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Abstract

We study primeness of multidimensional control systems de-
fined in terms of algebraic properties of

�����	� 
�����������
����
-

modules and show how to pass from one to another by inversion
of a certain ��� �

. We use these results to determine effec-
tively extended Bézout identities of multidimensional control
systems and the minimal number of


��
contained in � .

1 Introduction

In [13], it has been shown that primeness of multidimensional
systems, defined by a full row rank matrix � with entries in�����	� 
���������	 
����

, are linked with extended Bézout identi-
ties, i.e. the existence of a matrix ! and �"� �

such that��! � �$# , where # is the identity matrix. However, only two
different types of primeness, ZLP and MLP, have been defined
in [13], which correspond to the case � ��%

and � a polynomial
containing &(' %

variables

 �

.

To my knowledge, nothing has been done for the other cases
until the work of Oberst [6], surely because the complexity of
the matrices increases with the number & . The main contri-
bution of [6] has been the introduction of algebraic analysis
concepts [2] in the theory of multidimensional systems. Fol-
lowing an idea of Malgrange, it is shown in [6] how to asso-
ciate with any multidimensional system a finitely presented

�
-

module ) . Then, the author shows that ZLP (resp. MLP) cor-
responds to a projective (resp. torsion-free)

�
-module ) and

he defines a new type of primeness, WZLP, which corresponds
to � containing one variable.

In [12], it is shown that for a multidimensional control system,
defined by a full row rank matrices � , there exist a one-to-one
correspondence between the number of


 �
in � and a chain of& different type of primeness, defined by the dimension of the

algebraic variety formed by the zeros of all the maximal order
minors of � (this chain includes ZLP, WZLP and MLP).

Finally, using the classification of Palamodov-Kashiwara [2],
it is shown in [8] that, for the ring * � +,�-������	 +����

of dif-
ferential operators with coefficients in a differential field *
( * � +.�/������� +����10� �2� 
3��������2 
����

if * �4�
is a constant field),

there are one-to-one equivalences between the chain of alge-
braic properties of ) (torsion-free 5 reflexive 5 ����� 5 pro-
jective), the number of successive parametrizations of the mul-

tidimensional control system, the index 6 of the first non-zero7�8:9 �;$<>=?< )�@ A� @ for 6CB %
, where

=D< )�@ is the transposed
module of ) and ext is the extension functor, and, in the case
of a full row rank matrix � , the dimension of the characteristic
variety EGFIH�J < )�@ and the type of primeness obtained in [12] if
in addition * �4�

.

In this paper, we show how to pass from an element of the
previous equivalent chains to another one, by means of the in-
version of a certain polynomial � in

���K�	� 
 � ������	 
 � �
con-

taining more or less

L�

. In particular, it is shown how to pass
from a type of primeness to another one by localization of a
polynomial � and how to obtain effectively extended Bézout
identities for each type of primeness.

2 Modules and Extension functor

In the course of this paper, we shall note
�M�N�	� 
O����������
����

,
where

�P�4Q
or R .

Definition 1. [11] Let ) be a finitely generated
�

-module.
Then:

S ) is a free
�

-module if ) 0� �UT
for a certain V?�XWZY ,

S ) is a projective
�

-module if )�[]\ 0� �UT
for a certain�

-module \ and VP�(W^Y ,

S ) is a reflexive
�

-module if the
�

-morphism defined by

_Z` )bacFedgf ; < F,dhf ; < )  � @  � @ 
_ <>i @ <kj @ � j�<>i @ Ll j �mF,dgf ; < ) A� @ .l i �m) 

is an isomorphism,

S ) is a torsion-free
�

-module if

n < )�@ ��o i �p)rq�sutwv� \N� �X \ i � t,x � t �
S ) is a torsion

�
-module if

n < )�@ � ) .

Theorem 1. [11] We have the following assertions:

Szy J 7�7 5|{,JAd�} 7 E 9 ~��g7 5 ����� 5|J 7��e7�8.~��h7 5 9 dhJA� ~ dg�P' y J 7�7 �
S If

�����	� 
��G�
, then any torsion-free

�
-module is free.

S Any projective
� � �	� 
 � ������	 
 � �

-module is free
(Quillen-Suslin) [14].



Definition 2. We have the following definitions (see e.g. [11]
for more details):

S A projective resolution (resp. free resolution) of a
�

-
module ) is an exact sequence of the form

���������'1a \ � � � �������' a �����	��
' a \ �����' a \� 'Ia�) ' a t 
(1)

where \ �
is a projective (resp. free)

�
-module and

+:�
is a�

-morphism.

S If ) is defined by a projective resolution (1), then the
defects of exactness of

����� ��������� ' \ �� ����� ' \ �� � � ��������� ' ����� ���
� ' \ �� ����� ' \ � � ' t 
(2)

where \ �� � F,dgf ; < \ �  � @ and
+ � � ` \ �� � � a \ �� is de-

fined by
+ � � < j @ � j � + �  l j � \ �� , only depend on )

and not on (1). They are called 7�8:9 �; < ) A� @ . Therefore:� 7�8:9  ; < )  � @ ��� 7 J + � � � F,dgf ; < ) A� @ 7�8:9 �; < )  � @ ��� 7 J + � � Y ��� ~ f + � � �
Remark 1. If ) is a finitely generated

�
-module, then ) has

a finite free resolution

������� � �����' a �! � � � �' a �" ����� � � �����'Ia ����� � � �' a �! $# 'Ia ) ' a�t 
(3)

where � �
is a % �'& % � � � matrix with entries in

�
and

� � � ` �  � a�  ����� is defined by letting operate a row vector of length % � on
the left of � �

to obtain a row vector of length % � � � . Then, (2) is
defined by

�����(� �)��� �� ' �  � � � �� ' �  ����� � ����� �� ' ����� � 
 �� ' �  � � � �� ' �  �# � ' t 
where � � � ` �  ����� a �  � is defined by letting operate a col-
umn vector of length % � � � on the right of � �

to obtain a column
vector of length % � . Then, we have:

7�8�9 �; < ) A� @ �*� 7 J < � � Y � � @ � ~ f < � ��� @ �l 63B %h�
Definition 3. If ) is a

�
-module defined by the following fi-

nite presentation +
��� �' a

+
 ' a ) ' a�t (4)

then, its transposed module , � =D< )�@ is the
�

-module de-
fined by , � E�d � 7 J + � � , i.e. , is the

�
-module defined by the

following finite presentation:

t � '-, � '
+ �� ����� '

+ � �
(5)

We easily verify that for any finitely generated
�

-module we
have: =D<>=?< )�@�@ 0� ) �

Proposition 1. Let ) be a finitely presented
�

-module and !
a multiplicative set of

�
, then we have:=D< ! � � �/. ; )�@ 0� =D< )�@ . ; ! � � �X�

Proof. Taking the tensor product ! � � �0. ;21
of (4), we obtain

the exact sequence of ! � � � -modules [11]:

! � � �3. ; + �54 6'798�� �'Ia ! � � �3. ; +  ' a ! � � �:. ; ) ' a t �
Then,

=D< ! � � �;. ; )�@ � E�d � 7 J < ~)<>= . +.� @ � is defined
by the finite presentation defined in Figure 1. We haveFedgf = ��� ; < ! � � �?. ; +

�  ! � � � @ 0�
+ �� . ; ! � � �X 6 � t �%h

and
< ~@<A= .X+:� @ � �4+ � � . ~)<A= because

+
 and

+
�

are two finitely
generated

�
-modules [11]. Moreover, if we take the tensor

product of (5) by ! � � � , we obtain the following exact se-
quence:

t � ' =D< )�@ . ; ! � � � � '
+ �� . ; ! � � � ���� 8B4 6 7� '

+ � . ; ! � � �X�
Finally, we have the commutative exact diagram defined in Fig-
ure 2 which proves the proposition.

Theorem 2. If ) is a finitely generated
�

-module and , �=?< )�@ , then we have:

1.
n < )�@ 0� 7�8:9 �;$< ,  � @ 

2. ) is a torsion-free
�

-module iff 7�8�9 �; < ,  � @ � t ,

3. ) is a reflexive
�

-module iff 7�8:9 �; < ,  � @ � t  6 � %g�C
,

4. ) is a projective
�

-module iff 7�8:9 �;$< , A� @ � t  6 �%g������	 & .

Proof. See [9] for the proves of 1 and 2. We have the following
exact sequence

t?'1a 7�8:9 �; < ,  � @u' a�) D' a�) ��� ' a 7�8:9FE; < ,  � @u'1a t
(6)

(see [8] and its references for a proof) which proves 3. An
algebraic proof of 4 can be easily adapted from the proof of
Corollary 4 in [8].

Definition 4. S The grade of a
�

-module ) is defined by:G < )�@ � f ~ ��IH  o 6 q ext
�; < )  � @ v� tux$� o t ������	 & �JLK x �

S We call dimension of a
�

-module ) the Krull dimension+ < )�@ of
� � Hg�,� < )�@ (with the convention that

+ < th@ �
' %

) [11].

Theorem 3. [1, 2] Let ) be a finitely generated
�

-module,
then we have:G < )�@ � E < < )�@ ` � & ' + < )�@ ~ y ) v� t < JLK ~ y ) � th@ �



t � ' =D< ! � � �/. ; )�@ � '|F,dhf = ��� ; < ! � � �/. ; +
�  ! � � � @�� 4 6 7 8������I�� ' F,dgf = ��� ; < ! � � �/. ; +   ! � � � @ �

Figure 1: Exact sequence

t � ' =D< ! � � �/. ; )�@ � ' F,dgf ; < ! � � � . ; + �  ! � � � @�� 4 6 7 8 ����� �� ' F,dhf ; < ! � � �/. ; +   ! � � � @� �
t � ' =D< )�@ . ; ! � � � � '

+ �� . ; ! � � � ���� 8B4 6 7� '
+ � . ; ! � � �X�

Figure 2: Commutative exact diagram

3 Main results

3.1 General case

Definition 5. Let ) be a finitely generated
�

-module and, � =D< )�@ , then we define:

6 < )�@ � f ~ ��IH � o 6G' % q 7�8�9 �;$< , A� @ v� tux � o t ������� &3' %g�JLK x �
Remark 2. The notation 6 < )�@ is justified by the fact that ,
only depends on ) up to a projective equivalence, and thus,7�8:9��; < ,  � @ $� B %

, only depends on ) [10]. Moreover, by
Theorem 2,

n < )�@ v� t
	 6 < )�@ � t ,
n < )�@ � t
	 6 < )�@ ��%

,) reflexive 	�6 < )�@ � C
, ..., ) projective 	�6 < )�@ �0JLK

.

We shall denote by ! �
the group of permutations of & elements.

Theorem 4. Let ) be a finitely generated
� ��	� 
���������	�
����

-module and for all � �m! �
:� � ���� � � ��� � �4�	� 
 � � � � ������	 
 � � � � � ��� ��� �  t�� 6 < )�@�� &w' %g

� � ��� �4�1 6 < )�@ �:JLK �
(7)

Then, for all integer % B t , there exists � �� � � ��� � � � �� � � ��� �
such that

6 < ������ �(��� ��! . ; )�@ B�6 < )�@ J %  (8)

where ! �"�� �(��� ��! � oh%h � �� � � ��� �  < � �� � � ��� � @ E ������ x is the multi-

plicative set formed by � �� � � ��� � and
�#�"�� �(��� ��! � ! � ��"�� �(���$��! � .

In particular, for all � �p! �
, there exists � �� � � ��� � � � �� � � ��� �

such that
�#�"�� �(���$��! . ; ) is a projective

�#�"�� �(��� ��! -module.

Proof. First of all, let us notice that if 6 < )�@ ��JLK
or % � t ,

then the result is trivial (take � �� � � ��� � � �
). In the following

of the proof, we suppose %�B %g t�� 6 < )�@��|&m' %h
and note:

* �� ��� � � < � �� � � ��� � @ � � �X t�� 6 < )�@��|&m' %g
that is to say, * � �4� < 
��-������2 
�� @ and, for

% � 6 < )�@�� &O' %
:

* �� ��� � � � < 
 � � � � ������	�
 � � � � � ��� ��� @ � 
 � � � � � ��� � Y � � ������2 
 � � � � � �
Therefore, we have [11]:%�& <.~ f < * �� ��� � @ � 6 < )�@' 7�8:9)( * ���� ��! < * �� ��� � . ; ,  * �� ��� � @ � t Xl G B 6 < )�@ J�%g�

Moreover, * �� ��� � is a flat
�

-module and , is finitely pre-
sented, then we have

l G B t [11]:

7�8:9)( * ���� ��! < * �� ��� � . ; ,  * �� ��� � @ 0� * �� ��� � . ; 7�8:9+( ; < , A� @ �
(9)

Hence, we obtain 7�8:9+( * ���� ��! < * �� ��� � . ; ,  * �� ��� � @ � t Ll G B%
, i.e. * �� ��� � . ; , is a projective * �� ��� � -module. Finally,

the right member of the isomorphism in (9) for
G B 6 < )�@ J %

,
combined with the fact that 7�8:9+( ; < ,  � @ is a torsion

�
-module

[9] for
G B %

, implies that we have
l G B|6 < )�@ J�%

:

# � (� � � ��� � ` � Hg�,� < 7�8:9)( ; < ,  � @ @
, � �� � � ��� � v� t �
For

G B|6 < )�@ J�%
, let us take

� � (� � � ��� � �XH��,� < 7�8:9+( ; < , A� @�@
, � �� � � ��� �
and define:

� �� � � ��� � �.-0/ � ��� � Y ��1 ( 1 � ��� � Y  32 � �54� �(���$��!768 :9 � � (� � � ��� � �
We have � �� � � ��� � � �;�� � � ��� � and:

� �� � � ��� � 7�8:9)( ; < ,  � @ � t  6 < )�@ J�% � G �|6 < )�@ J % �
Therefore, for 6 < )�@ J % � G � 6 < )�@ J % , we have:

7�8:9)( ;=< �� �(��� ��! < � � �� �(���$��! . ; ,  � � �� �(��� ��! @0� � � �� �(���$��! . ; 7�8:9)( ; < ,  � @ � t �
By Theorem 2 and Proposition 1 (i.e.

=?< ���"�� �(���$��! . ; )�@ �, . ; �#�"�� �(���$��! ), we obtain:

6 < � � �� �(��� ��! . ; )�@wB�6 < )�@ J % �
If we take % � & ' 6 < )�@ , then

�#�"�� �(��� ��! . ; ) is a projective�#�"�� �(��� ��! -module.

Example 1. Let us consider the
���4�	� 
��� 
 E  
?>��

-module )
defined by the matrix

� �A@B t ' 
?> 
 E
 > t ' 
 �
' 
 E 
 � t

CD 



corresponding to the curl operator in
Q >

. Thus, we have the
following free resolution of )

tP' a � � � �'1a � > � �' a � > 'Ia�) ' a t 
where the matrix � �P� < 
��D
 E 
?> @ corresponds to the diver-
gence operator. Then, the

�
-module , � =D< )�@ is defined by

t � '*, � ' � > � �� ' � > �
We easily check that we have� � 7�8:9 �; < ,  � @ � t 7�8:9 E; < ,  � @ �4� � � > � � � v� t 7�8:9)( ; < ,  � @ � t pl G B�� 

where � � �U� ��� � . Thus, we obtain 6 < )�@ � C ' %w��%
and

�e'^6 < )�@ �0C
. Moreover, 7�8:9 E; < , A� @ �4� � � > � � � is defined

by the following equations� � 
 ��� � t 
 E � � t 
 >�� � t 
and we verify that

l �]�m! >
:

# � EE � Hg�,� < 7�8:9 E; < ,  � @ @
, �2� 
 � � � �  
 � � E � �1� < 
 � � � � �
 � � E � @ �
But,


 � �� � � � e
 � �� � E � � * �� � � < 
 � � � � �
 � � E � @ � 
 � � > � � , and thus,
we have:

* �� . ; 7�8:9 E; < ,  � @ � 7�8:9 E* �� < * �� . ; ,  * �� @ � t �
Moreover, we have 7�8:9+( * �� < * �� . ; ,  * �� @ � t  l G B %

,
which implies that * �� . ; ) is a projective * ��

-module. Fi-
nally, if we note � �E � 
 � � � � , then

� � �
 . ; ) is a pro-
jective

�#�"�
 -module, where
� �"�
 � ! � ��"�
 �

with ! �"�
 �
oh%h � �E  < � �E @ E ������ x . By Theorem 1,

� � �
 . ; ) is a free
� � �
 -

module and we easily verify that a basis is given by � � � � � ,where � � <
� � � E � > @�� satisfies �	� � t and �C�z! >

, because
we have � � � � � � < 
 � � � � � 
 � � � � @
� � � � �  6 � C, � .

Remark 3. Let us notice that Theorem 4 does not predict the
minimal number of independent variables


 �
in the polynomial� �� � � ��� � . Indeed, in the previous example, we only need to in-

vert � �E �4
 � � � � which contains just one independent variable,
whereas, from Theorem 4, we only know that we have to invert
a polynomial � �E � �	� 
 � � � � �
 � � E � � in two variables. The next
theorem gives a more precise statement on the minimal number
of


 �
in � �� � � ��� � .

Lemma 1. Let ) be a finitely generated
�

-module and , �=D< )�@ . Then, ) is a projective
�

-module iff , is a projective�
-module, i.e. 6 < )�@ �:JLK 	�6 < , @ �0JLK

.

Proof. We have the following exact sequence t � ' , � '+ �� ����� '
+ � � '�) � � '�t . If , is projective, then this

exact sequence splits [7, 11] and we obtain that ) �
is projec-

tive. Thus, ) ���
is still projective [11]. Moreover, we have7�8:9 �; < ,  � @ � t � 7�8:9 E; < , A� @ , because , is projective,

thus, using the exact sequence (6), we obtain that ) 0� ) ���
is

projective. Changing , into ) , we obtain the converse result,
which proves the lemma.

Theorem 5. Let ) be a finitely generated
� ��2� 
3��������2 
����

-module, , � =D< )�@ and:
� < )�@ � 6 < )�@ J 6 < , @ � o t ������1 & �JLK x �

Then, for all � � ! �
and % Brt , there exists � �� ��� ��� � �� �� ��� ��� � such that we have (8), where

� �� ��� ��� � is defined
in (7). In particular, there exists � �� �� ��� � � � �� ��� ��� � such
that

�#�"�� ��� �$��! . ; ) is a projective
�#�"�� ��� � ��! -module.

Proof. If ) is projective, then the result is trivial. Let us sup-
pose that ) is not a projective

�
-module. Then, by Lemma 1,

we have t#�|6 < , @�� & ' %
. The

�
-module ) has a projective

resolution of the form:

����� 'Ia \ � � � � Y � � ����� !����' a \ � � � � '1a ����� � �'Ia�\  ' a�) 'Ia t �
Using the fact that 6 < , @ � f ~ � ��H �/o 6�' % q 7�8:9 �;$< ) A� @ v� tux ,
we obtain by duality the following exact sequence

t � '*, � � � � � ' \ �� � � � Y � �������� !����� ' ����� ���
� ' \ �E � ' , � ' t 
(10)

where , � � � � � E�d � 7 J + � � � � � Y � . Let us note ) � � � � �
E�d � 7 J + � � � � Y �

. From (10), we deduce that:

7�8:9 � � � � Y  ; < , � � � �  � @ 0� 7�8:9  ;$< , A� @ �l %�B %
' 6 < ) � � � � @ � 6 < )�@ J 6 < , @ � � < )�@ �

Applying Theorem 4 to ) � � � � , then
l %|B t , there exists� �� �� ��� � � � �� �� ��� � such that:

6 < � � �� ��� � ��! . ; ) � � � � @ B 6 < ) � � � � @ J % � � < )�@ J % �
Thus, for

% � i � 6 < )�@ J % , we have:

7�8:9 � � � � Y��; < �� ��� � ��! < �#�"�� ��� � ��! . ; , � � � � A�#�"�� ��� � ��! @ � t0� � � �� �����$��! . ; 7�8:9 � � � � Y��; < , � ��� �  � @0� � � �� �����$��! . ; 7�8:9 �; < ,  � @0� 7�8:9 �; < �� ��� �$��! < � � �� �����$��! . ; ,  � � �� ��� �$��! @ �
Hence, we deduce that 6 < � � �� �����$��! . ; )�@ B 6 < )�@ J % , which
proves (8).

Example 2. If we take again Example 1, we easily show that6 < )�@ � %
and � ' � < )�@ � � ' < % J % @ ��%h�

Thus, there exists� �� � ���� � �	� 
 � � � � � such that
�#���� . ; ) is a projective

� �"�� -
module. We have seen in Example 1 that � �E �K
 � � � � . Theo-
rem 5 predicts that there exists � ��

containing just one variable
 � � � � , which gives an answer to Remark 3.

Example 3. If ) � � � < � 
 � J4� 
 E J4� 
 > @ is the
� ��2� 
 � �
 E  
 > �

-module defined by the gradient operator, then we
easily check that 6 < )�@ � t  6 < , @ � C

and �	' � < )�@ � �	' C �%
. Therefore, there exists � �� � �	� 
 � � � � � such that

�#�"�� . ; )
is a projective

� �"�� -module. We let the reader check by himself
that we can choose � �� ��
 � � � � and

� � �� . ; ) � t .



Remark 4. If &|' � < )�@ � %
, then, following the proof of

Theorem 4, we obtain that the ideal # � ��
, defined by # � �� �

H��,� < 7�8:9 �; < , A� @�@ , �	� 
 � � � � � is principal, for every 6 B %
and��� ! �

. Thus, up to a constant of
�

, there exists a unique
lower degree polynomial � � ��

such that # � �� � < � � �� @ and � �� �� / ��H ��� �"� �� 68 :9 � � ��
. This is exactly the case for Examples 2

and 3.

3.2 Particular case

Lemma 2. [5] If ) is a
�

-module defined by the following
finite presentation

t 'Ia
+
�����' a

+
 'Ia�) ' a t  (11)

then ) is projective iff , � =?< )�@ 0� 7�8:9 �;$< ) A� @ � t , i.e.6 < )�@ � JLK 	 , � t .

Theorem 6. If ) is a
�

-module defined by the exact sequence
(11), then we have:

� < )�@ � 6 < )�@ � G < , @�' %^� E < < , @3' %h
(12)

i.e.:

&w' � < )�@ � � + < , @ J %h , v� t ' K� , � t �
Proof. If ) is projective, then Lemma 1 shows that 6 < )�@ �JLK 	 6 < , @ � JLK

, and thus,
� < )�@ � 6 < )�@ . If ) is not

projective, Lemma 2 shows that , 0� 7�8:9 �;$< )  � @Xv� t , i.e.6 < , @ � t . This shows the first equality of (12). Moreover, )
is defined by a full rank matrix, then , � =D< )�@ is a torsion�

-module, and thus, 7�8:9  ; < ,  � @ � t . Finally, we obtain:

6 < )�@ � f ~ �� H  oL� ' % q 7�8:9 �; < , A� @ v� t x � G < , @�' %g�
By Theorem 3, we have 6 < )�@ � E < < , @�' %

, which proves the
other equalities of (12).

Example 4. Let ) be the
�

-module defined by the matrix� � � < 
 � 
 E 
 > @ . We easily verify that� � 7�8:9 � < , A� @ � t  t#�|6 � C.
7�8:9 >h< , A� @ ��� � � > � � � v� t 7�8:9 � < , A� @ � t  6�� � 

where � � � is defined in Example 1. Therefore,
G < , @ � � ,

and, by Theorem 6, we obtain �(' � < )�@ � %
and the ex-

istence of � �� � �	� 
 � � � � � , with �"� ! >
, such that ) � �� ��#� �� . ; ) is a projective

�#� �� � ! � ��"�� �
-module, with

! �"�� ��oh%h � ��  < � �� @ E ������ x (we can take � �� ��
 � � � � ).
Corollary 1. Let � be a full rank � &�� matrix ( t	�
� � �

)
with entries in

�
, ) ����� � �� � and , � =D< )�@ , then there

exist � �� �� ��� � � � �� ��� ��� � , � � � � ����� � � �  �  ! � ������
and

! � � � � � � �  � ��� and �X�mW Y such that we have the following
extended Bézout identities for all � �p! �

:

1. � ! � � ����� �! � ��� � < � �� �� ��� � @���# � 

2.
� �! � � � � ! � � � �^� < � �� �� ��� � @�� � #  tt # � �  � �

Proof. Applying Theorem 6 to ) , then there exists � �� �� ��� �
such that

� � �� ��� � ��! . ; ) is a projective, and thus, free� � �� ��� �$��! -module by Theorem 1. Therefore, there exists an

isomorphism � ` � ���� �����$��! . ; ) ' a � � � ���� �����$��! . Using the

fact that
� � �� ��� � ��! is a flat

�
-module [11], then we obtain the

following commutative exact diagram:

t ' a � ���� �����$��! � �' a � ��"�� ��� �$��! 4 6 8 �
'1a � �"�� ��� � ��! . ; ) ' a t �� � �� � �"�� ��� � ��!! #" � 4 6 8 � �' a � � � �"�� ��� � ��!

Let us call � � � the matrix corresponding to � � < ~@< . ��@ in the
canonical basis of

� � �"�� ��� � ��! and
� �"�� ��� �$��! , then we obtain the

following splitting exact sequence [7, 11]

t?'1a � �"�� ��� � ��! � �'Ia � ����� �����$��! � � ���'Ia � � � �"�� ��� � ��! ' a t � =�$� ' � =�$ ���� '
where � � �  � � � and !!% are matrices with entries in

� �"�� ��� � ��! .
Chasing their denominators, we finally find the identities 1 and
2. Notice that &m' � < )�@ is given here by (12)

Definition 6. A
�

-module has pure dimension % if ) as well
as any of its non-zero submodule have dimension % .
Theorem 7. If ) is a finitely generated

�M�N�	� 
 � ������	 
 � �
-

module which satisfies { < ; < )�@ � 6 < , @ J�%
, then:

1.
+ < 7�8:9 � � � � Y �; < ) A� @�@ � &m' � < )�@L' %

,

2.
n < )�@ 0� 7�8:9 � � � � Y �; < 7�8:9 � � � � Y �; < )  � @  � @ ,

3. if
n < )�@ v� t , then

n < )�@ has pure dimension & ' 6 < , @:' %
.

Proof. The fact that { < ; < )�@ � 6 < , @ JN%
means that there

exists a projective resolution of ) of the form:

t ' a \ � � � � Y � � ����� !$���'Ia \ � � � � ' a ����� � �' a�\  ' a ) ' a�t �
By definition,

6 < , @ � f ~ ��IH � o 62' % q 7�8:9 �; < )  � @ v� t,x 

which means that 7�8:9 �;$< ) A� @ � t for
% � 6 � 6 < , @ and7�8:9 � � � � Y �; < )  � @ v� t , i.e. we have the exact sequence:

t � ' 7�8:9 � � � � Y �; < ) A� @ � ' \ �� � � � Y � �������� !$���� '����� ���
� ' \ �E � '*, � ' t �



1. We can apply Theorem 3 to the
�

-module 7�8:9 � � � � Y �; < ) A� @
to obtain:

E < < 7�8:9 � � � � Y �; < )  � @ @ � G < 7�8:9 � � � � Y �; < ) A� @�@ � 6 < 7�8:9 � � � � Y �; < ) A� @�@ J�%g� 6 < , @ J 6 < )�@ J %h� � < )�@ J %h�
2. We have 7�8:9 � � � � Y �; < , � � � �  � @ 0� 7�8:9 �; < ,  � @ and, by The-
orem 2, we have

n < )�@ 0� 7�8:9 �;$< , A� @ , which shows that:

n < )�@ 0� 7�8:9 � � � � Y �; < 7�8�9 � � � � Y �; < )  � @  � @ �
3. If

n < )�@ v� t , then, by Theorem 7.10 of [1], we obtain thatn < )�@ has pure dimension &(' 6 < , @�' %
.

Example 5. In Example 3, we have seen that ) �� � < � 
�� J � 
 E J � 
 > @ satisfies that 6 < , @ � C
, and thus,6 < , @ JU% � � � { < ; < )�@ . Therefore, by Theorem 7, we obtain

that
n < )�@ 0� 7�8:9 >;$< 7�8:9 >; < ) A� @ A� @ has pure dimension 0, a

fact that can be proved directly once noticing that
n < )�@ 0� ) .

Corollary 2. If ) is defined by the exact sequence (11) andn < )�@ v� t , then
n < )�@ has pure dimension &m' %

.

Let us notice that Theorem 7 and Corollary 2 are also true if��� * � +.�/������2A+h���
where * is a differential field [7, 8].

4 Conclusion

Every results in this paper are effective by means of
Gröbner basis: we can compute a finite free resolution of
a finitely presented

�
-module and, by duality, 7�8:9 �; < , A� @

and 7�8�9 �; < ) A� @ for 6 B %
and determine

� < )�@ . More-
over, the proves of Theorem 4 and 5 are totally construc-
tive: we first compute 7�8:9 �;$< , A� @ for 6 B %

and their an-
nihilators Hg�,� < 7�8:9 �;$< , A� @�@ . Then, by means of techniques
of elimination, we can determine explicitely # � �� �� ��� � �
H��,� < 7�8:9 �;$< , A� @�@ , �	� 
 � � � � ������	 
 � � � ��� ��� ��� � to finally find� �� ��� ��� � �l �]�p! �

. Moreover, extended Bézout identities, as
well as generalized inverses obtained in [7], can be effectively
obtained following the line of [7]. See also [12] for computa-
tional aspects.

By lack of space, we just give one application of the results ob-
tained in this paper. In the case of differential delay systems,
i.e.

� � �2� ��������������� � �� �� � � , Theorems 5 and 6 give an effec-
tive method to determine the polynomials � introduced in [4]
to do motion planning. However, � belongs to the subgroup! � � � of permutations of the &D' %

first variables of
�

. This re-
mark and Theorem 5 show that a system satisfying

� < )�@^B %
is � -flat, where � � �	� � � � � � ������2�� � � � ��� ��� � � �  �]�p! � � � , and& ' � < )�@ � + < , @ J %

for a system defined by a full row rank
matrix.

To finish, let us notice that Corollary 1 shows that � can be
completed to a square matrix whose determinant divides a
power of � �� �� ��� � (if &]' � < )�@ � %

, then � ��
is the great-

est common divisor of the � & � minors of � by Remark 4).
See [3] for related questions.
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