we have shown in Theorems 1, 2 and
Corollary 1, the structural properties of the system only depend on the fractional
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ideal J = (1, p) and not on (p). Therefore, the fractional ideal approach shows
that the system must be thought as {(u y)T | y − pu = 0}, i.e., as the kernel of the
map (u y)T �−→ y − pu. In [34], Vidyasagar has shown that the appropriated way
to study a linear system defined by a (unbounded) linear operator u �−→ pu = y

was to consider its graph, i.e., u and y together. See [8–10, 35] and the references
therein for more details.

The main goal of this paper is to show how the operator-theoretic approach
to stabilization problems developed in [5, 8–10, 34, 35] can be obtained as a dual
theory of the fractional ideal approach. To our knowledge, this interpretation is new
and it allows us to find again, unify and generalize different results obtained in the
literature.

3.1. DUALITY

Let p ∈ K = Q(A) and J = (1, p) be the fractional ideal of A defined by 1 and p.
In Lemma 1, we proved that the following sequence was exact:

0 ←− J
f←− A1×2 g←− A : J ←− 0,

where the A-morphisms f and g are defined by (6). Now, if F is an A-module (e.g.,
F = H2(C+), A = RH∞ or H∞(C+)), then, applying the functor homA(·, F ) to
the previous exact sequence, we obtain the following exact sequence [1, 29]

0 −→ homA(J, F )
f �−→ homA(A1×2, F )

g�−→ homA(A : J, F )

−→ ext1A(J, F ) −→ 0, (18)

where f � is defined by f �(φ) = φ◦f for all φ ∈ homA(J, F ) and similarly for g�.
The A-morphism f �: homA(J, F ) −→ homA(A1×2, F ) is defined by f �(φ) =

φ ◦ f , i.e., for all a = (a1 a2) ∈ A1×2, we have

(f �(φ))(a) = φ(f (a)) = φ(a1 + a2p) = a1φ(1) + a2φ(p)

= a(φ(1) φ(p))T.

Using the isomorphism ι: homA(A1×2, F ) −→ F 2 defined by

ι(ψ) = (ψ(e1) ψ(e2))
T, ∀ψ ∈ homA(A1×2, F ),

where {e1 = (1 0), e2 = (0 1)} is the standard basis of A1×2, we finally find:

ι(f �(φ)) = (φ(1) φ(p))T, ∀φ ∈ homA(J, F ).

We recall that A : J = {d ∈ A | dp ∈ A}. An A-morphism φ ∈ homA(J, F ) is
completely defined by:






φ(1) ∈ F ,

φ(p) ∈ F ,

φ(dp) = (dp)φ(1), ∀d ∈ A : J,

φ(dp) = dφ(p), ∀d ∈ A : J,

⇐⇒






φ(1) ∈ F ,

φ(p) ∈ F ,

dφ(p) = (dp)φ(1),

∀d ∈ A : J.

(19)
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The A-morphism g�: homA(A1×2, F ) −→ homA(A : J, F ) is defined by

g�(ψ)(d) = ψ(g(d)) = ψ((−dp d)) = d(−p 1)(ψ(e1) ψ(e2))
T

= d(−p 1)ι(ψ), ∀d ∈ A : J.

Hence, the exact sequence (18) implies the following exact sequence:

0 −→ homA(J, F )
ι◦f �−→ F 2 g�◦ι−1−→ homA(A : J, F )

−→ ext1A(J, F ) −→ 0.

φ �−→
(

φ(1)

φ(p)

)

(
u

y

)

�−→ y − p u

(20)

From general arguments of homological algebra, we already know that the se-
quences (18) and (20) are exact. Let us give a direct proof. Using (19), we obtain
that ι ◦ f � is injective because we have:

φ(1) = φ(p) = 0 ⇒ ∀λ1, λ2 ∈ A,

φ(λ1 + λ2p) = λ1φ(1) + λ2φ(p) = 0 ⇒ φ = 0.

Let us check the exactness of (20) at F 2. Firstly, for all φ ∈ homA(J, F ), the
A-morphism defined by

((g� ◦ ι−1) ◦ (ι ◦ f �))(φ) = (g� ◦ f �)(φ)

= φ(p) − pφ(1) ∈ homA(A : J, F )

satisfies, for all d ∈ A : J , (φ(p)−pφ(1))(d) = dφ(p)−(dp)φ(1) = 0 as we have
(19). Therefore, we have g�◦f � = 0, and thus, we obtain im(ι ◦f �) ⊆ ker(g�◦ ι−1).

Secondly, if (u y)T ∈ ker(g� ◦ ι−1), then u, y ∈ F are such that y − py = 0
as an A-morphism of homA(A : J, F ), i.e., for all d ∈ A : J , we have dy =
(dp)u. Then, using (19), we obtain that the A-morphism defined by φ(1) = u and
φ(p) = y belongs to φ ∈ homA(J, F ) and we have (ι ◦ f �)(φ) = (u y)T, which
proves the exactness of the sequence (20) at F 2.

3.2. DOMAINS AND GRAPHS OF LINEAR OPERATORS

In this section, from the exact sequence (20), we derive a new exact sequence which
has an operator-theoretic interpretation. In order to do that, we first introduce a few
definitions.

DEFINITION 3. Let p ∈ K = Q(A), J = (1, p), F be an A-module and u ∈ F .
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• We use the following notations for the A-modules

annF (A : J ) = {y ∈ F | ∀d ∈ A : J, dy = 0},
F = F /annF (A : J ),

and y denotes the residue class of y ∈ F modulo annF (A : J ).

• pu denotes the residue class y ∈ F of the elements y ∈ F which satisfy:

dy = (dp)u, ∀d ∈ A : J = {d ∈ A | dp ∈ A}. (21)

• We denote by pu ∈ F the fact that there exists y ∈ F such that y = pu.
• The domain of the linear operator p: F −→ F is defined by

domF (p) = {u ∈ F | pu ∈ F }. (22)

• The graph of the linear operator p: F −→ F is defined by

graphF (p) = {(u pu)T ∈ F × F | u ∈ domF (p)}. (23)

We note that pu is well-defined because if there exist y1, y2 ∈ F such that
dyi = dpu, i = 1, 2, then d(y1 − y2) = 0 for all d ∈ A : J , and thus, y1 = y2

= pu. We now explain on an example why pu does not generally belong to F .

EXAMPLE 3. Let us consider A = R[ d
dt

] be the ring of differential operators in
d
dt

with coefficients in R, K = Q(A) = R( d
dt

), p = ( d
dt

)−1 ∈ K , J = (1, p) and
F = C∞(R). Then, we have A : J = ( d

dt
).

If, instead of (22), we had chosen the definition domF (p) = {u ∈ F | pu ∈ F },
where pu ∈ F means that there exists y ∈ F such that dy = (dp)u for all
d ∈ A : J = {d ∈ A | dp ∈ A}, then the map p: domF (p) −→ F would have
become a multivalued function. Indeed, p0 ∈ F would have meant that there exists
y ∈ F such that dy = 0 for all d ∈ A : J , i.e., d

dt
y = 0. Therefore, if y = c is any

constant function, i.e., y(t) = c for all t ∈ R, then p0 = c for all c ∈ R, which
shows that p is not a well-defined function. However, if we use Definition 3, then
annF (A : J ) = {y ∈ F | y = c, c ∈ R}, p0 = c = 0 and p: domF (p) −→ F
becomes a well-defined function, where F = F /{y ∈ F | y = c, c ∈ R}. We note
that we have domF (p) = F because, for every u ∈ F , there always exists y ∈ F
such that d

dt
y = u (see Section 4.2 and Example 4). Finally, (u y)T ∈ graphF (p)

means that u ∈ F and y ∈ F satisfy d
dt

y = u. Integrating the ordinary differential
equation, we obtain y(t) = ∫ t

0 u(τ) dτ + y(0), and thus, we have

graphF (p) =
{(

u

∫ t

0
u(τ) dτ

)T

∈ F × F | u ∈ F

}

.

Let us state the following useful lemma.
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LEMMA 5.

1. The domain domF (p) of p is an A-module.
2. If u1, u2 ∈ domF (p) and a1, a2 ∈ A, then we have

p(a1u1 + a2u2) = a1pu1 + a2pu2,

and thus, graphF (p) is an A-module.
3. If p ∈ Q(A), J = (1, p), x ∈ F and d ∈ A : J = {d ∈ A | dp ∈ A}, then we

have

p(dx) = (dp)x = nx,

where n = dp ∈ A, i.e., p = n/d, 0 �= d, n ∈ A, is the fractional representa-
tion of p. In particular, we have

(A : J )F ⊆ domF (p).

Proof. 1 & 2. Let u1, u2 ∈ domF (p) and a1, a2 ∈ A. Then, there exist y1, y2 ∈ F
such that yi = pui , i.e., we have dyi = (dp)ui for all d ∈ A : J and i = 1, 2.
Therefore, we have

d(a1y1 + a2y2) = a1dy1 + a2dy2 = a1(d p)u1 + a2(dp)u2

= (dp)(a1u1 + a2u2),

for all d ∈ A : J and a1y1 +a2y2 ∈ F , which shows that a1u1 +a2u2 ∈ domF (p).
Moreover, from the previous equality, we obtain:

p(a1u1 + a2u2) = a1y1 + a2y2 = a1y1 + a2y2 = a1(pu1) + a2(pu2).

This result proves that graphF (p) is an A-module.
3. Let d ∈ A : J , n = dp ∈ A and x ∈ F . For every d ′ ∈ A : J , we denote by

n′ = d ′p ∈ A and we have p = n/d = n′/d ′, i.e., dn′ = d ′n. Therefore, for all
d ′ ∈ A : J , we have

(d ′p)(dx) = n′(dx) = (n′d)x = (d ′n)x = d ′(nx)

⇒ p(dx) = nx = (dp)x. �
Within the fractional ideal approach, we have just developed the concepts of the

domain and graph of a linear operator. These concepts generalize the ones used in
[6, 8, 9, 34] and we shall explain in Corollary 4 when we can find them again.

Let us define the following A-morphism:

ρ: homA(J, F ) −→ domF (p),

φ �−→ φ(1).
(24)

This A-morphism is well-defined because, from (19), φ ∈ homA(J, F ) is de-
fined by φ(1) ∈ F and φ(p) ∈ F which satisfy dφ(p) = (dp)φ(1) for all
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d ∈ A : J , a fact showing that φ(1) ∈ domF (p) and φ(p) = pφ(1). Moreover, the
A-morphism ρ is surjective: for any u ∈ domF (p), there exists y ∈ F satisfying
dy = (dp)u for all d ∈ A : J , and thus, φu(1) = u ∈ F and φu(p) = y ∈ F
define φu ∈ homA(J, F ) which satisfies ρ(φu) = φu(1) = u. Therefore, we have
the following exact sequence

0 −→ ker ρ
i−→ homA(J, F )

ρ−→ domF (p) −→ 0, (25)

where ker ρ = {φ ∈ homA(J, F ) | φ(1) = 0, dφ(p) = 0, ∀d ∈ A : J } and we
have:

domF (p) = ρ(homA(J, F )) ∼= homA(J, F )/ker ρ. (26)

Using the exact sequences (20) and (25), we obtain the commutative exact diagram:

0 0
↓ ↓

0 −→ ker ρ
ι◦f �−→ F 2 π−→ F 2/(ι ◦ f �)(ker ρ) −→ 0

↓ ‖
0 −→ homA(J, F )

ι◦f �−→ F 2 g�◦ι−1−→ homA(A : J, F )

−→ ext1A(J, F ) −→ 0.

↓ ↓
domF (p) 0

↓
0

Then, using the fact

F 2/(ι ◦ f �)(ker ρ) = F 2/{(0 y)T ∈ F 2 | dy = 0, ∀d ∈ A : J }
= F × (F /{y ∈ F | dy = 0, ∀d ∈ A : J }) = F × F ,

we obtain π((u y)T) = (u y)T for all u and y ∈ F . Then, a chase in the previous
commutative exact diagram shows that we have the following exact sequence

0 −→ domF (p)
δ−→ F × F

ε−→ homA(A : J, F )

−→ ext1A(J, F ) −→ 0,

u �−→ (u p u)T

(u y)T �−→ y − p u

(27)

where δ: domF (p) −→ F × F is defined by δ(u) = (π ◦ ι ◦ f �)(φ) and φ is
any element of homA(J, F ) such that ρ(φ) = φ(1) = u. The value δ(u) does not
depend on a particular choice of φ satisfying ρ(φ) = u: if φ1, φ2 ∈ homA(J, F )

are such that ρ(φ1) = ρ(φ2) = u, then we have

φ1 − φ2 ∈ ker ρ ⇒ (π ◦ ι ◦ f �)(φ1 − φ2) = 0 ⇒ δ(φ1) = δ(φ2).
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Then, we have δ(u) = (π ◦ ι ◦ f �)(φu), where the A-morphism φu ∈ homA(J, F )

is defined by φu(1) = u and φu(p) = y where y is any element of F satisfying
dy = (dp)u for all d ∈ A : J . Therefore, we have δ(u) = (u y)T where y is the
residue class of any element y ∈ F modulo annF (A : J ) satisfying dy = (dp)u

for all d ∈ A : J , i.e., y ∈ F or, in other words:

δ(u) = (u pu)T ∀u ∈ domF (u). (28)

Finally, using (27), we obtain

graphF (p) = {(u pu)T ∈ F × F | u ∈ domF (p)} = δ(domF (p)). (29)

The A-morphism ε: F × F −→ homA(A : J, F ) defined by (u y)T �−→ y − pu,
is well-defined because it does not depend on the choice of the element y ′ ∈ F
such that y ′ = y. Indeed, if y ′ ∈ F is such that y ′ = y, then we have y − y ′ ∈
annF (A : J ), i.e., d(y − y ′) = 0 for all d ∈ A : J . Moreover, we have

(y − pu) − (y ′ − pu) = y − y ′ ∈ homA(A : J, F ).

Therefore, we have (y − y ′)(d) = d(y − y ′) = 0 for all d ∈ A : J , which
shows that y − y ′ = 0 as an element of homA(A : J, F ), and thus, we have
y − pu = y ′ − pu ∈ homA(A : J, F ).

4. An Operator-Theoretic Approach to Internal Stabilizability

Using the operator-theoretic interpretation obtained in the previous section, we now
precisely determine the graph of a stabilizable plant and explain the links between
the graph of a plant p and the graph of any stabilizing controller c of p. These
results generalize those obtained for A = RH∞, H∞(C+) and F = H2(C+) [6, 8,
9, 34, 35]. In particular, we do not assume that the internally stabilizable plant p

admits a coprime factorization.

4.1. MAIN RESULTS ON THE GRAPH OF A STABILIZABLE PLANT

We shall need the following proposition.

PROPOSITION 3 (Lemma 3.59 of [29]). If M is a finitely generated projective A-
module (see 3 of Proposition 1) and F is an A-module, then we have the following
isomorphism

σ : M ⊗A F ∼= homA(homA(M, A), F ),

where σ(m ⊗ f )(g) = g(m)f , for all g ∈ homA(M, A), m ∈ M and f ∈ F .

We have the following proposition.

PROPOSITION 4. Let p ∈ Q(A), J = (1, p) and F be an A-module.
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1. If p is stable, i.e., p ∈ A, then we have annF (A : J ) = 0, F = F and





domF (p) = F ,

graphF (p) = {(u pu)T ∈ F 2 | u ∈ F },
homA(A : J, F ) ∼= F ,

ext1A(J, F ) = 0.

2. If p admits a weakly coprime factorization p = n/d, 0 �= d, n ∈ A, then we
have






F = F /{y ∈ F | dy = 0},
domF (p) = {u ∈ F | ∃y ∈ F , dy = nu},
homA(A : J, F ) ∼= (d−1) ⊗A F .

Proof. 1. If p is stable, i.e., p ∈ A, then, by 1 of Theorem 1, we have J =
(1, p) = A, A : J = A, annF (A : J ) = 0 and F = F /0 = F . Now, using the
isomorphism homA(A, F ) ∼= F defined by φ �−→ φ(1), i.e., ρ(φ) = φ(1), where
ρ is defined in (24), we obtain






homA(J, F ) = homA(A, F ) ∼= F ⇒ domF (p) = ρ(homA(A, F )) = F ,

homA(A : J, F ) = homA(A, F ) ∼= F ,

ext1A(J, F ) = ext1A(A, F ) = 0 [1, 29].
2. If p admits a weakly coprime factorization, then, by 2 of Theorem 1, there

exists 0 �= d ∈ A such that A : J = (d), and thus, we obtain F = F /{y ∈ F |
dy = 0}. Moreover, we have

domF (p) = {u ∈ F | ∃y ∈ F , dy = nu}.
Finally, as A : J is a principal ideal of A, A : J is a free A-module (A is an integral
domain), and thus, a finitely generated projective A-module [2, 29]. Therefore, by
Proposition 3 and Lemma 3, we have

homA(A : J, F ) = homA((d), F )

∼= homA((d), A) ⊗A F ∼= (d−1) ⊗A F . �
We shall need the following lemma in what follows.

LEMMA 6. Let p ∈ Q(A) be an internally stabilizable plant, J = (1, p), a and
b two elements of A satisfying (3) and F an A-module. Then, the exact sequence
(20) becomes the split exact sequence

0 −→ J−1 ⊗A F
φ−→ F 2 γ−→ J ⊗A F −→ 0,

η←− κ←−
(30)
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where the A-morphisms are defined as follows:

J−1 ⊗A F
φ−→ F 2,

a ⊗ x1 − b ⊗ x2 �−→
(

ax1 − bx2

(ap)x1 − (bp)x2

)

,

F 2 γ−→ J ⊗A F ,
(

u

y

)

�−→ 1 ⊗ y − p ⊗ u,

F 2 η−→ J−1 ⊗A F ,
(

u

y

)

�−→ a ⊗ u − b ⊗ y,

J ⊗A F
κ−→ F 2,

1 ⊗ x1 + p ⊗ x2 �−→
(

bx1 + (bp)x2

ax1 + (ap)x2

)

.

(31)

Proof. Let us suppose that p is an internally stabilizable plant. Then, by Lemma 2,
the split exact sequence (8) holds. Then, applying the functor homA(·, F ) to the
split exact sequence (8), we obtain the following split exact sequence [1, 29]:

0 −→ homA(J, F )
ι◦f �−→ F 2 g�◦ι−1−→ homA(J−1, F ) −→ 0.

h�◦ι−1←− ι◦k�←−
(32)

Now, using the fact that J and J−1 are two invertible fractional ideals of A, and
thus, by 3 of Proposition 1, two finitely generated projective A-modules, by Propo-
sition 3, we obtain

{
homA(J, F ) ∼= homA(J, A) ⊗A F ∼= J−1 ⊗A F ,

homA(J−1, F ) ∼= homA(J−1, A) ⊗A F ∼= J ⊗A F .

Let us explicitly describe the previous isomorphisms: let J−1 = (a, b), i.e., a, b ∈
A are such that a − bp = 1, ap ∈ A and let us define the following A-morphisms

ϕJ : homA(J, F ) −→ J−1 ⊗A F ,

φ �−→ a ⊗ φ(1) − b ⊗ φ(p),

ϕJ−1 : homA(J−1, F ) −→ J ⊗A F ,
(33)

φ �−→ 1 ⊗ φ(a) − p ⊗ φ(b),

ψJ : J ⊗A F −→ homA(J−1, F ),

1 ⊗ x1 + p ⊗ x2 �−→ ψJ (1 ⊗ x1 + p ⊗ x2),

ψJ−1 : J−1 ⊗A F −→ homA(J, F ),
(34)

a ⊗ x1 − b ⊗ x2 �−→ ψJ−1(a ⊗ x1 − b ⊗ x2),
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where ψJ and ψJ−1 are defined by
{

ψJ (1 ⊗ x1 + p ⊗ x2)(d) = dx1 + (dp)x2, ∀d ∈ J−1,

ψJ−1(a ⊗ x1 − b ⊗ x2)(k) = (ak)x1 − (bk)x2, ∀k ∈ J .

Then, we easily check that ψ−1
J = ϕJ−1 and ψJ−1 = ϕ−1

J . Finally, using (9) and
(20), we can verified that the A-morphisms defined by φ = ι ◦ f � ◦ ψJ−1 , γ =
ϕJ−1 ◦ g� ◦ ι−1, η = ϕJ ◦ h� ◦ ι−1 and κ = ι ◦ k� ◦ ψJ are exactly given by (31).
We note that we can also check that η ◦ φ = idJ−1⊗AF , γ ◦ κ = idJ⊗AF and
φ ◦ η + κ ◦ γ = idF 2 which proves again that (30) is a split exact sequence. �

We now define the domain and the graph of a stabilizing controller c of an
internally stabilizable plant p. If c is a stabilizing controller of p, then a = 1/(1 −
pc) and b = c/(1 − pc) ∈ A satisfy (3) and, by 3 of Theorem 1, we have J −1 =
(a, b). From (4), we obtain (1, c)−1 = (a)(1, p) = (a, ap). Therefore, we have

annF ((1, c)−1) = annF ((a, ap)) = {u ∈ F | au = 0, (ap)u = 0}.
Let us denote by F = F /annF ((1, c)−1) and u ∈ F the residue class of u ∈ F
modulo annF ((1, c)−1). Then, we denote by cy ∈ F the fact that there exists
u ∈ F satisfying:

∀d ′ ∈ (1, c)−1 = (a, ap), d ′u = (d ′c)y. (35)

As for p, we can define the A-morphism ρ ′: homA((1, c), F ) −→ domF (c) =
{y ∈ F | cy ∈ F } by ρ ′(ψ) = ψ(1) = y for all ψ ∈ homA((1, c), F ) and we
have

domF (c) = ρ ′(homA((1, c), F )).

Using the fact that J−1 = (a)(1, c), the A-morphism a: (1, c) −→ J−1, defined
by a(u) = au for all u ∈ (1, c), is invertible and its inverse a−1: J−1 −→ (1, c) is
defined by a−1(v) = a−1v for all v ∈ J−1. Therefore, we obtain the isomorphism

a�: homA(J−1, F ) −→ homA((1, c), F )

defined by
{

a�(φ)(u) = φ(au), ∀φ ∈ homA(J−1, F ), ∀u ∈ (1, c),

(a�)−1(ψ)(v) = ψ(a−1v), ∀ψ ∈ homA((1, c), F ), ∀v ∈ J−1.

We note that ψ ∈ homA(J−1, F ) is defined by

ψ(a) ∈ F , ψ(b) ∈ F , d ′ψ(b) = (d ′c)ψ(a), ∀d ′ ∈ (1, c)−1 = (a, ap).

Then, we have

domF (c) = ρ ′(homA((1, c), F )) = (ρ ′ ◦ a�)(homA(J−1, F )), (36)
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and thus, we have the following exact sequence

0 −→ ker(ρ ′ ◦ a�) −→ homA(J−1, F )
ρ′◦a�−→ domF (c) −→ 0, (37)

where (ρ ′ ◦ a�)(ψ) = (a� ◦ ψ)(1) = ψ(a) for all ψ ∈ homA(J−1, F ), and thus,
we obtain

ker(ρ ′ ◦ a�) = {ψ ∈ homA(J−1, F ) | ψ(a) = 0, d ′ψ(b) = 0,

∀d ′ ∈ (a, ap)}.
Using the definition of k: A1×2 −→ J−1 defined in (9), we obtain

homA(J−1, F )
ι◦k�−→ F 2

ψ �−→ (ψ(b) ψ(a))T,

and thus, we have

(ι ◦ k�)(ker(ρ ′ ◦ a�)) = {(u 0)T ∈ F 2 | d ′u = 0, ∀d ′ ∈ (a, ap)}
and F 2/(ι ◦ k�)(ker(ρ ′ ◦ a�)) = F 2/{(u 0)T ∈ F 2 | d ′u = 0, ∀d ′ ∈ (a, ap)} =
F × F .

Then, as for p, we have the following commutative exact diagram

0 0
↓ ↓

0 ←− F × F
π ′←− F 2 ι◦k�←− ker(ρ ′ ◦ a�) ←− 0

‖ ↓
0 ←− homA(J, F )

h�◦ι−1←− F 2 ι◦k�←− homA(J−1, F ) ←− 0,

↓ ↓
0 domF (c)

↓
0

where π ′: F 2 −→ F × F is defined by π ′((u y)T) = (u y)T. Then, a chase in
the previous commutative exact diagram shows that we have the following exact
sequence

0 ←− homA(J, F ) ←− F × F
δ′←− domF (c) ←− 0,

where δ′: domF (c) −→ F × F is defined by δ′(y) = (π ′ ◦ ι ◦ k�)(ψ) and
ψ ∈ homA(J−1, F ) is such that (ρ ′ ◦ a�)(ψ) = ψ(a) = y. Therefore, we finally
obtain

δ′(y) = (cy y)T, ∀y ∈ domF (c), (38)

and we have

graphF (c) = {(cy y)T ∈ F × F | y ∈ domF (c)} = δ′(domF (c)). (39)

We are now in position to state the main theorem of this paper.
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THEOREM 3. Let p ∈ Q(A) be an internally stabilizable plant, J = (1, p)

and F an A-module. Let c be a stabilizing controller of p, a = 1/(1 − pc),
b = c/(1 − pc) ∈ A satisfying (3) and let us define:






F = F /{y ∈ F | dy = 0, ∀d ∈ (1, p)−1}
= F /{y ∈ F | ay = 0, by = (ac)y = 0},

F = F /{u ∈ F | d ′u = 0, ∀d ′ ∈ (1, c)−1}
= F /{u ∈ F | au = 0, (ap)u = 0}.

1. Let us denote by y (resp., y) the residue class of y ∈ F in F (resp., F ). Then,
we have:





domF (p) = (1, p)−1F = {ax1 − bx2 = ax1 − (ac)x2 ∈ F | x1, x2 ∈ F },
graphF (p) = {(ax1 − bx2 (ap)x1 − (bp)x2)

T ∈ F × F | x1, x2 ∈ F },
domF (c) = (1, c)−1F = {ax1 + (ap)x2 ∈ F | x1, x2 ∈ F },
graphF (c) = {(bx1 + (bp)x2 ax1 + (ap)x2)

T ∈ F × F | x1, x2 ∈ F }.

(40)

2. We have the following split exact sequence

0 −→ domF (p)
π ′◦δ−→ F × F

τ−→ domF (c) −→ 0,

τ ′←− π◦δ′←−
(41)

where δ (resp., δ′) is defined by (28) (resp., (38)) and π : F 2 −→ F ×F (resp.,
π ′: F 2 −→ F × F ) is defined by π((u y)T) = (u y)T (resp., π ′((u y)T) =
(u y)T), showing that we have

π ′(graphF (p)) ⊕ π(graphF (c)) = F × F , (42)

or equivalently:
{
(ax1 − bx2 (ap)x1 − (bp)x2)

T | x1, x2 ∈ F
}

⊕{
(bx1 + (bp)x2 ax1 + (ap)x2)

T | x1, x2 ∈ F
} = F × F .

Proof. 1. Let us compute the domains and the graphs of p and c. Using (26),
(29) and (34), we obtain

{
domF (p) = ρ(homA(J, F )) = (ρ ◦ ψJ−1)(J−1 ⊗A F ),

graphF (p) = δ(domF (p)) = (δ ◦ ρ ◦ ψJ−1)(J−1 ⊗A F ).

The A-morphism ρ ◦ ψJ−1 : J−1 ⊗A F −→ domF (p) is defined by

(ρ ◦ ψJ−1)(a ⊗ x1 − b ⊗ x2) = (ψJ−1(a ⊗ x1 − b ⊗ x2))(1)

= ax1 − bx2, ∀x1, x2 ∈ F ,
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and thus, we obtain domF (p) ⊆ J−1F . From 3 of Lemma 5, we already know
that J−1F ⊆ domF (p), which proves that domF (p) = J−1F . Now, we have

annF (J−1) = annF ((a, b)) = {y ∈ F | ay = 0, by = 0}.
Using 3 of Lemma 5, we obtain p(ax1 − bx2) = (ap)x1 − (bp)x2, and thus, we
have

δ(ax1 − bx2) = (ax1 − bx2 (ap)x1 − (bp)x2)
T,

which proves that we have graphF (p) = {(ax1 − bx2 (ap)x1 − (bp)x2)
T ∈ F 2 |

x1, x2 ∈ F }.
Similarly for c, using (36), (39) and (34), we have

{
domF (c) = (ρ ′ ◦ a�)(homA(J−1, F )) = (ρ ′ ◦ a� ◦ ψJ )(J ⊗A F ),

graphF (c) = δ′(domF (c)) = (δ′ ◦ ρ ′ ◦ a� ◦ ψJ )(J ⊗A F ).

The A-morphism ρ ′ ◦ a� ◦ ψJ : J ⊗A F −→ domF (p) is defined by

(ρ ′ ◦ a� ◦ ψJ )(1 ⊗ x1 + p ⊗ x2) = ψJ (1 ⊗ x1 + p ⊗ x2)(a)

= ax1 + (ap)x2, ∀x1, x2 ∈ F ,

and thus, we have domF (c) ⊆ (a, ap)F . If we use c instead of p, then, from 3
of Lemma 5, we already know that (a, ap)F ⊆ domF (c), which proves that
domF (c) = (a, ap)F . Similarly, using 3 of Lemma 5 with c = b/a, we obtain
c(ax1 + (ap)x2) = bx1 + (bp)x2 and we finally obtain

graphF (c) = {(bx1 + (bp)x2 ax1 + (ap)x2)
T ∈ F × F | x1, x2 ∈ F }.

2. Using the exact sequences (25), (32) and (37), then we obtain the following
exact diagram:

0 0
↓ ↓

ker ρ ker(ρ ′ ◦ a�)

↓ ↓
0 −→ homA(J, F )

ι◦f �−→ F 2 g�◦ι−1−→ homA(J−1, F ) −→ 0.
h�◦ι−1←− ι◦k�←−

↓ ↓
domF (p) domF (c)

↓ ↓
0 0

Let ((ι ◦ f �) (ι ◦ k�)): ker ρ ⊕ ker(ρ ′ ◦ a�) −→ F 2 be the A-morphism defined by

((ι ◦ f �) (ι ◦ k�))(ψ φ)T = (ι ◦ f �)(ψ) + (ι ◦ k�)(φ).
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Then, we obtain

((ι ◦ f �) (ι ◦ k�))(ker ρ ⊕ ker(ρ ′ ◦ a�))

= {(u y)T ∈ F 2 | dy = 0, ∀d ∈ (a, ac), d ′u = 0, ∀d ′ ∈ (a, ap)},
and thus, we have

coker(((ι ◦ f �) (ι ◦ k�))) = F × F .

Now, let us define (π ′ π) : F 2 −→ F ×F by (π ′ π)((u y)T) = (π ′(u) π(y))T

= (u y)T. Then, we have the following commutative exact diagram

0 0 0
↓ ↓ ↓

0 −→ ker ρ −→ ker ρ ⊕ ker(ρ ′ ◦ a�) −→ ker(ρ ′ ◦ a�) −→ 0
↓ ↓ ↓

0 −→ homA(J, F )
ι◦f �−→ F 2 g�◦ι−1−→ homA(J−1, F ) −→ 0

h�◦ι−1←− ι◦k�←−
↓ ↓ ↓

0 −→ domF (p)
π ′◦δ−→ F × F

τ−→ domF (c) −→ 0,

↓ ↓ ↓
0 0 0

where τ : F × F −→ domF (c) is defined by

τ((u y)T) = ((ρ ′ ◦ a�) ◦ (g� ◦ ι−1))((u y)T) = ay − (ap)u.

Now, the A-morphism τ ◦ (π ◦ δ′): domF (c) −→ domF (c) is defined by

(τ ◦ π ◦ δ′)(y) = (τ ◦ π)(cy y)T = τ((cy y)T) = ay − (ap)u,

where u = cy. But, by (35), u = cy implies that (ap)u = ((ap)c)y and, using the
relation a(1 − pc) = 1, we finally obtain

(τ ◦ (π ◦ δ′))(y) = ay − ((ap)c)y = a(1 − pc)y = y.

Therefore, we have τ ◦(π◦ δ′) = iddomF (c), which shows that we have the following
split exact sequence

0 −→ domF (p)
π ′◦δ−→ F × F

τ−→ domF (c) −→ 0

τ ′←− π◦δ′←−
where τ ′: F × F −→ domF (p) is defined by

τ ′((u y)T) = (ρ ◦ h� ◦ ι−1)((u y)T) = au − by,

and thus, using (29) and (39), we obtain

π ′(graphF (p)) ⊕ π(graphF (c)) = F × F . �
We have the following corollary.



ALGEBRAIC INTERPRETATION TO THE OPERATOR-THEORETIC APPROACH 27

COROLLARY 2. Let p ∈ Q(A) be a transfer function which admits a coprime
factorization p = n/d, 0 �= d, n ∈ A, dr − ns = 1, 0 �= r, s ∈ A, J = (1, p) and
F an A-module. Let us denote by

{
F = F /{y ∈ F | dy = 0},
F = F /{u ∈ F | ru = 0}, (43)

by y (resp., y) the residue class of y ∈ F modulo annF ((d)) (resp., annF ((r)))
and c = s/r a stabilizing controller of p. Then, we have






domF (p) = (d)F = {dx | x ∈ F },
graphF (p) = {(dx nx )T ∈ F × F | x ∈ F },
domF (c) = (r)F = {rx | x ∈ F },
graphF (c) = {(sx rx)T ∈ F × F | x ∈ F }.

(44)

In particular, we have the following split exact sequence

0 −→ (d)F
π ′◦δ−→ F × F

τ−→ (r)F −→ 0,

τ ′←− π◦δ′←−
and (42) becomes {(dx nx)T | x ∈ F } ⊕ {(sx rx)T | x ∈ F } = F × F .

Finally, (30) becomes the following split exact sequence

0 −→ (d) ⊗A F
φ−→ F 2 γ−→ (d−1) ⊗A F −→ 0,

η←− κ←−
where the A-morphisms are defined by:

(d) ⊗A F
φ−→ F 2,

d ⊗ x �−→
(

dx

nx

)

,

F 2 γ−→ (d−1) ⊗A F ,
(

u

y

)

�−→ d−1 ⊗ (dy − nu),

F 2 η−→ (d) ⊗A F ,
(

u

y

)

�−→ d ⊗ (ru − sy),

(d−1) ⊗A F
κ−→ F 2,

d−1 ⊗ z �−→
(

sz

rz

)

.
(45)

Proof. If p admits a coprime factorization p = n/d, then, by 5 of Theorem 1,
we have J = (d−1), and thus, J−1 = (d). If we denote by a = dr and b = ds, then
we have ap = nr ∈ A and, from dr − ns = 1, we obtain a − bp = 1, i.e., by 3 of
Theorem 1, c = b/a = (ds)/(dr) = s/r is a stabilizing controller of p. Moreover,
we have (1, c)−1 = (a, ap) = (dr, nr) = (r) because dr−ns = 1. Then, we obtain
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annF ((1, p)−1) = {y ∈ F | dy = 0} and annF ((1, c)−1) = {u ∈ F | ru = 0} and
F and F are defined by (43). Moreover, using (40), we obtain

{
domF (c) = (1, p)−1F = (d)F ,

domF (c) = (1, c)−1F = (r)F ,

and, using 3 of Lemma 5, we obtain
{

graphF (p) = {(dx nx)T ∈ F × F | x ∈ F },
graphF (c) = {(sx rx)T ∈ F × F | x ∈ F }.

Finally, we have 1 ⊗ y − p ⊗ u = d−1 ⊗ (dy − nu) ∈ J ⊗A F . Using a = dr

and b = ds, we obtain a ⊗ x1 − b ⊗ x2 = d ⊗ (rx1 − sx2) = d ⊗ x ∈ J−1 ⊗A F ,
with the notation x = (rx1 − sx2). Therefore, the A-morphisms φ and γ defined in
(31) become the A-morphisms defined in (45). Finally, using the fact that a ⊗ u −
b ⊗ y = d ⊗ (ru − sy) ∈ J−1 ⊗A F and 1 ⊗ x1 + p ⊗ x2 = d−1 ⊗ z, with the
notation z = (dx1 + nx2) ∈ J ⊗A F , then, doing as previously, the A-morphisms
η and κ defined in (31) become those given in (45). �

4.2. DOMAINS AND GRAPHS OVER CERTAIN A-MODULES F

We have previously studied the influence of the structural properties of p (e.g.,
stability, existence of (weakly) coprime factorization, stabilizability), i.e., the alge-
braic properties of J , on the domain and the graph of the linear operator defined
by p. In this section, we now study them in the case where no assumptions are
made on p but on the A-module F , i.e., on the signal space.

4.2.1. Divisible and Injective A-Modules F

Let us introduce a few definitions.

DEFINITION 4.

• [1, 29] The A-module F is called divisible if, for every 0 �= a ∈ A and u ∈ F ,
there exists y ∈ F satisfying ay = u or, equivalently, if, for every 0 �= a ∈ A,
the A-morphism a: F −→ F defined by a(y) = ay, y ∈ F , is surjective.

• The A-module F is called injective if one of the following equivalent asser-
tions is satisfied:

1. [7] Let U and V be two index sets of arbitrary cardinalities, ui ∈ F ,
aij ∈ A, i ∈ U , j ∈ V . Then, every consistent system

∑
j∈V aijyj = ui

in the unknowns yj (for every fixed i ∈ U , almost all aij must vanish) −
namely, if

∑
i∈U bi(

∑
j∈V aijyj ) = 0, then

∑
i∈U biui = 0 (in the sums,

almost all bi must vanish) – is solvable, i.e., admits a solution yj ∈ F ,
j ∈ V .
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2. [1, 29] For every exact sequence of A-modules

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0,

then we have the exact sequence

0 ←− homA(M ′, F )
f �←− homA(M, F )

g�←− homA(M ′′, F ) ←− 0.

It is well known that an injective A-module is divisible. Moreover, if A is a
principal ideal domain, namely every ideal of A can be generated by means of a
single element of A, then any divisible A-module is injective. See [1, 7, 29] for
more details.

EXAMPLE 4.

• The field of fraction K = Q(A) of A is an injective A-module and, if A is
a principal ideal domain (e.g., A = RH∞ or k[s] with k a field), then K/A is
also an injective A-module.

• We consider the ring A = k[d1, . . . , dn] of differential operators in di =
∂/∂xi with coefficients in k = R, C, namely the ring of elements of the
form

∑
0�|µ|�q aµdµ, where µ = (µ1 . . . µn) ∈ Z

n+ is a multi-index, dµ =
d

µ1
1 . . . dµn

n , aµ ∈ k and |µ| = µ1 + · · · + µn. If � is an open convex
subset of R

n, then the k-vector space F = C∞(�) (resp., D ′(�), S′(�))
of smooth functions (resp., distributions, temperate distributions) in � are
injective A-modules [14, 17, 16, 30].

• We consider the ring A = R[ d
dt

, δ] of differential time-delay operators with

coefficients in R, namely the ring of elements of the form
∑

0�|(i,j)|�q aij
di

dt i
δj ,

where aij ∈ R, d
dt

f (t) is the time-derivative of f and (δf )(t) = f (t − 1) is
the time delay operator. Then, F = C∞(R) is a divisible but not an injective
A-module [11].

We have the following corollary of Theorem 3 and Corollary 2.

COROLLARY 3. Let p ∈ Q(A), J = (1, p) and F be an A-module.

1. If F is an injective A-module, then ext1A(J, F ) = 0.
2. If p admits a weakly coprime factorization and F is a divisible A-module, then

domF (p) = F .
3. If p is internally stabilizable and F is an injective A-module, then

domF (p) = F, domF (c) = F,

where c is a stabilizing controller of p.
4. If p admits a coprime factorization and F is a divisible A-module, then

domF (p) = F, domF (c) = F,

where c is a stabilizing controller of p.
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Proof. 1. A standard argument of homological algebra shows that, if F is an
injective A-module, then ext1A(M, F ) = 0 for every A-module M (see also 2 of
Definition 4). Therefore, we have ext1A(J, F ) = 0.

2. If p = n/d, 0 �= d, n ∈ A, is a weakly coprime factorization, then, by 2 of
Proposition 4, we have domF (p) = {u ∈ F | ∃y ∈ F , dy = nu}. Now, using the
fact that F is a divisible A-module, then, for every u ∈ F , there exists y ∈ F such
that dy = nu, i.e., domF (p) = F .

3. From Theorem 3, we know that if p is internally stabilizable and c = b/a is
a stabilizing controller, where 0 �= a, b ∈ A satisfy (3), then we have:

domF (c) = {ax1 − bx2 ∈ F | x1, x2 ∈ F },
domF (c) = {ax1 + (ap)x2 ∈ F | x1, x2 ∈ F }.

Let x3 ∈ F and let us consider the consistent equation aX1 − bX2 = x3. Then,
using the fact that F is an injective A-module, then there exist x1 and x2 ∈ F such
that ax1 − bx2 = x3, and thus, we have domF (p) = F . The same argument holds
for domF (c).

4. From Corollary 2, if p = n/d, 0 �= d, n ∈ A, is a coprime factorization with
dr − ns = 1, r, s ∈ A, then domF (p) = {dx | x ∈ F }. Now, using the fact that F
is a divisible A-module, then the A-morphism d: F −→ F defined by d(x) = dx

for all x ∈ F is surjective, and thus, domF (p) = F and similarly for domF (c). �
We do not know yet non-trivial divisible or injective A-modules for the rings

A = RH∞, H∞(C+), Â and W+. However, the previous results can also be used
for the study of linear multidimensional systems (see [16, 17, 20, 21, 30] and the
references therein). Let us give an example.

EXAMPLE 5. Let us consider the ring A = R[d1, d2] of differential operators
defined in Example 4, K = R(d1, d2), F = C∞(R2), p = d−1

2 d1 ∈ K and
J = (1, p). Using the fact that p = d−1

2 d1 is a weakly coprime factorization of p,
then we obtain

A : J = (d2) ⇒ annF (A : J ) = {y ∈ F | d2y = 0}
⇒ F = F /{y ∈ F | y(x) = y(x1)}.

As F is an injective A-module (see Example 4), then, by 2 of Corollary 3, we
obtain






domF (p) = {u ∈ F | pu ∈ F } = {u ∈ F | ∃y ∈ F , d2y = d1u} = F,

graphF (p) =
{(

u

∫ x2

0
d1u(x) dx2

)T

∈ F × F | u ∈ F

}

.
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4.2.2. Torsion-Free A-Modules F

Let us introduce a few definitions.

DEFINITION 5. Let F be an A-module.

• The torsion submodule of an A-module F is defined by
t (F ) = {x ∈ F | ∃ 0 �= a ∈ A, ax = 0}.

• An A-module F is torsion-free if t (F ) = 0.

EXAMPLE 6.

• We shall prove in Proposition 8 that the Hilbert space H2(C+) of holomorphic
functions in the open right half plane C+ which are bounded with respect to
the norm

‖f ‖2 =
(

sup
Re x>0

∫ +∞

−∞
|f (x + iy)|2 dy

)1/2

is a torsion free H∞(C+)-module. Using the fact that RH∞ ⊂ Â ⊂ H∞(C+),
then we obtain that H2(C+) is also a torsion-free RH∞-module (resp.,
Â-module).

• For q ∈ [1, +∞], we can prove that Lq(R+) is a torsion-free A-module.

COROLLARY 4. Let p ∈ Q(A) be an internally stabilizable plant, J = (1, p)

and F a torsion-free A-module. Then, Theorem 3 and Corollary 2 hold for F =
F = F .

Proof. Using the fact that F is a torsion-free A-module, we obtain

annF (A : J ) = {y ∈ F | dy = 0, ∀d ∈ A : J } = 0 ⇒ F = F .

A similar result also holds for F . �
EXAMPLE 7. It is well known that every internally stabilizable plant p ∈ Q(A)

over A = RH∞ and H∞(C+) admits a coprime factorization p = n/d, 0 �= d, n ∈
A, dr − ns = 1, r, s ∈ A [13, 32, 35]. If F = H2(C+) and r �= 0, then c = s/r

internally stabilizes p and, using Corollary 4 and Example 6, we obtain:





domF (p) = (d)F = {dx | x ∈ F },
graphF (p) = {(dx nx)T ∈ F 2 | x ∈ F },
domF (c) = (r)F = {rx | x ∈ F },
graphF (c) = {(sx rx)T ∈ F 2 | x ∈ F }.

(46)

This result was proved in [8, 9]. We also note that the previous result holds if we
take the torsion-free A-module F = A. For A = RH∞, such a result was firstly
obtained by Vidyasagar in Lemma 2 of Section 7.2 of [35] and it is used in order
to define the graph topology [35].
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However, for A = Â, it is not known whether or not every internally stabilizable
plant p ∈ Q(A) admits a coprime factorization. Therefore, if F = H2(C+) and
c ∈ Q(A) is a stabilizing controller of p, then defining a = 1/(1 − pc) and
b = c/(1 − pc) ∈ A and using Corollary 4 and Example 6, we obtain:






domF (p) = {ax1 − bx2 | x1, x2 ∈ F },
graphF (p) = {(ax1 − bx2 (ap)x1 − (bp)x2)

T ∈ F 2 | x1, x2 ∈ F },
domF (c) = {ax1 + (ap)x2 | x1, x2 ∈ F },
graphF (c) = {(bx1 + (bp)x2 ax1 + (ap)x2)

T ∈ F 2 | x1, x2 ∈ F }.
A similar result holds for A = A and F = Lq(R+) with q ∈ [1, +∞] and for
A = l1 and F = lp(Z+) with q ∈ [1, +∞]. If we suppose that p ∈ Q(A) (resp.,
p ∈ Q(l1)) admits a coprime factorization, then we obtain (46). This result was
obtained in Theorem 2 of [34].

To finish, let us give the following proposition.

PROPOSITION 5 [7]. We have (A is an integral domain):

• A torsion-free A-module F is injective iff it is divisible.
• A torsion-free divisible A-module F is a direct sum of copies of Q(A).

Applying Proposition 5 to the A-modules defined in Example 6, we obtain that
they are not divisible, and thus, not injective A-modules. In particular, we know
that there exists 0 �= d ∈ A such that domF (1/d) = (d)F � F . For instance, if
we consider A = RH∞, F = H2(C+) and d = (s − 1)/(s + 1) ∈ A, then we have
domF (1/d) = (d)F � F as every element of (d)F must vanish at s = 1 but we
have 1/(s + 1) ∈ F . As we have d ∈ Â and d ∈ H∞(C+), then the same example
can be considered for Â (resp., H∞(C+)) and F = H2(C+).

4.2.3. Flat A-Modules F

The concept of a flat A-module sharpens the concept of a torsion-free A-module.

DEFINITION 6 [2, 29]. An A-module F is called flat if, for every relation of the
form

∑n
i=1 aixi = 0, where ai ∈ A and xi ∈ F , then there exist y1, . . . , ym in F

and b = (bij ) ∈ An×m such that we have:





xi =
m∑

j=1

bijyj , 1 � i � n,

n∑

k=1

akbkj = 0, 1 � j � m.

(47)

Equivalently, an A-module F is flat iff, for every exact sequence of A-modules

0 −→ M ′ −→ M −→ M ′′ −→ 0,
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then we have the following exact sequence

0 −→ F ⊗A M ′ −→ F ⊗A M −→ F ⊗A M ′′ −→ 0.

EXAMPLE 8.

• Every finitely generated projective A-module is flat [1, 2, 29]. In particular,
if p ∈ Q(A) is an internally stabilizable plant, then, by 3 of Proposition 1,
J = (1, p) and J−1 are projective, and thus, flat A-modules.

• A multiplicative set S of A is a subset of A which satisfies that 1 ∈ S and,
for all s1, s2 ∈ S, we have s1s2 ∈ S. If S is a multiplicative subset of A, then
S−1A � {a/s | a ∈ A, s ∈ S} is a flat A-module [2, 29]. In particular, if we
take S = A\0, then S−1A = Q(A) is a flat A-module.

If I is an integral ideal of A, then we stress that the A-morphism

σ : I ⊗A F −→ IF =
{

n∑

i=1

aixi | ai ∈ I, xi ∈ F , n ∈ Z+

}

,

defined by σ(
∑n

i=1 di ⊗ xi) = ∑n
i=1 dixi , where di ∈ I and xi ∈ F , is generally

not injective. For instance, if F is not a torsion-free A-module, then there may
exist x ∈ F which satisfies dx = 0 for a certain 0 �= d ∈ A, and thus, if we denote
by I = (d), then σ(d ⊗ x) = dx = 0 (e.g., we can consider A = R[ d

dt
], I = ( d

dt
)

and F = C∞(R)). However, if F is a flat A-module, then, using the injection
0 −→ I −→ A, we obtain the exact sequence 0 −→ I ⊗A F

σ−→ A ⊗A F = F
and σ(I ⊗A F ) = IF . Therefore, we obtain I ⊗A F ∼= IF .

PROPOSITION 6.

1. [2, 29] An A-module F is flat iff for every integral ideal I of A, we have

I ⊗A F ∼= IF .

2. [2, 29] A flat A-module F is torsion-free.

We note that 2 of Proposition 6 can be proved as follows: if F is a flat

A-module, then, from the exact sequence 0 −→ A
d.−→ A where 0 �= d ∈ A and

(d.)(λ) = dλ for all λ ∈ A, we obtain that the exact sequence 0 −→ A ⊗A F =
F

d.−→ A ⊗A F = F , showing that F is a torsion-free A-module.
We have the following proposition.

PROPOSITION 7. Let F be a flat A-module, p ∈ Q(A) and J = (1, p).

1. We have annF (A : J ) = 0, and thus, F = F = F .
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2. We have the following exact sequence

0 −→ (A : J )F
δ−→ F 2 ε−→ (A : (A : J )) ⊗A F

−→ ((A : (A : J ))/J ) ⊗A F −→ 0, (48)
where the A-morphisms δ and ε are defined by:

(A : J )F
δ−→ F 2,

u �−→
(

u

pu

)

,

F 2 ε−→ (A : (A : J )) ⊗A F ,
(

u

y

)

�−→ 1 ⊗ y − p ⊗ u.

In particular, we have

domF (p) = (A : J )F ,

graphF (p) = {(u pu)T ∈ F 2 | u ∈ domF (p)}.
3. If p is an internally stabilizable plant, then Theorem 3 and Corollary 2 hold for

F = F = F .
Proof. 1. Using 2 of Proposition 6, we obtain that F is a torsion-free A-module.

Then, the result follows from Corollary 4.
2. Using the fact that J ⊆ (A : (A : J )), we obtain the exact sequence

0 −→ J −→ A : (A : J ) −→ (A : (A : J ))/J −→ 0

and combining it with the following exact sequence

0 −→ A : J
(p 1)T.

A2
(1 −p).

J −→ 0,

we finally obtain the exact sequence

0 −→ A : J
(p 1)T.

A2
(1 −p).

A : (A : J )
π−→ (A : (A : J ))/J −→ 0.

Now, using the fact that F is a flat A-module, we obtain the following exact
sequence

0 −→ (A : J ) ⊗A F
(p 1)T.⊗id

F 2
(1 −p).⊗id

(A : (A : J )) ⊗A F

π⊗id−→ ((A : (A : J ))/J ) ⊗A F −→ 0.

Then, using the fact that (A : J ) ⊗A F ∼= (A : J )F (see 1 of Proposition 6), we
finally obtain (48). In particular, we have domF (p) = (A : J )F and graphF (p) =
{(u pu)T ∈ F 2 | u ∈ domF (p)}.

3. See the proof of Corollary 4. �
If p ∈ Q(A) is internally stabilizable and c is a stabilizing controller of p, then,

by Example 8, we know that F = (1, p), (a, b), (1, c) and (1, c)−1 = (a, ap)

are flat A-modules. Using 3 of Proposition 7, we let the reader compute domF (p),
graphF (p), domF (c) and graphF (c) for these A-modules F .
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COROLLARY 5. Let p ∈ Q(A) be a transfer function which admits a weakly
coprime factorization p = n/d, 0 �= d, n ∈ A, and F a flat A-module. Then, we
have

domF (p) = (d)F = {dx | x ∈ F },
graphF (p) = {(dx nx)T ∈ F 2 | x ∈ F },

and the exact sequence (18) becomes:

0 −→ (d)F
δ−→ F 2 ε−→ (d−1) ⊗A F −→ ((d−1)/J ) ⊗A F −→ 0. (49)

Proof. By 2 of Theorem 1, if p admits a weakly coprime factorization p = n/d,
0 �= d, n ∈ A, then we have A : J = (d), and thus, A : (A : J ) = (d−1). Then, by
Proposition 7, the exact sequence (48) becomes (49) which proves the result. �

We have the following interesting result.

PROPOSITION 8. H2(C+) (see Example 6) is a flat H∞(C+)-module.
Proof. We denote by A = H∞(C+), F = H2(C+) and a = (a1 . . . an) ∈ A1×n.

Let us consider the equation
∑n

i=1 aixi = 0, where ai ∈ A and xi ∈ F and let us
define the linear operator:

a.: F n −→ F

(x1 . . . xn)
T �−→

n∑

i=1

aixi.

Then ker(a.) = {x ∈ F n | ∑n
i=1 aixi = 0} is a closed shift-invariant subspace

of F n. Therefore, by the Beurling–Lax Theorem [15], there exist p ∈ Z+ and an
inner matrix b = (bij ) ∈ An×p such that ker(a.) = bF p. Therefore, if x ∈ ker(a.),
then there exists y = (y1 . . . yp)T ∈ F p such that x = by. In particular, for all
y ∈ F p, we have (ab)y = 0, and thus, we obtain

‖(ab).‖L(F p,F ) � sup
0�=y∈F p

‖(ab)y‖2

‖y‖2
= 0.

However, we know that ‖(ab).‖L(F p,F ) = ‖ab‖∞ [9, 15], and thus, we obtain
‖ab‖∞
= 0, i.e., ab = 0. Therefore, conditions (47) are satisfied, which proves the
result. �

It is proved in [22] that the following equivalences hold:

• Every SISO system defined by means of transfer function p ∈ K = Q(A) is
internally stabilizable.

• Every MIMO system defined by means of a transfer matrix P ∈ Kq×r is
internally stabilizable.
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• A is a Prüfer domain, namely, for every p ∈ K the fractional ideal J = (1, p)

is invertible [2, 29].
We have the following proposition.

PROPOSITION 9 (Theorem 9.10 of [7]). If A is an integral domain, then A is a
Prüfer domain iff torsion-freeness and flatness are equivalent for A-modules.

In particular, this result holds if A is a Bézout domain, i.e., a domain over which
every finitely generated ideal is principal (e.g., RH∞, H0 [11]).

COROLLARY 6. H2(C+) is a flat RH∞(C+)-module and a torsion-free Â-mod-
ule.

Proof. It is well known that RH∞ is a principal ideal domain [35], and thus, a
Prüfer domain [29]. By Proposition 8, we know that H2(C+) is a flat H∞(C+)-
module. Therefore, by 2 of Proposition 6, H2(C+) is a torsion-free H∞(C+)-
module. Using the fact that RH∞ ⊂ H∞(C+) and Â ⊂ H∞(C+) [3], then H2(C+)

is also a torsion-free RH∞-module (resp., Â-module), and thus, by Proposition 9,
a flat RH∞-module. �
EXAMPLE 9. It is shown in [22] that A = RH∞ and H∞(C+) are coherent
Sylvester domains, and thus, every transfer function p ∈ Q(A) admits a weakly
coprime factorization p = n/d, 0 �= d, n ∈ A [22] (see also [13, 32]). Therefore,
if F = H2(C+) and A = RH∞ or H∞(C+), then, by Corollary 5, we have

domF (p) = (d)F , graphF (p) = (d n)TF .

In Section VII of [8], for A = H∞(C+) and F = H2(C+), the graph of a plant
p ∈ Q(A) which admits a weakly coprime factorization of p = n/d, 0 �= d, n ∈ A,
was defined by graphF (p) = (d n)TF . Hence, we have just proved that such a
definition was justified.

To finish, we also show how the previous results can be used for the study of
multidimensional systems.

EXAMPLE 10. We consider again the ring A = k[d1, . . . , dn] of differential
operators in di with coefficients in k = R, C (see Example 4). If � is an open
convex set of R

n, then the k-vector space F = D(�) (resp., E ′(�), S(�)) of com-
pactly supported smooth functions (resp., of compactly supported distributions, of
rapidly decreasing functions) in � are flat A-modules [14, 16, 30]. Thus, if we take
again Example 5 and we consider one of the previous flat A-modules for F , then,
using the fact that p = d−1

2 d1 ∈ Q(A) is a weakly coprime factorization of p, by
Corollary 5, we obtain

domF (p) = (d2)F = {d2x | x ∈ F },
graphF (p) = {(d2x d1x)T ∈ F 2 | x ∈ F }.
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5. F -Stabilizability and Internal Stabilizability

It is well known that if we consider A = A and F = Lq(R+), q ∈ [1, +∞],
then internal stabilizability implies F -stability of the closed-loop system, namely,
for all u1 and u2 ∈ F , we have e1, e2, y1, y2 ∈ F (see Figure 1), showing that
every signal in the closed-loop system is F -stable [5]. A similar result holds for
A = H∞(C+) and F = H2(C+) [9].

The converse problem consisting in finding the A-modules F for which internal
stabilizability is equivalent to F -stabilizability of the closed-loop system is an im-
portant issue in stabilization problems. In this last part of the paper, we shall study
this problem using the mathematical approach developed previously. In particular,
we shall identify a class of A-modules F for which internal stabilizability and
F -stabilizability are equivalent.

In order to do that, we need to generalize the definition of F -stabilizability
used in the literature so that we can also study general signal spaces F . Indeed, the
standard definition can only be used for a torsion-free A-module F . See Section 3.1
for more details.

DEFINITION 7. We use the same notations as in Theorem 3. Let F be an
A-module, p, c ∈ Q(A) and let us define the following A-morphism:

domF (p) × domF (c)
F−→ F × F

(
e1

e2

)

�−→
(

u1

u2

)

= (π ′ ◦ δ π ◦ δ′)
(

e1

e2

)

,
(50)

i.e.,

F

(
e1

e2

)

= π ′
((

1
p

)

e1

)

+ π

((
c

1

)

e2

)

=
(

e1 + ce2

pe1 + e2

)

.

• A controller c is said to F -stabilize the plant p if the A-morphism

F : domF (p) × domF (c) −→ F × F

defined by (50) is an isomorphism, i.e., if there exists an A-morphism

G: F × F −→ domF (p) × domF (c)

such that we have

G ◦ F = iddomF (p)×domF (c), F ◦ G = idF ×F . (51)

• A plant p is said to be F -stabilizable if there exists a controller c ∈ Q(A)

which F -stabilizes p.

Let us study the links between internal stabilizability and F -stabilizability.

PROPOSITION 10. Let F be an A-module, p and c ∈ Q(A). Then, we have:



38 A. QUADRAT

1. A-stabilizability is equivalent to internal stabilizability.
2. The controller c F -stabilizes p iff π ′ ◦ δ and π ◦ δ′ are injective A-morphisms

and

π ′(graphF (p)) ⊕ π(graphF (c)) = F × F ,

or, equivalently, iff the split exact sequence (41) holds.

Proof. 1. Let us suppose that p is internally stabilizable and c is a stabilizing
controller of p. Then, we have (1). Moreover, using the fact that F = A is a
torsion-free A-module, by Corollary 4, we obtain

A = A = A, domA(p) = (a, b) = (1, p)−1,

domA(c) = (a, ap) = (1, c)−1.

Therefore, the A-morphism F : domA(p) × domA(c) −→ A2 defined by

F

(
e1

e2

)

= (δ δ′)
(

e1

e2

)

=
(

1 c

p 1

)(
e1

e2

)

is invertible and its inverse G: A2 −→ domA(p) × domA(c) is defined by

G

(
u1

u2

)

=





1

1 − pc
− c

1 − pc

− p

1 − pc

1

1 − pc






(
u1

u2

)

=
(

a −b

−ap a

)(
u1

u2

)

.

Therefore, c A-stabilizes p and p is A-stabilizable.
Conversely, if p is A-stabilizable, then there exists a controller c ∈ Q(A) such

that the A-morphism F : domA(p) × domA(c) −→ A2 (F = F = A), defined by

F

(
e1

e2

)

=
(

1 c

p 1

) (
e1

e2

)

,

is invertible, where, by (26) and (36), we have
{

domA(p) = ρ(homA((1, p), A)) = A : (1, p),

domA(c) = ρ ′(homA((1, c), A)) = A : (1, c),
(52)

because ker ρ = ker ρ ′ = 0. Therefore, using the fact that F is an A-isomorphism,
then there exist unique a1, a2 ∈ domA(p) and b1, b2 ∈ domA(c) such that we have:

(
1 c

p 1

)(
a1

b1

)

=
(

1
0

)

,

(
1 c

p 1

)(
a2

b2

)

=
(

0
1

)

⇔






a1 + b1c = 1,

b1 = −a1p,

a2 = −b2c,

b2 + a2p = 1.
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From the last system, we deduce that (1 − pc)a1 = 1 and (1 − pc)b2 = 1, a
fact which shows that a1 �= 0, b2 �= 0, 1 − pc �= 0 and a1 = b2 = 1/(1 − pc).
Therefore, we obtain






b2 + a2p = 1,

b2p = a1p = −b1 ∈ A,

a2 = −b2c,

which, by 3 of Theorem 1, shows that c′ = −a2/b2 = c internally stabilizes p.
2. Let us suppose that p is F -stabilizable, i.e., there exists c ∈ Q(A) such that

the A-morphism

F : domF (p) × domF (c) −→ F × F ,

defined by (7) is an A-isomorphism. Therefore, there exists

G: F × F −→ domF (p) × domF (c)

such that the identities (51) hold. Let us denote by G = (τ ′ τ)T where τ and τ ′
are defined by

{
τ ′ = π1 ◦ G,

τ = π2 ◦ G,
and

{
π1: domF (p) × domF (c) −→ domF (p),

π2: domF (p) × domF (c) −→ domF (c),

are respectively the projections onto domF (p) and domF (c). Then, from (51), we
deduce that






F ◦ G = (π ′ ◦ δ π ◦ δ′) ◦
(

τ ′
τ

)

= (π ′ ◦ δ) ◦ τ ′ + (π ◦ δ′) ◦ τ ′

= idF ×F ,

G ◦ F =
(

τ ′
τ

)

◦ (π ′ ◦ δ π ◦ δ′) =
(

τ ′ ◦ (π ′ ◦ δ) τ ′ ◦ (π ◦ δ′)
τ ◦ (π ′ ◦ δ) τ ◦ (π ◦ δ′)

)

=
(

iddomF (p) 0
0 iddomF (c)

)

,

and thus, we obtain the split exact sequence (41), π ′ ◦ δ and π ◦ δ′ are injective
and (42) holds.

Conversely, let us suppose that the A-morphisms π ′ ◦ δ and π ◦ δ′ are injective
and (42) holds. Then, using (29) and (39), we obtain:

(π ′ ◦ δ)(domF (p)) ⊕ (π ◦ δ′)(domF (c)) = F × F .

Using the fact that π ′ ◦ δ and π ◦ δ′ are injective and the following standard split
exact sequence

0 −→ F1
i1−→ F1 ⊕ F2

π2−→ F2 −→ 0,

π1←− i2←−
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where F1 = (π ′ ◦ δ)(domF (p)) and F2 = (π ◦ δ′)(domF (c)), then we obtain the
following exact diagram

0 0
↑ ↑

0 −→ (π ′ ◦ δ)(domF (p))
i1−→ F × F

π2−→ (π ◦ δ′)(domF (c)) −→ 0,
π1←− i2←−

π ′◦δ ↑ ↑ π◦δ′

domF (p) domF (c)

↑ ↑
0 0

and thus, we obtain the split exact sequence

0 −→ domF (p)
π ′◦δ−→ F × F

τ−→ domF (c) −→ 0,
τ ′←− π◦δ′←−

where the A-morphisms τ and τ ′ are explicitly defined in the proof of Theorem 3.
Therefore, if we define G: F × F −→ domF (p) × domF (c) by

G

(
u

y

)

=
(

τ ′((u y)T)

τ ((u y)T)

)

,

then, using the fact that (41) is a split exact sequence, we obtain the relations

τ ′ ◦ (π ′ ◦ δ) = iddomF (p), τ ◦ (π ◦ δ′) = iddomF (c),

τ ◦ (π ′ ◦ δ) = 0, τ ′ ◦ (π ◦ δ′) = 0,

and (π ′ ◦ δ) ◦ τ ′ + (π ◦ δ′) ◦ τ = idF ×F which imply (51). Therefore, the A-

morphism F : domF (p) × domF (c) −→ F × F is an isomorphism, and thus, c

F -stabilizes p. �
We have the following corollary of Theorem 3 and 2 of Proposition 10.

COROLLARY 7. If p ∈ Q(A) is internally stabilizable, then p is F -stabilizable
for every A-module F .

To finish, we try to understand over which A-module F the converse result of
Corollary 7 holds, i.e., for which A-module F , F -stabilizability of p implies that
p is internally stabilizable.

In order to do that, we introduce the following definition.

DEFINITION 8. F is a faithfully flat A-module if one of following equivalent
assertions is satisfied:



ALGEBRAIC INTERPRETATION TO THE OPERATOR-THEORETIC APPROACH 41

1. F is a flat A-module and, for A-modules M ′, M and M ′′, M ′ −→ M −→ M ′′
is an exact sequence whenever F ⊗A M ′ −→ F ⊗A M −→ F ⊗A M ′′ is an
exact sequence.

2. F is a flat A-module and, for every maximal ideal m of A, mF is strictly
contained in F , i.e., mF � F .

EXAMPLE 11. We give a few examples of faithfully flat A-modules.

• Every finitely generated free A-module F , namely, F ∼= An, n ∈ Z+, is
faithfully flat.

• [2] If (fi)i∈I is a finite family of elements of A such that
∑

i∈I Afi = A, then
B = ∏

i∈I Afi
is a faithfully flat A-module, where Afi

= {a/f n
i | a ∈ A,

n ∈ Z+}.
• Let us consider the ring A = k[d1, . . . , dn] of differential operators in di

with coefficients in k = R, C. If � is an open convex set of R
n, then the A-

module D(�) (resp., E ′(�)) of compactly supported smooth functions (resp.,
of compactly supported distributions) in � is a faithfully flat A-module [14,
30].

The next lemma gives conditions on the A-module F so that the basic assump-
tion of [39], namely, p ∈ Q(A) is a bounded linear operator from F to F iff
p ∈ A, is satisfied. We first note the fact that p defines a linear operator from F to
F implies that F is necessarily a torsion-free A-module.

LEMMA 7. Let p ∈ Q(A), J = (1, p) and F be a faithfully flat A-module. Then,
we have

domF (p) = F ⇔ p ∈ A.

Proof. ⇒ By 2 of Proposition 7, we have domF (p) = (A : J )F . Therefore,
domF (p) = F implies that (A : J )F = F . But, F is a faithfully flat A-module,
and thus, by 2 of Definition 8, A : J is not contained in a maximal ideal of A, i.e.,
A : J = A [2]. Then, by 1 of Theorem 1, we obtain p ∈ A.

⇐ This result has already been proved in 1 of Proposition 4. �
Remark 1. The set of the maximal ideals of A = H∞(C+) is not very well

understood [12]. Therefore, we do not know yet whether or not F = H2(C+)

is a faithfully flat H∞(C+)-module. However, using the fact that A is a coherent
Sylvester domain [22], we know that every transfer function p ∈ Q(A) admits a
weakly coprime factorization p = n/d, 0 �= d, n ∈ d, and thus, by 2 of Theorem 1,
we have A : (1, p) = (d). Therefore, “domF (p) = F ⇒ p ∈ A” is equivalent
to “(d)F = F ⇒ d ∈ U(A)”, where U(A) denotes the set of invertible elements
of A. Such a result holds for H∞(C+) [40].

PROPOSITION 11. H2(C+) is a faithfully flat RH∞-module.
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Proof. By Corollary 6, we already know that F = H2(C+) is a flat A = RH∞-
module. Using the fact that A is a principal ideal domain [35], we check that a
maximal ideal of A is of the form (d) where d∞ = 1/(s + 1), da = (s − a)/(s + 1)

with a ∈ R and a � 0 or da±ib = ((s − a)2 + b2)/(s + 1)2 with a, b ∈ R and
a � 0 and b > 0. In all these cases, we easily check that (d)F � F , which, by 2
of Definition 8, shows that F is a faithfully flat A-module. �

We are now in position to state the last theorem of this paper.

THEOREM 4. Let F be a faithfully flat A-module, p and c ∈ Q(A). Then, the
controller c F -stabilizes the plant p iff c internally stabilizes p.

Proof. Using the fact that F is a faithfully flat A-module, by 2 of Proposition 7
and 1 of Proposition 6, we obtain

domF (p) = domA(p)F = domA(p) ⊗A F .

Similarly, we have domF (c) = domA(c)F = domA(c) ⊗A F . Moreover, by 1 of
Proposition 7, we also have F = F = F .

By 1 of Proposition 10, p is internally stabilized by c iff p is A-stabilized by c,
i.e., by 2 of Proposition 10, iff we have the following split exact sequence:

0 −→ domA(p)
δ−→ A2 τ−→ domA(c) −→ 0.

τ ′←− δ′←−
Using that F is a faithfully flat A-module, the previous split exact sequence holds
iff we have the following split exact sequence:

0 −→ domA(p) ⊗A F
δ⊗id−→ F 2 τ⊗id−→ domA(c) ⊗A F −→ 0,

τ ′⊗id←− δ′⊗id←−
i.e., iff we have the following split exact sequence:

0 −→ domF (p)
δ−→ F 2 τ−→ domF (c) −→ 0,

τ ′←− δ′←−
and thus, by 2 of Proposition 10, iff p is F -stabilizes by c. �

6. Conclusion

We hope that we have convinced the reader that the fractional ideal approach to
SISO systems is a natural mathematical framework for the study of analysis and
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synthesis problems. In particular, we have shown that a certain duality existed be-
tween this algebraic approach and the operator-theoretic one. This duality allows us
to understand the forms of the domain and the graph of a transfer function depend-
ing on the structural properties of the system (e.g., stable, internally stabilizable,
existence of a (weakly) coprime factorization) or of the signal space over which
the transfer function acts (e.g., injective, torsion-free, flat or faithfully flat module).
The fractional ideal approach can be extended to MIMO systems using the concept
of lattice of vector spaces. We refer the reader to [24, 25] for more details. Hence,
dualizing this approach, we can develop an operator-theoretic approach to analysis
and synthesis problems for MIMO systems. Such an extension will be studied in
the future. Finally, the problem of determining the graph of a stabilizable plant
has crucial applications in the study of the robustness topology (e.g., gap, graph,
ν-gap metrics . . . ) [8, 9, 31, 35, 39]. In a forthcoming publication, we shall use the
results obtained in this paper in order to study the robustness topology for internally
stabilizable plants which do not necessarily admit coprime factorizations (see [31]).
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