EXTENDED BÉZOUT IDENTITIES

A. Quadrat*
* School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom.
fax: 00441332335145
e-mail: quadrat@amsta.leeds.ac.uk

Keywords: Multidimensional systems, primeness, extended Bézout identities, π-flatness, algebraic analysis.

Abstract

We study primeness of multidimensional control systems defined in terms of algebraic properties of $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$ modules and show how to pass from one to another by inversion of a certain $\pi \in D$. We use these results to determine effectively extended Bézout identities of multidimensional control systems and the minimal number of χ_{i} contained in π.

1 Introduction

In [13], it has been shown that primeness of multidimensional systems, defined by a full row rank matrix R with entries in $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$, are linked with extended Bézout identities, i.e. the existence of a matrix S and $\pi \in D$ such that $R S=\pi I$, where I is the identity matrix. However, only two different types of primeness, $Z L P$ and $M L P$, have been defined in [13], which correspond to the case $\pi=1$ and π a polynomial containing $n-1$ variables χ_{i}.
To my knowledge, nothing has been done for the other cases until the work of Oberst [6], surely because the complexity of the matrices increases with the number n. The main contribution of [6] has been the introduction of algebraic analysis concepts [2] in the theory of multidimensional systems. Following an idea of Malgrange, it is shown in [6] how to associate with any multidimensional system a finitely presented D module M. Then, the author shows that ZLP (resp. MLP) corresponds to a projective (resp. torsion-free) D-module M and he defines a new type of primeness, $W Z L P$, which corresponds to π containing one variable.
In [12], it is shown that for a multidimensional control system, defined by a full row rank matrices R, there exist a one-to-one correspondence between the number of χ_{i} in π and a chain of n different type of primeness, defined by the dimension of the algebraic variety formed by the zeros of all the maximal order minors of R (this chain includes ZLP, WZLP and MLP).

Finally, using the classification of Palamodov-Kashiwara [2], it is shown in [8] that, for the ring $K\left[d_{1}, \ldots, d_{n}\right]$ of differential operators with coefficients in a differential field K $\left(K\left[d_{1}, \ldots, d_{n}\right] \cong k\left[\chi_{1}, \ldots, \chi_{n}\right]\right.$ if $K=k$ is a constant field $)$, there are one-to-one equivalences between the chain of algebraic properties of M (torsion-free \subseteq reflexive $\subseteq \ldots \subseteq$ projective), the number of successive parametrizations of the mul-
tidimensional control system, the index i of the first non-zero $\operatorname{ext}_{D}^{i}(T(M), D)$ for $i \geq 1$, where $T(M)$ is the transposed module of M and ext is the extension functor, and, in the case of a full row rank matrix R, the dimension of the characteristic variety $\operatorname{char}(M)$ and the type of primeness obtained in [12] if in addition $K=k$.
In this paper, we show how to pass from an element of the previous equivalent chains to another one, by means of the inversion of a certain polynomial π in $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$ containing more or less χ_{i}. In particular, it is shown how to pass from a type of primeness to another one by localization of a polynomial π and how to obtain effectively extended Bézout identities for each type of primeness.

2 Modules and Extension functor

In the course of this paper, we shall note $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$, where $k=\mathbb{R}$ or \mathbb{C}.

Definition 1. [11] Let M be a finitely generated D-module. Then:

- M is a free D-module if $M \cong D^{r}$ for a certain $r \in \mathbb{Z}_{+}$,
- M is a projective D-module if $M \oplus P \cong D^{r}$ for a certain D-module P and $r \in \mathbb{Z}_{+}$,
- M is a reflexive D-module if the D-morphism defined by

$$
\begin{gathered}
\epsilon: M \rightarrow \operatorname{hom}_{D}\left(\operatorname{hom}_{D}(M, D), D\right) \\
\epsilon(m)(f)=f(m), \forall f \in \operatorname{hom}_{D}(M, D), \forall m \in M
\end{gathered}
$$

is an isomorphism,

- M is a torsion-free D-module if

$$
t(M)=\{m \in M \mid \exists 0 \neq P \in D, P m=0\}=0
$$

- M is a torsion D-module if $t(M)=M$.

Theorem 1. [11] We have the following assertions:

- free \subseteq projective $\subseteq \ldots \subseteq$ reflexive \subseteq torsion - free.
- If $D=k\left[\chi_{1}\right]$, then any torsion-free D-module is free.
- Any projective $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$-module is free (Quillen-Suslin) [14].

Definition 2. We have the following definitions (see e.g. [11] for more details):

- A projective resolution (resp. free resolution) of a D module M is an exact sequence of the form

$$
\begin{equation*}
\ldots \xrightarrow{d_{i}} P_{i-1} \xrightarrow{d_{i-1}} \ldots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \longrightarrow M \longrightarrow 0 \tag{1}
\end{equation*}
$$

where P_{i} is a projective (resp. free) D-module and d_{i} is a D-morphism.

- If M is defined by a projective resolution (1), then the defects of exactness of

$$
\begin{equation*}
\ldots \stackrel{d_{i+1}^{\star}}{\leftarrow} P_{i}^{\star} \stackrel{d_{i}^{\star}}{\leftarrow} P_{i-1}^{\star} \stackrel{d_{i-1}^{\star}}{\leftarrow} \ldots \stackrel{d_{2}^{\star}}{\leftarrow} P_{1}^{\star} \stackrel{d_{1}^{\star}}{\leftarrow} P_{0}^{\star} \longleftarrow 0, \tag{2}
\end{equation*}
$$

where $P_{i}^{\star}=\operatorname{hom}_{D}\left(P_{i}, D\right)$ and $d_{i}^{\star}: P_{i-1}^{\star} \rightarrow P_{i}^{\star}$ is defined by $d_{i}^{\star}(f)=f \circ d_{i}, \forall f \in P_{i}^{\star}$, only depend on M and not on (1). They are called $\operatorname{ext}_{D}^{i}(M, D)$. Therefore:

$$
\left\{\begin{array}{l}
\operatorname{ext}_{D}^{0}(M, D)=\operatorname{ker} d_{1}^{\star}=\operatorname{hom}_{D}(M, D) \\
\operatorname{ext}_{D}^{i}(M, D)=\operatorname{ker} d_{i+1}^{\star} / \operatorname{im} d_{i}^{\star}
\end{array}\right.
$$

Remark 1. If M is a finitely generated D-module, then M has a finite free resolution

$$
\begin{equation*}
\ldots \xrightarrow{. R_{i+1}} D^{l_{i}} \xrightarrow{. R_{i}} D^{l_{i-1}} \xrightarrow{\cdot R_{i-1}} \ldots \xrightarrow{. R_{1}} D^{l_{0}} \longrightarrow M \longrightarrow 0 \tag{3}
\end{equation*}
$$

where R_{i} is a $l_{i} \times l_{i-1}$ matrix with entries in D and $. R_{i}: D^{l_{i}} \rightarrow$ $D^{l_{i-1}}$ is defined by letting operate a row vector of length l_{i} on the left of R_{i} to obtain a row vector of length l_{i-1}. Then, (2) is defined by

$$
\ldots \stackrel{R_{i+1} .}{\leftarrow} D^{l_{i}} \stackrel{R_{i} .}{\leftarrow} D^{l_{i-1}} \stackrel{R_{i-1} .}{\longleftarrow} \ldots \stackrel{R_{2} .}{\longleftarrow} D^{l_{1}} \stackrel{R_{1} .}{\longleftarrow} D^{l_{0}} \longleftarrow 0,
$$

where R_{i} : : $D^{l_{i-1}} \rightarrow D^{l_{i}}$ is defined by letting operate a column vector of length l_{i-1} on the right of R_{i} to obtain a column vector of length l_{i}. Then, we have:

$$
\operatorname{ext}_{D}^{i}(M, D)=\operatorname{ker}\left(R_{i+1} .\right) / \operatorname{im}\left(R_{i} .\right), \forall i \geq 1
$$

Definition 3. If M is a D-module defined by the following finite presentation

$$
\begin{equation*}
F_{1} \xrightarrow{d_{1}} F_{0} \longrightarrow M \longrightarrow 0 \tag{4}
\end{equation*}
$$

then, its transposed module $N=T(M)$ is the D-module defined by $N=\operatorname{coker} d_{1}^{\star}$, i.e. N is the D-module defined by the following finite presentation:

$$
\begin{equation*}
0 \longleftarrow N \longleftarrow F_{1}^{\star} \stackrel{d_{1}^{\star}}{\longleftarrow} F_{0}^{\star} \tag{5}
\end{equation*}
$$

We easily verify that for any finitely generated D-module we have:

$$
T(T(M)) \cong M
$$

Proposition 1. Let M be a finitely presented D-module and S a multiplicative set of D, then we have:

$$
T\left(S^{-1} D \otimes_{D} M\right) \cong T(M) \otimes_{D} S^{-1} D
$$

Proof. Taking the tensor product $S^{-1} D \otimes_{D}$ • of (4), we obtain the exact sequence of $S^{-1} D$-modules [11]:
$S^{-1} D \otimes_{D} F_{1} \xrightarrow{\mathrm{id}_{S} \otimes d_{1}} S^{-1} D \otimes_{D} F_{0} \longrightarrow S^{-1} D \otimes_{D} M \longrightarrow 0$.
Then, $T\left(S^{-1} D \otimes_{D} M\right)=\operatorname{coker}\left(\mathrm{id}_{S} \otimes d_{1}\right)^{\star}$ is defined by the finite presentation defined in Figure 1. We have $\operatorname{hom}_{S^{-1} D}\left(S^{-1} D \otimes_{D} F_{i}, S^{-1} D\right) \cong F_{i}^{\star} \otimes_{D} S^{-1} D, i=0,1$, and $\left(\mathrm{id}_{S} \otimes d_{1}\right)^{\star}=d_{1}^{\star} \otimes \mathrm{id}_{S}$ because F_{0} and F_{1} are two finitely generated D-modules [11]. Moreover, if we take the tensor product of (5) by $S^{-1} D$, we obtain the following exact sequence:
$0 \longleftarrow T(M) \otimes_{D} S^{-1} D \longleftarrow F_{1}^{\star} \otimes_{D} S^{-1} D \stackrel{d_{1}^{\star} \otimes \mathrm{id} S}{\longleftarrow} F_{0}^{\star} \otimes_{D} S^{-1} D$.
Finally, we have the commutative exact diagram defined in Figure 2 which proves the proposition.

Theorem 2. If M is a finitely generated D-module and $N=$ $T(M)$, then we have:

$$
\text { 1. } t(M) \cong \operatorname{ext}_{D}^{1}(N, D)
$$

2. M is a torsion-free D-module iff $\operatorname{ext}_{D}^{1}(N, D)=0$,
3. M is a reflexive D-module iff $\operatorname{ext}_{D}^{i}(N, D)=0, i=1,2$,
4. M is a projective D-module iff $\operatorname{ext}_{D}^{i}(N, D)=0, i=$ $1, \ldots, n$.

Proof. See [9] for the proves of 1 and 2. We have the following exact sequence
$\left.0 \longrightarrow \operatorname{ext}_{D}^{1}(N, D) \longrightarrow M \xrightarrow{\epsilon} M^{\star \star} \longrightarrow \operatorname{gxt} \mathrm{t}^{2}, D\right) \longrightarrow 0$
(see [8] and its references for a proof) which proves 3. An algebraic proof of 4 can be easily adapted from the proof of Corollary 4 in [8].

Definition 4. - The grade of a D-module M is defined by:

$$
j(M)=\min _{i \geq 0}\left\{i \mid \operatorname{ext}_{D}^{i}(M, D) \neq 0\right\} \in\{0, \ldots, n,+\infty\}
$$

- We call dimension of a D-module M the Krull dimension $d(M)$ of $D / \operatorname{ann}(M)$ (with the convention that $d(0)=$ -1) [11].

Theorem 3. [1, 2] Let M be a finitely generated D-module, then we have:
$j(M)=\operatorname{cd}(M):=n-d(M)$ if $M \neq 0(+\infty$ if $M=0)$.

$$
0 \longleftarrow T\left(S^{-1} D \otimes_{D} M\right) \longleftarrow \operatorname{hom}_{S^{-1} D}\left(S^{-1} D \otimes_{D} F_{1}, S^{-1} D\right) \stackrel{\left(\mathrm{id}_{S} \otimes d_{1}\right)^{\star}}{\longleftarrow} \operatorname{hom}_{S^{-1} D}\left(S^{-1} D \otimes_{D} F_{0}, S^{-1} D\right)
$$

Figure 1: Exact sequence

Figure 2: Commutative exact diagram

3 Main results

3.1 General case

Definition 5. Let M be a finitely generated D-module and $N=T(M)$, then we define:
$i(M)=\min _{i \geq 1}\left\{i-1 \mid \operatorname{ext}_{D}^{i}(N, D) \neq 0\right\} \in\{0, \ldots, n-1,+\infty\}$.
Remark 2. The notation $i(M)$ is justified by the fact that N only depends on M up to a projective equivalence, and thus, $\operatorname{ext}_{D}^{k}(N, D), k \geq 1$, only depends on M [10]. Moreover, by Theorem $2, t(M) \neq 0 \Leftrightarrow i(M)=0, t(M)=0 \Leftrightarrow i(M)=1$, M reflexive $\Leftrightarrow i(M)=2, \ldots, M$ projective $\Leftrightarrow i(M)=+\infty$.

We shall denote by S_{n} the group of permutations of n elements.
Theorem 4. Let M be a finitely generated $D=$ $k\left[\chi_{1}, \ldots, \chi_{n}\right]$-module and for all $\sigma \in S_{n}$:

Moreover, $K_{i(M)}^{\sigma}$ is a flat D-module and N is finitely presented, then we have $\forall j \geq 0$ [11]:

$$
\begin{equation*}
\operatorname{ext}_{K_{i(M)}^{\sigma}}^{j}\left(K_{i(M)}^{\sigma} \otimes_{D} N, K_{i(M)}^{\sigma}\right) \cong K_{i(M)}^{\sigma} \otimes_{D} \operatorname{ext}_{D}^{j}(N, D) \tag{9}
\end{equation*}
$$

Hence, we obtain $\operatorname{ext}_{K_{i(M)}^{\sigma}}^{j}\left(K_{i(M)}^{\sigma} \otimes_{D} N, K_{i(M)}^{\sigma}\right)=0, \forall j \geq$ 1, i.e. $K_{i(M)}^{\sigma} \otimes_{D} N$ is a projective $K_{i(M)}^{\sigma}$-module. Finally, the right member of the isomorphism in (9) for $j \geq i(M)+1$, combined with the fact that $\operatorname{ext}_{D}^{j}(N, D)$ is a torsion D-module [9] for $j \geq 1$, implies that we have $\forall j \geq i(M)+1$:

$$
I_{n-i(M)}^{\sigma j}:=\operatorname{ann}\left(\operatorname{ext}_{D}^{j}(N, D)\right) \cap D_{n-i(M)}^{\sigma} \neq 0
$$

For $j \geq i(M)+1$, let us take

$$
\pi_{n-i(M)}^{\sigma j} \in \operatorname{ann}\left(\operatorname{ext}_{D}^{j}(N, D)\right) \cap D_{n-i(M)}^{\sigma}
$$

Then, for all integer $l \geq 0$, there exists $\pi_{n-i(M)}^{\sigma} \in D_{n-i(M)}^{\sigma}$ such that

$$
\begin{equation*}
i\left(D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} M\right) \geq i(M)+l \tag{8}
\end{equation*}
$$

where $S_{\pi_{n-i(M)}^{\sigma}}=\left\{1, \pi_{n-i(M)}^{\sigma},\left(\pi_{n-i(M)}^{\sigma}\right)^{2}, \ldots\right\}$ is the multiplicative set formed by $\pi_{n-i(M)}^{\sigma}$ and $D_{\pi_{n-i(M)}^{\sigma}}=S_{\pi_{n-i(M)}^{\sigma}}^{-1} D$. In particular, for all $\sigma \in S_{n}$, there exists $\pi_{n-i(M)}^{\sigma} \in D_{n-i(M)}^{\sigma}$ such that $D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{n-i(M)}^{\sigma}}-$ module.

Proof. First of all, let us notice that if $i(M)=+\infty$ or $l=0$, then the result is trivial (take $\pi_{n-i(M)}^{\sigma} \in k$). In the following of the proof, we suppose $l \geq 1,0 \leq i(M) \leq n-1$, and note:

$$
K_{i(M)}^{\sigma}=\left(D_{n-i(M)}^{\sigma}\right)^{-1} D, \quad 0 \leq i(M) \leq n-1
$$

that is to say, $K_{0}^{\sigma}=k\left(\chi_{1}, \ldots, \chi_{n}\right)$ and, for $1 \leq i(M) \leq n-1$:
$K_{i(M)}^{\sigma}=k\left(\chi_{\sigma(1)}, \ldots, \chi_{\sigma(n-i(M))}\right)\left[\chi_{\sigma(n-i(M)+1)}, \ldots, \chi_{\sigma(n)}\right]$. Therefore, we have [11]:

$$
\begin{gathered}
\operatorname{gldim}\left(K_{i(M)}^{\sigma}\right)=i(M) \\
\Rightarrow \operatorname{ext}_{K_{i(M)}^{\sigma}}^{j}\left(K_{i(M)}^{\sigma} \otimes_{D} N, K_{i(M)}^{\sigma}\right)=0, \quad \forall j \geq i(M)+1
\end{gathered}
$$

$$
\pi_{n-i(M)}^{\sigma}=\Pi_{\left\{i(M)+1 \leq j \leq i(M)+l, \pi_{n-i(M)}^{\sigma j} \neq 0\right\}} \pi_{n-i(M)}^{\sigma j}
$$

We have $\pi_{n-i(M)}^{\sigma} \in D_{n-i(M)}^{\sigma}$ and:

$$
\pi_{n-i(M)}^{\sigma} \operatorname{ext}_{D}^{j}(N, D)=0, \quad i(M)+1 \leq j \leq i(M)+l
$$

Therefore, for $i(M)+1 \leq j \leq i(M)+l$, we have:

$$
\begin{aligned}
& \operatorname{ext}_{D_{\pi_{n-i(M)}^{\sigma}}^{j}}\left(D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} N, D_{\pi_{n-i(M)}^{\sigma}}\right) \\
& \cong D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} \operatorname{ext}_{D}^{j}(N, D)=0
\end{aligned}
$$

By Theorem 2 and Proposition 1 (i.e. $T\left(D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} M\right)=$ $N \otimes_{D} D_{\pi_{n-i(M)}^{\sigma}}$, we obtain:

$$
i\left(D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} M\right) \geq i(M)+l
$$

If we take $l=n-i(M)$, then $D_{\pi_{n-i(M)}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{n-i(M)}^{\sigma}}$-module.

Example 1. Let us consider the $D=k\left[\chi_{1}, \chi_{2}, \chi_{3}\right]$-module M defined by the matrix

$$
R=\left(\begin{array}{ccc}
0 & -\chi_{3} & \chi_{2} \\
\chi_{3} & 0 & -\chi_{1} \\
-\chi_{2} & \chi_{1} & 0
\end{array}\right)
$$

corresponding to the curl operator in \mathbb{R}^{3}. Thus, we have the following free resolution of M

$$
0 \longrightarrow D \xrightarrow{R_{1}} D^{3} \xrightarrow{. R} D^{3} \longrightarrow M \longrightarrow 0
$$

where the matrix $R_{1}=\left(\begin{array}{lll}\chi_{1} & \chi_{2} & \chi_{3}\end{array}\right)$ corresponds to the divergence operator. Then, the D-module $N=T(M)$ is defined by $0 \longleftarrow N \longleftarrow D^{3} \stackrel{R .}{\longleftarrow} D^{3}$. We easily check that we have

$$
\left\{\begin{array}{l}
\operatorname{ext}_{D}^{1}(N, D)=0 \\
\operatorname{ext}_{D}^{2}(N, D)=D / D^{3} R_{-1} \neq 0 \\
\operatorname{ext}_{D}^{j}(N, D)=0, \quad \forall j \geq 3
\end{array}\right.
$$

where $R_{-1}=R_{1}^{t}$. Thus, we obtain $i(M)=2-1=1$ and $3-i(M)=2$. Moreover, $\operatorname{ext}_{D}^{2}(N, D)=D / D^{3} R_{-1}$ is defined by the following equations

$$
\left\{\begin{array}{l}
\chi_{1} z=0 \\
\chi_{2} z=0 \\
\chi_{3} z=0
\end{array}\right.
$$

and we verify that $\forall \sigma \in S_{3}$:
$I_{2}^{\sigma}{ }^{2}=\operatorname{ann}\left(\operatorname{ext}_{D}^{2}(N, D)\right) \cap k\left[\chi_{\sigma(1)}, \chi_{\sigma(2)}\right]=\left(\chi_{\sigma(1)}, \chi_{\sigma(2)}\right)$.
But, $\chi_{\sigma(1)}^{-1}, \chi_{\sigma(2)}^{-1} \in K_{1}^{\sigma}=k\left(\chi_{\sigma(1)}, \chi_{\sigma(2)}\right)\left[\chi_{\sigma(3)}\right]$, and thus, we have:

$$
K_{1}^{\sigma} \otimes_{D} \operatorname{ext}_{D}^{2}(N, D)=\operatorname{ext}_{K_{1}^{\sigma}}^{2}\left(K_{1}^{\sigma} \otimes_{D} N, K_{1}^{\sigma}\right)=0
$$

Moreover, we have $\operatorname{ext}_{K_{1}^{\sigma}}^{j}\left(K_{1}^{\sigma} \otimes_{D} N, K_{1}^{\sigma}\right)=0, \forall j \geq 1$, which implies that $K_{1}^{\sigma} \otimes_{D} M$ is a projective K_{1}^{σ}-module. Finally, if we note $\pi_{2}^{\sigma}=\chi_{\sigma(1)}$, then $D_{\pi_{2}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{2}^{\sigma}-\text { module, where }} D_{\pi_{2}^{\sigma}}=S_{\pi_{2}^{\sigma}}^{-1} D$ with $S_{\pi_{2}^{\sigma}}=$ $\left\{1, \pi_{2}^{\sigma},\left(\pi_{2}^{\sigma}\right)^{2}, \ldots\right\}$. By Theorem $1, D_{\pi_{2}^{\sigma}} \otimes_{D} M$ is a free $D_{\pi_{2}^{\sigma}}$ module and we easily verify that a basis is given by $y_{\sigma(1)}$, where $y=\left(\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right)^{t}$ satisfies $R y=0$ and $\sigma \in S_{3}$, because we have $y_{\sigma(i)}=\left(\chi_{\sigma(i)} / \chi_{\sigma(1)}\right) y_{\sigma(1)}, i=2,3$.
Remark 3. Let us notice that Theorem 4 does not predict the minimal number of independent variables χ_{i} in the polynomial $\pi_{n-i(M)}^{\sigma}$. Indeed, in the previous example, we only need to invert $\pi_{2}^{\sigma}=\chi_{\sigma(1)}$ which contains just one independent variable, whereas, from Theorem 4, we only know that we have to invert a polynomial $\pi_{2}^{\sigma} \in k\left[\chi_{\sigma(1)}, \chi_{\sigma(2)}\right]$ in two variables. The next theorem gives a more precise statement on the minimal number of χ_{i} in $\pi_{n-i(M)}^{\sigma}$.
Lemma 1. Let M be a finitely generated D-module and $N=$ $T(M)$. Then, M is a projective D-module iff N is a projective D-module, i.e. $i(M)=+\infty \Leftrightarrow i(N)=+\infty$.

Proof. We have the following exact sequence $0 \longleftarrow N \longleftarrow$ $F_{1}^{\star} \stackrel{d_{1}^{\star}}{\longleftarrow} F_{0}^{\star} \longleftarrow M^{\star} \longleftarrow 0$. If N is projective, then this exact sequence splits [7,11] and we obtain that M^{\star} is projective. Thus, $M^{\star \star}$ is still projective [11]. Moreover, we have $\operatorname{ext}_{D}^{1}(N, D)=0=\operatorname{ext}_{D}^{2}(N, D)$, because N is projective, thus, using the exact sequence (6), we obtain that $M \cong M^{\star \star}$ is projective. Changing N into M, we obtain the converse result, which proves the lemma.

Theorem 5. Let M be a finitely generated $D=$ $k\left[\chi_{1}, \ldots, \chi_{n}\right]$-module, $N=T(M)$ and:

$$
h(M)=i(M)+i(N) \in\{0, \ldots, n,+\infty\}
$$

Then, for all $\sigma \in S_{n}$ and $l \geq 0$, there exists $\pi_{n-h(M)}^{\sigma} \in$ $D_{n-h(M)}^{\sigma}$ such that we have (8), where $D_{n-h(M)}^{\sigma}$ is defined in (7). In particular, there exists $\pi_{n-h(M)}^{\sigma} \in D_{n-h(M)}^{\sigma}$ such that $D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{n-h(M)}^{\sigma}}-$ module.

Proof. If M is projective, then the result is trivial. Let us suppose that M is not a projective D-module. Then, by Lemma 1 , we have $0 \leq i(N) \leq n-1$. The D-module M has a projective resolution of the form:
$\ldots \longrightarrow P_{i(N)+1} \xrightarrow{d_{i(N)+1}} P_{i(N)} \longrightarrow \ldots \xrightarrow{d_{1}} P_{0} \longrightarrow M \longrightarrow 0$.
Using the fact that $i(N)=\min _{i \geq 1}\left\{i-1 \mid \operatorname{ext}_{D}^{i}(M, D) \neq 0\right\}$, we obtain by duality the following exact sequence

$$
\begin{equation*}
0 \longleftarrow N_{i(N)} \longleftarrow P_{i(N)+1}^{\star} \stackrel{d_{i(N)+1}^{\star}}{\longleftarrow} \ldots \stackrel{d_{2}^{\star}}{\longleftarrow} P_{2}^{\star} \longleftarrow N \longleftarrow 0, \tag{10}
\end{equation*}
$$

where $N_{i(N)}=\operatorname{coker} d_{i(N)+1}^{\star}$. Let us note $M_{i(N)}=$ coker $d_{i(N)+1}$. From (10), we deduce that:

$$
\begin{aligned}
& \operatorname{ext}_{D}^{i(N)+l}\left(N_{i(N)}, D\right) \cong \operatorname{ext}_{D}^{l}(N, D), \forall l \geq 1 \\
& \quad \Rightarrow i\left(M_{i(N)}\right)=i(M)+i(N)=h(M)
\end{aligned}
$$

Applying Theorem 4 to $M_{i(N)}$, then $\forall l \geq 0$, there exists $\pi_{n-h(M)}^{\sigma} \in D_{n-h(M)}^{\sigma}$ such that:

$$
i\left(D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M_{i(N)}\right) \geq i\left(M_{i(N)}\right)+l=h(M)+l
$$

Thus, for $1 \leq m \leq i(M)+l$, we have:

$$
\begin{aligned}
& \operatorname{ext}_{D_{\pi n-h(M)}^{\sigma}}^{i(N)+m}\left(D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} N_{i(N)}, D_{\pi_{n-h(M)}^{\sigma}}\right)=0 \\
& \cong D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} \operatorname{ext}_{D}^{i(N)+m}\left(N_{i(M)}, D\right) \\
& \cong D_{\pi_{n-h(M)}^{\sigma}}^{i\left(e_{D}\right.} \otimes_{D} \operatorname{ext}_{D}^{m}(N, D) \\
& \cong \operatorname{ext}_{D_{\pi_{n-h(M)}^{\sigma}}^{\sigma}}\left(D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} N, D_{\pi_{n-h(M)}^{\sigma}}\right)
\end{aligned}
$$

Hence, we deduce that $i\left(D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M\right) \geq i(M)+l$, which proves (8).

Example 2. If we take again Example 1, we easily show that $i(M)=1$ and $3-h(M)=3-(1+1)=1$. Thus, there exists $\pi_{1}^{\sigma} \in D_{1}^{\sigma}=k\left[\chi_{\sigma(1)}\right]$ such that $D_{\pi_{1}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{1}^{\sigma-}}$ module. We have seen in Example 1 that $\pi_{2}^{\sigma}=\chi_{\sigma(1)}$. Theorem 5 predicts that there exists π_{1}^{σ} containing just one variable $\chi_{\sigma(1)}$, which gives an answer to Remark 3.

Example 3. If $M=D /\left(D \chi_{1}+D \chi_{2}+D \chi_{3}\right)$ is the $D=$ $k\left[\chi_{1}, \chi_{2}, \chi_{3}\right]$-module defined by the gradient operator, then we easily check that $i(M)=0, i(N)=2$ and $3-h(M)=3-2=$ 1. Therefore, there exists $\pi_{1}^{\sigma} \in k\left[\chi_{\sigma(1)}\right]$ such that $D_{\pi_{1}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{1}^{\sigma}}$-module. We let the reader check by himself that we can choose $\pi_{1}^{\sigma}=\chi_{\sigma(1)}$ and $D_{\pi_{1}^{\sigma}} \otimes_{D} M=0$.

Remark 4. If $n-h(M)=1$, then, following the proof of Theorem 4, we obtain that the ideal $I_{1}^{\sigma i}$, defined by $I_{1}^{\sigma i}=$ $\operatorname{ann}\left(\operatorname{ext}_{D}^{i}(N, D)\right) \cap k\left[\chi_{\sigma(1)}\right]$ is principal, for every $i \geq 1$ and $\sigma \in S_{n}$. Thus, up to a constant of k, there exists a unique lower degree polynomial $\pi_{1}^{\sigma i}$ such that $I_{1}^{\sigma i}=\left(\pi_{1}^{\sigma}{ }^{i}\right)$ and $\pi_{1}^{\sigma}=$ $\prod_{\left\{i \geq 1 \mid \pi_{1}^{\sigma} \neq 0\right\}} \pi_{1}^{\sigma i}$. This is exactly the case for Examples 2 and 3 .

3.2 Particular case

Lemma 2. [5] If M is a D-module defined by the following finite presentation

$$
\begin{equation*}
0 \longrightarrow F_{1} \xrightarrow{d_{1}} F_{0} \longrightarrow M \longrightarrow 0 \tag{11}
\end{equation*}
$$

then M is projective iff $N=T(M) \cong \operatorname{ext}_{D}^{1}(M, D)=0$, i.e. $i(M)=+\infty \Leftrightarrow N=0$.

Theorem 6. If M is a D-module defined by the exact sequence (11), then we have:

$$
\begin{equation*}
h(M)=i(M)=j(N)-1=\operatorname{cd}(N)-1 \tag{12}
\end{equation*}
$$

i.e.:

$$
n-h(M)= \begin{cases}d(N)+1, & N \neq 0 \\ -\infty, & N=0\end{cases}
$$

Proof. If M is projective, then Lemma 1 shows that $i(M)=$ $+\infty \Leftrightarrow i(N)=+\infty$, and thus, $h(M)=i(M)$. If M is not projective, Lemma 2 shows that $N \cong \operatorname{ext}_{D}^{1}(M, D) \neq 0$, i.e. $i(N)=0$. This shows the first equality of (12). Moreover, M is defined by a full rank matrix, then $N=T(M)$ is a torsion D-module, and thus, $\operatorname{ext}_{D}^{0}(N, D)=0$. Finally, we obtain:

$$
i(M)=\min _{k \geq 0}\left\{k-1 \mid \operatorname{ext}_{D}^{k}(N, D) \neq 0\right\}=j(N)-1
$$

By Theorem 3, we have $i(M)=\operatorname{cd}(N)-1$, which proves the other equalities of (12).

Example 4. Let M be the D-module defined by the matrix $R_{1}=\left(\chi_{1} \chi_{2} \chi_{3}\right)$. We easily verify that

$$
\left\{\begin{array}{l}
\operatorname{ext}^{i}(N, D)=0, \quad 0 \leq i \leq 2 \\
\operatorname{ext}^{3}(N, D)=D / D^{3} R_{-1} \neq 0 \\
\operatorname{ext}^{i}(N, D)=0, \quad i>3
\end{array}\right.
$$

where R_{-1} is defined in Example 1. Therefore, $j(N)=3$, and, by Theorem 6, we obtain $3-h(M)=1$ and the existence of $\pi_{1}^{\sigma} \in k\left[\chi_{\sigma(1)}\right]$, with $\sigma \in S_{3}$, such that $M_{\pi_{1}^{\sigma}}=$ $D_{\pi_{1}^{\sigma}} \otimes_{D} M$ is a projective $D_{\pi_{1}^{\sigma}}=S_{\pi_{1}^{\sigma}}^{-1} D$-module, with $S_{\pi_{1}^{\sigma}}=\left\{1, \pi_{1}^{\sigma},\left(\pi_{1}^{\sigma}\right)^{2}, \ldots\right\}$ (we can take $\left.\pi_{1}^{\sigma}=\chi_{\sigma(1)}\right)$.
Corollary 1. Let R be a full rank $q \times p$ matrix $(0<q \leq p)$ with entries in $D, M=D^{p} / D^{q} R$ and $N=T(M)$, then there exist $\pi_{n-h(M)}^{\sigma} \in D_{n-h(M)}^{\sigma}, R_{-1} \in D^{p \times(p-q)}, S \in D^{p \times q}$ and $S_{-1} \in D^{(p-q) \times p}$ and $\nu \in \mathbb{Z}_{+}$such that we have the following extended Bézout identities for all $\sigma \in S_{n}$:

$$
\text { 1. }\left(\begin{array}{cc}
S & R_{-1}
\end{array}\right)\binom{R}{S_{-1}}=\left(\pi_{n-h(M)}^{\sigma}\right)^{\nu} I_{p}
$$

2. $\binom{R}{S_{-1}}\left(\begin{array}{ll}S & R_{-1}\end{array}\right)=\left(\pi_{n-h(M)}^{\sigma}\right)^{\nu}\left(\begin{array}{cc}I_{q} & 0 \\ 0 & I_{p-q}\end{array}\right)$.

Proof. Applying Theorem 6 to M, then there exists $\pi_{n-h(M)}^{\sigma}$ such that $D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M$ is a projective, and thus, free $D_{\pi_{n-h(M)}^{\sigma}}$-module by Theorem 1. Therefore, there exists an isomorphism $\phi: D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M \longrightarrow D_{\pi_{n-h(M)}^{\sigma}}^{p-q}$. Using the fact that $D_{\pi_{n-h(M)}^{\sigma}}$ is a flat D-module [11], then we obtain the following commutative exact diagram:

$$
\begin{aligned}
& 0 \longrightarrow D_{\pi_{n-h(M)}^{\sigma}}^{q} \xrightarrow{. R} D_{\pi_{n-h(M)}^{\sigma}}^{p} \xrightarrow{\mathrm{id} \otimes \pi} D_{\pi_{n-h(M)}^{\sigma}} \otimes_{D} M \longrightarrow 0 . \\
& \| \downarrow \\
& D_{\pi_{n-h(M)}^{\sigma}}^{p} \stackrel{\phi \circ(\mathrm{id} \otimes \pi)}{\longrightarrow} D_{\pi_{n-h(M)}^{\sigma}}^{p-q}
\end{aligned}
$$

Let us call \bar{R}_{-1} the matrix corresponding to $\phi \circ(\mathrm{id} \otimes \pi)$ in the canonical basis of $D_{\pi_{n-h(M)}^{\sigma}}^{p}$ and $D_{\pi_{n-h(M)}^{\sigma}}^{q}$, then we obtain the following splitting exact sequence $[7,11]$

where $\bar{R}_{-1}, \bar{R}_{-1}$ and \bar{S}^{\prime} are matrices with entries in $D_{\pi_{n-h(M)}^{\sigma}}$. Chasing their denominators, we finally find the identities 1 and 2. Notice that $n-h(M)$ is given here by (12)

Definition 6. A D-module has pure dimension l if M as well as any of its non-zero submodule have dimension l.

Theorem 7. If M is a finitely generated $D=k\left[\chi_{1}, \ldots, \chi_{n}\right]$ module which satisfies $\mathrm{pd}_{D}(M)=i(N)+1$, then:

1. $d\left(\operatorname{ext}_{D}^{i(N)+1}(M, D)\right)=n-h(M)-1$,
2. $t(M) \cong \operatorname{ext}_{D}^{i(N)+1}\left(\operatorname{ext}_{D}^{i(N)+1}(M, D), D\right)$,
3. if $t(M) \neq 0$, then $t(M)$ has pure dimension $n-i(N)-1$.

Proof. The fact that $\operatorname{pd}_{D}(M)=i(N)+1$ means that there exists a projective resolution of M of the form:
$0 \longrightarrow P_{i(N)+1} \xrightarrow{d_{i(N)+1}} P_{i(N)} \longrightarrow \ldots \xrightarrow{d_{1}} P_{0} \longrightarrow M \longrightarrow 0$.
By definition,

$$
i(N)=\min _{i \geq 1}\left\{i-1 \mid \operatorname{ext}_{D}^{i}(M, D) \neq 0\right\}
$$

which means that $\operatorname{ext}_{D}^{i}(M, D)=0$ for $1 \leq i \leq i(N)$ and $\operatorname{ext}_{D}^{i(N)+1}(M, D) \neq 0$, i.e. we have the exact sequence:

$$
\begin{aligned}
& 0 \longleftarrow \operatorname{ext}_{D}^{i(N)+1}(M, D) \longleftarrow P_{i(N)+1}^{\star} \stackrel{d_{i}^{\star}(N)+1}{\longleftarrow} \\
& \quad \ldots d_{2}^{\star} P_{2}^{\star} \longleftarrow N \longleftarrow 0
\end{aligned}
$$

1. We can apply Theorem 3 to the D-module $\operatorname{ext}_{D}^{i(N)+1}(M, D)$ to obtain:

$$
\begin{aligned}
\operatorname{cd}\left(\operatorname{ext}_{D}^{i(N)+1}(M, D)\right) & =j\left(\operatorname{ext}_{D}^{i(N)+1}(M, D)\right) \\
& =i\left(\operatorname{ext}_{D}^{i(N)+1}(M, D)\right)+1 \\
& =i(N)+i(M)+1 \\
& =h(M)+1
\end{aligned}
$$

2. We have $\operatorname{ext}_{D}^{i(N)+1}\left(N_{i(N)}, D\right) \cong \operatorname{ext}_{D}^{1}(N, D)$ and, by Theorem 2, we have $t(M) \cong \operatorname{ext}_{D}^{1}(N, D)$, which shows that:

$$
t(M) \cong \operatorname{ext}_{D}^{i(N)+1}\left(\operatorname{ext}_{D}^{i(N)+1}(M, D), D\right)
$$

3. If $t(M) \neq 0$, then, by Theorem 7.10 of [1], we obtain that $t(M)$ has pure dimension $n-i(N)-1$.

Example 5. In Example 3, we have seen that $M=$ $D /\left(D \chi_{1}+D \chi_{2}+D \chi_{3}\right)$ satisfies that $i(N)=2$, and thus, $i(N)+1=3=\operatorname{pd}_{D}(M)$. Therefore, by Theorem 7, we obtain that $t(M) \cong \operatorname{ext}_{D}^{3}\left(\operatorname{ext}_{D}^{3}(M, D), D\right)$ has pure dimension 0 , a fact that can be proved directly once noticing that $t(M) \cong M$.

Corollary 2. If M is defined by the exact sequence (11) and $t(M) \neq 0$, then $t(M)$ has pure dimension $n-1$.

Let us notice that Theorem 7 and Corollary 2 are also true if $D=K\left[d_{1}, \ldots, d_{n}\right]$ where K is a differential field [7, 8].

4 Conclusion

Every results in this paper are effective by means of Gröbner basis: we can compute a finite free resolution of a finitely presented D-module and, by duality, $\operatorname{ext}_{D}^{i}(N, D)$ and $\operatorname{ext}_{D}^{i}(M, D)$ for $i \geq 1$ and determine $h(M)$. Moreover, the proves of Theorem 4 and 5 are totally constructive: we first compute $\operatorname{ext}_{D}^{i}(N, D)$ for $i \geq 1$ and their annihilators ann $\left(\operatorname{ext}_{D}^{i}(N, D)\right)$. Then, by means of techniques of elimination, we can determine explicitely $I_{n-h(M)}^{\sigma i}=$ $\operatorname{ann}\left(\operatorname{ext}_{D}^{i}(N, D)\right) \cap k\left[\chi_{\sigma(1)}, \ldots, \chi_{\sigma(n-h(M))}\right]$ to finally find $\pi_{n-h(M)}^{\sigma}, \forall \sigma \in S_{n}$. Moreover, extended Bézout identities, as well as generalized inverses obtained in [7], can be effectively obtained following the line of [7]. See also [12] for computational aspects.

By lack of space, we just give one application of the results obtained in this paper. In the case of differential delay systems, i.e. $D=k\left[\delta_{1}, \ldots, \delta_{n-1}, \frac{d}{d t}\right]$, Theorems 5 and 6 give an effective method to determine the polynomials π introduced in [4] to do motion planning. However, σ belongs to the subgroup S_{n-1} of permutations of the $n-1$ first variables of D. This remark and Theorem 5 show that a system satisfying $h(M) \geq 1$ is π-flat, where $\pi \in k\left[\delta_{\sigma(1)}, \ldots, \delta_{\sigma(n-h(M))}\right], \sigma \in S_{n-1}$, and $n-h(M)=d(N)+1$ for a system defined by a full row rank matrix.

To finish, let us notice that Corollary 1 shows that R can be completed to a square matrix whose determinant divides a power of $\pi_{n-h(M)}^{\sigma}$ (if $n-h(M)=1$, then π_{1}^{σ} is the greatest common divisor of the $q \times q$ minors of R by Remark 4). See [3] for related questions.

Acknowledgements

This work was supported by the grant HPMF-CT-1999-00095.

References

[1] Bjork, J.-E., (1979). Rings of Differential Operators, North-Holland Mathematical Library.
[2] Borel, A. and al. (1987).Algebraic D-modules, Academic Press.
[3] Lin, Z. and Bose, N. K. (2000). "Some conjectures on multivariate polynomial matrices", $2^{\text {nd }}$ International Workshop on Multidimensional Systems (NDS), pp. 165170.
[4] Fliess, M. and Mounier, H. (1998). "Controllability and observability of linear delay systems: an algebraic approach", ESAIM COCV, vol. 61, pp. 1327-1361.
[5] Kunz, E. (1985). Introduction to Commutative Algebra and Algebraic Geometry, Birkhaüser.
[6] Oberst, U. (1980). "Multidimensional Constant Linear Systems", Acta Applicandae Mathematica, vol. 20, pp. 1-175.
[7] Pommaret, J.F. and Quadrat, A. (1998). "Generalized Bézout Identity", Applicable Algebra in Engineering, Communication and Computing, vol. 9, pp. 91-116.
[8] Pommaret, J.F. and Quadrat, A. (1999). "Algebraic analysis of linear multidimensional control systems", IMA J. of Control and Information, vol. 16, pp. 275-297.
[9] Pommaret, J. F. and Quadrat, A. (2000). "A functorial approach to the behaviour of multidimensional control systems", $2^{\text {nd }}$ International Workshop on Multidimensional Systems (NDS), pp. 91-96.
[10] Pommaret, J. F. and Quadrat, A. (2000). "Equivalences of linear control systems", proceedings of MTNS 2000, Perpignan, France.
[11] Rotman, J. J. (1979). An Introduction to Homological Algebra, Academic Press.
[12] Wood, J., Rogers, E. and Owens, D. (1998). "Formal theory of matrix primeness", Mathematics of Control, Signal and Systems, vol. 11, pp. 40-78.
[13] Youla, D. C. and Gnavi, G. (1979). "Notes on n dimensional system theory", IEEE Trans. Circuits Systems, vol. 26, pp. 105-111.
[14] Youla, D. C. and Pickel, P. F. (1984). "The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices", IEEE Trans. Circuits Syst., vol. 31, pp. 513-518.

