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Abstract

We study primeness of multidimensional control systems de-
fined in terms of algebraic properties of D = k[x1,--. ,Xn]-
modules and show how to pass from one to another by inversion
of a certain 7 € D. We use these results to determine effec-
tively extended Bézout identities of multidimensional control
systems and the minimal number of ; contained in .

1 Introduction

In [13], it has been shown that primeness of multidimensional
systems, defined by a full row rank matrix R with entries in
D = k[x1,...,xn), are linked with extended Bézout identi-
ties, i.e. the existence of a matrix S and = € D such that
R S = w I, where I is the identity matrix. However, only two
different types of primeness, ZLP and MLP, have been defined
in [13], which correspond to the case = = 1 and 7 a polynomial
containing n — 1 variables x;.

To my knowledge, nothing has been done for the other cases
until the work of Oberst [6], surely because the complexity of
the matrices increases with the number n. The main contri-
bution of [6] has been the introduction of algebraic analysis
concepts [2] in the theory of multidimensional systems. Fol-
lowing an idea of Malgrange, it is shown in [6] how to asso-
ciate with any multidimensional system a finitely presented D-
module M. Then, the author shows that ZLP (resp. MLP) cor-
responds to a projective (resp. torsion-free) D-module M and
he defines a new type of primeness, WZLP, which corresponds
to 7 containing one variable.

In [12], it is shown that for a multidimensional control system,
defined by a full row rank matrices R, there exist a one-to-one
correspondence between the number of x; in = and a chain of
n different type of primeness, defined by the dimension of the
algebraic variety formed by the zeros of all the maximal order
minors of R (this chain includes ZLP, WZLP and MLP).

Finally, using the classification of Palamodov-Kashiwara [2],
it is shown in [8] that, for the ring K|[ds,...,d,] of dif-
ferential operators with coefficients in a differential field K
(K[dy,...,dn] = Ek[x1,...,xn] if K =k is aconstant field),
there are one-to-one equivalences between the chain of alge-
braic properties of M (torsion-free C reflexive C ... C pro-
jective), the number of successive parametrizations of the mul-
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tidimensional control system, the index ¢ of the first non-zero
ext’, (T(M), D) for i > 1, where T (M) is the transposed
module of M and ext is the extension functor, and, in the case
of a full row rank matrix R, the dimension of the characteristic
variety char(M) and the type of primeness obtained in [12] if
in addition K = k.

In this paper, we show how to pass from an element of the
previous equivalent chains to another one, by means of the in-
version of a certain polynomial 7 in D = k[x1, ... ,xx»] CON-
taining more or less x;. In particular, it is shown how to pass
from a type of primeness to another one by localization of a
polynomial 7 and how to obtain effectively extended Bézout
identities for each type of primeness.

2 Modules and Extension functor

In the course of this paper, we shall note D = k[xq,...
where k = Ror C.

:Xn]'

Definition 1. [11] Let M be a finitely generated D-module.
Then:

e M is afree D-module if M = D" fora certainr € Z,

e M is a projective D-module if M & P = D" for a certain
D-module Pandr € Z 4,

e M is areflexive D-module if the D-morphism defined by
€: M — homp(homp(M, D), D),
e(m)(f) = f(m), ¥V f € homp(M,D),Vm € M,
is an isomorphism,
e M is atorsion-free D-module if

t(M)={meM|30#£PeD, Pm=0}=0.

e M isatorsion D-module if t(M) = M.

Theorem 1. [11] We have the following assertions:

e free C projective C ... C reflexive C torsion — free.
o If D = k[xu1], then any torsion-free D-module is free.

e Any projective D =
(Quillen-Suslin) [14].

k[x1,--- ,Xn)-module is free

Proceedings of the European Control Conference 2001

1673



Definition 2. We have the following definitions (see e.g. [11]
for more details):

e A projective resolution (resp. free resolution) of a D-
module M is an exact sequence of the form
; di—
AP Py g S Py — M — 0,

(1)

where P; is a projective (resp. free) D-module and d; is a
D-morphism.

e If M is defined by a projective resolution (1), then the
defects of exactness of
d; dx di_ dx dx
PP PR P — 0,

()

where P} = homp(P;, D) and df : P}, — Py is de-
fined by df(f) = fod;, Vf € P}, only depend on M
and not on (1). They are called ext, (M, D). Therefore:

ext},(M, D) = kerdj = homp(M, D),
exth, (M, D) = kerdy, , /imd;.

Remark 1. If M is afinitely generated D-module, then M has
a finite free resolution

Ri_1

St B ple s,

3)

where R; isal; x1;_; matrix with entriesin D and .R; : D% —
Di-1 s defined by letting operate a row vector of length 7; on
the left of R; to obtain a row vector of length [;_;. Then, (2) is
defined by

-R; . .R; .
.. =% Dl = pli-

Ri_1.
— .

. & pli & pliea .. <2 ph & plo 0,

where R;. : Dl-1 — Db is defined by letting operate a col-
umn vector of length I;_; on the right of R; to obtain a column
vector of length /;. Then, we have:

exts (M, D) = ker(R;;1.)/im(R;.), Vi > 1.

Definition 3. If M is a D-module defined by the following fi-
nite presentation

%R —M—0 4)

then, its transposed module N = T'(M) is the D-module de-
fined by N = cokerdt, i.e. N is the D-module defined by the
following finite presentation:

0+ N« F &g )

We easily verify that for any finitely generated D-module we
have:
T(T(M)) = M.

Proposition 1. Let M be afinitely presented D-module and S
a multiplicative set of D, then we have:

T(S™'D®p M) =T(M)®p S™'D.

Proof. Taking the tensor product S~'D ®p - of (4), we obtain
the exact sequence of S~ D-modules [11]:

S 'DepF, %" s Do, Fy — S"'Dop M —s 0.

Then, T(S1D ®p M) = coker(ids ® di)* is defined
by the finite presentation defined in Figure 1. We have
homg-1p(S™'D ®p F;,S™'D) =2 F¥ ®p S7'D, i = 0,1,
and (ids ® d1)* = df ®idg because Fy and F; are two finitely
generated D-modules [11]. Moreover, if we take the tensor
product of (5) by S—1D, we obtain the following exact se-
quence:

0+— T(M)®pS~'D +— FropS~—'D “E<* FrepsD.

Finally, we have the commutative exact diagram defined in Fig-
ure 2 which proves the proposition. O

Theorem 2. If M is a finitely generated D-module and N =
T (M), then we have:

1. t(M) 2 extl,(N, D),

2. M is atorsion-free D-module iff ext}, (N, D) = 0,

3. M is a reflexive D-module iff ext’, (N, D) = 0, i = 1,2,
4. M is a projective D-module iff ext’;,(N,D) = 0, i =

1,...,n.

Proof. See [9] for the proves of 1 and 2. We have the following
exact sequence

0 — ext(N,D) — M - M* — ¢tt¥, D) — 0
(6)

(see [8] and its references for a proof) which proves 3. An
algebraic proof of 4 can be easily adapted from the proof of
Corollary 4 in [8]. O

Definition 4. e The grade of a D-module M is defined by:

§(M) :rin>i(1)1{i | exti,(M,D) #0} € {0,... ,n,+oo}.

e We call dimension of a D-module M the Krull dimension
d(M) of D/ann (M) (with the convention that d(0) =
—1) [11].

Theorem 3. [1, 2] Let M be a finitely generated D-module,
then we have:

§(M) = cd(M) :==n—d(M) if M#0 (+oo if M =0).
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0 ¢— T(S~'D @p M) +— homg-1p(S~LD ®p F,S~1D) " homg-1p(S~1D ®p Fy, S~1D).

Figure 1: Exact sequence

0+— T(S'Dep M)
I
0¢— T(M)®pS~'D +—

— homD(Sle ®p Fl,SilD)

F}f ®p S—D

()" Y omp(S1D @p Fy, S ' D)
I
iy Ff®p S~'D.

Figure 2: Commutative exact diagram

3 Main results
3.1 General case

Definition 5. Let M be a finitely generated D-module and
N =T(M), then we define:

i(M) = min { i1 extpr(N, D) # 0} € {0, ..,n—1, 400}

Remark 2. The notation ¢(M) is justified by the fact that N
only depends on M up to a projective equivalence, and thus,
ext® (N, D), k > 1, only depends on M [10]. Moreover, by
Theorem 2, t(M) #0 < (M) =0,t(M) =0 < i(M) =1,
M reflexive < (M) = 2, ..., M projective < (M) = +oo.

We shall denote by S,, the group of permutations of n elements.

Theorem 4. Let M be a finitely generated D
k[x1,--. ,Xxn)-module and for all o € S,,:

Dz—i(M) = k[XU(l)7 s 7Xo(nfz'(M))]v 0< l(M) <n-1,

D?_ =k, i(M)=+oo.

()

Then, for all integer [ > 0, there exists To_i(m) € DZ%(M)
such that

i(Drz_, oy ®0 M) 2 i(M) +1, (@)
where.S,,:_i(M) = {17 _iary (T _iar))?s - - }is tre multi-
plicative set formed by T i(M) and Dfrﬁ_,-(M) = Sﬂ:_i(M) D.

In particular, for all o € S,,, there exists wg_i(M) € Dg_i(M)
such that DWZ_,-(M) ®p M is a projective D,r:_i(M)—moduIe.

Proof. First of all, let us notice that if i(M) = +oo orl = 0,
then the result is trivial (take To_im) € k). In the following
of the proof, we suppose [ > 1, 0 < (M) < n — 1, and note:

Kiny = (Dg—i(M))71D7 0<i(M)<n-—1,

(3

thatistosay, K§ = k(x1,... ,xn)and,forl <i(M) <n—1:

Ky = k(Xo()s -+ - s Xo(n—i(a))) [Xo(n—i(d)41)5 - - - » Xo(m)]-
Therefore, we have [11]:
_ gldim(KZi'(M)) =i(M)
= ethqu)(K{'(M) ®D N,K;'(M)) =0, Vj>i(M)+1.

Moreover, K7, is a flat D-module and N is finitely pre-
sented, then we have Vj > 0 [11]:

ext%(&M) (K% ®0 N, Kap) 2 Ky ®p exty (N, D).
9)
Hence, we obtain eXt]K;(M)(K{'(M) ®p N, Kf,p) =0, Vj >
1, i.e. K{y ®p N is a projective K{'(M)-module. Finally,
the right member of the isomorphism in (9) for j > i(M) + 1,

combined with the fact that ext’, (N, D) is a torsion D-module
[9] for j > 1, implies that we have V j > i(M) + 1:

Ll

)= ann(ext’, (N, D)) N Dy iy # 0.
Forj > i(M) + 1, let us take

7y iy € ann(ext], (N, D)) N Dy
and define:

7'{0'7. = H . L. cj 7ng. .
n—i(M) = FHi(M)H<G<iM)+, 75700 #0F Tnsi(M)

We have wg_i(M) € Dg_i(M) and:
w0 i) €t (N, D) =0, (M) +1 < j <i(M)+1.
Therefore, for (M) +1 < j <i(M) + 1, we have:

®DN7D7I'G

‘"n—i(M)(D n—i(M))

Drs oy ©D extd (N, D) = 0.

T (M)

- K
n

By Theorem 2 and Proposition 1 (i.e. T(DWZ_“M) ®p M) =
N ®p Drs_ ), We obtain:
i(Dgo

n—i(M)

®p M) > i(M) +1.

If we take [ = n — (M), then Drz_. iy ®0 M is a projective
D,- _ -module. O
n—i(M)

Example 1. Letus consider the D = k[x1, x2, x3]-module M
defined by the matrix

X2

0 —xs3
R X3 0
-X2 X1 0

—X1

Proceedings of the European Control Conference 2001

1675



corresponding to the curl operator in R3. Thus, we have the
following free resolution of M

0— DI p3Eps M0,

where the matrix Ry = (x1 x2 X3) corresponds to the diver-
gence operator. Then, the D-module N = T'(M) is defined by

0 +— N +— D3 & D3. We easily check that we have
exth (N, D) =0,
ext?(N,D) = D/D3R_, #0,
ext’ (N,D) =0, Vj >3,

where Ry = RY. Thus, we obtaini(M) =2 -1 = 1and
3—i(M) = 2. Moreover, ext? (N, D) = D/D3R_; is defined
by the following equations

x12 =0,
X2z=07
X3Z=0,

and we verify thatV o € Ss:

1% = ann(ext}, (N, D)) N k[Xo(1); Xo@)] = (Xo(1)> Xo(2))-

X € KY

BUL X, (1)) Xo(a) = k(Xo(1), Xo(2))[Xo(3)], and thus,

we have:
K7 ®p extp(N, D) = exty, (K7 @p N, K7) = 0.

Moreover, we have extj,(,(K1 ®p N,K{) =0, Vj > 1,
which implies that K7 ®D M is a projective K7-module. Fi-
nally, if we note 7§ = Xx,(1), then Dz ®p M is a pro-
jective D.c-module, where D,s = S;EID with Sz =
{1,7§,(xg)?,...}. By Theorem 1, Ds ®p M is a free D -
module and we easily verify that a basis is given by y,(j),
where y = (y1 y» y3)" satisfies Ry = 0 and o € Ss, because
we have Y,y = (Xo(i) /X (1)) Yo(1), @ = 2,3.

Remark 3. Let us notice that Theorem 4 does not predict the
minimal number of independent variables x; in the polynomial
o i()° Indeed, in the previous example, we only need to in-
vert m§ = x,(1) Which contains just one independent variable,
whereas, from Theorem 4, we only know that we have to invert
a polynomial 7§ € k[Xs(1), Xo(2)] in two variables. The next
theorem gives a more precise statement on the minimal number
of x; in wg_i(M).

Lemma 1. Let M be afinitely generated D-module and N =
T(M). Then, M is a projective D-module iff NV is a projective
D-module, i.e. i(M) = 400 & i(N) = +oc.

Proof. We have the following exact sequence 0 «+— N «+—

Fy & EFf <— M* <— 0. If N is projective, then this
exact sequence splits [7, 11] and we obtain that M™* is projec-
tive. Thus, M** is still projective [11]. Moreover, we have
exth(N,D) = 0 = ext?,(N, D), because N is projective,
thus, using the exact sequence (6), we obtain that M = M** is
projective. Changing IV into M, we obtain the converse result,
which proves the lemma. O

Il

Theorem5. Let M be a finitely generated D
k[x1,--- ,Xxn]-module, N = T'(M) and:

M) =4i(M)+i(N) € {0,...,n,+o0}.

Then, for all o € S, and I > 0, there exists 77_,
D7 _pary Such that we have (8), where D7_, ) is éeflned
in (7). In particular, there exists =7

m—n(a) Such
that Dﬂ-:—h(M)

—n(m) €
—module

®p Misa projective Dyo_

Proof. If M is projective, then the result is trivial. Let us sup-
pose that M is not a projective D-module. Then, by Lemma 1,
we have 0 < i(N) < n—1. The D-module M has a projective
resolution of the form:

. — Pynyt1 diangs Piny — - % Py — M — 0.
Using the fact thati(N) = min;>1{i—1 | ext},(M,D) #0},
we obtain by duality the following exact sequence

d; .
04— Niwy «— Plipypy = L pre N,
(10)

where Nyny = cokerdjNH. Let us note My =
coker d;(ny.1. From (10), we deduce that:

extl( JH (Niwy, D) = ext)(N, D), V1> 1

= i(My) = (M) +i(N) = h(M).

Applying Theorem 4 to M; ), then VI > 0, there exists
T‘-Z—h(M) € Dgfh(M) such that:

Z(D —ha) [59F») Mz(N)) >7,(MZ(N))—|—l:h(M)+l
Thus, for1 <m < i(M) + I, we have:
i(N)+m —

ext ™ h(M) (Drz_ wany 0 Nigwy, D h(M)) =0

~ i(N)+m

= Drz_, oy ®D exty " (Niar, )

= ﬂ:—h(M) Rp eXtD(N D)

~ m

- eXtD"Z_h(M) (D”n h(M) ®p N, Dry T h(M))
Hence, we deduce that i (D ary ©D M) > i(M)+1, which
proves (8). O

Example 2. If we take again Example 1, we easily show that
i(M)=1and3—h(M) =3—(1+1) = 1. Thus, there exists
77 € DY = k[x,(1)] such that D.- ® p M is a projective D¢ -
module. We have seen in Example 1 that 7§ = x,(1). Theo-
rem 5 predicts that there exists #{ containing just one variable
Xo(1), Which gives an answer to Remark 3.

Example3. If M = D/(Dx1 + D x2 + D xs3) isthe D =
k[x1, x2, x3]-module defined by the gradient operator, then we
easily check that#(M) = 0,i(N) =2and3—h(M) =3-2=
1. Therefore, there exists 7{ € k[x,1)] such that D, ®p M
is a projective D,--module. We let the reader check by himself
that we can choose 77 = X4(1) and D¢ ® p M = 0.

Proceedings of the European Control Conference 2001

1676



Remark 4. If n — h(M) = 1, then, following the proof of ( R ) (S By )=(x? K ( Iy 0 )
Theorem 4, we obtain that the ideal I7?, defined by I7¢ = US4 - n—h(M) 0 I, )
ann(exth, (N, D)) N k[x,(1)] is principal, for every i > 1 and

o € Sp. Thus, up to a constant of &, there exists a unique  pyoof, Applying Theorem 6 to M, then there exists 7% _,
lower degree poly??mlal-wi’.’such that I7* = (w7 *) and 7{ = ¢ ,ch that Do vy ©D M is a projective, and thus, 1('ree
géigl | mgiz0} 1 This is exactly the case for Examples 2 D,rz_h(M)—moduIe by Theorem 1. Therefore, there exists an

isomorphism ¢ : D Qp M — Dﬁ;i’h(M). Using the

n—h(M)

fact that Dﬂ;’_h(M) is a flat D-module [11], then we obtain the
following commutative exact diagram:

3.2 Particular case

Lemma 2. [5] If M is a D-module defined by the following

finite presentation q R, pr d®r p .
p 0—Df, = Dp ~F Dr_,ory ®0 M — 0.
0—FR - F—M—s0, (11) I , +9
pr, %099 pr—a
then M is projective iff N = T(M) = extL,(M, D) = 0, i.e. n—h(a) Tn—h()

(M) =400« N =0. - . . .
i(M) > Let us call R_; the matrix corresponding to ¢ o (id ® m) in the

Theorem 6. If M is a D-module defined by the exact sequence  canonical basis of D, and DI, , then we obtain the
. n—h(M) n—h(M)
(11), then we have: following splitting exact sequence [7, 11]
h(M) =i(M) =j(N) —=1=cd(N) - 1, (12) . F
. 0— DI, — Py — DEY 0,
l.e.. n—h(M) n—h(M) - n—h(M)
d(N)+1, N#0, P piat)

n_h(M):{—oo, N =0.

. L , where B_;, R_, and S’ are matrices with entries in D~ )
Proof. If M is projective, then Lemma 1 shows that i(M) = . . . . . L P ROD
. : . Chasing their denominators, we finally find the identities 1 and
+00 & i(N) = +oo, and thus, A(M) = i(M). If M is not 2. Notice that n — h(M) is given here by (12) O
projective, Lemma 2 shows that N = exth (M, D) # 0,ie.
i(N) = 0. This shows the first equality of (12). Moreover, M
is defined by a full rank matrix, then N = T'(M) is a torsion
D-module, and thus, ext?,(IV, D) = 0. Finally, we obtain:

Definition 6. A D-module has pure dimension [ if M as well
as any of its non-zero submodule have dimension [.

Theorem 7. If M is a finitely generated D = k[x1, ..., Xn]-

. _ . _ k — 3 B
i(M) = i‘%‘é{k Ll extp(N, D) #0} = j(N) — 1. module which satisfies pd 5 (M) = i(N) + 1, then:

By Theorem 3, we have ¢(M) = c¢d(N) — 1, which proves the T
other equalities of (12). O 1 d(exty ' (M,D)) =n—h(M)-1,

Example 4. Let M be th_e D-module defined by the matrix 2. t(M) = exth)“(extjgN)“(M,D),D),

R1 = (x1 x2 x3).- We easily verify that

exti(N,D) =0, 0<i<2, 3. ift(M) # 0, then ¢(M) has pure dimension n —i(N) — 1.
ext}(N,D) = D/D*R_ # 0,
ext'(N,D) =0, i>3, Proof. The fact that pd, (M) = i(IN) + 1 means that there

. i . exists a projective resolution of M of the form:
where R_; is defined in Example 1. Therefore, j(N) = 3,

and, by Theorem 6, we obtain 3 — A(M) = 1 and the ex- di(nyt1

d1
istence of 77 € kxo(u), With o € Sa, such that My, — 0— Pynvy41 — Py —-..— B — M —0.
Dr; ®p M is a projective Dy = S, D-module, with By definition
Spe = {1,77,(n7)?,...} (we can take 77 = x,(1)). |

Corollary 1. Let R be a full rank ¢ x p matrix (0 < ¢ < p) uN) = f,n;{l{’ — 1] extp(M, D) # 0},

with entriesin D, M = D? /D% Rand N = T'(M), then there

exist 77, apy € DY _paryy R1 € DPX(P=9), S € DP9 and  which means that exth, (M, D) = 0 for 1 < i < §(N) and
S_1 € DP=9*P and v € Z such that we have the following exthHl(M, D) # 0, i.e. we have the exact sequence:
extended Bézout identities for all o € S,,:

. dr
” 0 extii™ (M, D) «— Ppy,, €
— o v *
L (S R.) (S_l)_@rn_,,w)) I, B P N,
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1. We can apply Theorem 3 to the D-module extigN)“(M, D)
to obtain:

cd(extii™M (M, D)) = j(ex t“N)“(M,D))
= i(ext) " (M, D)) +

i(N) +i(M) +1,
=hM)+1.

|
=

2. We have ext 5™ (Ny(ny, D) = exth, (N, D) and, by The-
orem 2, we have t(M) = ext}, (N, D), which shows that:

t(M) = ext)§"* (ext)y" ! (M, D), D).
3. If (M) # 0, then, by Theorem 7.10 of [1], we obtain that

t(M) has pure dimensionn —i(N) — 1. O

Example 5. In Example 3, we have seen that M =
D/(Dx1 + D x2 + D x3) satisfies that i(N) = 2, and thus,
i(N)+1 =3 = pdp(M). Therefore, by Theorem 7, we obtain
that t(M) = ext3,(ext3, (M, D), D) has pure dimension 0, a
fact that can be proved directly once noticing that ¢(AM) = M.

Corollary 2. If M is defined by the exact sequence (11) and
t(M) # 0, then t(M) has pure dimensionn — 1.

Let us notice that Theorem 7 and Corollary 2 are also true if
D = K]ds, ... ,d,] where K is a differential field [7, 8].

4 Conclusion

Every results in this paper are effective by means of
Grobner basis: we can compute a finite free resolution of
a finitely presented D-module and, by duality, ext%,(IV, D)
and ext®, (M, D) for i > 1 and determine h(M). More-
over, the proves of Theorem 4 and 5 are totally construc-
tive: we first compute ext’, (N, D) for i > 1 and their an-
nihilators ann(ext’, (N, D)). Then, by means of techniques
of elimination, we can determine explicitely Igjh(M) =
ann(ext%(N, D)) n k[th(l)a - 7X(r(n—h(M))] to finally find
wg_h(M), Vo € S,. Moreover, extended Bézout identities, as
well as generalized inverses obtained in [7], can be effectively
obtained following the line of [7]. See also [12] for computa-
tional aspects.

By lack of space, we just give one application of the results ob-
tained in this paper. In the case of differential delay systems,
ie. D =k[61,...,0n-1, dt] Theorems 5 and 6 give an effec-
tive method to determlne the polynomials 7 introduced in [4]
to do motion planning. However, o belongs to the subgroup
Sy,—1 of permutations of the n — 1 first variables of D. This re-
mark and Theorem 5 show that a system satisfying h(M) > 1
is 7-flat, where 7 € k[0o(1), -+ » 0o (n—n(m))], 0 € Sn—1,and
n—h(M) = d(N) + 1 for a system defined by a full row rank
matrix.

To finish, let us notice that Corollary 1 shows that R can be
completed to a square matrix whose determinant divides a
power of 77 —h(a) (if n — h(M) = 1, then #{ is the great-
est common divisor of the ¢ x ¢ minors of R by Remark 4).
See [3] for related questions.

Acknowledgements
This work was supported by the grant HPMF-CT-1999-00095.

References

[1] Bjork, J.-E., (1979). Rings of Differential Operators,
North-Holland Mathematical Library.

[2] Borel, A. and al. (1987). Algebraic D-modules, Academic
Press.

[3] Lin, Z. and Bose, N. K. (2000). “Some conjectures
on multivariate polynomial matrices”, 2™ |nternational
Workshop on Multidimensional Systems (NDS), pp. 165-
170.

[4] Fliess, M. and Mounier, H. (1998). “Controllability and
observability of linear delay systems: an algebraic ap-
proach”, ESAIM COCYV, vol. 61, pp. 1327-1361.

[5] Kunz, E. (1985). Introduction to Commutative Algebra
and Algebraic Geometry, Birkhauser.

[6] Oberst, U. (1980). “Multidimensional Constant Linear
Systems”, Acta Applicandae Mathematica, vol. 20, pp.
1-175.

[7] Pommaret, J.F. and Quadrat, A. (1998). “Generalized
Bézout Identity”, Applicable Algebra in Engineering,
Communication and Computing, vol. 9, pp. 91-116.

[8] Pommaret, J.F. and Quadrat, A. (1999). “Algebraic anal-
ysis of linear multidimensional control systems”, IMA J.
of Control and Information, vol. 16, pp. 275-297.

[9] Pommaret, J. F. and Quadrat, A. (2000). “A functorial ap-
proach to the behaviour of multidimensional control sys-
tems”, 29 International Workshop on Multidimensional
Systems (NDS), pp. 91-96.

[10] Pommaret, J. F. and Quadrat, A. (2000). “Equivalences
of linear control systems”, proceedings of MTNS 2000,

Perpignan, France.

[11] Rotman, J. J. (1979). An Introduction to Homological Al-
gebra, Academic Press.

[12] Wood, J., Rogers, E. and Owens, D. (1998). “Formal the-
ory of matrix primeness”, Mathematics of Control, Signal
and Systems, vol. 11, pp. 40-78.

[13] Youla, D. C. and Gnavi, G. (1979). “Notes on n-
dimensional system theory”, IEEE Trans. Circuits Sys-
tems, vol. 26, pp. 105-111.

[14] Youla, D. C. and Pickel, P. F. (1984). “The Quillen-Suslin
theorem and the structure of n-dimensional elementary
polynomial matrices”, IEEE Trans. Circuits Syst., vol. 31,
pp. 513-518.

Proceedings of the European Control Conference 2001

1678



	rodape: 
	numPage0: 1673
	numPage1: 1674
	numPage2: 1675
	numPage3: 1676
	numPage4: 1677
	numPage5: 1678


