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«Voici mon secret. Il est tres simple : on ne voit bien qu’avec le coeur. L’essentiel
est invisible pour les yeux.», Le Petit Prince, Antoine de Saint-Exupéry.

‘Now here is my secret. It is very simple. It is only with one’s heart that one can
see clearly. What is essential is invisible to the eye., The Little Prince, Antoine de
Saint-Exupéry.

«He aqui mi secreto. Es muy simple : no se ve bien sinon con el corazén. Lo

esencial es invisible a los ojos.», El principito, Antoine de Saint-Exupéry.

« Ecco il mio segreto. E molto semplice : non si vede bene che col cuore. L’essen-
ziale & invisibile agli occhi ». Il Piccolo Principe, Antoine de Saint-Exupéry.

»Hier mein Geheimnis. Es ist ganz einfach : Man sieht nur mit dem Herzen gut.
Das Wesentliche ist fiir die Augen unsichtbar.«, Der Kleine Prinz, Antoine de Saint-
Exupéry.

»,Zde je moje tajemstvi. Je velmi jednoduché : jen srdcem dobfie vidime. To pod-
statné oc¢i nevidi Maly princ, Antoine de Saint-Exupéry.
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Introduction

“We have also tried to convey the fundamental notion that system theory is not
simply a branch of applied analysis, but provides a source of problems and intuition
for a rich interplay between algebra and analysis.”

R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical System Theory,
McGraw-Hill, 1969, Preface.

This habilitation thesis is about the study of mathematical systems theory by means of a
constructive approach to algebraic analysis.

Systems theory is a theory which asserts that organization can be found in the complex
world and that such organization or “system” can be understood by means of concepts and
principles which are independent from the particular domain studied (e.g., physics, engineering
sciences, biology, economy). If the general laws governing this system can be discovered, then
they can be used to analyze any system having similar features. Mathematical systems theory
is a part of systems theory which aims at studying different classes of systems coming from
mathematical physics (e.g., elasticity, electromagnetism, hydrodynamics), engineering sciences
(e.g., electrical, mechanical and chemical engineering), biology, economy, communication. .. by
means of common mathematical concepts, techniques, algorithms and softwares (e.g., discrete or
continuous dynamical systems, linear or nonlinear, deterministic or stochastic, causal or acausal).
This theory can be traced back to Maxwell’s work on governors but its modern development is
mainly due to the work of Kalman in the fifties and sixties.

Algebraic analysis is a modern mathematical theory which studies algebraic or analytic
linear systems of partial differential (PD) and pseudo-differential equations by means of module
theory, homological algebra, sheaf theory, algebraic geometry and microlocal analysis. It was
created in the sixties and the seventies by Malgrange, Ehrenpreis, Palamodov, Bernstein, Sato,
Kashiwara... but some ideas can be traced back to the older works of Méray, Riquier and Janet
on differential systems and to Emmy Noether’s in algebra. An even former meaning of the term
“algebraic analysis” comes from the works of Lagrange and Cauchy. In what follows, I will freely
use this denomination in the broader sense (i.e., a theory which combines both algebraic and
analytic methods), especially in the part on the stabilization problems studied in control theory.

I believe that writing a habilitation thesis is a rare opportunity to explain our results to a
larger audience. Hence, I have chosen to develop my habilitation thesis on two written series of
lectures I gave on my research work. The first one is about some constructive aspects of algebraic
analysis, its applications to mathematical systems theory, control theory and mathematical
physics, and its implementation in dedicated Maple packages. The second one explains an
algebraic analysis approach to stabilization problems of infinite-dimensional linear systems I
have been developing over the past few years. Hence, instead of writing the usual few pages
asked for a French habilitation (presenting a general explanations on the main results and



2 Introduction

offering copies of the candidate’s papers), I have decided to detail my results in the style of
lectures notes. I believe that it was a good exercise for a “pure researcher”. This way, the
habilitation thesis looks more like a German habilitation than a French one (even if there is no
canonical way to write a habilitation thesis). Moreover, I have chosen to write it in English
rather than in French since I originally planned to have referees coming from abroad and who
do not necessarily read French. I hope that “la langue de Moliere” will forgive me. Writing a
habilitation thesis also gives us the opportunity to look back over our own experiences, choices,
successes and mistakes... Therefore, the introductions of the two main parts of the document
were written in a personal style. I hope that the reader will not mind. If so, he/she can just skip
them. Finally, on many occasions, my colleagues asked me to write an introduction to what I
was doing. Here it is!

The plan of the document is the following. Part I contains the standard administration
information written in French. Parts II and III are the main parts of the habilitation thesis and
contain a description of the scientific results. In particular, Part II focuses on the constructive
aspects of algebraic analysis, its applications and its implementations. Part III deals with the
study of stabilization problems developed within an algebraic analysis approach. Each part
contains its own conclusion with a short description of a few projects which will be studied in
the future.

I am extremely grateful to Prof. Vladimir Kucera for accepting to be one of my habilitation
thesis referees. His scientific work has always been a deep source of inspiration to me. In
particular, the famous Youla-Kucera parametrization has played a major role in my work on
stabilization problems. I hope he will enjoy the extension I have made of his parametrization.
Prof. Ulrich Oberst has always been supporting me since the beginning of my PhD thesis in 1996
and has closely followed most of my scientific works. In particular, he invited me for a month at
the University of Innsbruck in 1997. It was a wonderful experience for a young researcher and I
learnt many things. I am pleased that he has accepted to be one of my habilitation thesis referees.
My reading of his Acta Applicadee Mathematicae paper where he first developed the connections
between algebraic analysis and mathematical systems theory was one the two main reasons (the
other being the fact I met my PhD supervisor Jean-Frangois Pommaret) for which I did a PhD
thesis in the direction of constructive algebraic analysis and its applications to mathematical
systems theory. It is a great honour for me that Prof. Wilhelm Plesken has also accepted to
be one of my habilitation thesis referees. He is undoubtedly the most modest man I have met
but his modesty is inversely proportional to his knowledge in mathematics. I have learnt many
things from our scientific discussions. Moreover, it has always been an exciting time for me to
be at RWTH Aachen University where I could freely exchange mathematical ideas and work
with my friends Mohamed Barakat and Daniel Robertz, two distinguished “representatives” of
Prof. Wilhelm Plesken’s impressive school of mathematicians.

I would also like to thank André Galligo who has accepted to be the advisor of my habil-
itation. In the eighties, he was one of the major pioneers in the constructive development of
algebraic D-modules, and his paper [35] has been very influential within the symbolic computa-
tion community and especially for me (e.g., constructive study of Stafford’s results). Moreover,
he was also a pioneer in the development of constructive proofs of the Quillen-Suslin theorem
([30]). For all these reasons, I could not have dreamt of a more perfect “godfather” at the
University of Nice. I am grateful to Moulay Barkatou for being a member of the jury. He is
certainly one of the most knowledgeable researchers in the direction of the constructive aspects
of linear systems of ordinary differential equations and on linear functional systems. I have
always appreciated discussing with him and I have learnt many things from these discussions.



I am extremely happy with Henri Lombardi being a member of the jury. Since our first dis-
cussions on Priifer domains in 2000, I have been really impressed by his scientific program on
the development of “constructive mathematics” and particularly “constructive algebra” ([67]).
In many cases and for different reasons (I was, for instance, motivated by questions coming
from mathematical systems theory), we were interested in the same algebraic questions and
their constructive aspects. His viewpoint and his “school” had a strong influence on me and the
MAP (Mathematics, Algorithms and Proofs) meetings introduced me to many different aspects
of mathematics I did not know at all. Undoubtedly, he is mainly responsible for my recent
interests in the foundation of mathematics “a la Bourbaki” ([39, 40]), formalized reasoning and
the Coq proof assistant. I would like to thank Philippe Maisonobe for having accepted to be a
member of the jury. He is one of the best specialists of D-modules and algebraic analysis and
he is also interested in the constructive aspects of them. In particular, his book [69] has always
been an important source for my work. Finally, I am really pleased to have Pierre Rouchon
in my jury. His work has always been a deep source of inspiration for me. In particular, the
different explicit control systems he studied with his collaborators were the backbone of some
of my works on the constructive aspects of the mathematical systems theory.

I would like to dedicate my habilitation to the memory of my dear colleague Manuel Bronstein
who sadly passed away in 2005. One of the many things I owe him is to have the daily opportunity
to work in the nice environment of my institute INRIA Sophia Antipolis - Méditerranée.

All my love to my parents and my family. I would like to thank my father for introducing
me to the fascinating world of sciences and mathematics when I was still a teenager.

Finally, this habilitation thesis could not have been achieved without the constant help,
support, warmth and love of my partner Danicle André. She helped me debug the literary
aspect of the thesis. Now that the “small diplodocus” is finished, we can return to a “normal
life” and enjoy it again. All my deepest love to youl
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Chapitre 1

Partie administrative

1.1 Renseignements administratifs

Alban QUADRAT, né le 07 avril 1973 au Chesnay (78), 37 ans, Nationalité Francaise.

Adresse : INRIA Sophia Antipolis-Méditerranée, 2004, Route des Lucioles, BP 93, 06902 Sophia
Antipolis-Méditerranée cedex, France.

Téléphone : 04-92-38-76-42, Mobile : 06-72-05-41-06, Fax : 04-92-38-78-58.

Email : Alban.Quadrat@sophia.inria.fr.

Page Web : http://www.sophia.inria.fr/members/Alban.Quadrat/index.html.

Situation professionnelle : Chargé de Recherche de premiéere classe (CR1) a I'Institut Natio-
nal de Recherche en Informatique et en Automatique (INRIA) de Sophia Antipolis-Méditerranée.
En cours de mutation & I'INRIA Saclay dans 1’équipe DISCO (octobre 2010).

1.2 Curriculum vitae

2004

2001

2000

1999

Chargé de Recherche de premiére classe (CR1).
Chargé de Recherche a 'INRIA Sophia Antipolis (12/01).

Postdoctorat a I’université de Leeds (Angleterre, 17 mois),
Algebraic and analytic aspects of feedback stabilization,

sous la direction de J. R. Partington, bourse Européenne
Marie-Curie “Improving Human Research Potential 30”.

Scientifique du contingent au Laboratoire de Recherches
Balistiques et Aérodynamiques (DGA, Vernon).
Filtrage Hy et filtrage de Kalman pour la navigation inertielle.


http://www.sophia.inria.fr/members/Alban.Quadrat/index.html

8 Partie administrative
1999 Doctorat de I’Ecole Nationale des Ponts et Chaussées
Titre : Analyse algébrique des systémes de controle linéaires

Spécialité et mention :
Président et rapporteur :

Rapporteurs :

Directeur de these :

Examinateurs :

Lieu de préparation :

1996

1995

1.3 Mobilité

multidimensionnels.
Mathématiques appliquées et informatique, Mention tres honorable.

J. C. Willems, Professeur a 'université de Groningen (Hollande),
M. Fliess, Directeur de Recherche CNRS (ENS Cachan),
G. Le Vey, Maitre-assistant a ’Ecole des Mines de Nantes.

J.-F. Pommaret, Directeur en chef des Ponts et Chaussées.

M. Bronstein, Directeur de Recherche, INRIA Sophia Antipolis,
S. Diop, Chargé de Recherche du CNRS, LSS-Supélec,

C. Sabbah, Directeur de Recherche, Ecole Polytechnique.

Centre d’Enseignement et de Recherche en Mathématiques,
Informatique et Calcul Scientifique (CERMICS),
Ecole Nationale des Ponts et Chaussées (ENPC).

La these a été nominée parmi les 5 theses de TENPC pour
le prix des theses 1999 et a représenté le CERMICS.

D.E.A. d’Automatique et de Traitement du Signal
Université Paris XI (Orsay), Mention bien.
Obtention d’une allocation de Recherche MENESRT.

Stage de DEA au Laboratoire des Signaux-Systemes
Mise en ceuvre d’une boite a outils pour l’automatique
non-linéaire sur la base des méthodes de décision algé-
briques différentielles sous la direction de S. Diop (CNRS).

Maitrise de Mathématiques, Université de Versailles,
Mention bien.

1. Octobre 2010 : Mutation a 'INRIA Saclay, équipe DISCO (INRIA Saclay, CNRS, Supélec).

2. Juillet 2000-Novembre 2001 : Postdoctorat Algebraic and analytic aspects of feedback
stabilization & 'université de Leeds (Angleterre), 17 mois, bourse européenne Marie-Curie
“Improving Human Research Potential 30”.

3. Novembre 1999-Juillet 2000 : Scientifique du contingent au Laboratoire de Recherches
Balistiques et Aérodynamiques (Délégation Générale de I’Armement, Vernon).

4. Avril 1998 : Invitation d’un mois a la faculté d’Innsbruck (Autriche) par U. Oberst.
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1.4 Responsabilités collectives

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

2011 : International Program Committee de la conférence internationale nDS’11,
Poitiers (France), 05-07/09/2011.

. 2010 : Organisation du mini-symposium “New mathematical methods in multidimen-

sional systems theory” (3 sessions) au 19'" International Symposium on Mathematical

Theory of Networks and Systems (MTNS 2010), Budapest (Hongrie), 05-07/07.

. 2010 : Participation au comité de sélection pour le poste de Maitre de Conférences en

section 25-26 a 'université de Limoges.

. 2010 : Participation au comité de sélection pour le poste de Maitre de Conférences en

section 61 & 'université de Toulouse.

. 2009 : Examinateur de la these d’Emmanuel Montseny, “Transformations opératorielles

de problémes dynamiques et applications”, Université de Toulouse, 10/12/09.

. 2009 : Co-organisateur du mini-workshop “Formal methods in commutative algebra : A

view toward constructive homological algebra”, Oberwolfach (Allemagne), 8-14/11.

. 2009 : International Program Committee de CDPS’09 : IFAC Workshop on Control

of Distributed Parameter Systems, Toulouse (France), 20-24/07.

. 2009 : PEPS Maths-ST2I, Projets Exploratoires, “Symbolic Algebra, Decomposition Do-

mains, Linear Equations and Systems (SADDLES)”, en collaboration avec V. Dolean (Uni-
versité de Nice), F. Nataf (CNRS, Paris 6) et T. Cluzeau (ENSIL, Limoges).

. 2007 : Editeur associé du journal international Multidimensional Systems and Signal

Processing (Springer).
2007 : Membre de jury du recrutement du concours CR2, INRIA Futurs Lille.

2006 : Organisation de la Conférence Internationale en Mémoire de Manuel Bron-
stein, INRIA Sophia Antipolis (France), 13/07.

2006 : Organisation du mini-symposium “Symbolic methods in multidimensional sys-
tems theory” au 17" International Symposium on Mathematical Theory of Networks and
Systems (MTNS 2006), Kyoto (Japon), 24-28/07.

2006 : Action Intégrée Procope “Computational methods in mathematical systems theo-
ry” en collaboration avec 1’équipe de W. Plesken de Aix-la-Chapelle (Allemagne).

2005 : ECO-NET Proteus “Calcul formel et termes (q)-hypergéométriques”, en collabo-
ration avec M. Petkovsek (Université de Lubiana, Slovénie) et S. Abramov (Computing
Center of the Russian Academy of Sciences, Russie).

2004-2006 : Action Intégrée Amadeus “Grobner bases for operator algebras” avec E. Hu-
bert et en collaboration avec R. Hemmecke du Research Institute for Symbolic Computa-
tion (RISC-Linz).

2003 : Organisation de 1’école d’été “Introduction to algebraic control theory : From fi-
nite to infinite-dimensional systems” a Otzenhausen (Allemagne), 15-19/10. Une trentaine
d’étudiants ont participé a cette école d’été.

2003 : Organisation de la session invitée “Algebraic and geometric approaches to linear
differential time-delay systems”, au IFAC Workshop on Time-Delay Systems (TDS 2003),
IFAC, INRIA Rocquencourt (08-10/09).

2003-2004 : Action Intégrée Polonium “Theory and applications of n-dimensional sys-
tems, delay systems and iterative learning control” avec K. Avratchenkov (INRIA Sophia



10 Partie administrative

Antipolis) et P. A. Bliman (INRIA Rocquencourt) et en collaboration avec 1’équipe de
K. Galkowski (Université de Zielona Gora, Pologne).

1.5 Encadrements d’étudiants

1.5.1 Encadrements de postdoctorants

1. 2010-2012 : G. Regensburger, Integro-differential operators and algebraic systems theory,
bourse Schrodinger, Austrian Science Fundation, 21 mois, novembre 2010.

2. 2005-2006 : T. Cluzeau, INRIA Sophia Antipolis, projet CAFE, Utilisation de l’algébre
homologique constructive pour l’étude de la factorisation, réduction et décomposition des
systémes linéaires fonctionnels (qui depuis est Maitre de Conférences & 'ENSIL, Limoges).

1.5.2 Encadrements de théses

1. 2010-2013 : Co-encadrement d’un étudiant de theése avec T. Cluzeau (ENSIL, Limoges),
financement régional, université de Limoges, rentrée universitaire 2010.

2. 2004-2009 : A. Fabianska, “Algorithmic analysis of presentations of groups and rings”,
Université d’Aix-la-Chapelle, Allemagne, these dirigée par W. Plesken (theése soutenue en
juillet 2009).

3. 2003-2006 : D. Robertz, “Formal computational methods for control theory”, Université
d’Aix-la-Chapelle, Allemagne, these dirigée par W. Plesken (thése soutenue le 20 juin
2006).

1.5.3 Encadrements de stages

1. J. Evers, stage du MIT, Implementation of the Quillen-Suslin theorem in OREMODULES,
Sophia Antipolis (06-08/05).

2. G. Culianez, stage de 3°™¢ année de 'INSA de Toulouse, Formes de Hermite et de Jacob-
son : Implémentations et applications, Sophia Antipolis (06-07/05).

3. D. Robertz, deux stages “Control Training Site”, Computational Methods in Linear Control
Theory, INRIA Sophia Antipolis (02-04/03, 02-04/04).

4. S. S. Maris, stage de DEA de l'université de Limoges, Implémentation générique et efficace
des bases involutives, INRIA Sophia Antipolis (04-07/03).

1.6 Enseignement

1. Cours aux Journées Nationales de Calcul Formel, CIRM, Luminy (France, 03-07/05/10), 3
heures. Le cours “An introduction to constructive algebraic analysis and its applications”
est paru dans Les cours du CIRM, 1 no. 2 : Journées Nationales de Calcul Formel (2010),
281-471, http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2010__1_2_281_0.

2. RISC Summer School “Algebraic Analysis and Computer Algebra — New Perspectives for
Applications”, université de Linz (Autriche, 16-17/07/09), 12 heures.

3. Winter School “Algebraic Analysis and Algebraic Systems Theory”, Korea Institute for
Advanced Study (KIAS) , Séoul (Corée du Sud, 15/12/08), 4 heures.


http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2010__1_2_281_0
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4. Enseignement d’un cours intitulé “Introduction aux méthodes du calcul formel et & Maple”
a I'Institut Supérieur d’Informatique et d’Automatique (Ecole des Mines de Paris, Sophia
Antipolis, 2007), 6 heures.

5. J’ai été invité & donner des cours sur mes travaux de recherches dans les université de Sou-
thampton (Angleterre) (3 heures, 2008), Aix-la-Chapelle (Allemagne) (3 heures en 2006, 3
heures en 2003), de Nantes (3 heures, 2006), de Kaiserslautern (Allemagne) (9 heures, 2002)
et d’Innsbruck (Autriche) (6 heures, 1998), aux conférences Mathematics Algorithms and
Proofs a Castro Urdiales (Espagne) (4 heures, 2006) et & Dagsthul (Allemagne) (1 heure,
2004), ainsi qu’a deux écoles d’été a Otzenhausen (Allemagne) (3 heures, 2003) et & I'Ecole
Centrale de Lille (France) (1 heure, 2002).

6. Pendant mon postdoctorat a l'université de Leeds (Angleterre, 2000-2001), j’ai donné des
Tutorials pour les cours Linear Algebra et Numbers and Proofs en premieére année de
mathématiques pour un volume horaire de 50 heures. Ils sont ’équivalent des travaux
dirigés francais avec des corrections de devoir chaque semaine.

7. 1996-1999 : Enseignement a I'université Marne-la-Vallée (260 heures).

— Enseignements de Licence 3 (Licence) : Travaux dirigés sur la topologie de R™ et
sur [’optimisation : méthode de Lagrange, lemme de Farkas, théoreme de Kuhn-Tucker,
convexité et leurs applications en micro-économie.

— Enseignements de Licence 2 (DEUG 2°™¢ année) :

(a) Analyse : Equations différentielles et équations de récurrences.

(b) Algébre et algébre linéaire : Nombres complexes et applications, espaces vecto-
riels, manipulations matricielles, déterminant, diagonalisation et applications éco-
nomiques.

(c) Probabilité et statistiques : statistiques descriptives, droite de régression linéaire,
couples de variables aléatoires continues et discretes, théoremes de convergence
(égalité de Tchébychev, loi des grands nombres et théoreme de la limite centrale) et
applications a I’économie.

J’ai donné un cours d’optimisation et de programmation linéaire ainsi que les travaux

dirigés correspondants :

— Fonctions de plusieurs variables réelles, différentiabilité, développements limités et

optimisation avec et sans-contrainte.

— Programmation linéaire : Méthodes graphiques, tableaux, méthode du simplexe, dua-

lité et applications économiques.

— Enseignements de Licence 1 (DEUG 1°® année) :
(a) Analyse : Fonctions d’une variable réelle, calcul différentiel et intégral.
(b) Statistiques descriptives : Méthodes des moindres carrés, droites de régression li-
néaire, coefficient de corrélation.
8. 1998 : Cours sur la théorie de Riquier-Janet des systemes d’équations aux dérivées partielles
a l'université d’Innsbruck (Autriche), 6 heures.

1.7 Valorisation et transfert technologique

Une étude sur la gravimétrie et 'optimisation des chemins pour les sous-marins, débutée lors
de mon service militaire au Laboratoire de Recherches Balistiques et Aérodynamiques (LRBA),
DGA, a conduit a un contrat industriel avec ’entreprise DIGINEXT. J’ai aussi participé a un
contrat de recherche (guidage/pilotage) au LRBA.
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1.8 Divers

Expertises de trois livres chez Springer, de trés nombreux articles pour des journaux et
conférences de mathématiques pures et appliquées, de théorie du contrdle et de calcul formel
(autour de 20 par an ces dernieres années) ainsi que pour I’ANR.

Invitations a des conférences, séminaires et cours dans diverses conférences et universités
(e.g., Allemagne, Angleterre, Autriche, Corée du Sud, Espagne, France, Italie, Israél, Pologne,
Etats-Unis, Suisse, Tunisie). En particulier :

1. Conférencier semi-plénier au congreés de Mathématiciens hollandais, Groningen, 14-15/04/09.

2. Conférencier semi-plénier au 18" International symposium on Mathematical Theory of

Networks and Systems (MTNS 2008), Virginia Tech, Blacksburg, Virginia (Etats-Unis),
28,/07-01/08.

1.9 Résumé de ’activité de recherche

1.9.1 Analyse algébrique constructive des systémes linéaires fonctionnels

Ces recherches ont pour but I’étude constructive des systeémes linéaires fonctionnels (e.g.,
équations différentielles, équations aux dérivées partielles, équations retardées, équations de
récurrence), leurs applications (e.g., théorie des systémes, théorie du contréle, physique mathé-
matique, sciences de l'ingénieur), le développement de boites a outils dédiées & ’analyse des pro-
priétés structurelles des systémes fonctionnels linéaires (OREMODULES, STAFFORD, QUILLEN-
SUSLIN, OREMORPHISMS, SERRE, PURITYFILTRATION (voir Section 1.10)) et leurs applications
dans les champs des mathématiques appliquées.

Les systémes linéaires fonctionnels que nous étudions sont décrits par des matrices a coef-
ficients dans des algebres polynomiales non-commutatives d’opérateurs (algebres dites de Ore)
comme, par exemple, les algébres d’opérateurs différentiels ou de décalage (retards, avances).
L’utilisation et la généralisation de certaines idées et techniques venant de I'analyse algébrique
(développée par B. Malgrange, I. N. Bernstein, M. Sato, M. Kashiwara et d’autres) permettent
I’étude des propriétés structurelles d’un tel systeme par l'intermédiaire des propriétés intrin-
seques d’un module & gauche de présentation finie associé au systéme. A 'aide de la théorie
des modules et de 'algebre homologique, préalablement rendue constructive puis effective grace
aux techniques des bases de Grobner non-commutatives (e.g., calcul de modules de syzygies, de
résolutions libres, de modules d’extension, de séries de Hilbert, de dimensions projectives ou de
Krull, de rangs, de paramétrisations (minimales, successives, injectives), de bases, d’inverses a
gauche/a droite/généralisés), nous pouvons alors vérifier certaines propriétés des modules (e.g.,
modules de torsion, avec de la torsion, sans-torsion, réflexif, projectif, stablement libre, libre,
i-pure) et donc déterminer certaines propriétés des systémes linéaires fonctionnels étudiées en
théorie des systémes, théorie du contrdle, physique mathématique ou sciences de I'ingénieur (e.g.,
existence de paramétrisations (de Monge), recherche de potentiels ou d’équations de champs,
symétries internes, lois de conservations, problemes variationnels, études des propriétés struc-
turelles de certaines classes de systémes controlés (e.g., controlabilité, observabilité, platitude,
équivalences)). En particulier, nous avons développé une étude constructive du calcul de bases
de modules libres sur les algebres de Weyl — algebres d’opérateurs différentiels a coefficients
dans un anneau de polynémes ou de fonctions rationnelles sur un corps de caractéristique zéro
— (théorémes de J. T. Stafford) ou sur des algeébres commutatives de polynémes a coefficients
dans un corps ou sur Z (théoréeme de Quillen-Suslin, ancienne conjecture de Serre). De plus,
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pour les systemes linéaires fonctionnels, nous avons obtenu une forme canonique fondée sur les
concepts de filtration par pureté et des extensions de Baer développés en théorie des modules.

Les différents algorithmes obtenus ont été implantés dans la librairie OREMODULES dévelop-
pée sous Maple en collaboration avec F. Chyzak (INRIA Rocquencourt) et D. Robertz (Aix-la-
Chapelle, Allemagne) ainsi que dans les packages STAFFORD (en collaboration avec D. Robertz)
et QUILLENSUSLIN (en collaboration avec A. Fabianska (Aix-la-Chapelle, Allemagne)). A notre
connaissance, OREMODULES est la premiere librairie dédiée a la théorie des modules et a I'al-
gebre homologique pour des modules sur des algebres de Ore. STAFFORD (resp., QUILLENSUSLIN)
est la premiére implémentation des théoremes de J. T. Stafford (resp., du théoréme de Quillen-
Suslin). Je développe seul le package PURITYFILTRATION permettant le calcul des filtrations
par pureté des modules différentiels et des formes canoniques associées.

Nous avons aussi montré comment le calcul des homomorphismes d’'un module M de pré-
sentation finie dans un second M’ sur une algébre de Ore D, ot M = D'*P/(D'*4 R) (resp.,
M' = DY /(D™ R')) est le module & gauche intrinséquement associé au systéme linéaire
fonctionnel Ry = 0 (resp., R'¢ = 0) (R € DI, R € DI*P' e Fi, (€ FT, ot F est un
D-module a gauche), permet une étude constructive des problémes classiques de factorisation,
de réduction et de décomposition des systemes fonctionnels linéaires. Ces homomorphismes dé-
finissent des applications envoyant les F-solutions du systeme R’'( = 0 sur celles de Rnp = 0
(symétries Galoisiennes dans le cas ou R’ = R). L’existence d’un endomorphisme non-injectif du
module M est équivalente a I’existence d’une factorisation non-triviale R = R; Ry de la matrice
R du systeme. Le systéme peut alors étre intégré en cascade. Sous certaines conditions de liberté,
le systéme Rn = 0 est équivalent a un systeme R’ ( = 0, ou R’ est une matrice triangulaire par
blocs de méme taille que R. L’existence d’idempotents dans I’anneau des endomorphismes du
D-module a gauche M permet de ramener l'intégration du systeme Rn = 0 a celle de deux
systemes indépendants R; n; = 0 et Ra12 = 0 qui correspondent a la décomposition du module
M en somme directe de sous-modules M = M; & Ms. De plus, sous certaines conditions de
liberté, ces idempotents permettent de calculer un systéme équivalent R’ ¢ = 0, ot R’ est une
matrice diagonale par blocs de méme taille que R. Les algorithmes obtenus sont implantés dans
le package OREMORPHISMS (en collaboration avec T. Cluzeau (ENSIL, Limoges)).

Finalement, nous avons analysé de maniere constructive la réduction de Serre qui étudie
quand un systéme linéaire fonctionnel défini par une matrice d’opérateurs de rang plein par lignes
est équivalent a un systéeme comportant moins d’équations et d’inconnues. Une implémentation
des algorithmes obtenus est en cours dans le package SERRE (en collaboration avec T. Cluzeau).

1.9.2 Analyse algébrique des probléemes d’analyse et synthese

Nous avons récemment développé une nouvelle approche des problemes de stabilisation par
feedback des systémes linéaires contrdlés de dimension infinie (e.g., équations aux dérivées par-
tielles ou équations différentielles retardées telles que I’équation de la chaleur, des ondes, des
télégraphes, des lignes de transmission) fondée sur des techniques d’analyse algébrique (algebre
de Banach, théorie des modules, algébre homologique, théorie des idéaux fractionnaires et des
réseaux algébriques, K-théorie). L’utilisation de la transformée de Laplace (analyse symbolique)
permet de ramener de tels systémes a 1’étude de matrices de transfert reliant les entrées aux
sorties du systeme, matrices dont les coeflicients appartiennent aux corps de fractions de cer-
taines algebres de Banach (e.g., algebre de Wiener W, algebres de Hardy H>*(C,) et H*(D),
algebre du disque A(D)). Nous montrons comment 'utilisation de la représentation fractionnaire
des systémes développée par Desoer, Vidyasagar, Callier, Zames, Francis et d’autres dans les
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années 80 permet alors l'utilisation de I'analyse algébrique sur ces algebres de Banach. Grace
a cette nouvelle approche, nous avons obtenu des conditions générales d’existence de contro-
leurs qui, en boucle fermée, stabilisent un systéme instable (e.g., infinités de modes instables).
Nous avons aussi développé une paramétrisation générale de tous les controleurs stabilisants
qui généralise la paramétrisation classique de Youla-Kucera pour des systéemes stabilisables de
maniére interne n’admettant pas (nécessairement) de factorisations doublement copremiéres.
Nous avons aussi pu obtenir une forme canonique permettant d’étudier la stabilisation forte
(existence d’un controleur stabilisant stable). En particulier, ces résultats nous ont permis de ré-
pondre positivement a la conjecture de A. Feintuch (existence d’un contrdleur stabilisant stable
pour des matrices de transfert a coefficients dans le corps de fractions de H*(C,) et H*(D)),
a la conjecture de Z. Lin (équivalence entre stabilisabilité interne et 'existence de factorisations
doublement copremiéres pour les systémes multidimensionnels), et de donner une réponse com-
plete a la question de Vidyasagar-Schneider-Francis sur les liens entre la stabilisation interne et
I'existence de factorisations doublement copremieres pour les matrices de transfert. Les classes
des systemes admettant des factorisations faiblement doublement copremiéres (anneaux de Syl-
vester cohérents) et des systémes stabilisables de maniére interne (domaines de Priifer) ont été
complétement caractérisées, complétant le résultat de M. Vidyasagar suivant lequel la classe des
systéemes admettant des factorisations doublement copremiéres est formée par les anneaux de
Bézout (Control System Synthesis. A Factorization Approach, MIT Press, 1985). Nous avons
aussi montré comment I’approche fréquentielle par la théorie des opérateurs non-bornés, déve-
loppée par 1’école de R. F. Curtain, M. C. Smith, T. T. Georgiou et d’autres, était duale de
Papproche algébrique précédente (théories des idéaux fractionnaires et des réseaux algébriques)
et pouvait donc étre interprétée comme une approche comportementale (behavioural approach)
au sens de 1’école de J. C. Willems. L’implémentation des algorithmes effectifs permettant le
calcul de controleurs stabilisants et des factorisations (faiblement) copremiéres est a I’étude pour
certaines classes de systémes linéaires de dimension infinie (e.g., systémes différentiels retardés,
certaines équations aux dérivées partielles). Ces résultats ont montré combien la caractérisa-
tion des propriétés algébriques (e.g., anneaux cohérents, de Hermite, de Sylvester, de Priifer,
de Bézout, de pré-Bézout, GCDD, rangs stables, dimensions de Krull) de certaines algebres de
Banach classiques telles que les algebres de Wiener, de Hardy, du disque... était importante
dans I’étude des problémes de stabilisation. Nos résultats et nos questions ouvertes ont engendré
une littérature mathématique récente autour de 1’étude algébrique des algebres de Banach (e.g.,
A. Sasane, R. Mortini, R. Rupp, B. Wick, K. Mikkola) et une introduction a I’analyse algébrique
des problémes de stabilisation intitulée Algebras of Holomorphic Functions and Control Theory,
écrite par A. Sasane, est parue récemment chez Dover (aotit 2009).

1.10 Réalisation de logiciels

Dans le cadre de ’analyse algébrique effective, la librairie OREMODULES est dédiée a 1’étude
des systémes linéaires fonctionnels (déterminés, sur-déterminés, sous-déterminés) définis par
des matrices a coefficients dans des algebres non-commutatives d’opérateurs fonctionnels (e.g.,
opérateurs différentiels, opérateurs de décalage (retards, avances), opérateurs eulériens). Elle a
été initiée en collaboration avec F. Chyzak (INRIA Rocquencourt), puis largement développée
avec D. Robertz (Université de Aix-la-Chapelle, Allemagne). Cette librairie, utilisant le package
Ore_algebra de Maple, permet une étude constructive des points suivants :

1. Algébre homologique : Calcul de modules de syzygies, de résolutions libres, de foncteurs
extension a valeurs dans anneau d’opérateurs, de paramétrisations (minimales, succes-
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sives, injectives), de séries d’Hilbert, de rangs, de dimensions (projectives ou de Krull). ..
de modules de présentation finie sur les algebres de Ore développées dans Ore_ algebra.

2. La théorie des modules : OREMODULES permet de déterminer si un module de présen-
tation finie sur une algebre de Ore admet des éléments de torsion et, si tel est le cas, d’en
calculer une famille génératrice. Il permet aussi de déterminer si un tel module est sans-
torsion, réflexif, projectif, stablement libre ou libre. Ces algorithmes utilisent des techniques
de bases de Grobner sur les algebres de Ore (algebres de polyndémes non-commutatives).

3. La théorie des systémes :

(a) OREMODULES permet le calcul de la dimension (degré de généralité), des condi-
tions de compatibilités, des paramétrisations (minimales, successives, injectives), des
inverses a gauche/droite/généralisés. .. de systeémes linéaires fonctionnels sur des al-
gebres de Ore a coefficients constants, polynomiaux ou rationnels (e.g., équations aux
dérivées partielles, équations différentielles a retards, équations de récurrence).

(b) OREMODULES permet de vérifier certaines propriétés structurelles des systémes de
controle linéaires multidimensionnels (e.g., systémes différentiels, systémes différen-
tiels & retards, systemes discrets) telles que la controélabilité, I'observabilité, la -
liberté, la platitude. .. ainsi que de calculer des éléments autonomes classés par leurs
degrés de pureté, des intégrales premiéres du mouvement, des sorties (7—) plates. ..
Ces résultats sont par exemple utilisés pour faire du suivi de trajectoire et de la
commande optimale.

Une librairie d’exemples venant de la théorie du controle, des sciences de l'ingénieur et de la
physique mathématique est disponible sur le site web de OREMODULES :

http://wwwb.math.rwth-aachen.de/0OreModules/.

Le package STAFFORD de OREMODULES, développé en collaboration avec D. Robertz (Uni-
versité de Aix-la-Chapelle, Allemagne), contient des implémentations de résultats classiques sur
les anneaux d’opérateurs différentiels a coefficients polynomiaux et rationnels (algebres de Weyl)
obtenus par J. T. Stafford (théoréemes de Stafford) et rendus constructifs dans nos travaux. En
particulier, STAFFORD permet le calcul de deux générateurs pour les idéaux de type fini sur
une algebre de Weyl a coefficients dans Q ainsi que le calcul de bases de modules libres de
rang au moins égal & 2. Dualement, ces résultats permettent de calculer des paramétrisations
injectives de systémes linéaires sous-déterminés d’équations aux dérivées partielles a coefficients
polynomiaux et rationnelles sur Q (probléme de Monge) ainsi que des sorties plates. Le package
STAFFORD est accessible sur le site web de OREMODULES :

http://wwwb.math.rwth-aachen.de/OreModules/.

Le package QUILLENSUSLIN contient une implémentation du célebre théoréeme de Quillen-
Suslin (ancienne conjecture de Serre) prouvant que tout module projectif sur un anneau com-
mutatif D de polynoémes a coefficients sur un corps k est libre, c’est-a-dire admet une base. De
maniere équivalente, ce résultat montre que toute matrice a coefficients dans D admettant un
inverse a droite sur D peut étre complétée en une matrice carrée unimodulaire sur D, c’est-a-dire
en une matrice dont le déterminant est un élément non-nul de k. Ce package permet de calculer
des bases de modules libres et dualement des paramétrisations injectives (probléme de Monge)
et des sorties plates des systémes linéaires fonctionnels. Des extensions de la conjecture de Serre
ont été récemment proposées par Z. Lin et K. Bose et résolues de maniere constructive dans
mes travaux en collaboration avec A. Fabianska (Université de Aix-la-Chapelle, Allemagne).
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Les algorithmes correspondants, ainsi que le calcul de factorisations (faiblement) copremiéres a
gauche/droite/doublement de matrices rationnelles, ont été implantés dans QUILLENSUSLIN. Le
package QUILLENSUSLIN a été développé par A. Fabianska suite a une premieére tentative d’im-
plémentation du théoréme de Quillen-Suslin faite par J. Evers dans le cadre d’un stage du MIT
sous ma direction. Nous y avons implémenté les différentes procédures liées aux applications du
théoreme de Quillen-Suslin en théorie des systemes. Le package sera bientét disponible sur le
site web de QUILLENSUSLIN :

http://wwwb.math.rwth-aachen.de/QuillenSuslin/.

Le package OREMORPHISMS de OREMODULES, développé en collaboration avec T. Cluzeau
(ENSIL, Limoges), contient une implémentation du calcul des homomorphismes de modules de
présentation finie sur les algebres de Ore développées dans Ore_algebra, ainsi que le calcul de
leurs noyaux, coimages, images et conoyaux. Dualement, le calcul des homomorphismes permet
d’obtenir des symétries internes des systémes linéaires fonctionnels, des lois de conservations
quadratiques des systémes linéaires d’équations aux dérivées partielles, permet d’étudier le pro-
bléeme d’équivalence des systémes linéaires fonctionnels ainsi que les problémes de factorisation
et de réduction. De plus, OREMORPHISMS contient des procédures permettant de déterminer des
endomorphismes idempotents d’un module donné, de calculer des décompositions de ce module
en somme directe de sous-modules et dualement de déterminer des décompositions de I'espace de
solutions d’un systéme linéaire fonctionnel en somme directe. Finalement, a 1’aide des packages
STAFFORD et QUILLENSUSLIN, OREMORPHISMS permet d’étudier quand un systéme linéaire
fonctionnel est équivalent a un systeme défini par une matrice d’opérateurs triangulaire ou dia-
gonale par blocs. Une librairie d’exemples, venant des champs de la théorie du controle (e.g.,
nombreux systémes différentiels a retards controlés étudiés dans la littérature), des sciences de
Iingénieur et de la physique mathématique, illustre les différentes fonctionnalités du package
OREMORPHISMS. Le package OREMORPHISMS est accessible sur le site :

http://www.sophia.inria.fr/members/Alban.Quadrat/0OreMorphisms/index.html.

Fondé sur les concepts de filtration par pureté et des extensions de Baer développés en théorie
des modules, le package PURITYFILTRATION permet le calcul d’une matrice triangulaire par
blocs équivalente a un systeme linéaire d’équations aux dérivées partielles. Chaque bloc de cette
représentation équivalente est déterminé par les éléments du systeme possédant une dimension
donnée. L’intégration des solutions du systéme sous forme close s’obtient alors par intégration
en cascade d’une chaine de systemes différentiels linéaires inhomogenes de dimension croissante.
En particulier, le package PURITYFILTRATION permet 'intégration de systémes d’équations aux
dérivées partielles que les systemes de calcul formel existants tels que Maple ne permettent pas
d’obtenir. Le package PURITYFILTRATION sera bient6t librement accessible.

Finalement, le package SERRE de OREMODULES, actuellement développé en collaboration
avec T. Cluzeau, contient des outils pour I’étude de la réduction de Serre des systémes linéaires
fonctionnels définis par des matrices a coefficients dans une algebre de Ore implémentée dans le
package Ore_algebra de Maple. Le package SERRE permet d’étudier quand un systeme linéaire
fonctionnel donné est équivalent a un systéme défini par moins d’équations et moins d’incon-
nues. L’utilisation du package SERRE a permis de réduire de nombreux exemples de systemes
différentiels a retards classiques étudiés dans la communauté de la théorie du controle.

1.11 Liste complete de publications

Tous nos papiers peuvent étre téléchargés depuis notre site web.
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Introduction

This text is an extension of lectures notes I prepared for les Journées Nationales de Calcul
Formelheld at the CIRM, Luminy (France) on May 3-7, 2010. The main purpose of these lectures
was to introduce the French community of symbolic computation to the constructive approach
to algebraic analysis and particularly to algebraic D-modules, its applications to mathematical
systems theory and its implementations in computer algebra systems such as Maple or GAP4.
Since algebraic analysis is a mathematical theory which uses different techniques coming from
module theory, homological algebra, sheaf theory, algebraic geometry, and microlocal analysis,
it can be difficult to enter this fascinating new field of mathematics. Indeed, there are very few
introducing texts (to our knowledge, the best one is [69] with a few chapters of [13]). We are
quickly led to Bjork’s first book [10] which, at first glance, may look difficult for the members of
the symbolic computation community and for applied mathematicians. I believe that the main
issue is less the technical difficulty than the lack of friendly introduction to the topic, which could
have offered a general idea of it, shown which kind of results and applications we can expect
and how to handle the different computations on explicit examples. Indeed, even if algebraic
analysis aims at studying linear systems of algebraic or analytic partial differential equations
(“the Courant-Hilbert ([23]) for the new generation” according to [48]), no examples illustrate
the main results of the books [10, 11, 13, 47, 48, 69]. And when the term “applications” appears
in the title of a book on algebraic analysis such as Bjork’s second book “Analytic D-modules
and Applications” ([11]), the term “applications” has to be taken in the sense of applications
to other pure fields of mathematics such as algebraic geometry, analytic geometry, symplectic
geometry... To a very small extent, these lectures notes were planned to fill this gap, at least
for the basic ideas of algebraic analysis such as those appearing in [47]. Since, we can only teach
well what we have clearly understood, I have chosen to focus on my work on the constructive
aspects of algebraic analysis and its applications.

A good way for a researcher to learn a new field is to connect it to his/her own work. A
teacher is more likely to learn a new field by teaching it! My luck was to find Oberst’s seminal
work [81] when I studied for my Master of Science in control theory. This work connects basic
algebraic analysis methods with mathematical systems theory and control theory. In particular,
it explains how algebraic analysis can be used to find again Willems’ approach to mathematical
systems theory called the behavioural approach (see [84] and the references therein). Thanks to
this work, I came to understand that the algebraic techniques I liked and I learnt during my
studies in mathematics (such as module theory and homological algebra) could also be used
to intrinsically study linear systems of partial differential equations or of difference equations.
Indeed, I have to confess that then I did not really get the point of learning all the module theory
and homological algebra machineries for handling the rather simple examples we were asked to
solve. I soon realized that these examples coming from number theory and algebraic geometry
were badly reflecting the main difficulties of these important and deep theories. Nevertheless, the
way algebraic analysis could intrinsically explain interesting concepts studied in mathematical
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systems theory and control theory attracted me so much so that I decided to write a PhD thesis
on the subject ([99]).

Oberst’s idea about the use of algebraic analysis in mathematical systems and control theory
was further developed by Fliess (see [31, 76] and the references therein) and his coauthors, and
Pommaret (see [87, 88, 92] and the references therein). In particular, for different classes of
systems such as time-varying ordinary differential equations or difference equations, differential
time-delay systems or multidimensional systems defined by partial differential equations, these
researchers characterized classical concepts of systems theory such as autonomous elements,
controllability, observability, equivalences and flatness (introduced in [32]) in terms of module
properties such as torsion-free and freeness, at least when the functional spaces, in which the
solutions of the system are sought, were large enough in the sense of module theory as explained
by Oberst’s work (see [34, 81] and the references therein). The interesting applications to control
theory such as the motion planning and tracking problems were developed by Fliess, Mounier,
Rouchon and their co-authors (see [26, 32, 76, 77, 78, 79, 82] and the references therein).

Following the advice of my PhD thesis supervisor, Pommaret, I chose to study the con-
structive aspects of algebraic analysis and its applications to mathematical systems theory.
Indeed, I already believed (and still do) that only the mathematical objects we can compute
either manually or with the help of a computer, can be fully understood (I had already writ-
ten my master thesis ([98]) on constructive methods of differential algebra ([49, 113]), their
applications to nonlinear control theory and their implementation in Maple). This is the way
we learn the concept of the multiplication before understanding basic arithmetics and abstract
algebra, is it not? Hence, a good way to learn (and to teach) algebraic analysis is to develop
a constructive approach and to implement it into dedicated packages developed in computer
algebra systems. It is the philosophy I have developed in my research and particularly in
[14, 16, 17, 19, 20, 29, 102, 103, 108, 110].

More precisely, in [16], Chyzak (INRIA Rocquencourt), Robertz (RWTH Aachen University)
and I developed an approach to linear systems theory based on the concept of an Ore algebra
introduced in [18], which is a particular case of the so-called Ore extensions in noncommutative
algebra (see, e.g., [74]). An Ore algebra is a polynomial ring which is not too badly noncommut-
ative (in particular, the commutation rules do not involve monomials of higher degree). This
class contains the ring of partial differential operators, the ring of differential difference operat-
ors, the ring of differential time-delay operators... (see Section 2.1). Based on the concept of
Ore algebras, we developed in [16, 17] an algebraic analysis approach to linear systems over Ore
algebras. In particular, this approach allowed us to develop a unified mathematical framework
for different classes of mathematical systems encountered in control theory, to study certain of
their built-in properties in an intrinsic way by means of module theory (see Section 2.6), to
develop generic algorithms for the study of these module properties and to implement them in
the Maple package OREMODULES ([17]) based on the noncommutative Grobner bases compu-
tation available in Maple (thanks to the work of Chyzak ([18])). In particular, we were able to
extend the results of Kashiwara ([47]) (see also [92]) concerning the characterization of module
properties (e.g., existence of torsion elements, torsion-free, reflexive, projective, stably free) in
terms of the vanishing of certain extension modules from the rings of partial differential oper-
ators to certain classes of Ore algebras (see Section 2.3). Recently, I came to realize that these
results were already known by Auslander ([2]), one of “the kings” of modern algebra. These
classical concepts of module theory have important interpretations in systems theory in terms of
the existence of parametrizations of the linear system associated with the studied module (once
again when the functional space of the linear system is rich enough ([81])) (see Section 2.4).
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Surprisingly, we cannot find these interesting interpretations in any textbooks on module theory
although they could motivate one to introduce them in module theory. It is certainly one of finest
consequences of connecting module theory to linear systems theory. For instance, the differential
module associated with the classical curl operator (used in mathematical physics) is torsion-free
since it is parametrized by the gradient operator, and the divergence operator defines a reflexive
differential module since it is parametrized by the curl operator and the curl operator is para-
metrized by the gradient operator. The implementation of the results developed in [16, 92] (see
Section 2.3) can be used to obtain explicit parametrizations of underdetermined linear systems
of partial differential equations appearing in mathematical physics (e.g., electromagnetism, hy-
drodynamics, linear elasticity, field theory). In particular, they can be used to solve questions
or remarks raised in these literatures (see, e.g., Example 2.4.9). Moreover, these techniques re-
ceived natural applications in the study of variational problems and optimal control theory ([96])
(see Section 2.6). In algebra, a well-known but difficult issue is to recognize whether or not a
finitely generated projective module is free. This problem has been studied lengthily in number
theory, algebraic geometry, algebraic and topological K-theory, noncommutative geometry. ..
For instance, in 1955, Serre asked whether or not a finitely generated projective module over a
commutative polynomial ring D with coefficients in a field was free (Serre’s conjecture ([58])).
Equivalently, Serre’s question asks whether or not every matrix with entries in D and which
admits a right-inverse over D could be completed to a square unimodular polynomial matrix
over D, namely, to a matrix whose determinant is a nonzero constant. Surprisingly, this rather
elementary question took more than twenty years to be solved by Quillen ([112]) and Suslin
([120]). Explicit computation of bases of free modules is an even more complicated issue. Mo-
tivated by many applications of basis computation in mathematical systems theory, Fabianska
(RWTH Aachen University) and I studied constructive proofs of the Quillen-Suslin theorem
(e.g., [30, 64, 65]) and one of which was implemented by Fabianska in the QUILLENSUSLIN
package (see Section 2.5). A straightforward consequence of the exciting proofs of the Quillen-
Suslin theorem is that a flat multidimensional system is equivalent to the 1-dimensional system
obtained by setting all but one of the functional operators to particular values (e.g., 0) in the
matrix of functional operators defining the system ([29]). Hence, a flat differential time-delay
system is equivalent to the corresponding differential system without delays (i.e., the lengths of
the time-delay operators can be set to 0). Moreover, using Quillen-Suslin theorem, we were able
to constructively solve Lin-Bose’s generalization of Serre’s conjecture ([63]) which asks whether
or not a matrix with entries in D which is such that the ideal formed by its maximal minors is
generated by one element d € D\ {0} can be completed to a square matrix whose determinant is
d. Equivalently, we can ask whether or not this matrix R can be factorized as R = R” R’, where
det(R") = d and R’ admits a right-inverse over D. A theorem due to Stafford ([116]) states that
projective modules over the Weyl algebras of partial differential operators with either polynomial
or rational function coefficients over a field k of characteristic 0 (e.g., k = Q, R, C) are free when
their ranks are at least 2. In collaboration with Robertz, we developed in [108] a constructive
algorithm of this result based on the famous Stafford’s result asserting that every left or right
ideal over one of the two Weyl algebras can be generated by two elements ([116]) (Section 2.5).
All these results were implemented in the STAFFORD package ([108]). Finally, the extension of
Stafford’s theorems to the case of the rings of partial differential operators with either formal
power series or locally convergent series (i.e., germs of real analytic or holomorphic functions)
seems to be open (e.g., following personal discussions with Stafford). Recently, Robertz and I
were able to prove the simplest case in ([111]), namely, every projective module over the ring of
ordinary differential operators with either formal power series or locally convergent series, whose
rank is at least 2, is free (Section 2.5). This result has interesting applications in control theory
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and answers a question raised in [73] about the flatness of analytic linear control systems.

As explained in [16, 92], the obstruction for the existence of “potential-like” parametriza-
tions of an underdetermined linear functional system is defined by the existence of autonomous
elements, i.e., by torsion elements in the finitely presented module associated with the linear
system (at least when the system functional space is rich enough). However, we can wonder if
the concept of “potential-like” parametrization can be extended to include more general para-
metrizations such as parametrizations which depend on arbitrary constants, arbitrary functions
of one independent variable, arbitrary functions of two independent variables, ..., arbitrary
“potentials”, namely, arbitrary functions of all the independent variables. For underdetermined
nonlinear systems of ordinary differential equations, the general parametrization was first stud-
ied by Monge ([75]) and further developed by Hadamard ([41]), Hilbert, Cartan, Zervos... For
more details, see [125]. In a long series of papers, the Monge problem was extended to the case
of nonlinear systems of partial differential equations by Goursat. See [36, 37, 38] and the refer-
ences therein. In [106, 107, 109, 110], Robertz and I, we studied the Monge problem for linear
functional systems such as partial differential equations, differential time-delay systems... and
its applications to optimal control problems and variational problems. In particular, we show
how the concept of Baer’s extensions, also used in homological algebra to define the first exten-
sion functor (Section 3.1), can be used to parametrize all the finitely presented modules which
contain a given torsion module and such that the cokernels of the corresponding injections are
a given torsion-free module (Section 3.2). In systems theory, this result can be used to para-
metrize all the linear systems which contain a given parametrizable linear system and such that
the cokernels of the corresponding injections are a given autonomous system. In particular, this
result allows us to obtain a block-triangular representation of a general linear system which is
useful for computing a Monge parametrization of this system. Indeed, we first have to integrate
a determined/overdetermined linear system and then solve an inhomogeneous underdetermined
linear system whose homogeneous part is parametrizable. Using these techniques, within a sys-
tematic way, we can found again different explicit Monge parametrizations obtained by Rouchon
and his co-authors for different differential time-delay systems ([26, 77, 82]). The main problem
for computing a Monge parametrization is then twofold. First, we have to compute the general
solution of the determined/overdetermined linear system (e.g., closed-form solutions as studied
in the symbolic computation community), which is generally impossible. Secondly, we have to
find a particular solution of the inhomogeneous underdetermined linear system (the paramet-
rization of the homogeneous part can be computed as explained in Section 2.4). In a particular
situation, related to the splitting of the canonical short exact sequence existing between the
torsion submodule ¢(M) of the module M and M/t(M), a particular solution can easily be
computed. Now, to study the integration of an overdetermined linear system, we can use the
interesting concept of purity filtration introduced in the literature of algebraic geometry and
algebraic analysis (see, e.g., [11]). A purity filtration of module over a ring of partial differential
operators is a filtration of the module which is based on the dimension of the annihilator of the
elements of the module (Section 3.3). This concept has interesting applications in systems theory
as explained in [88, 92, 100, 102, 103]. But, following, for instance, [11], the computation of the
purity filtration can be obtained by means of a spectral sequence computation. This approach
has recently been followed by Barakat in [5] who successfully implemented the corresponding
spectral sequences within a powerful package homalg ([4]) of GAP4 dedicated to constructive
homological algebra. In [102, 103], we proved that a direct way can be used to compute the
purity filtration of the differential module by simply extending the characterization of the torsion
submodule ¢(M) in terms of the first extension module of the Auslander transpose of the module
with value in the base ring (see Section 3.4). Using the results on Baer’s extensions developed
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in [109, 110], we can obtain a block-triangular representation of the differential module which
generalizes the one explained above based on ¢(M) and M/t(M). In particular, each diagonal
block of this presentation has a fixed dimension (i.e., the dimension of the annihilator of the
corresponding module has a precise dimension). To our knowledge, this equivalent presentation
of the module is the best form for integrating in closed-form solutions linear systems of partial
differential equations. The corresponding algorithm have recently been implemented in the PUR-
ITYFILTRATION package ([103]) which was used to integrate linear systems of partial differential
equations which could not be computed by means of the classical computer algebra systems such
as Maple. For more details, see [103]. Hence, using the PURITYFILTRATION package, we can
compute Monge parametrizations for linear systems of partial differential equations. Finally,
I think that the work developed in [102, 103] shows that a constructive approach to algebraic
analysis can help simplifying the formulation of certain results stated in classical textbooks (e.g.,
the use of the spectral sequences for the purity filtration), which also advocates for pursuing
this approach (see [67] for a common philosophy) and can help new comers to enter into this
field of mathematics.

For matrices with entries in the noncommutative polynomial ring of ordinary differential
operators with coefficients in a differential field (e.g., field of rational functions) or in the ring
of difference (resp., g-difference) operators with coefficients in a difference field (e.g., field of ra-
tional functions), the factorization, reduction and decomposition problems have lengthily been
studied in the symbolic computation community. These problems respectively aim at studying
when a matrix of functional operators (e.g., ordinary differential operators, difference operators,
g-difference operators) can be either factorize as the product of two matrices or is equivalent
to either a block-triangular or a block-diagonal matrix. For more details, see [7, 97, 119] and
the references therein. The corresponding algorithms were implemented in different packages of
computer algebra systems which can be used to obtain closed-form solutions of the corresponding
linear functional systems. In particular, these problems were intensively studied in the CAFE
project (INRIA Sophia Antipolis), managed by Bronstein, where I was appointed as a permanent
researcher. One of the approaches to the study of these problems, developed by Singer in [119],
is based on the concept of the eigenring of a linear functional system (see also [7, 19, 97]). I
soon realized that they could be studied within an algebraic analysis approach which allowed me
to consider more general systems such as determined/overdetermined /underdetermined linear
functional systems (Section 4.1). Cluzeau (ENSIL, University of Limoges) and I developed this
approach and we explained in [19] that a natural generalization of the concept of eigenring is the
endomorphism ring of the left module finitely presented by the matrix under study, namely, the
ring of endomorphisms (Section 4.2). The abelian group of left homomorphisms from one finitely
presented left module to another one can be computed when the polynomial ring of functional
operators is commutative or when the differential module is holonomic ([80, 121]). If the un-
derlying module is neither holonomic nor defined over a commutative polynomial ring (e.g., the
conjugate Beltrami equations, linearization of the Navier-Stokes equations around the parabolic
Poiseuille profile), then we can only compute a kind of “filtration” of the endomorphism ring
(Section 4.2). Most of the examples of linear systems of partial differential equations studied in
engineering sciences, mathematical physics and applied mathematics do not define holonomic
differential modules (see, e.g., [23, 54, 55, 56]). Fortunately, they are mainly defined by matrices
with entries in a commutative polynomial ring of partial differential operators (e.g., Maxwell
equations, Dirac equations, Navier-Lamé equations, Stokes equations, Oseen equations). It can
be easily shown that a left homomorphism between two finitely presented left modules induces
an abelian group homomorphism between the linear systems defined by these modules. In par-
ticular, an element of the endomorphism ring defines an internal transformation of the linear
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system and an element of the group of the left automorphisms is a kind of Galois-like transform-
ations (see [97, 119] for the connection between eigenrings and differential Galois theory). These
facts advocate for the computation of homomorphisms, endomorphisms and automorphisms.
As explained in [19], computing homomorphisms is also relevant to find quadratic conservation
laws of linear systems of partial differential equations studied in mathematical physics (Sec-
tion 4.3). Indeed, a left homomorphism from the adjoint module to the primal module naturally
defines a quadratic conservation law. It is worth pointing out that the computation of general
conservation laws requires the knowledge of solutions of the adjoint module, which is in gen-
eral a difficult issue. But, if we are only interested in quadratic conservation laws, then only
Grobner basis computations are needed. Within the algebraic analysis approach, Cluzeau and
I were able to characterize the existence of factorizations (e.g., in terms of there existence of a
non-generic solution), the existence of reductions and decompositions (in terms of the existence
of idempotents of the endomorphism ring). See Sections 4.5, 4.6 and 4.7. These results can
be used to factorize, reduce and decompose the solution space of a linear functional system.
The computational issues are generally difficult and are still mainly open in the general case.
However, implementing the different algorithms in the OREMORPHISMS package ([20]), we were
to able to factorize, reduce and decompose many explicit linear functional systems studied in
the literature of control theory and mathematical physics. Finally, the explicit computation of
the reductions and decompositions requires the basis computation of certain free modules, and
thus of the packages JACOBSON ([25]), QUILLENSUSLIN ([29]) and STAFFORD ([108]).

Mathematical models of physical systems are generally obtained after a long chain of physical
reasonings (e.g., obtained by means of a variational formulation, from an equilibrium of forces
and momentum). One consequence is that the system we obtain after this chain is generally
not “minimal”, i.e., it is generally formed by a non-minimal set of equations and unknowns.
Symbolic computation can play an important role in the rewriting and the preconditioning of
the corresponding system of equations (e.g., using Grobner and Janet basis techniques, purity
filtration techniques). For instance, an important issue is to be able to compute an equival-
ent representation of a (determined/overdetermined /underdetermined) linear functional system
which is simpler in the sense it contains fewer equations and fewer unknowns and the entries of
the new system are “small”. Motivated by the complete intersection problem studied in algeb-
raic geometry and algebra, Serre investigated in [118] the possibility to find finite presentations
of a given module (of projective dimension less or equal to 1) which are defined by smallest
possible ranks. This problem is called Serre’s reduction problem. Following Serre’s ideas, the
constructive approach to this important issue was initiated in [14, 21] (see Section 5.2). The
techniques developed in [14, 21] are particularly interesting for a finitely presented module whose
Auslander transpose is either a finite-dimensional vector space over the base field or a holonomic
differential module. Observing that generically, this case holds for a torsion-free module finitely
presented by a full row rank matrix with entries in a commutative polynomial in two variables
over a field, we were able to compute Serre’s reduction for many different examples of differential
time-delay systems studied in the literature (see, e.g., [50, 76, 77, 78]). The computation of an
explicit Serre’s reduction (if it exists) uses the basis computation of certain free modules (see
Section 5.3). Therefore, the constructive algorithms developed in [29, 30, 64, 65, 108] as well
as the packages JACOBSON ([25]), QUILLENSUSLIN ([29]) and STAFFORD ([108]) play important
roles in the computation of Serre’s reductions. Finally, using the fact that a torsion module
over the ring D of ordinary differential operators with either polynomial, formal power series
or locally convergent power series coefficients is holonomic and thus cyclic (Section 3.3), [21]
proves that every left D-module finitely presented by a full row rank thin rectangular matrix
can be defined by only one relation, i.e., the corresponding linear system of ordinary differential
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equations can be defined by one ordinary differential equation.

In Section 6, we shortly demonstrate the implementations of the different algorithms in
the Maple packages OREMODULES ([17]), JACOBSON ([25]), QUILLENSUSLIN ([29]), STAFFORD
([108]), PURITYFILTRATION ([103]), OREMORPHISMS ([20]) and SERRE ([21]).

In the conclusion (Section 7), we shortly explain some of our research projects for the future
which will further develop certain of the results presented here or use constructive algebraic ana-
lysis techniques to study particular classes of nonlinear systems of partial differential equations
(e.g., bilinear, quasilinear, hyperbolic) appearing in gas dynamics, traffic flow. ..

Finally, my papers can be downloaded from the website:

http://www.sophia.inria.fr/members/Alban.Quadrat/index.html.


http://www.sophia.inria.fr/members/Alban.Quadrat/index.html
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Chapter 2

Algebraic analysis approach to
mathematical systems theory

“La science ne s’apprend pas : elle se comprend. Elle n’est pas lettre morte et
les livres n’assurent pas sa pérennité : elle est une pensée vivante. Pour s’intéresser
a elle, puis la maitriser, notre esprit doit, habilement guidé, la redécouvrir, de méme
que notre corps a dii revivre, dans le sein maternel, I’évolution qui créa notre espece ;
non point tous ses détails, mais son schéma. Aussi n’y a-t-il qu'une facon efficace
de faire acquérir par nos enfants les principes scientifiques qui sont stables, et les
procédés techniques qui évoluent rapidement : c’est donner a nos enfants I’esprit de
recherche.”

Jean Leray, dans M. Schmidt, Hommes de Sciences : 28 portraits, Hermann, 1990.

The purpose of this chapter is to give a short introduction to basic ideas, concepts and
results of constructive algebraic analysis. Algebraic analysis, pioneered by Malgrange and the
Japanese school of Sato, is a mathematical theory which studies linear systems of partial dif-
ferential equations (PDEs) based on module theory, homological algebra and sheaf theory (see
[10, 11, 13, 47, 48, 69, 70] and the references therein). Basic algebraic analysis has recently
been studied within a constructive viewpoint (see, e.g., [5, 16, 19, 69, 80, 81, 88, 92, 102, 103,
108, 109, 121]). The module-theoretic approach to linear ordinary differential (OD) or partial
differential (PD) systems developed within the algebraic analysis approach gives a powerful
mathematical framework for the study of the structural properties of general linear differential
systems (determined, overdetermined, underdetermined). In particular, the module character-
izations of the structural properties developed in this approach are intrinsic in the sense that
they do not depend on particular representations of the linear PD system. Using powerful
tools of homological algebra, we can obtain general characterizations for the module properties
(e.g., existence of torsion elements, torsion-free, reflexive, projective, stably free, free). Using
constructive algebra (e.g., noncommutative Grobner or Janet bases), those homological charac-
terizations can be made constructive and can be implemented in dedicated symbolic computa-
tion packages (e.g., OREMODULES, OREMORPHISMS, JACOBSON, QUILLENSUSLIN, STAFFORD,
SERRE, PURITYFILTRATION). Finally, the module properties have important interpretations in
mathematical systems theory and mathematical physics (e.g., existence of autonomous elements
or (minimal/injective/chain of) parametrizations).
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2.1 Linear systems and finitely presented left D-modules

We recall that the definition of a left D-module (resp., right D-module) M is the same as
the one of a k-vector space but where the field k is replaced by a ring D and the elements of
D act on the left (resp., right) of M, namely, for all m;, my € M and all d;, do € D, we have
dymy + domg € M (resp., midy +made € M). In particular, a k-vector space is a k-module
and an abelian group is a Z-module. For more details, see, e.g., [15, 68, 115].

Within algebraic analysis (see, e.g., [10, 11, 13, 16, 47, 48, 69, 88] and the references therein),
a linear functional system (e.g., linear systems of ODEs or PDEs, OD time-delay equations,
difference equations) can be studied by means of module theory and homological algebra ([15,
68, 115]). More precisely, if D is a noncommutative polynomial ring of functional operators (e.g.,
OD or PD operators, time-delay operators, shift operators, difference operators), R € D?*P a
q X p matrix with entries in D and F a left D-module, then the linear functional system

kerr(R.) £ {n€ FP | Rn =0}

i.e., the abelian group formed by the F-solutions of Rn = 0, can be studied by means of the left
D-module M £ D'¥P /(D% R) finitely presented by the matrix R. Indeed, Malgrange’s remark
([70]) asserts the existence of the following abelian group isomorphism (i.e., Z-isomorphism)

kerj:(R.) = hOmD(M7 f)v

where homp (M, F) is the abelian group of left D-homomorphisms from M to F (i.e., maps
f M — F satistying f(dimy + damg) = dy f(m1) + da f(ms2) for all di, do € D and all
mq, mg € M) and = denotes an isomorphism, namely, a bijective homomorphism.

Let us describe this isomorphism. To do that, we first give an explicit description of M in
terms of generators and relations. Let m : D'*P — M = D'*P/(D1*4 R) be the canonical
projection onto M, namely, the left D-homomorphism which sends a row vector of D™ P of
length p to its residue class w()\) in M, {f;}j=1,..p the standard basis of D**P| namely, f; is the
row vector of length p defined by 1 at the j*® entry and 0 elsewhere, and y; = 7(f;) the residue
class of f; in M for j = 1,...,p. Since every element m € M is the residue class of an element
A= (A1 ... \y) € DY*P_then, using the left D-linearity of the left D-homomorphism 7, we get

p p p
m=mn(A)=m (Z/\j fj) =Y () =D Ny
j=1 j=1 J=1

which shows that {y;};=1,. p is a family of generators of the left D-module M. Moreover, if we
denote by R;, the i*! row of the matrix R, then R;, € D' R, which yields 7(R;e) = 0 and thus

p p p
T(Rie) = (ZRijfj) =Y Ry7(f;) =Y Rijy; =0, i=1,....q, (2.1)
=

j=1 j=1

which shows that the set of generators {y;};—1,.., of M satisfies the left D-linear relations (2.1)
and all their left D-linear combinations. If y = (y1 ... y,)T € MP, then (2.1) becomes Ry = 0.

Now, let x : kerg(R.) — homp(M,F) be the Z-homomorphism defined by x(n) = ¢, for
all n € kerg(R.), where ¢,(m(A\)) = An € F for all A € D*P. The Z-homomorphism ¢, is
well-defined since 7(A\) = 7()\) yields 7(A — \') = 0, i.e., A — X = u R for a certain u € D>,
and thus ¢,(7(A\)) = An=XNn+pRn=XNn= ¢,(r(XN)). Moreover, x is injective since ¢, = 0
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yields An =0 for all A\ € D*P and thus n; = fjn=0for all j =1,...,p, i.e.,, n=0. It is also
surjective since for all ¢ € homp(M,F), n= (¢(y1) ... ¢(yp))T € FP satisfies x(n) = ¢ and:

p p p
Vi=1,....q, Y Rynj=> Rijd(y;) =0 (ZRijyj) =¢(0)=0 = n€kerp(R).
j=1 j=1

j=1

Thus, the Z-homomorphism ¥ is an isomorphism and x~! : homp(M, F) — kerz(R.) is defined
by x H¢) = (é(y1) ... ¢(yp))T for all ¢ € homp(M,F). Let us sum up Malgrange’s remark.

Theorem 2.1.1 ([70]). Let D be a ring, R € D¥P a matrizr, M = DYP/(D¥9R) the left
D-module finitely presented by R, © : DY*P — M the canonical projection onto M, {fiti=1,.p
the standard basis of DY¥P, y; = nw(f;) for j=1,...,p, and F a left D-module. Then, we have
the following abelian group isomorphism:

homp(M,F) — kerg(R.)={neFP|Rn=0}
¢ — n=(0) ... o))"

Hence, there is a one-to-one correspondence between the elements of homp (M, F) and of ker 7(R.).

(2.2)

Remark 2.1.1. Theorem 2.1.1 shows that the linear functional system kerz(R.) can be studied
by means of the finitely presented left D-module M = D'*?/(D'*4 R) and the left D-module
F: M intrinsically defines the linear system of equations defined by the matrix R € D?7*P and
F is the functional space where we seek the solutions of the linear functional system.

A differential ring (A,{01,...,0,}) is a commutative ring A equipped with commuting de-
rivations 0; : A — A for i = 1,...,n, namely, maps satisfying

Vay,ag €A, 6;00; =000, 0i(ar+az) =0di(a1)+di(az), di(ariaz)=0di(ar1)as+ a1 d;i(az),

for all 7,5 =1,...,n. If we take a; = ag = 1, then the above equality yields 6;(1) = 2§;(1), i.e.,
6;(1) = 0. If A is a field and a € A\ {0}, then &;(a)a™t + ad;i(a™t) = §i(aa™t) = §;(1) = 0,
which shows that the derivation d; satisfies §;(a™') = —a=26;(a). A is called a differential field.

In what follows, we shall mainly focus on the differential ring (A, {6%1’ e %}), where
A =klxy,...,xy), k[z1,...,2,] (i.e., the ring of formal power series at 0 with coefficients in k),

where k is a field of characteristic 0 (e.g., Q, R, C), k{x1,...,x,} where £k = R or C (i.e., the
ring of locally convergent power series at 0 or the ring of germs of real analytic or holomorphic
functions at 0) or the differential field A = k or k(x1,...,2y), where k is a field.

The ring of PD operatorsin 01, . . ., 0, with coefficients in the differential ring (A, {d1,...,0n}),
simply denoted by D = A(0,...,0y), is the noncommutative polynomial ring in the 9;’s with
coefficients in the commutative differential ring A satisfying:

Vac A, Vi,j=1,...,n, 0;0; =0;0;, Oia=ad; + d;(a).

An element d € D can be written as d = 37}, ., av 0", where a, € A, v = (v1 ... )T €N,
lv|=uv1+...4 v, and 0¥ = 07" ... 04"

The first (resp., second) Weyl algebra is defined by A, (k) = k[z1,...,2,](01,...,0n) (resp.,
B, (k) = k(x1,...,2,)(01,...,0n)). If n = 1, then we shall simply use the notations § = %
instead of 1, O instead of 01 and k[t], k(t), k[t] and k{t} instead of k[z1], k(x1), k[x1] and
k}{JEl}
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More generally, we can consider the noncommutative polynomial rings D = A(9,...,0n)
of functional operators 9; for i = 1,...,m, where A = k[x1,...,x,], k is a field,
Vi,j=1,....,m, VI=1,...,n, 82-8j:8j8i 8ia:l:(aﬂ:cl+bil)8i+cil, (2.3)

and a; € k\ {0}, by € k, ¢; € A and deg(cy) < 1, such as Ore algebras ([18]). For instance, the
ring of OD time-delay operators or the ring of OD and difference operators are Ore algebras.

Example 2.1.1. The linearization of the Navier-Stokes equations around the parabolic Poiseuille
profile is defined by the following linear PD system with polynomial coefficients:

Oy dur + 4y (1 —y) 0p duy — 4 (2y — 1) dug — v (92 + 82) duy + 9, 6p = 0,

Oy dug + 4y (1 — y) 0y duy — v (03 + 03) duz + 9y 6p = 0, (2.4)

Oz 0uy + 67; dug = 0.
Here, du; (resp., dp) denotes a perturbation of the i*" component of the speed @ = (u; )T
(resp., of the pressure). If D = A3(Q(v)) is the first Weyl algebra of PD operators in 0, 0, and
0y with coefficients in Q(v)[t, z, y], then (2.4) is defined by the following matrix of PD operators

O +4y(1—y) 0, —v (92 +0}) —4(2y—1) Oa
R = 0 Oh+4y(l—y) 0, —v(02+02) 0, | € D>,
0, 9, 0

and the generators {0u; = 7(f1),duz = 7(f2),dp = 7w(f3)} of the finitely presented left D-module
M = DY3/(D1*3 R) satisfy the left D-linear relations generated by (2.4), where {f;}j=123 is
the standard basis of DX and 7 : D3 — M the canonical projection onto M. Finally, if
F is a left D-module (e.g., C*®°(R, x R?)), then the F-solutions of the linear system (2.4), i.e.,
kerg(R.) = {n= (0u; duz dp)T € F3| Rn =0}, is Z-isomorphic to homp(M, F).

Remark 2.1.2. Sheaf theory (e.g., sheaves of finitely presented differential modules) can be
used to study locally algebraic or analytic linear systems of PD equations and the ring D of PD
operators can also be replaced by the sheaf £ of germs of microdifferential operators ([47, 48]).

If M and F are two left D-modules, then homp (M, F) has an abelian group structure but
is usually not a left or a right D-module. Indeed, if homp (M, F) has a left D-module structure
defined by (d f)(m) = f(dm), for all d € D and all m € M, then, according to the definition of
a left D-module, for all d, d’ € D and for all f € homp(M,F), we have (dd’) f = d(d’ f) and:

{ (dd' f)(m) = f(dd' m),
(d(d"f))(m) = (d' f)(dm) = f(d'dm),

But, f(dd'm) and f(d'dm) are not necessarily equal for all d, d’ € D and all m € M.

= f(dd'm)= f(d'dm).

Example 2.1.2. Let us consider the first Weyl algebra D = A;(Q(m, o)), R = (0+ (t—m)/a?),
the finitely presented left D-module M = D/(D R) and the left D-module F = C*°(R). Then,

_ (t=m)?
the Gaussian distribution 7 = e~ 202~ belongs to kerz(R.) since we can easily check that:

t—
877+( 2m)n:0.
o
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But, neither 07 nor t7 belong to kerz(R.):

(t—m) (t—m) 1 (t—m) 1
@) + 5= 0n=———g—"0n— Z0n+—35—0n=——n#0,

otm+ S ey =t (00 + S aw)) +n=n £

Therefore, kerr(R.) = {n € F | Rn = 0} has no left D-module structure which, by The-
orem 2.1.1, implies that homp (M, F) is only an abelian group and a Q(m, o)-vector space.

If D is a commutative ring, then homp (M, F) inherits a D-module structure defined by:
Vde D, YmeM, (df)(im)=f(dm).

We recall that a ring D is called a domain if it does not contain non-trivial zero divisors, i.e.,
di dy = 0 implies d; = 0 or do = 0. Moreover, D is a left noetherian ring if every left ideal of D
(i.e., every left D-submodule of D) is finitely generated, i.e., can be generated by a finite family
of generators as a left D-module. Similarly, we can define the concept of a right noetherian ring.
A ring is simply called noetherian if it is both a left and a right noetherian ring ([57, 115]). A
result due to Goldie ([74]) proves that a left (resp., right) noetherian domain is a left (resp.,
right) Ore domain, namely, a domain satisfying the left (resp., right) Ore property, i.e., for all
dy, d2 € D\ {0}, there exist e, ea € D\ {0} such that e; d; = ez ds (resp., dj ey = da e2).

Example 2.1.3. The rings A(01, ..., 0,) of PD operators with coefficient in the differential ring

— A =k, where k is a field,

— A=kl[z1,..., 2], k(z1,...,2,) or k[z1,...,2,], where k is a field,

— A=k{x1,...,zn}, where k =R or C,
are noetherian domains, and thus Ore domains ([74]). Moreover, if k is a computable field (e.g.,
Q or F, for a prime p), A = k, klz1,...,2,] or k(z1,...,2,), and R € D?*P, then, for any
admissible term order, Buchberger’s algorithm terminates and it computes a Grébner basis of
the left D-submodule D'*? R of D'*P for the corresponding term order. For more details, see,
e.g., [18, 35, 61] and the references therein. A similar result holds for the Ore algebras satisfying
(2.3). For an introduction to Grébner basis techniques, see [8, 18, 61] and the references therein.
Finally, Janet basis techniques can also be used to constructively study module theory over the
same classes of noncommutative polynomial rings (e.g., rings of PD operators) ([12, 43, 87, 114]).

We recall a few definitions of module theory we shall use in what follows (see, e.g., [57, 115]).
Definition 2.1.1. Let D be a left noetherian domain and M a finitely generated left D-module,

namely, M can be generated by a finite family of elements of M as a left D-module.

1. M is free if there exists r € N = {0, 1,...} such that M = D", Then, r is called the rank
of the free left D-module M and is denoted by rankp(M).

2. M is stably free if there exist r, s € N such that M @ D'¥% = D" Then, r — s is called
the rank of the stably free left D-module M.

3. M is projective if there exist » € N and a left D-module N such that M & N = D7
where @ denotes the direct sum of left D-modules.

4. M is reflexive if the following canonical left D-homomorphism

e: M — homp(homp(M, D), D),
m — e(m),

where e(m)(f) = f(m) for all f € homp(M, D) and all m € M, is a left D-isomorphism.
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5. M is torsion-free if the torsion left D-submodule of M
t(M)={meM|3de D\{0}: dm =0}

is reduced to 0, i.e., if (M) = 0. The elements of (M) are the torsion elements of M.
6. M is torsion if t(M) = M, i.e., if every element of M is a torsion element of M.
7. M is cyclic if M is generated by m € M, i.e., M = Dm = {dm | d € D}.

Remark 2.1.3. The fact that t(M) is a left D-submodule of M is a consequence of the left
Ore property of D (which comes from the left noetherian domain property). Indeed, for all
my, mg € t(M) and all di, dy € D, we need to prove that dym; + domg € t(M). Since
mi, mg € t(M), there exist p1, po € D\ {0} such that p; m; = 0 and pa ma = 0. Using the left
Ore property of D, there exist non-trivial r1, ro, s1, s, t1, to € D satisfying:

rip1 = s1di, T2p2 = sadz, t1s1=1t259.
Therefore, we get
(t151) (d1my +dama) = t1 (s1.d1) my + t2 (s2d2) ma = t1 71 (prm1) + ta 72 (p2m2) = 0,
which shows that dy my + damg € t(M) since t1 53 € D\ {0}.

In the forthcoming Theorem 2.3.1, we shall explain how the module properties introduced
in Definition 2.1.1 can be constructively checked when Grébner basis techniques are available
for a noncommutative polynomial ring D. We shall then give explicit examples.

A free left D-module M = D" is clearly stably free since we can take s = 0 in 2 of
Definition 2.1.1 and a stably free left D-module is projective since we can take N = DX in
3 of Definition 2.1.1. Moreover, if M is a projective left D-module, then M is a reflexive left
D-module since M is a direct summand of a finite free left D-module F = D" and F is a
reflexive left D-module. If M is a reflexive left D-module and m € ¢(M), then there exists
d € D\ {0} such that dm = 0, and thus d f(m) = f(dm) = f(0) = 0 for all f € homp(M, D),
ie., f(m)=0since d # 0, f(m) € D and D is a domain, which shows that e(m)(f) = f(m) =0
for all f € homp(M, D) and proves that e(m) =0, i.e., m € kere = 0, and thus ¢(M) = 0.

Proposition 2.1.1 ([115]). A free left D-module is stably free, a stably free left D-module is
projective, a projective left D-module is reflexive and a reflexive left D-module is torsion-free.

The converses of the results of Proposition 2.1.1 are generally not true. However, it holds in
particular interesting situations.

Theorem 2.1.2 ([57, 112, 116, 120]). 1. If D is a principal left ideal domain, namely, every
left ideal of the domain D is cyclic (e.g., the ring A(D) of OD operators with coefficients in
a differential field A such as A =k, k(t) and k[t][t], where k is a field of characteristic
0, or k{t}[t71], where k = R or C), then every finitely generated torsion-free left D-module
is free.
2. If D = k[x1,...,zy,] is a commutative polynomial ring with coefficients in a field k, then
every finitely generated projective D-module is free (Quillen-Suslin theorem).

3. If D is the Weyl algebra A, (k) or By(k), where k is a field of characteristic 0, then every
finitely generated projective left D-module is stably free and every finitely generated stably
free left D-module of rank at least 2 is free (Stafford’s theorem,).
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In 1955, Serre wrote “On ignore s’il existe des A-modules projectifs de type fini qui ne soient
pas libres”, where A = k[x1,...,z,] and k a field (page 243 of [117]). In 1976, this remark,
called “Serre’s conjecture” ([58]), was independently solved by Quillen ([112]) and Suslin ([120]).

The purpose of the next sections is to explain how to check whether or not a finitely presented
module M over a noetherian domain D is respectively torsion-free, projective, stably free or free,
and give applications of these concepts to mathematical systems theory.

2.2 Finite free resolutions and extension functor

“S’il est vrai que la mathématique est la reine des sciences, qui est la reine de la
mathématique ? La suite exacte !”, Henri Cartan, Oberwolfach, 1952.

“...If I could only understand the beautiful consequence following from the con-
cise proposition d?> = 07, Henri Cartan, Laudatio on receiving the Doctor Honoris
Causa degree at Oxford University, 1980.

To simplify the notations, the set FP*! of column vectors of length p with coefficients in F
will be denoted by FP. Let us recall basic concepts of homological algebra (see, e.g., [15, 68, 115]).

Definition 2.2.1. 1. A complex of left (resp., right) D-modules, denoted by

d; d; d; di_
My .0 2225 Mg =25 M 25 M =5 (2.5)

is a sequence of left (resp., right) D-homomorphisms d; : M; — M;_1 between left (resp.,
right) D-modules which satisfy im d;4+; C kerd;, i.e., d; od;11 =0 for all i € Z.

2. The defect of exactness of (2.5) at M; is the left (resp., right) D-module defined by:
HZ(M.) = ker di/im di+1.

3. The complex (2.5) is said to be exact at M; if H;(M,) = 0, i.e., ker d; = imd;41, and ezact
if ker d; = imd;41 for all i € Z. An exact complex is also called an ezact sequence.

4. The exact sequence of the form 0 — M’ T o — 0, i.e., f is injective,

ker g = im f and g is surjective, is called a short exact sequence.

5. A finite free resolution of the left D-module M is an exact sequence of the form
. & D1><T3 ﬁ) D1><'r‘2 & D1><7“1 A Dero L) M — 07 (26)

where R; € D"X"i-1 and .R; : D'*" — D'*7i-1 ig the left D-homomorphism defined by
(.R;)(\) = AR; for all A € D*Ti,

6. A finite free resolution of a right D-module N is an exact sequence of the form

0 N & pro Bl pst B2 ps2 S pss S (2.7)

where S; € D%=1%% and S;. : D% — D?®*-1 is defined by (S;.)(n) = S;n for all n € D*.

7. A short exact sequence 0 — M’ T M £ M — 0 of left D-modules is said to split
if one of the following equivalent assertions holds:
— There exists a left D-homomorphism h : M” — M such that g o h = id .
— There exists a left D-homomorphism k : M — M’ such that ko f = idy.
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— There exists a left D-isomorphism from M’ @® M" to M, i.e., M = M' @& M".
We denote the previous split short exact sequence by the following diagram:

0o— M L oM L mr_—o.
. ) (2.8)
— —

Example 2.2.1. If D is a noetherian domain and M is a finitely generated left D-module, then

we have the short exact sequence 0 — t(M) —— M -5 M/t(M) — 0 of left D-modules,
where i (resp., p) denotes the canonical injection (resp., projection).

Example 2.2.2. If M is a left D-module, m € M and annp(m) = {d € D | dm = 0} the
annihilator of m, then annp(m) is a left ideal of D and the following short exact sequence holds

0—>annD(m)—>Di>Dm—>0

where the left D-homomorphism f is defined by f(d) = dm for all d € M. Hence, we get
Dm = im f = coim f £ D/annp(m). If annp(m) = 0, then Dm = D, which proves that Dm
is a free left D-module of rank 1. If annp(m) # 0, then Dm is a torsion left D-module since
D/annp(m) is a torsion left D-module generated by the residue class of 1 in D/annp(m).

If D is a left noetherian ring and M a finitely generated left D-module, then M admits a
finite free resolution. Indeed, if {y;};=1.r, is a finite family of generators of M, then we can
define the left D-homomorphism 7 : D" — M by w(f;) = y; for all j = 1,...,79, where
{fi}j=1....r is the standard basis of the free left D-module D70 of rank rg. Then, we have the
following short exact sequence:

0 — ker 1 —— D0 ™, pr 0.

Now, ker 7 is a left D-submodule of the noetherian left D-module D'*™, a fact implying that
ker 7 is a finitely generated left D-module (see, e.g., [57, 115]). Hence, there exists a finite family
of generators of ker m. Stacking these row vectors of length rg into a matrix, we obtain a matrix
Ry € D™*"0 guch that ker m = D" Ry, which yields the following long exact sequence:

0 — kerp(.Ry) — DVt L plxro T ar g,

kerp(.Ry) is called the (first) syzygy left D-module of D'*™ R1. We obtain that a finitely gen-
erated left module over a left noetherian ring is finitely presented. Repeating the same process,
we obtain a finite free resolution (2.6) of the left D-module M (syzygy module computation).

Within mathematical systems theory, we note that the matrix Ry € D™*™ defined by
kerp(.Ry) = D'*" Ry is a generating set of the compatibility conditions of the inhomogeneous
linear system R;n = ( since, for every A € kerp(.Ry), we have A( = A(R1n) = (AR;)n = 0.
Hence, the compatibility conditions of Ry n = ( are generated by Ro ( = 0. If Grébner bases exist
for finitely generated left D-submodules of D'*"i and for elimination term orders, then a finite
free resolution (2.6) of M can be inductively computed by eliminating 7 from the inhomogeneous
linear system R;n = ( to get R;+1 ¢ = 0. For more details, see, e.g., [16, 17].

We give the sketch of an algorithm which computes syzygy modules ([16]).
Algorithm 2.2.1. — Input: A noncommutative polynomial ring D for which Buchber-

ger’s algorithm terminates for any admissible term order and a finitely generated left
D-submodule L of D'¥P defined by a matrix R € D9*P ie., L = D'*9R,
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— Output: A matrix S € D™*? such that kerp(.R) = D" S.

1. Introduce the indeterminates 71, ...,n,, C1,...,(; over D and define the following set:

p
P—{ZRijnj—Cz‘i—L---,Q}-
j=1

2. Compute the Grobner basis G' of P in the free left D-module generated by the 7;’s and
the (;’s for j = 1,...,pand i = 1,...,q, namely, @"_, Dn; ® @, D (;, with respect to
a term order which eliminates the 7;’s.

3. Compute the intersection GN (P!, D¢) = {XL Sk G | k=1,...,r} by selecting the
elements of G' containing only the (;’s and form the matrix S = (S;;) € D"™1.

Example 2.2.3. In mathematical physics ([54, 55]), it is well-known that the compatibility
conditions of the gradient operator in R? are defined by the curl operator, and the compatibility
conditions of the curl operator are defined by the divergence operator. It means that the
D = Q|01, 02, 03]-module M = D/(D 01+ D 02+ D 93) admits the following finite free resolution

0 D e px3 fo pixs B T4 Ly, (2.9)

with the notations Ry = (01 O 83)T, R3 = RY and:

0 —03 Ob
Ry = 03 0 -0 e D33, (2.10)
-0y O1 0

The long exact sequence (2.9) is the well-known differential sequence “gradient-curl-divergence”
which corresponds to the Poincaré sequence for the exterior derivative ([85, 87]). In what follows,
we shall also use the following classical notations V&= R1&, VAN = Ranand V.{ = R3(.

Example 2.2.4. Let us consider the following linear PD system (Janet’s system) ([87]):

2.11
02y =0. (211)

If D = A3(Q) is the first Weyl algebra, then the presentation matrix R of (2.11) is defined by:

0% — 3 07
R1:< 3 f“).
&

Using Algorithm 2.2.1, the left D-module M = D/(D'*? R;y) admits the free resolution

0_>D._}33_>D1><2~_}32_>D1><2'_131_>DL>M—>07

with the following notations:

Ry =
83 33%+$23%82—828§
2y R B — sy O+ ROV O+ RO+ 200000 + 200 300 + 3000200 — 08 — 343008 )

Ry = (230} —2220703 + 05 — o).
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We refer the reader to [85, 86, 87, 88] for an introduction to Spencer’s formal theory of PDEs
which studies the existence of canonical resolutions of linear systems based on intrinsic properties
of PD systems (e.g., Spencer’s cohomology, formal integrability, involution), i.e., properties which
do not depend on the choice of the coordinate system for the independent variables x1, ..., z,.

Let us now introduce the concepts of extension modules and extension functor which will
play important roles in what follows (see, e.g., [15, 68, 115]) and in the next chapters.

If F is a left D-module and R; € D™ then a necessary condition for the solvability of
the inhomogeneous linear system Rin = ( for a fixed ( € F™ is Ro( = 0, where the matrix
Ry € D™2*™ is such that kerp(.R1) = D'*"2 Ry. Let us study when this necessary condition is
also sufficient. We need to investigate the defect of exactness of the following complex at F™

Fr2 B g B gro, (2.12)

where R;. : F'i-! — F"i is defined by (R;.)(n) = R;n for all n € F"=1 and i = 1, 2. Indeed,
for a fixed ¢ € F™, there exists n € F'° satisfying Rin = ¢ iff ( € imz(R;.) = R F™° and
the necessary condition Ro¢ = 0 (since Ry R = 0) means that ( € kerg(Rs.). Therefore,
there exists n € F'' satisfying R;n = ( iff the residue class of ¢ in kerg(Rsp.)/imz(R;.) is
reduced to 0. This fact explains why the defect of exactness of the complex (2.12) at F™* plays
an important role in mathematical systems theory. If the complex (2.12) is exact at F', i.e.,
kerr(R2.) = imx(R;.), then the necessary condition Ry = 0 is also sufficient. The defect of
exactness kerz(Rp.)/imz(Ry.) of (2.12) at F™ is simply denoted by exth (M, F) since a key
result of homological algebra proves that it depends only on M and F and not on the choice of
the beginning of the finite free resolution (2.6) of the left D-module M (see, e.g., [15, 68, 115]).

Using (2.6), we can define the higher extension abelian groups ext’,(M,F)’s for i > 2 as
follows. Up to abelian group isomorphism, they are defined by the defects of exactness of the
following complex of abelian groups

St e B iy fimt 0 R gy o g Bae o g (2.13)

where R;. : F'i-t — F"i is defined by (R;.)(n) = R;n for all n € F"i~! and all ¢ > 1, namely:

ext® (M, F) £ homp (M, F) = kers(Ry.),
ext (M, F) = kerg(Riy1.)/imp(R;.), > 1.

In what follows, we shall either use the notation homp (M, F) or ext, (M, F).

As for exth (M, F), a classical theorem of homological algebra proves that the ext’, (M, F)’s
depend only on the left D-modules M and F (up to abelian group isomorphism), i.e., they do
not depend on the particular finite free resolution (2.6) of M. For more details, see [15, 68, 115].

Similarly, if D is a right noetherian ring, IV a finitely generated right D-module and G a right
D-module, then, using the finite free resolution (2.7) of N, we can define the abelian groups:

extd(N,G) = homp(N,G) = kerg(.51),
ext’ (N, G) = kerg(.Si41) /img(.S;), i > 1.

Example 2.2.5. Let D = Q[z], R = (z(z — 1) 2 (z+1))T and M = D/(D'*?R) the D-
module finitely presented by R. Let us compute the ext’, (M, D)’s for i > 0. We first note that
M=D/(x(x—1),x(x+1))), where (x (z—1),z (z+1)) is the ideal of D generated by x (z —1)
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and x (x+1). We first need to compute a finite free resolution of M. Let us characterize kerp(.R):
A=A A) €ekerp(\R)iff \jz(x—1)+Xx(z+1)=0,ie,iff (M (x—1)+X(x+1))z =0,
ie, iff A\ (z —1)4+ A2 (x+ 1) = 0 since D is a domain and = # 0. As D is a greatest common
divisor domain and ged(z — 1,z +1) = 1, we get A\; = d(z + 1) and Ay = —d(z — 1) for all
de D,ie, N\=d(x+1 —x+1). Hence, if Ry = Rand R, = (x +1 — x + 1), then
kerp(.R1) = D Ra. Moreover, kerp(.R2) =0sinced (z+1 —z+1)= (0 0) yields d = 0 since
D is a domain and z + 1 # 0. The D-module M then admits the following finite free resolution:

0— DLz, px2 i p ™ oar L.

Then, the defects of exactness of the complex 0 «— D d2p2 B p () are defined by:

ext) (M, D) = homp(M, D) = kerp(R;.),
L(M, D) = kerp(Ry.) /imp(R1.),
ext?,(M, D) = D/(Ry D?),

extt, (M, D) =0, i > 3.

ext}

We first note that kerp(R;.) = {d € D | Rid =0} =0 since R; # 0 and D is a domain, which
shows that ext?, (M, D) = 0. Let us now compute kerp(Ra.): p = (u1 p2)? € kerp(Ry.) iff
(x+1)p = (x—1)pe, ie, iff yy = (z—1)v and po = (z + 1) v for all v € D since D is a
greatest common divisor domain and ged(x + 1,7 — 1) = 1. Hence, if R} = (z —1 z + 1)T,
then kerp(R2.) = R} D, and thus:

exth(M, D) = (R D)/(R1 D).

We clearly have Ry = R}z, which shows that exth(M, D) # 0 and the residue class p(R}) of
R} in the D-module L £ (R} D)/(Ry D) generates L, where p : D Rj — L is the canonical
projection onto L, and satisfies z p(R]) = p(z R}) = p(R1) = 0. Hence, p(R}) is a torsion
element and thus exth (M, D) is a torsion D-module. Finally, since 1 € (z + 1,2 — 1), i.e.,
(r+ 1,2 — 1) = D, then ext%(M,D) =2 D/(z + 1,z — 1) = 0.

Example 2.2.6. If D = Q[0, ¢] is the commutative polynomial ring in 0 and § with coefficients
inQ R =@ 1-6Te€D?>and M = D/(D"?Ry) = D/(DO+ D(1—6)) the D-module
finitely presented by R. Then, M admits the following finite free resolution

0—p A, p2-fip ™ A Ly,

where Ry = (1 —8 —0) € D2 because A = (A1 A2) € kerp(.Ry) iff A1 9+ Ao (1 —6) =0,
e, iff \y = p(1—9)and \y = —p 0 for all p € D, since D is a greatest common divisor domain
and ged(0,1 — 6) = 1, which proves that A = p Rg, and thus kerp(.R1) = D Ra.

Let F = C*°(R) be endowed with the D-module structure defined by dn(t) = 7(t) and
dn(t) =n(t —1) for all n € F. The two functional operators 0 and ¢ then commute since:
vneF, 90n(t) =0 -1))=@n)t- 1)3(t —1)=0@n)(t 1) =0(dn(t))
Then, the defects of exactness of the complex 0 «— Fd 2 Mmoo are defined by:

extOD(M F) =homp(M,F) = kerr(R;.),
(M, F) = kery(Rp.)/imz(Ry.),
(M, F) = f/(szZ),
p(M,F) =
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n € kerz(R;.) is equivalent to ) = 0 and n(t) = n(t—1), i.e., to n is an arbitrary real constant, and
thus kerz(R;.) = R. Now, if ¢; and ¢y are two different real constants, then (1 —¢)¢; —9dc2 =0,
ie., (c1 c2)7 € kerp(Ry.). However, (c; c2)? ¢ imz(R;.) since the first equation of the
following inhomogeneous linear OD time-delay system

{ Tl(t) = (1,
n(t) —n(t—1) = ca,

gives 1(t) = ¢t + c3, where c3 € R, and then the second one yields the contradiction ¢; = co.
Thus, the D-module exth (M, F) is not reduced to 0. Finally, Ry. : F? — F is a surjective since
for all p € F, ¢ = (1 —6) (1 — 9o where ¢ =0 and ¢ = — [*__ ¢(s) ds, i.e., ext] (M, F) = 0.

Theorem 2.1.1 shows that a connection exists between kerz(R.) and homp (M, F). We may
wonder if it still holds for the higher extension abelian groups ext, (M, F)’s for i > 1. If we
consider (2.6), then we can introduce the following sequence of abelian group homomorphisms

(.R3)* homD(Dlxm’j_‘) 4_(_% homD(DIXn’f‘) ﬂ homD(DIXTo’f‘) «— 0,
(Riy1)* homD(Dlx”,]:) ((R_’)* homD(Dlxv-Fl’]-‘) <(R1—_1)* homD(DM””,f) —

(2.14)
where (.R;)*(¢) = ¢ o (.R;) for all ¢ € homp(D¥*"i=1 F) and all i > 1. R;41 R; = 0 yields
((Rit1)" o (Ri)*)(9) = (Rit1) ((Ri)*(¢)) = (Rit1)" (¢ 0 (Ri)) = (¢ o (Ri)) o (Ris1)
=¢o((.R)o(Riy1)) = do ((Rit1 i) =0,

for all ¢ € homp(D'*"i-1, F), which proves that (2.14) is a complex of abelian groups. Now,
applying Theorem 2.1.1 to homp(D'¥", F), ie., with R = (0 ... 0) € D" we obtain
homp(D'*"i F) = F"i. Moreover, using Theorem 2.1.1, the abelian group homomorphism
Xi : F' — homp(D¥", F) defined by x;(n) = ¢y, where ¢, is defined by ¢,(\) = An for
all A\ € D7 is an isomorphism and its inverse Xz-_l : homp (DY, F) — F"i is defined by
X; 1 (¢) = (d(e1) ... ¢ler,))T, where {ef}g=1, r is the standard basis of D'*":. Hence, we get

e1 Rin
(i o (Ri) oxi—1)(m) = (xi "o (Ri)*)(¢g) = xi " odyo (Ri) = x; (b0 (Ry)) = : :
€r; Ri n
for all 7 € F7-1, which shows that (y; o (.R;)*oxi_1) = (R;.) and (2.14) is equivalent to (2.13)

up to isomorphism. The complex (2.14) is said to be obtained by applying the contravariant left
exact functor homp(-,F) to the truncated resolution of M, namely,

M, ... B pixrs b, plxrs M2, plxn 1 plxr (2.15)

i.e., the complex M, obtained from (2.6) by deleting the left D-homomorphism 7 and the left
D-module M. The truncated resolution (2.15) is exact at each position i > 1 and Ho(M,) = M.
Hence, the complex (2.13) can be understood as the dual of (2.15) with values in the left
D-module F. Exactness is generally lost while dualizing and the defects of exactness, called
cohomologies, are characterized by the abelian groups ext’, (M, F)’s for i > 0.

We recall that M is a D — E-bimodule ([115]) if M is a left D-module, a right F-module and:

Vde D, YmeM, VecE, (dm)e=d(me).
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Lemma 2.2.1 ([115]). If M is a left (resp., right) D-module and F is a D — D-module, then
extt, (M, F) is a right (resp., left) D-module for all i € N. In particular, if D is a commutative
ring, then the ext's(M,F)’s are D-modules.

If M is a left (resp., right) D-module and D is the D — D-bimodule, then Lemma 2.2.1
shows that the ext®, (M, D)’s are right (resp., left) D-modules. The next proposition gives a
finer characterization when D is a noetherian domain and M a finitely generated left D-module.

Proposition 2.2.1 ([95]). Let M be a finitely generated left (resp., right) D-module over a
noetherian domain D. Then, for i > 1, the ext,(M,D)’s are either zero or finitely generated
torsion right (resp., left) D-modules.

This result explains why the D-module ext} (M, D) obtained in Example 2.2.5 was torsion.
Let us now state a few classical results on the extension functors.
Theorem 2.2.1 ([115]). Let 0 — M’ Lo M L M — 0 be a short ezact sequence of left

(resp., right) D-modules and N a left (resp., right) D-module. Then, the following long ezxact
sequence of abelian groups holds

0 — extQ(M", N) L5 extQ(M,N) L5 extd (M, N)
<L extL(M”,N) — exth(M,N) — exth(M’,N) (2.16)

2

s exty(M”,N) — ext}(M,N) — ...,
where f* is defined by f*(¢) = ¢ o f for all ¢ € homp(M,N) and similarly for g*.

Roughly speaking, Theorem 2.2.1 explains why homp(-,N) is called a contravariant left
exact functor: the sense of the long exact sequence (2.16) is reversed while applying homp (-, V)

to the short exact sequence 0 — M’ JoM L M 0 and g* is injective, namely:
g'(W) =vog=0 = =0

Proposition 2.2.2 ([115]). If M is a projective left D-module, then ext’,(M,N) = 0 for all
1> 1 and all left D-modules N. Similarly for right D-modules.

From Theorem 2.2.1 and Proposition 2.2.2, we obtain the following proposition.

Proposition 2.2.3 ([115]). Let 0 — QQ — P — M — 0 be a short exact sequence of left
(resp., right) D-modules and P a projective left (resp., right) D-module. Then, for every left
(resp., right) D-module N, we have:

Vi>1, extd(M,N)=exth(Q,N).
Let us state two useful results in module theory and homological algebra.

Proposition 2.2.4 ([115]). If M is a projective left (resp., right) D-module, then homp (M, D)
is a projective right (resp., left) D-module.

Proposition 2.2.5 ([15, 68, 115]). If 0 — M’ T M S M 0 is a short exact sequence
and M" is a left (resp., right) D-module, then the short exact splits, i.e., M = M' & M".

Let us introduce the concepts of projective dimension and global dimension.
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Definition 2.2.2 ([115]). 1. A projective resolution of a left (resp., right) D-module M is
an exact sequence of the form

C 2 py By 2 p 2 gy %,
where the P;’s are projective left (resp., right) D-modules and §; € homp(P;, P;,_1) for all
1 € N. If there exists n € N such that P,, = 0 for all m > n+ 1, then n is called the length
of the projective resolution of M.

2. The left projective dimension of a left D-module M, denoted by Ipd (M), is the minimum
length of the projective resolutions of M. If no such integer exists, then lpdy (M) = oo.
Similarly, we can define the right projective dimension rpdp(N) of a right D-module N.

3. The left global dimension (resp., right global dimension) of a ring D, denoted by lgd(D)
(resp., rgd(D)), is the supremum of Ipdp (M) (resp., rpdp(N)) for all left D-modules M
(resp., all right D-modules N).

4. If the left and the right global dimension of D coincide, then the common value is denoted
by gld(D) and called the global dimension of D.

The left projective dimension measures how far a left D-module M is from being projective.

Example 2.2.7. M is a projective left D-module iff Ipd(M) = 0. M is a quotient of two
projective left D-modules, i.e., M = Py/im d1, where Py and imd; = P, are two projective left
D-modules, iff Ipd (M) < 1. In particular, Ipd (M) = 1 if M is not a projective left D-module
but M is isomorphic to the quotient of two projective left D-modules.

Let us show how to compute lpd (M) when M is a left D-module defined by a finite free
resolution of finite length. We first need to introduce a result which is used to shorten the length
of a finite free resolution of finite length if it is possible. Let I; be the ¢ x ¢ identity matrix.

Proposition 2.2.6 ([108]). Let M be a left D-module defined by the finite free resolution:

-Rm—l
e

0 — DYxpm Lm, plxpm— . A, plxe B plao Ty, (2.17)

1. If m > 3 and there exists a matriz S,, € DPm=1*Pm satisfying Ry, Sy = I, then M
admits the following shorter finite free resolution

~Rm—3

0 , D1XPm-—1 Tm—1 DX (Pm—2+pm) 'Tm_Q,Dlxpm—:a gial pDxpo T, A 0
b}

(2.18)

with the notations:

Tm—l = (Rm—l Sm> c meflx(pm—Q‘i’pm)’

Ty = < RTS_Q ) c DPm—2+pm)Xpm—3

2. If m =2 and there exists a matriz So € DP**P2 such that Ry So = Ip,, then M admits the
following shorter finite free resolution

0 — DUPr T pixeotea) T, a0, (2.19)
with the notations Ty = (R1  S2) € Drrx(potr2) gp -

r=n®0: DXWwotr2) _ pAf
A=(A1 X)) — T(A) =7(\).
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The existence of a right inverse of a matrix can be checked by means of Grobner basis
techniques (e.g., when D = k[x1,...,x,], Ap(k) and B, (k), where k is a computable field (e.g.,
Q or F, for a prime p)). We first shortly explain how to compute a left inverse of a matrix.

Algorithm 2.2.2. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and a matrix R € D7*P,
— Output: A matrix S € DP*? such that S R = I, if S exists and () otherwise.

1. Introduce indeterminates A;, j = 1,...,p and p;, ¢ = 1,...,¢q, over D and define the set:

p
P—{ZRn/\j—m\i—la---,q}-
j=1

2. Compute the Grobner basis G of P in @g-’:l DXj @@}, D p; with respect to a term order
which eliminates the A;’s.

3. Remove from G the elements which do not contain any A; and call H this new set.

4. Write H in the form Q1 (A1 ... )\p)T—QQ (p1 ... MQ)T, where (01 and Q2 are two matrices
with entries in D.

5. If @y is invertible over D, then return S = Qfl Q2 € DP*4_ else return ().

Computer algebra systems contain packages based on left Grobner basis techniques, i.e.,
techniques based on computations of Grébner bases of finitely generated left D-modules. But,
they generally do not allow us to compute Grébner bases for right D-modules (e.g., Maple).

As explained in [16], one way to handle this problem is to use the concept of involution of
the ring D (i.e., anti-automorphism) ([115]), namely, a map 6 : D — D satisfying:
Vdi,ds €D, 9(d1 + dg) = Q(dl) + Q(dg), Q(dl dg) = Q(dg) o Q(dl), 0ol =idp.

If D is a commutative ring, then 6 = idp is an involution. If D = A(0,...,0,) is a ring of PD
operators with coefficients in the differential ring A, then we can define an involution 6 of D by:

Vae A, 6(a)=a, Vi=1,...,n, 6(0;)=—-0;. (2.20)

By extension, the involution §(R) of a matrix R € D9*? is defined by 0(R) = (0(R;;))T € Dpxd.
If D= A(01,...,0,) and 0 is defined by (2.20), then (R) corresponds to the formal adjoint R
of R, i.e., the adjoint of R in the sense of the theory of distributions (see, e.g., [16, 88, 92, 69]).

In what follows, if D = A(d1,...,0y), then we shall use the standard notation R for 8(R).

Example 2.2.8. Let us consider matrix R = (01 02 101 + x202) with entries in the first
Weyl algebra D = A2(Q). Let us compute its formal adjoint R. If ¢ denotes a row vector of test
functions, namely, a compactly supported smooth functions ¢ € D(R?), then the formal adjoint
R of R can be obtained as follows:

Jr2 @ (0111 + O2m2 + (2101 + 22 02) 13) dvy dvg
= Jr2((=010) m + (=020) n2 + (=01 (x1 ¢) — 02 (w2 $)) m3) dy daa,
= Jp2((=019)m + (=02 ¢) m2 + ((—21 01 — w202 — 2) ¢) n3) d1 dxa.

Hence, we get R= —(01 O 2101 +2902+2)T € D%, which can directly be found as follows:

O(R) = (0(01) 0(02) 0101 +22D))T = (=01 — o 6(01)0(x1) + 0(Da) O(22))T
= (—81 — 0y —0O1x1— 09 $2)T = —(81 Oy 2101+ 29 82+2)T.
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If D admits an involution 6, then the search for a right inverse T' € DP*Y of R € D*P
can be reduced to the search for a left inverse S € D9*P of §(R) since SO(R) = I, yields
0(SO(R)) = 0*(R)0(S) = RO(S) = 0(1,) = I, i.e., T = 0(S).

Algorithm 2.2.3. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution 6 and
a matrix R € D?*P.
— Output: A matrix T' € DP*? such that RT = I, if S exists and () otherwise.

1. Compute O(R) € DP*1.

2. Using Algorithm 2.2.2, compute a left inverse S € D?*P of §(R) if S exists.
3. Compute T = 0(S) € DP*1.

Let us now illustrate Proposition 2.2.6 with two explicit examples.

Example 2.2.9. We consider the following time-varying linear OD system

t2y(t) =0,
ty(t) +2y(t) =0,
whose solution in the space of distributions D'(R) is y = 4, namely, the derivative of the

Dirac distribution § at 0. Let D = A;(Q) be the first Weyl algebra, Ry = (t* t0+ 2)T and
M =D/(DY2Ry) =D/ (Dt>+ D (td + 2)) the left D-module finitely presented by R;. Using
Algorithm 2.2.1, a finite free resolution of M is defined by

0— DB p2 B p oA Lo,

where Ry = (8 —t) € D¥2. Using Algorithm 2.2.3, we can check that So = (¢ 9)7 € D? is
a right inverse of Ro. Using Proposition 2.2.6, M admits the following finite free resolution

0— D2 I, px2 T4 g, (2.21)

with the notations:

tz t 2X2
T = 1942 9 e D% 15=00®0.

Example 2.2.10. Let us consider the first Weyl algebra D = A3(Q) and the matrix

] 9 01 2(33‘2024—1) 21903+ 04
Ry = 5 —I9 82 -3 0 62 S D3X3, (2.22)
—2 81 — X9 83 —2 82 —83

which defines the PD linear system R; & = 0 of the infinitesimal transformations of the Lie
pseudogroup defined by the contact transformations ([87]). Using Algorithm 2.2.1, the left
D-module M = D'*3/(D'3 R;) admits the following finite free resolution

pixs B i pDLx3

0—>D—> —>M—>O

where Ry = (9o — (01 +2203) 2202+ 2) € D3, The matrix So = (-2 0 1)7 is a right
inverse of Ry, and thus, using Proposition 2.2.6, we obtain the following finite free resolution

0— D3 L, pbxd T, ar 0, (2.23)



2.2 Finite free resolutions and extension functor 51

where the matrix 77 is defined by:

. To O 2(%2 Oy + 1) 21903 +01 —2x9
T=3 —2907 — 3 0 Do 0 e D34, (2.24)
-2 81 — T2 63 —2 82 —83 2

We can now give an algorithm which computes the left projective dimension lpd (M) of M.

Algorithm 2.2.4. — Input: A left D-module M defined by a finite free resolution of the
form (2.17).
— Output: The left projective dimension lpdp (M) of M.

1. Set j =m and T} = R,,.
2. Check whether or not 7} admits a right inverse S;.
(a) If no right inverse of T} exists, then Ipdy (M) = j and stop the algorithm.
(b) If there exists a right inverse S; of T} and
i. if j =1, then we have lpd, (M) = 0 and stop the algorithm.
ii. if j = 2, then compute (2.19).
iii. if 7 > 3, then compute (2.18).
3. Return to step (2) with j «— j — 1.
Example 2.2.11. We consider again Example 2.2.9. We can easily check that the matrix T3
defined in (2.21) does not admit a right inverse. Hence, using Algorithm 2.2.4, we obtain that
Ipdp(M) = 1. In particular, the left D-module M is not projective. But, the existence of

the short exact sequence (2.21) shows that M can be expressed as the quotient of two finitely
generated free left D-modules.

If M is a projective left D-module defined by a finite free resolution (2.17), then Ipdp(M) =0
and using Algorithm 2.2.4, we obtain a short exact sequence of the form

/ / / /
0 — DY¥ L pb’ T,

where the matrix R’ admits a right inverse S’ € DP'*? je., R' S = Iy. If we introduce the
following two left D-homomorphisms

f:Dlxq’ SN D1><p’ k,:Dlxp’ SN D1><q’
A — AR, wo— pS,

then (ko f)(\) = k(AR') = AR'S" = X for all A € D' 7 i.e., ko f = id .., which shows that
the above short exact sequence splits (see 7 of Definition 2.2.1), i.e., DY<¥' = D1Xd" g M| which
proves that M is a stably free left D-module of rank p’ — ¢/. We obtain the next proposition
which can be traced back to Serre’s work on projective modules (Serre’s conjecture).

Proposition 2.2.7. If a left D-module M admits a finite free resolution of finite length, then
M s a projective left D-module iff M is a stably free left D-module.
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Example 2.2.12. We consider again Example 2.2.10. We can check that the matrix 77 defined
in (2.24) admits the following right inverse with entries in D = A3(Q):

0 -1 0
1 0 x
Sy = >
0 —X9 0

Oy —01—ax203 x909+ 2

Using Algorithm 2.2.4, we obtain lpd (M) = 0, i.e., M is a projective left D-module, and thus a
stably free left D-module of rank 1 by Proposition 2.2.7. Finally, since rankp (M) = 1, Stafford’s
theorem (see 3 of Theorem 2.1.2) cannot be used to conclude that M is a free left D-module.

Let us state a classical but non-trivial result due to Auslander.
Theorem 2.2.2 ([115]). If D is a noetherian ring, then rgd(D) = lgd(D).
Let us give global dimensions of some noetherian domains of PD operators.

Example 2.2.13. gld(A(d1,...,0n)) = n, where A = k is a field, k[z1,...,z,], k(z1,...,2n),
k[z1,...,x,], where k is a field of characteristic 0, or k{x1, ..., 2y}, where k = Ror C. A ring D
satisfying gld(D) = 1 is called a hereditary ring (e.g., D = A(0), where A = k[t], k[t] or k{t}).
If the characteristic of k is a prime p (e.g., k = Fp), then gld(A,(k)) = 2n ([10, 13, 47, 69]).

Proposition 2.2.8 ([115]). lgld(D) < n iff ext’st (M, N) = 0 for all left D-modules M and N.

2.3 Constructive study of module properties

“Prenons par exemple la tache de démontrer un théoréme qui reste hypothétique
(& quoi, pour certains, semblerait se réduire le travail mathématique). Je vois deux
approches extrémes pour s’y prendre. [...] On peut s’y mettre avec des pioches ou
des barres & mine ou méme des marteaux-piqueurs : c¢’est la premiere approche, celle
du “burin” (avec ou sans marteau). L’autre est celle de la mer. La mer s’avance
insensiblement et sans bruit, rien ne semble se casser, rien ne bouge, 1’eau est si loin
on I'entend a peine... Pourtant elle finit par entourer la substance rétive, celle-ci
peu a peu devient une presqu’ile, puis une ile, puis un ilot, qui finit par étre submergé
a son tour, comme s’il s’était finalement dissous a dans 'océan s’étendant a perte de

vue...”

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur un
passé de mathématicien.

We are now in a position to characterize the module properties introduced in Definition 2.1.1.

Theorem 2.3.1 ([2, 16]). Let D be a noetherian domain with a finite global dimension gld(D),
R € D9P o matriz, M = D'P/(D'4R) the left D-module finitely presented by R and the
so-called Auslander transpose of M, namely, the right D-module N = D?/(R DP).

1. The following left D-isomorphism holds:
t(M) = ext} (N, D). (2.25)

2. M is a torsion-free left D-module iff exth (N, D) = 0.
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3. We have the following long exact sequence of left D-modules,
0 — exth(N, D) — M —= homp(homp (M, D), D) — ext} (N, D) — 0,  (2.26)

where the left D-homomorphism ¢ is defined in 4 of Definition 2.1.1.
4. M is reflezive iff ext’,(N, D) =0 fori =1, 2.
5. M is projective iff ext’,(N, D) =0 fori=1,...,gld(D).

Theorem 2.3.1 was proved in [47] for rings of PD operators and in [101] for finitely presented
modules over coherent commutative domains. See also [88, 92]. But, Theorem 2.3.1 is first due
to Auslander and Bridger ([2]) and was independently found again in [16].

Remark 2.3.1. We point out that the Auslander transpose N = D?/(R DP) depends only on
the left D-module M up to projective equivalence ([115]), namely, if M = D'™?" /(D' R') is
another presentation of M and N’ = D? /(R' D¥'), then we have:

N @ DWw+d) ~ N/ g platr),

See the forthcoming Theorem 4.4.2 and [2, 22, 94]. If R and R’ have full row rank, namely,
kerp(.R) = 0 and kerp(.R') = 0, then the previous isomorphism reduces to N = N’. For a
constructive version of the above isomorphism, see [22]. Since a free right D-module is projective
(see Proposition 2.1.1), Proposition 2.2.2 yields ext’, (D®+4) D) = 0 and extl, (D) D) =0
for all 4 > 1. Using the additivity of the extension functor (see, e.g., [15, 68, 115]), we obtain

Vi>1, exth(N,D)=exth(N,D)®exth(DP) D)= extl (N @ DPH) D)

I

extp (N D), D) 2 exty (V' D) & exth(DI4¥), D) 2 exty (V. D).

ext’, (N, D) 2 ext®, (N, D) for all i > 1, which shows that the ext?,(N, D)’s for i > 1 depend
only on M and not on the presentation matrix R € D?*P of the left D-module M ([2, 22, 94]).

Theorem 2.3.1 shows that the vanishing of the ext’, (N, D)’s for i > 1 characterizes the
module properties of the finitely left D-module M. For a commutative polynomial ring D =
k[z1,...,xy,] over a computable field k (e.g., Q or F,, for a prime p) or certain classes of non-
commutative polynomial rings of functional operators (e.g., certain classes Ore algebras ([18])
or GR-algebras ([61])) for which Grobner bases exist for admissible term orders, the results of
Theorem 2.3.1 were implemented in the OREMODULES package ([16, 17]).

If D admits an involution 6, then the right D-module structure of the Auslander transpose
N = D/(R DP) of the left D-module M = D'*?/(D'*? R) can be turned into a left D-module
structure by defining the so-called adjoint left D-module module N = D**4/(D*P §(R)) of M.

Let us show how to compute ext}, (N, D) using only left Grobner basis computations.

Algorithm 2.3.1. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution § and
a matrix R € D?*P.
— Output: Two matrices R’ € D?*P and Q € DP*™ such that

ext})(N,D) = t(M) — (D1><q/ R/)/(Dlxq R), kerD(.Q) _ Dlxq/ R/,

where N = D4/(R DP) is the Auslander transpose of M = D*?/(D1*4 R).
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1. Compute 0(R) € DP*4.

2. Using Algorithm 2.2.1, compute a matrix P € D™P such that kerp(.0(R)) = D™ P.

3. Compute Q = §(P) € DP*™,

4. Using Algorithm 2.2.1, compute a matrix R’ € DY *? such that kerp(.Q) = D¢ R’

If D = k[x1,...,z,] is a commutative polynomial ring with coefficients in a computable field

k, then we can use § = idp in Algorithm 2.3.1. If D = A(d,...,0,) is a noncommutative
polynomial ring of PD operators, then we can use the involution 6 defined by (2.20).

Similarly, the higher extension left D-modules extiD (N, D)’s can be computed as follows:

1. Using Algorithm 2.2.1, we compute the beginning of a finite free resolution of the left
D-module N = D**4/(D'*P 8}), where S = 0(R):

0 — N i plxa S plxa 22 & D1X4i-1 oS0 DX & (2.27)

2. We apply the involution € to (2.27) to get the following complex of left D-modules:

G(Sl) Dqui_l O(SZ) Dqui

00— D1><q0 . Dl)(ql 0(52) . 0(Si—1)

0(Si+1)
5

3. Using Algorithm 2.2.1, we compute Q; € D%-1%% guch that kerp(.0(Si+1)) = D4 Q.
4. We obtain exti, (N, D) = (D%-1 Q;)/(D*49%-1 6(5;)).

According to Proposition 2.2.1, the extiD(N , D)’s are either 0 or torsion left D-modules for all
i > 1. If we denote by z; the residue classes of the 4% row of the matrix Q; in the left D-module
(D91 Q;)/(DY*%-1 §(S;)), then zj is either 0 or a torsion element (i.e., there exists d € D\ {0}
such that d z; = 0). Let us now explain how to compute annp(z;) = {d € D | dz; = 0}.

To simplify the notations, we consider the output of Algorithm 2.3.1, i.e.:
exth (N, D) = (D7 R') /(D' 9 R).

Since (D'*? R')/(D'¥¢R) is a torsion left D-module, there exists d; € D \ {0} such that
diw(R,) =0, i.e., w(d; R,) = 0, which yields the existence of u; € D1*9 satisfying:

R

Hence, we have to compute the compatibility conditions of the inhomogeneous linear systems:

Rl.n=¢,
Vi=1,...,¢, {RZ;?T]_OCZ = dij =0, j=1,...,m.

Algorithm 2.3.2. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order, R € D?*? and R’ € DY *P satisfying
D4 R C D4 R’ and such that L = (D'*9 R')/(D'*% R) is a torsion left D-module.

— Output: A set C of generating equations satisfied by the residue class z; of the i row
Riy = (R}; ... Rj)) of the matrix R’ in the left module L = (D'*4d R") /(D4 R).

1. Introduce the indeterminates n1,...,7n, and (1, ...,(, over D.



2.3 Constructive study of module properties 55

2. Fori=1,...,q, compute the Grobner basis G; of the following set
P P
Li=3Y " Riimi—Co USD Ren | k=1,....q
j=1 j=1
in @?:1 Dn; @ D ¢; with respect to a term order which eliminates the 7;’s.
3. Return C = Uglzl(Gi ND¢)
Let us illustrate Algorithms 2.3.1 and 2.3.2 with two explicit examples.

Example 2.3.1. Let us consider the 2-dimensional Stokes equations ([55]) defined by:

—v (034 0}) 0 Oz u
0 —v (07 +07) 9, v | =0. (2.28)
Oy Oy 0 P

Let D = Q(v)[0x, 0] be the commutative polynomial ring of PD operators with coefficients in
Q(v), R € D**3 the matrix appearing in the left-hand side of (2.28) and M = D'*3/(D'*3 R)
the D-module finitely presented by R. Since D is a commutative ring, we can take the trivial
involution § = idp, define §(R) = RT = R and the adjoint D-module N = D*3 /(D3 R) = M.
Using Algorithm 2.2.1, we can easily check that kerp(.R) = 0, i.e., R has full row rank, and
thus the adjoint D-module N admits the following finite free resolution:

0<—N<LD1X3<iD1X3<—O.
Hence, the defects of exactness of the following complex of D-modules
0 — DIx3 _R pixs _ .0

are ext)(N, D) = kerp(.R) = 0 and exth(N,D) = D'*3/(D3R) = M. Using 1 of The-
orem 2.3.1, we get t(M) = exth(N,D) = M, which shows that M is a torsion D-module.
Finally, using Algorithm 2.3.2, we can decouple the system variables of (2.28) as follows

: (2.29)

i.e., annp(u) = annp(v) = D A% and annp(p) = D A, where A = 92 + 85.
Example 2.3.2. Let us consider the following linear PD system with polynomial coefficients
1301861 — 210381 + 230282 — 20582 — &§3 =0,

—fl + 21 09 fg —z901 52 + 21 03 53 — 2301 fg =0, (230)
T2018§1 — 110281 —§2+ 220383 — 30283 =0,

which appears in the study of the Lie algebra of the special unitary group SU(2) ([9]). We

consider the first Weyl algebra D = A3(Q) and the presentation matrix R of (2.30) defined by:
:L’381—x183 xgag—xgag -1

R = -1 109 — 1901 1103 — 130 S D3X3. (2.31)

33‘281—.%‘182 —1 .1‘283—1'382
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Using the involution 6 of D defined by (2.20), the formal adjoint R = 0(R) of R is defined by:

I (93—$381 —1 .’B182—$281
R = o 83 — 3 82 o 81 — I (92 -1 S D3X3. (2.32)
-1 xgal—xlag 56382—$283

Let N = DY3/(D™3R) be the left D-module finitely presented by the matrix R. Using
Algorithm 2.2.1, we obtain the following finite free resolution of N

0 N p3 B p3a lop g

where P = (332 O3 —x302 1301 — 1103 102 — X9 81) If N = Dg/(RD3) is the Auslander
transpose of the left D-module M = D'*3/(D'*3 R), then, using Algorithm 2.3.1, the left
D-modules extiD(N ,D)’s, for i =0, 1, 2, are the defects of exactness of the following complex

where () = P= —PT namely:

ext) (N, D) 2 kerp(.R),
exth (N, D) 2 kerp(.Q)/imp(.R),
ext?,(N, D) = cokerp(.Q) = D/(DY*3Q),
exti,(N,D) =0, Vi>3
Using Algorithm 2.2.1, we obtain kerp(.R) = D (x1 02 —x201 2203 —x302 w301 —x1 03) and

kerp(.Q) = D2 R/, where the matrix R’ € D?*3 is defined by

r1 T2 I3
R = ) 2.33
( 01 02 O3 > (2.33)

which yields:

ext%(N, D)= D(x100 —x201 203 —x302 1301 — 21 03),
exth(N,D) = t(M) = (D2 R') /(D3 R),
exth (N, D) = D/(D (z1 02 — 22 01) + D (2203 — 23 02) + D (2391 — 11 93)).

Let 2; be the residue class of the i'! row of R’ in M for i = 1, 2. If {y;}j=1 2,3 is the family of
generators of M defined by the residue classes of the standard basis of D'*3 in M, then we get:

{Zl—$1y1+$2y2+9€3y3, (2.34)

2o =01 y1 + O2y2 + O3 y3.
Using Algorithm 2.3.2, we obtain that the generators z; and 2y of (M) = exth (N, D) are torsion
elements which satisfy the following PDEs:
(.732 83 — X3 82) Z; = 0,
Vi=1, 2, (103 —x301) 2z =0, (2.35)
($1 82 — X9 61) Z; = 0.
Thus, the left D-module M is not torsion-free. Finally, using a Grobner basis computation, we

can check that 1 ¢ D (x1 02 —x201) + D (22 03 — 23 02) + D (x3 01 — x1 03), and thus the torsion
left D-module ext?,(N, D) is not reduced to 0.
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To check the vanishing of the left D-module ext}, (N, D), we have to check the vanishing of
the left D-module L = (D' R')/(D'*9 R). If Grobner basis techniques can be used over the
noncommutative polynomial ring D, then we can check whether or not the normal forms of the
rows of the matrix R’ vanish in the left D-module L, i.e., whether or not L is reduced to 0.

Let us introduce a useful lemma which gives a finite presentation of a quotient module.

Proposition 2.3.1 ([19])). Let D be a left noetherian ring, R € D9P and R' € D?*P two
matrices satisfying D4R C DY R’ i.e., such that R = R" R’ for a certain R" € DI*Y .
Moreover, let Ry € D"*7 be a matriz such that kerp(.R') = D" Rl and let us respectively
denote by ™ and 7' the following canonical projections:

T D1><q’ R — (Dlxq’ R/)/(Dlqu)7 iy Dl><q’ _ D1><q’/<Dl><qR//+D1><r’ RIZ)
Then, the left D-homomorphism x defined by

X DY /(DY R+ DY RY) — (DY R) /(DY R) (2.36)
PO) — TR, '

is an isomorphism and its inverse x ™1 is defined by:

X—l . (DIXq' R/)/(Dlqu) _ Dlxq//(Dlqu//+D1xr’ R/2)
T(AR) — 7'(N).

In other words, we have the following left D-isomorphism:
(Dlxq/ R/)/(Dlxq R) o~ Dlxq//(DIXq R + D1><r’ R/Q)
In particular, (D9 R') /(D' 4 R) is reduced to 0 iff (R"T RY)T admits a left inverse.

Example 2.3.3. We consider again Example 2.3.2. Using Proposition 2.3.1, let us compute
a finite presentation of the left D-module L = (D2 R')/(DY3R) = exth,(N,D). Since
kerp(.R') = 0, the left D-module L admits the finite presentation L = D'*2/(D'*3 R")  where

—03 3
R'=| -0, z; | € D3** (2.37)
—82 )

satisfies R = R” R’. Then, the generators z; and 29 of the left D-module L satisfy the following

left D-linear relations:
—0321 + 2320 =0,

—O1z1+ 129 =0, (2.38)

—09 21+ T 290 = 0.
Let us sum up some of the previous results. Let D be a noetherian domain and
0c— N pt B pp B pm

the beginning of a finite free resolution of the Auslander transpose N = D?/(R DP) of the left
D-module M = D'¥? /(D4 R) associated with the linear system kerz(R.), where F is a left
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D-module. Applying the contravariant left exact functor homp(-, D) to the previous exact
sequence of right D-modules, we obtain the following complex of left D-modules:
pixa B plxp @ plxm, (2.39)
Then, 1 of Theorem 2.3.1 asserts that extl, (N, D) = t(M) = kerp(.Q)/imp(.R). Hence, if
R’ € DY*? is a matrix satisfying kerp(.Q) = D'*? R’, then we obtain:
t(M) = (D™ R')/(D" 1 R). (2.40)

See Algorithm 2.3.1. Then, the residue classes {m(R;,)}i=1,. 4 of the rows R}, of the matrix R’
in the left D-module M define a set of generators of the torsion left D-submodule ¢(M) of M,

ie, t(M)= 2;1 D r(Rl,). See Algorithm 2.3.2. Applying Proposition 2.3.1 to (2.40), we get
t(M) = DY /(D' R" + D% R}), (2.41)
where the matrices R’ € D97 and R) € D" *9 are respectively defined by R = R” R’ and
kerp(.R') = D" R}, Using the third isomorphism theorem (see, e.g., [115]), we obtain:
M/t(M) = [D™? /(D9 R)}/[(D"Y R)/(D"*9 R)| = DV? /(D™ R)), (2.42)

Therefore, the matrix R’ returns by Algorithm 2.3.1 is a presentation matrix of the torsion-free
left D-module M /t(M), i.e., M/t(M) admits the following finite presentation:

D¥xd B, pie T () — 0.
Then, we get the following commutative exact diagram of left D-modules:

0

t(M)

li
D1><q _R> D1><p L) M —50 (243)
LR I Lo
pixd  Eoopue T arnony .

i

0

/
D1><7“’ )

Since kerp(.Q) = D*4" R'. the exact sequence D**? R pixp 9, pixm holds, which yields:
M/t(M) = DY? /(D9 R') = DYP/kerp(.Q) = coimp(.Q) = imp(.Q) = D7 Q.

Let ¢ : M/t(M) — DY™P(Q be the left D-isomorphism defined by #(7'(\)) = AQ for all

A € DYP. Tt is a well-defined left D-homomorphism since 7/(\) = 7/ () yields A = N + u' R’

for a certain ¢/ € D' and thus ¢(7'(A) = AQ = NQ + /R Q = N Q = ¢(x'(XN)). Then,
we have the following commutative exact diagram of left D-modules

0
7
pixd E, pe 9 pieg g
| | Te
pxd Ao puw T vy o,
T

0
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and ¢(M/t(M)) = D*P Q, i.e., every element m’ = 7/()\) of M/t(M) is in a one-to-one cor-
respondence with the element ¢(m’) = A Q. Equivalently, every m’ = w(\') € M/t(M) is such
that m’ = ¢~1(N Q). The matrix Q is called a parametrization of the torsion-free left D-module
M /t(M) since, up to the isomorphism ¢, the elements of M/t(M) are parametrized by Q.

Example 2.3.4. We consider again Example 2.3.2. We obtain:
M/t(M) = l)1><3/(l)1><2 R/) &~ pix3d Q=D (:Bl Oy — X2 81) +D ({L‘Q 03— x3 82) +D (.%'3 o —x1 63)

Since M/t(M) = D'*3@Q C D and D is a torsion-free left D-module, we find again that M /t(M)
is a torsion-free left D-module and, up to isomorphism, M /t(M) is parametrized by Q.

Example 2.3.5. Let D = Q[01,02,03], R = (01 02 03) € D'*3 be the divergence operator
in R3 and M = D'3/(D R) the left D-module finitely presented by R and associated with
the linear PD system kerz(R.) = {n € 73 | Rn = V.n= 0}, where F is a D-module (e.g.,
F = C*(R3)). Let us study the module properties of M. Let us first introduce the Auslander
transpose N = D/(RD?) of M. Since D is a commutative ring, N = D/(D"3 RT) = N,
where 6 = idp. Let now us compute the D-modules ext’, (N, D) for 0 < i < 3. We first note
that RT = Ry, where Ry is the matrix introduced in Example 2.2.3. Using Example 2.2.3, the
D-module N admits the following finite free resolution

0— D, px3 Fo, pbxs v g, (2.44)
where Ry is defined by (2.10) and R3 = R. The D-modules ext’, (N, D)’s are then the defects
of exactness of the following complex of D-modules:

P W Ry pixs Atz i) D1X3iD<—0
Since Rl = RT = Ry, RY = — Ry and R¥ = R, using the long exact sequence (2.44), we obtain:
exth(N,D) =0 exth(N,D)=0, exth(N,D)=0, exth(N,D)=D/(D"3RI)=
Using Theorem 2.3.1, we obtain that M is a reflexive but not projective D-module.

Example 2.3.6. Let us consider the first set of Mazwell equations ([54, 87]), namely,

0B - . .
95 SV AB=0
o TV ! (2.45)

V.B=0,

where B (resp., E) denotes the magnetic (resp., electric) field. For the notations, see Ex-
ample 2.2.3. Let us consider the commutative polynomial ring D = Q|d}, 01, 02,03] of PD
operators with rational constant coefficients, the presentation matrix R; of (2.45), namely,

8 0 0 0 -85 o
0 8 0 8 0 —o A
R = e D6,
! 0 0 8 —8 & 0

O 02 03 0 0 0

and the finitely presented D-module M = D'*6/(D!*4 R;). Using Algorithm 2.2.1, we obtain
that the D-module M admits the following finite free resolution

0— D L2, ptxd L, plx6 T, ar g, (2.46)
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where the matrix Ry = (0 02 03 — 0;) € D'** defines the compatibility conditions

072

VA — e =0 2.47
m ot ( )
of the inhomogeneous linear PD system:

0B -

— +VAE=7%

o V15

6 . .é = 2.

Let us study the module properties of M. The formal adjoint Ry of Ry can be obtained by
contracting (2.45) by a vector and by integrating the result by parts:

. (0B - o
C.|5+VAE|+G(V.B
. <8t+ : >+ (v5) (2.48)
=% B+ (YAC) B~ (VG) B+ 2 (C.B)+V. (-OnE)+¥. (¢B)

- o o oon\T
The last three terms can be written as (0; 01 02 03). (C .B (GB—-CA E)T) ,i.e., under

a divergence form in space-time, a fact showing that the adjoint D-module N = D1*4 /(D16 E)
is defined by the following linear PD system:

—-—— -VG=0
ot VE=0 (2.49)
VAC=0
The compatibility conditions of the inhomogeneous linear PD system
aC < -
————-VG=F
ot ’ (2.50)
VAC=D,
are obtained by eliminating C and G from (2.50) and we get
oD o o -
— +VAF =0,
ot " (2.51)
V.D =0,

which has exactly the same form as (2.45). Moreover, we can easily check that the compatibility
conditions of the following inhomogeneous PD linear system

D

o)

4+ VAF=1]
or YIRS
V.D=1,
are defined by
el
J——=0
ot
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which has the same form as (2.47). Hence, we obtain the following finite free resolution of N

O(_N<_D1X4<-_RZD1X6<-_RZD1X4 ]f:i:/l D<—O

where the matrices ]?1, Rv() and Z/%\_Jl are defined by:

-0 0 0 -0
0 -0 0 =09

R = ., Ro=Ri, R_|=R,.

Up to isomorphism, the ext?, (N ,D)’s are defined by the defects of exactness of the complex:

R_
0 Dix4 i D1x6 -Ro Dlix4 LD 0.

Moreover, we can easily check that

—Ve=A4, VAA=0, VAA=B,
o = Y ok - . = (245), (252
==V, _ _ — T =

where “a = b” means “b generates the compatibility conditions of a”, which proves that we
have ext?, (N,D) =0fori=1, 2, and the first set Maxwell equations (2.45) generates a reflexive
D-module M by 4 of Theorem 2.3.1. Finally, we have ext®, (N, D) 2 D/(d, da, 93, ;) # 0 since
1 ¢ (01, 02,05,0;), which proves that M is not a projective D-module by 5 of Theorem 2.3.1.

If M is a torsion left module over a domain D, then for every m € M, there exists d € D\ {0}
such that dm = 0. If f € homp(M, D), then d f(m) = f(dm) = f(0) = 0 and, since f(m) € D
and D is a domain, then f(m) =0, i.e., f = 0 and homp (M, D) = 0. If M is a finitely generated
left module over a noetherian domain D, then the converse of this result is true. Indeed,
if homp(M, D) = 0, then homp(homp(M, D), D) = 0 and using 1 and 2 of Theorem 2.3.1,
M = kere = ext}, (N, D) = t(M), which shows that M is a torsion left D-module.

Corollary 2.3.1 ([16]). Let M be a finitely generated left module over a noetherian domain D.
Then, M is a torsion left D-module iff homp (M, D) = 0. Similarly for right D-modules.

Example 2.3.7. Let us consider again Example 2.3.1, i.e., the D = Q(v)[0%, 0y]-module M =
D3 /(D3 R), where the matrix R is defined by (2.28). Since kerp(.R) = 0, M admits the

™

finite free resolution 0 —s D13 =B pixs T, pr g, Applying Theorem 2.1.1 to M, we
get homp(M, D) = kerp(R.). Since D is a commutative ring, R = R and kerp(.R) = 0,
kerp(R.) = kerp(.RT) = kerp(.R) = 0, i.e., homp(M, D) = 0 and we find again that M is a
torsion D-module by Corollary 2.3.1 (see Example 2.3.1).

A straightforward consequence of Theorem 2.3.1 is the following corollary.

Corollary 2.3.2 ([16, 92]). Let D be a noetherian domain with a finite global dimension
gld(D) = n. Moreover, let M = D'P/(D'4 R) be the left D-module finitely presented by
the matrix R € DT*P. [f we set Q1 = R, p1 = p and py = q, then we have the following results:
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1. M is a torsion-free left D-module iff there exists a matriz Qo € DPY*P2 such that the
following exact sequence of left D-modules holds:

D1><p0 'Ql D1><p1 'Q2 D1><p2.

2. M is a reflexive left D-module iff there exist two matrices Qo € DP**P2 gnd Q3 € DP2*P3
such that the following exact sequence of left D-modules holds:

DlXpo ‘Ql DlXpl 'Q2 DlXp2 'Q3 DIXp3.

3. M is a projective left D-module iff there exist n matrices Q; € DPi-1*Pi =2 ... n+1,
such that the following long exact sequence of left D-modules holds:

pixpo Q1 pixp Q2 pixps D, plxps Qi Qn plxpe Qe plxpaa (g 53)

Corollary 2.3.2 gives necessary and sufficient conditions for a left D-module M to be embed-
ded into an exact sequence of finite free left D-modules (inverse problem of the syzygy module
computation).

Let us give a classical characterization of projectivity which is sometimes simpler to test
than 5 of Theorem 2.3.1 (for more constructive results on projective modules, see [67]).

Proposition 2.3.2 (see, e.g., [67, 90]). Let M = D*P/(D'*9 R) be a left D-module finitely
presented by a matrix R € DY*P. Then, the following equivalent conditions hold:

1. M is a projective left D-module.

2. R admits a generalized inverse, namely, there exists a matriz S € DP*? such that:
RSR=R.
3. There exists an idempotent matriz II € DP*P, namely, 112 = II, presenting M, namely:
M = DY*?/(DY*P11).
Let us explain how to use Algorithm 2.2.3 to compute generalized inverses ([90]).

Algorithm 2.3.3. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order and which admits an involution 6 and
a left D-module M defined by the following finite free resolution of finite length

O DlXpm Rm DlXpm,1 Rm—1

R3 D1><p2 -Ro DlXp1 Ry D1><p0 m M 07

with the notations Ry = R, pg = p and p; = q.
— OQutput: A matrix S € DP*? such that RS R = R if S exists and () otherwise.

1. Compute a right inverse S,,, € DPm=1*Pm of R, if it exists and set S = S, and ¢ = m — 1.
If no such matrix exists, stop the algorithm with S = 0.
2. While i > 0, do:
(a) Compute F; = Ipi — Q(RZ’_H) (9(52'4_1) € DPi*Pi
(b) Compute a matrix L; € DPi*Pi=1 such that F; = L; O(R;) if it exists by checking that
the normal forms of the rows of F; are reduced to 0 with respect to a Grobner basis
of DY*Pi-1 9(R;). If such a matrix does not exist, stop the algorithm with S = 0.
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(c) Compute S; = 0(L;) € DPi-1*Pi_get S = S; and return to 2 with ¢ «— i — 1.
3. Return S.

Example 2.3.8. Let D = A;(Q) be the first Weyl algebra and M = D'*2/(D'*2 R) the left
D-module finitely presented by the following matrix:

—t to—1
R= D>,
( —(to+2) o ) ©

Using Algorithms 2.2.2 and 2.2.3, we can check that R does not admit a left and a right inverse.
Using Algorithm 2.3.3, let us check whether or not R admits a generalized inverse. Using
Algorithm 2.2.1, we first compute a finite free resolution of M:

0— DM ph2 Bophe Ty o my=(0 1),

Applying Algorithm 2.2.3 to Ry with the involution 6 of D defined by (2.20), we obtain that Rs
admits the right inverse Sp = (t 9)7 and:
2+t0  —0?
Fy =1, — 0(R3)0(S2) = :
1= 1~ 0(R2) 8(52) ( 2 —t8+1>

Using a Grobner basis computation, we can check that Fy = Ly 6(R), where:

(50

Ly = .

-1 0

The matrix S = 6(L;) = Ly then satisfies Sy Ry + RS = I and, by post-multiplying the last
identity by R and using Ro R = 0, we obtain RS R = R, which proves that S is a generalized
inverse of R over D and M is a projective left D-module by 2 of Proposition 2.3.2. Since
M admits a finite free resolution, Proposition 2.2.7 proves that M is a stably free left D-
module of rank 1. Finally, if I = SR, then 1> = S (RS R) = SR = II and we clearly have
DYl = D2 R, which proves that M = D'*2/(D'*21I).

If M is a stably free left D-module of rank [, then there exist two non-negative integers
r and s such that M @ D' = D> and | = r —s. If ¢ : M @ D' — D" is a left
D-isomorphism and ig : D% — M @ D'** the canonical injection, then the split short exact
sequence holds 0 — D1*# o, pixr 2, N, 0. In the standard bases of D'¥* and DT,
the left D-homomorphism ¢oiy : D'*$ — D" is defined by (¢oig)(A) = AT for all A € D'*%,
where T' € D**! is a matrix admitting a right inverse (see the comment after Example 2.2.11).
Therefore, the above split exact sequence becomes the following one:

0 — DU L pbxr 2,4 . (2.54)

Conversely, if M is defined by the split exact sequence (2.54), then D" = D1Xs @ M which
proves that M is a stably free left D-module of rank r — s. The matrix 7" can be computed by
means of Algorithm 2.2.4 if the left D-module M admits a finite free resolution of finite length
since we then have lpdp (M) = 0.

Corollary 2.3.3 ([29, 108]). If R € D?P? has full row rank, i.e., kerp(.R) = 0, then the
following equivalent assertions hold:
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1. M = DY*?P/(D'¥4 R) is a stably free left D-module.
2. R admits a right inverse, i.e., there exists S € DP*9 such that RS = 1.
3. The Auslander transpose right D-module N = D4/(R DP) = ext}, (M, D) of M vanishes.

Algorithm 2.2.3 can be used to check whether or not a left D-module M finitely presented
by a full row rank matrix R is stably free.

Example 2.3.9. In Example 2.2.10, we proved M = D*3/(D1*3 R) = D4 /(D3 T}), where
D = A3(Q) and the matrices R and T are respectively defined by (2.22) and (2.24). Moreover,
it was shown that the matrix 77 admitted the left inverse S; defined in Example 2.2.12, which
proves that M is a stably free left D-module of rank 1 (see also Example 2.2.12).

2.4 Parametrizations of linear systems

“Pure mathematics and physics are becoming ever more closely connected, though
their methods remain different. One may describe the situation by saying that the
mathematician plays a game in which he himself invents the rules while the physicist
plays a game in which the rules are provided by Nature, but as time goes on it
becomes increasingly evident that the rules which the mathematician finds interesting
are the same as those which Nature has chosen. It is difficult to predict what the
result of all this will be. Possibly, the two subjects will ultimately unify, every branch
of pure mathematics then having its physical application, its importance in physics
being proportional to its interest in mathematics.”

Paul Dirac, The Relation between Mathematics and Physics, Proceedings of the
Royal Society of Edinburgh, LIX, 1939, p. 22.

Let us show how the parametrizations of a torsion-free left D-module M = D*P/(D'*4 R)
can be used to parametrize the solution space kerz(R.). If L = D™™/(D*P Q) is the left D-
module finitely presented by the parametrization @ of the torsion-free left D-module M and F a
left D-module, then applying the contravariant functor homp( -, F) to the truncated finite free

resolution (2.39) of L, i.e., D1*4 SR, pixp 9, pixm 0, we obtain the following complex:
Fo L L g,

Therefore, ext}, (L, F) = ker#(R.)/im#(Q.) defines the obstruction for an element 7 of the linear
system kerz(R.), i.e., for n € FP satisfying Rn = 0, to belong to imz(Q.), i.e., to be of the
form n = Q¢ for a certain & € F™. Hence, exth(L,F) defines the obstruction for the the linear
system kerz(R.) to be parametrized by the matrix @, i.e., to have the form kerz(R.) = Q F™.

Let us study the dual statement of Proposition 2.2.2, i.e., when ext, (-, F) = 0 for all i > 1.

Definition 2.4.1 ([115]). A left D-module F is called injective if exti,(M,F) = 0 for all left
D-modules M and all 7« > 1.

Example 2.4.1. Example 2.2.6 shows that the Q[0, ]-module C*°(R) is not injective.
The next theorem gives a characterization of injective modules over a noetherian ring.

Theorem 2.4.1 ([115]). (Baer’s criterion) Let D be a left noetherian ring. Then, a left D-
module F is injective iff for every ¢ > 1 and every R € DY, the linear system Rn = ( admits

a solution n € F, for all ( € F? satisfying the compatibility conditions of Rn = (, namely,
Ry ¢ =0, where kerp(.R) = D'*" Ry.



2.4 Parametrizations of linear systems 65

Let us give a few interesting examples of injective modules.

Example 2.4.2. If Q is an open convex subset of R™, then the space C*°(Q) (resp., D'(2), S'(©2),
A(Q), B(2)) of smooth functions (resp., distributions, temperate distributions, real analytic
functions, hyperfunctions) on 2 is an injective D = k[0, ..., dy]-module, where k = R or C
([70, 81]). If G denotes the set of all functions that are smooth on R except for a finite number
of points, then G is an injective left By (k)-module, where k = R or C ([127]). Finally, if I is an
open interval of R and A = C(t) N .A(I) the ring of rational functions which are analytic on I,
and D = A(J) the ring of OD operators with coefficients in A, then the left D-module B(I) of
Sato’s hyperfunctions on I ([48]) is injective ([34]).

Let us now explain the main interest of the concept of injective left D-module in mathematical
systems. If M is a left D-module admitting a finite free resolution of the form

. RN DLxp3 RN DLxp2 RN Dixp1 RN Dixpo T oA 0,

then applying the functor homp( -, F) to the previous exact sequence and using ext%, (-, F) =0
for all 2 > 1 and Theorem 2.1.1, we obtain the following exact sequence of abelian groups:

B s B S o B o «—— homp(M,F) «— 0.

Hence, kerr(R;+1.) = R; FPi-1 for all i > 1. We say that the contravariant functor homp( -, F)
is exact, i.e., transforms exact sequences of left D-modules into exact sequences of abelian groups.

If F is an injective left D-module, then the results of Corollary 2.3.2 can be dualized to get
the following system-theoretic interpretations of the module properties in terms of the existence
of a chain of parametrizations.

Corollary 2.4.1 ([16]). Let D be a noetherian domain with a finite global dimension gld(D) = n,
R € DI, M = DY¥P/(DX9 R) the left D-module finitely presented by R and F an injective
left D-module. If we set Q1 = R, p1 = p and pg = q, then we have the following results:

1. If M is a torsion-free left D-module, then there exists a matriz Qo € DPY*P2 such that the
following exact sequence of abelian groups holds

Fro Qv oo Q2 FP2,

i.e., kerr(Q1.) = Q2 FP2, and Q2 is called a parametrization of the linear system kerz(Q1.).

2. If M is a reflexive left D-module, then there exist Qo € DPL*P2 and Q3 € DP2*P3 sych that
the following exact sequence of abelian groups holds

fpo Q1~ fpl Q2~ ﬂ2 Q3~ f.p3,

?,'.6., ker]:(Ql.) = QQ FP2 and ker]:(Qg.) = Qg FPs,

3. If M is a projective left D-module, then there exist n matrices Q; € DPi=1*Pi for qll
1 =2,...,n+ 1 such that the following exact sequence of abelian groups holds

Fro Qi pp Q2 ppe 9o gpa Qi 8n ppe Qb gpun (955)

i.e., kerp(Q;.) = Qip1 FPH fori=1,...,n.
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Remark 2.4.1. If the left D-module M is projective and admits a finite free resolution of finite
length, then (2.55) does not need the assumption that the left D-module F is injective, i.e., it
holds for all left D-modules F. This result comes from the fact that Algorithm 2.3.3 proves that
the long exact sequence (2.53) splits, namely, there exist n+ 1 matrices S; € DPi*Pi~1 such that:

Vi=1,...,n, S;Qi+ Qit1Si+1 = I,

Then, the complex (2.55), i.e., Q;11 FPitt C kerr(Q;.) for all i > 1, is exact for all left D-
modules F since n € kerz(Q;.) yields n = S; Qin + Qix1Si11m = Qi1 (Siv1m) € Qiy1 FPitt,
ie., kerr(Q;.) = Qiy1 FPi+t for all i > 1.

Remark 2.4.2. The converse of the results of Corollary 2.4.1 holds if we assume that F is a
so-called injective cogenerator left D-module, namely, if F is an injective left D-module and a
cogenerator left D-module, namely, for every left D-module M and every nonzero m € M, there
exists f € homp(M,F) such that f(m) # 0. If F is a cogenerator left D-module and M # 0,
then kerz(R.) = homp (M, F) # 0. We can prove that an injective cogenerator left (resp., right)
D-module always exists (see, e.g., [115]). For instance, if € is an open convex subset of R and
E =R or C, then C*°(Q2) and D'(f2) are two injective cogenerator D = k[0, ..., 0p]-modules
([81]). Similarly, the left Bj(k)-module G defined in Example 2.4.2 is injective cogenerator
([127]). Roughly speaking, the injective cogenerator condition on F plays the same role as the
condition of algebraically closed base field in classical algebraic geometry.

Example 2.4.3. If ) is an open convex subset of R3, k = R or C, and F = C*(Q2), D'(Q),
§'(Q), A(R2) or B(Q2), then Example 2.4.2 shows that F is an injective D = k[01, 02, 3]-module.
Example 2.3.5 and Corollary 2.4.1 then prove the exactness of the following complex:

0e— F Lo p3 2 p3 S 7 homp (M, F) — 0.

We find again the well-known result in mathematical physics that the divergence operator in
R? is parametrized by the curl operator, i.e., kerr(R3.) = Ry F3, and the curl operator is
parametrized by the gradient operator, i.e., kerz(Rs.) = Ry F, when F = C*°(Q) and 2 is an
open convex subset of R".

Example 2.4.4. If Q is an open convex subset of R* and F is an injective D = R[0;, 91, D2, 03)-
module (e.g., C>(Q), D'(2) or §'(Q) by Example 2.4.2), then using Corollary 2.4.1 and Ex-
ample 2.3.6, the first set of Maxwell equation (2.45) is parametrized by

B=VAA,
B T (2.56)
po0T oy

ot

where (ff, V) € F*is called the quadri-potential of (2.45), i.e., kerr(Ry.) = Ro F*. The quadri-
potential (A4, V') is not uniquely defined since the right-hand side of (2.56) is parametrized by

g = 7v§7
9
V==
ot’
i.e., kerr(Rp.) = R_1 F (see (2.52)). Hence, for any ¢ € F, the following gauge transformation

> 5 = 0

A— A-VE, Vl—>V—|—a—§,
gives the same fields E and B. This degree of freedom in the choice of the quadri-potential is
used in gauge theory (e.g., gauge fixing condition, Lorenz gauge, Coulomb gauge) ([54, 86, 87]).
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Let us generalize the concept of the rank of a finitely generated module M over a noetherian
domain D given in 1 and 2 of Definition 2.1.1.

Definition 2.4.2. If D is a noetherian domain and M is a finitely generated left D-module, then
the rank of M, denoted by rankp (M), is the maximal rank of free left D-modules F' contained in
M, i.e., the maximal rank of free left D-modules F' such that the following short exact sequence

0—F - MZT-—0

holds, where T'= M /F is a torsion left D-module.

Remark 2.4.3. The rank of a finitely generated left module M over a noetherian domain D
can also be defined as rankp (M) = dimg (K ®p M), where K is the division ring of fractions
of D (Ore localization) and ® the tensor product. For more details, see, e.g., [47, 57, 74].

Let us state an extension of the so-called FEuler-Poincaré characteristic.

Proposition 2.4.1 ([74, 115]). If D is a noetherian domain and M', M and M" are three
finitely generated left D-modules, then the short exact sequence 0 — M’ oM — 0
yields the following equality:

rankp (M) = rankp(M') + rankp(M").
A similar result holds for short exact sequence of right D-module.

Using Proposition 2.4.1 and splicing a long exact sequence into a sequence of short exact
sequences, we can show that the alternative sum of the rank of the modules composing this long
exact sequence is 0. Hence, if M admits the following finite free resolution of finite length

~Rm—1
—_

R R R R
0 Dlxpm m DIXpm71 . 3 Dlxpg 2 D1><p1 1 Dl)(po ™ M O,

then, using Proposition 2.4.1 and 1 of Definition 2.1.1, we obtain:

rankp (M) = f:(—l)irankD(DMpi) = i(—l)ipi. (2.57)
1=0 =0

Example 2.4.5. If M is a stably free left D-module of rank [, then there exist two non-negative
integers r and s such that M @ D'*$ =2 DX" and | = r — 5. Therefore, the split exact sequence
(2.54) holds. Using Proposition 2.4.1 or (2.57), we find again that rankp (M) =r — s.

Example 2.4.6. Using Example 2.2.3 and the finite free resolution (2.9) of the D = Q[0 02, 05]-
module M = D/(D'*3 Ry), where Ry = (01 02 03)7 is the gradient operator in R?, we obtain
rankp(M) =1—-3+3 — 1= 0. In particular, using Definition 2.4.2, the trivial exact sequence
D0 =0 — M — T =M — 0 holds, and thus M is a torsion D-module.

Similarly, if My = D'*3/(D'3 Ry), where Ry is the matrix of PD operators defining the
curl operator (see (2.10)), then the exact sequence (2.9) yields the following one:

0— D -He, pix3 B2 pixs moap g

Then, using (2.57), we obtain rankp(Mz) =3 -3+ 1= 1.
Finally, if M3 = D*3/(D RT) is the D-module defining the divergence operator in R?, then

3

the exact sequence (2.9) yields the finite presentation 0 — D Hs, pixs T, M3 — 0 of Ms,
and (2.57) yields rankp(M3) =3 -1 =2.
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In Example 2.4.3, the divergence operator in R? was proved to be parametrized by means of
3 arbitrary functions also called potentials. However, Example 2.4.6 shows that the rank of the
D-module M3 associated with the divergence operator is 2. Hence, we can ask whether or not
there exists a parametrization of the divergence operator containing only two potentials. This
remark leads to the concept of minimal parametrization of a torsion-free left D-module.

Definition 2.4.3 ([16, 91]). Let M = D*?/(D'X4R) be a torsion-free left D-module. A
matrix Q € DP*™ is called a minimal parametrization of M if @) is a parametrization of M| i.e.,
kerp(.Q) = DX4 R, such that the left D-module L = D'*™/(D*P Q) is either zero or torsion.

Equivalently, the matrix @) is a minimal parametrization of the torsion-free left D-module
M = D¥*?/(D'*4 R) if we have the following exact sequence of left D-modules

pixa B, plxp @ plxm o, 1 g (2.58)

where L is either 0 or a torsion left D-module. Let us prove rankp (M) = m. We first note that
M = DY /(D*9 R) = D*P /kerp(.Q) = coimp(.Q) = imp(.Q) = DV*PQ,
and thus rankp(M) = rankp(D'*P Q). Then, (2.58) yields the short exact sequence
0— DXPQ L, plxm 2,1 .

and Proposition 2.4.1 yields rankp(L) = m — rankp(DP Q) = m — rankp(M), and thus,
m = rankp (M) since rankp(L) = 0 because L is a torsion left D-module.

Let us state a result which proves the existence of minimal parametrizations.

Theorem 2.4.2 ([16, 91]). Let D be a noetherian domain, R € D?P and M = D'*?/(D1*4 R)
a torsion-free left D-module. Then, there exists a minimal parametrization of M.

Minimal parametrizations of a finitely presented torsion-free left D-module M can be ob-
tained as explained in the following algorithm.

Algorithm 2.4.1. — Input: A noetherian domain D and a matrix R € D9*P defining a
torsion-free left D-module M = D*?P/(D'*4 R).
— Output: A matrix Q € DP*™ defining a minimal parametrization of M.

1. Compute a matrix P € DP*! such that kerp(R.) = P D'.

2. Select m = rankp (M) right D-linearly independent column vectors of P and form a matrix
() with them.

If the ring D admits an involution €, then, using Algorithm 2.2.1, we can compute a matrix
U € D'™P such that kerp(.0(R)) = D' U, select m left D-linearly independent rows of U and
form a matrix V' € D™*P with them to get the minimal parametrization @ = (V') € DP*™ of
the torsion-free left D-module M = D**?/(D'*4 R) of rank m. The condition that the rows of
V are left D-linearly independent, i.e., kerp(.V') = 0, can be checked by Algorithm 2.2.1.

Example 2.4.7. We consider again Example 2.4.6. Since the D = Q[9;, 02, J3]-module M3
defined by the divergence operator in R? is reflexive of rank 2 (see Examples 2.3.5 and 2.4.6), we
can obtain a minimal parametrization of M3 by transposing the matrix formed by selecting two
D-linearly independent rows of the matrix RY, i.e., by considering two D-linearly independent
columns of the parametrization Ry of M3. Hence, the matrix Q1 (resp., Q2 and @Q3) defined by
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removing the first (resp., second, third) column of the non-minimal parametrization Ry of M is
a minimal parametrization of M. If  is an open convex subset of R? and F = C>(Q), D'()
or §'(2), then applying the contravariant exact functor homp(-,F) to the exact sequence

p s pixd L p2 9L oo i=1,2,3,
we obtain the following exact sequence of D-modules
Fll g3 88 72 homp(Li, F) 0, i=1,2,3,

which proves that the linear PD system kers(Rs.) = {n € F> | Ryn = V.n = 0} admits the
following minimal parametrizations:

m = —03& + &3 m = O &3, m = —03 &,
N2 = —0h &3 N2 = 03&1 — 01 &3, N2 = 03 &1, V&, &2, §3€F.
N3 = Oh &, N3 = —0 &1, n3 = —02 &1 + 01 &o.

Equivalently, a minimal parametrization of kerz(R3.) can be obtained by setting one of the
arbitrary potentials &;’s to 0 in the non-minimal parametrization R of kerz(R3.) ([91]).

Example 2.4.8. We consider again the first set of Maxwell equations (2.45) (see Example 2.3.6).
Applying (2.57) to the finite free resolution of finite length (2.46) of the D = Q|[0}, 01, 02, 03]-
module M = D'*6/(D'4 R;), we get rankp(M) = 6 —4+1 = 3. Therefore, the torsion-free D-
module M admits minimal parametrizations defined by matrices Q); € D5%3 formed by selecting
three D-linearly independent columns of the matrix Ry = R; defined in Example 2.3.6. For
instance, we obtain the following four minimal parametrizations of (2.45):

L0 A — OV = By oA~V =E,. ( -0V =5,
0 Ay — 0,V = B, _0,V = B, 0 Ay — 0,V = B, )
—03V = B, 0 As— 05V =By, | 0 As—0sV =8y, | _94_5
—5 Ay = B, Oy As = By, At A =B | oo g
03 A1 = By, 03 A1 — 01 A3 = By, —01 A3 = By,

—0y A1 + 01 Az = B3, —0 Ay = B, 01 Az = Bs,

Example 2.4.9. We quote pages 15-17 of [122]: “The necessary and sufficient conditions, that
the six strain components can be derived from three single-valued functions as given in

B _Ov _ Ow
€x = o Ey_aiy7 82_827
ow Ov ou ov  Ou (2.59)
WS ey T T T e ™ T e oy

are called the conditions of compatibility. It is shown in Refs.

the conditions of compatibility are given in a matrix form as,
R, U, U,

U. R, U, | =0,
U, U, R.

[R] =

1 through 5, for example, that
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D%, 0%, 0%y 0% 10 0 s, 0
R, = z + y yz’ _ x 10 (_ Yyz Yzx Wzy)

o 92 oyor VT Tayartaar Taw Tay T )

D%, 0%, Iy 0% 19 (/0 0 0
R, = 2 °¢ : = = 9% -9 (Tl e Wy) 2.60

Y022 022 020w Uy 9201 2 y ( Ox y T ) (2.60)

R — a2g2y 325; B 82’ny7 v 9%, 1 9 (&yyz n Mew 8%y>

Oz Iy dz dy ° O9xdy 20z \ Or Dy 9z )’

[ - -] We know from Eqgs. (1.4) that when the body forces are absent, the equations of equilibrium
can be written as:

0oy OTay n OTos

Ox oy 9z 0

OTyy  Ooy Oy

or oy T ar 0, (2.61)
0Ty O1yy | Ooy 0

ox oy 0z

These equations are satisfied identically when stress components are expressed in terms of either
Maxwell’s stress functions x1, x2 and x3 defined by

o — d%x3 n %Xz o d’x1
T 0y? 0227 Y 0yoz’
Px1 | Pxs X2
VT2 T a2 T T 0zon (2.62)
oo — x2 | 9”x1 S 9°x3
2 022 oy’ Y dx oy’
or Morera’s stress functions 11, ¥3 and 3 defined by
o — & Lo 10 (_31/11 +3¢2 n 31/13)
Toyor 2 Ox Ox oy 0z )’
oy 10 [0y O O
Y= 5 00 sz__§87y <8$ oy + &z)’ (2.63)
o — 93 Lo__19 (81/}1 L 02 31/}3)
= oxoy M 2 0z \ Ox oy 0z )’

It is interesting to note that, when these two kinds of stress functions are combined such that

o X3 . Px2 PP o Pxi 10 ( Oy | Ova 3¢3)
T oy 022 oyoz T ¢ Ooyodz 2 0z Ox oy 0z )
(2.64)
the expressions (2.60) and (2.64) have similar forms.”

Using the concept of minimal parametrizations, let us explain the last sentence and par-
ticularly the relation between (2.60), (2.64), Maxwell’s stress functions and Morera’s stress
functions. Let D = Q[0,, 0y, 0] be the ring of PD operators with rational constant coefficients
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and N = D'*3/(D1*6 P) the D-module finitely presented by the matrix P defined by:

d 0 0
0 9, O
p=| 0 0 % s
0 0. 0y
0, 0 0y
Oy 0 O
Using Algorithm 2.2.1, we can check that the D-module N admits the finite free resolution:
0 — p1x3 £, pixe @, pix6 P pix3 m oA 0, (2.65)
0 0? 85 —0y 0, 0 0
0? 0 02 0 —0,0. 0
2 2
0— o, 0z 0 0 0 —0; 0y "
—0y 0, 0 0 —%8% %8;,;(% %81;82
0 —0y 0, 0 5 0z Oy —%85 %8@,83
0 0 —0,0y 50,0. 50,0, —30?
J, 0 0 0 0, 0y
R=|0 9, 0 0, 0 0, | eD*"

0 0 9, 8, 0 O

Let © be an open convex subset of R® and F = C*(€) (resp., D'(R2), S'(R?)). Applying the
exact functor homp( -, F) to the exact sequence (2.65), we obtain the following exact sequence:

0(_‘?3(&.7_-6&_7:6&‘7?3<—ker}-(1?’.)<—0-

The PD operator P. : F% — F3 is defined by (2.59) and corresponds to the Killing operator
& — %Eg(w) = (e %7), where £ = ud, + v8y + wd, is a displacement of R® and w the
euclidean metric of R?, namely, w;; = 1 for i = j and 0 otherwise (i,7 = 1, 2, 3) ([56, 86, 87]).
The PD operator Q. : F¢ — F* defines the compatibility conditions (2.60) of P.: F¢ — F3.
These compatibility conditions are called the Saint- Venant compatibility conditions.

Let us now consider the Auslander transpose D-module M = D'*6/(D1*3 PT) of the D-
module N = D*3/(D'*6 P). M is associated with (2.61). Let us study the properties of M.
According to Theorem 2.3.1, we need to compute the D-modules extiD(N, D)’s for i =1, 2, 3,
namely, the defects of exactness of the following complex of D-modules:

0 pix3 B pixe Q" pix6 PT pixs 0. (2.66)

We can check that exth (N, D) = 0, ext?,(N, D) = 0 and ext}, (N, D) = D3 /(D1*6 RT) +£ 0,
which proves that M is a reflexive but not a projective D-module. Moreover, we obtain that
QT (resp., RT) defines a parametrization of M (resp., D'*¢/(D1*6QT)). Moreover, applying
the exact functor homp(-,F) to (2.66), we obtain the following exact sequence:

pT

0 — kers(RT.) — 3 B0y 6 &0, 6 P18,
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Thus, the PD operator Q7. : (x )+ (o 7) is a parametrization of the stress tensor (2.61)
by means of 6 arbitrary functions x € F3 and ¥ € F3, i.e., kers(P.T) = QT F5. We point out
that this parametrization is exactly the PD operator defined by (2.64).

Finally, since P has full row rank, rankp(M) = 6 — 3 = 3. Hence, (2.64) does not define
a minimal parametrization of (2.61). However, according to Theorem 2.4.2; the torsion-free
D-module M can be embedded into a free D-module of rank 3, which, by exact duality, yields
minimal parametrizations of ker#(P.T) depending on three arbitrary potentials of F. Minimal
parametrizations can be obtained by setting 3 of the 6 arbitrary functions y € F3 and ¢ € F3
to 0. Taking ¥ = 0 (resp., x = 0), we obtain the Maxwell’s (resp., Morera’s) parametrization
(2.62) (resp., (2.63)) of the stress tensor (2.61). These results mathematically explain Washizu’s
last sentence.

2.5 Quillen-Suslin theorem and Stafford’s theorems

Let us now characterize when a finitely presented left D-module M is free.

If M = DYP/(DX4R) is a free left D-module of rank m, then there exists a left D-
isomorphism v : M — D™ which yields the following exact sequence:

D1><q R D1><p 1/}071' Dle O

Writing the left D-homomorphism 1 o 7 : D'*P — D™ in the standard bases of D'*P and
D™ there exists a matrix Q € DPX™ such that the following short exact sequence holds:

0— D4R — pix» &, plxm __, g (2.67)

Since D™ is a projective left D-module, this short exact sequence splits by Proposition 2.2.5,
i.e., there exists T € D™*P such that the left D-homomorphism .7 : D™ — D'¥P satisfies
((Q)o(T)=.(TQ)=.In,ie, TQ = I,. Hence, the minimal parametrization ¢ of M admits
a left inverse. The converse of this result is clearly true since then D*P Q = D'*™ and

M = Dlxp/(Dlxq R) — DIXp/keI‘D(.Q) ~ Dlpr — D1><m7
which proves that M is a free left D-module of rank m. We obtain the following result.

Proposition 2.5.1 ([29, 108]). The finitely presented left D-module M = D'*P/(D'*9 R) is
free of rank m iff there exist two matrices Q@ € DP*™ and T € D™*P satisfying:

kerp(.Q) = DY R, TQ=1I,.

Then, {m(Tke)}k=1,...,m is a basis of the free left D-module M of rank m, where T},4 denotes the
k™ row of the matriz T.

The matrix @) defined in Proposition 2.5.1 is called an injective parametrization of the free
left D-module M of rank m since, with the notation zx = 7(Te) for all K =1,...,m, we have

m p
\v/j:]-)"wp) y]:ZngZky Vk:]w“')m) Zk:ZTkjyja
k=1 J=1

where y; = n(f;) for j =1,...,p and {f;}j=1,.p is the standard basis of D*? (see Section 2.1).
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Example 2.5.1. We consider again Example 2.2.10. Using Algorithm 2.4.1, we can prove that
the left D = A3(Q)-module M = D'*3/(D'*3 Ry) admits the following minimal parametrization

— 0y
Qi=| Oh+x203 |,
—XI2 82 -2

ie., M = DVY3Q and L = D/(D'*3 Q) is a torsion left D-module. Using Algorithm 2.2.2,
we can check that the matrix ¢); admits the left inverse 77 = %(xz 0 — 1), which yields
M = D3 Q= D and proves that M is a free left D-module of rank 1. The matrix Q; is an
injective parametrization of the free left D-module M of rank 1. Finally, if {f;};=123 is the
standard basis of the free left D-module D'*3, 7w : D3 — M the canonical projection onto
M and {y;}j=1,2,3 the family of generators of M defined by y; = m(f;), then the residue class z
of T7 in M, namely, z = % (z2y1 — y3), is a basis of M, and we have:

Y1 = —022,

Y2 = (1205 + 1) z,

ys = —(x902 + 2) 2.
Corollary 2.5.1 ([29, 108]). If M = D'*?/(D'*4 R) is a free left D-module of rank m and Q an
injective parametrization of M, i.e., kerp(.Q) = D'*9 R, which admits a left inverse T € D™*P,

i.e., T Q = I, then Q defines an injective parametrization of the linear system kerz(R.) for all
left D-modules F, i.e., kerr(R.) = QF™ and Q& = n implies § =T'n.

If R has full row rank, i.e., kerp(.R) = 0, then the split exact sequence (2.67) becomes
Q

0 D1><q R D1><p D1><m 0’
.S T
— —

(see 7 of Definition 2.2.1), i.e., p = ¢ + m by Proposition 2.4.1 and the following identities hold:

(MY oe (% O )otm s @) o

Definition 2.5.1. Let GL,(D) £ {U € DP*? |3V € DP*?: UV =V U = I,} be the general
linear group of D of index p. An element U € GL,(D) is called a unimodular matriz.

If kerp(.R) = 0, then the previous result proves that M = D*P/(D'*4 R) is free of rank
p — q iff R can be completed to a unimodular matrix

V= ( i ) € GL,(D),

or equivalently, if there exists U = V! € GL,(D) such that RU = (I, 0). Then, the following
commutative exact diagram of left D-modules holds:

S T
— “—
0 — Dxa B pup -2 pixe-9 __

[ | To

0— Dixa & plxp T, M —0.
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Corollary 2.5.2. Let R € D?P be a full row rank matriz, i.e., kerp(.R) = 0. Then, the left
D-module M = DY*P /(D**4 R) is a free left D-module of rank p— q iff there exists U € GL,(D)
such that:

RU = (1, 0). (2.69)

If we write U = (S Q), where S € DP*9 and Q € DP*0=9) | then

: M — D@9
(A — AQ,

is a left D-isomorphism and its inverse ¥~' : DY>P=9 — M s defined by =" (u) = w(uT)
for all pw € DY®=9 where the matrizc T € DWP~D*P is defined by:

Ul = ( R ) € DP*P,
T

Then, M = DY*P Q = D=9 gnd the matriz Q is an injective parametrization of M. Finally,
{7 (The) }i=1,...p—q s a basis of the free left D-module M of rank p — q.

Contrary to the linear algebra, the computation of bases of a finitely generated free left
D-module is generally a difficult issue in module theory. We shortly study particular situations.

If D is a principal left ideal domain (e.g., D = Z, k[z], where k is a field, K(J), where K is a
differential field such that k(t) or k{t}[t"!])) and R € D?*P a matrix admitting a right inverse,
then computing the so-called Jacobson normal form of R (generalization of Smith normal form)
(see, e.g., [25, 45, 52]), we obtain two matrices F' € GL4(D) and G € GL,(D) satisfying:

R=F(I, 0)G.

Ifm=p—q G= (G GIT where Gy € D?*P, Gy € D™ and G~! = (H; Ha), where
H, € DPX4_ Hy € DP*™ then we obtain R = F' Gy, i.e., G = F~' R, and

F~'R F~1 0 R
G l=1, = Gl=1,
GQ 0 -[7‘ G2
= R G! F70 I, = R (HF~' Hy) =1,
Go o I1.) G ! S

which shows that we can take U = (H; F~! Hs) € GL,(D) and T = G3 in Corollary 2.5.2.
The computation of Jacobson normal forms was implemented in the JACOBSON package ([25]).

The results obtained in Section 2.3 can be used to check whether or not a finitely presented
D = k[z1,...,zy]-module, where k is a field, is projective, i.e., free by the Quillen-Suslin the-
orem (see 2 of Theorem 2.1.2). However, the explicit computation of a basis generally requires
tricky methods. Known constructive proofs of the Quillen-Suslin theorem are based on the next
theorem which allows one to compute a matrix U € GL,(D) satisfying (2.69) by an induction
on the number of the variables x;’s.

Theorem 2.5.1 ([112, 120]). Let k be a field, D = k[z1,...,x,] and R € D?*P a matriz which
admits a right inverse. Then, for every a, € k, there exists a matriz U € GLy(D) satisfying:

R(x1,...,xn) Ux1,...,2n) = R(1,...,Tn—1,an). (2.70)
Hence, for all ay,...,an € k, there exists V € GL,(D) such that:
R(z1,...,xn) V(z1,...,2n) = R(a1,...,an).
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The constructive proofs of Theorem 2.5.1 are rather involved but are generally based on
three main steps: Noether’s normalization processes, computation of local bases (e.g., Horrock’s
theorem) and the patching of the local solutions to get a global basis. See, e.g., [30, 58, 64, 65, 67].
See the QUILLENSUSLIN ([29]) package for an implementation of Theorem 2.5.1 and for the
computation of bases and injective parametrizations of free D = k[z1, ..., x,]-module.

Let us state an interesting system-theoretic interpretation of Theorem 2.5.1.

Corollary 2.5.3 ([29]). Let k be a field, D = k[z1,...,x,], R € DYP q full row rank matriz,
i.e., kerp(.R) = 0, and F a D-module. If the D-module M = D'*?/(D'*4 R) is free, then we
have the following D-isomorphisms
X : kerr(R(e,ay).) — kerr(R(e,zy,).) X! :kerr(R(e,2,).) — kerr(R(e,ay).)
¢ — n=Ug, n o— (=U"',
where a, € k and U € GL,(D) satisfies (2.70). Hence, the elements of kerr(R(e,xy).) and
kerz(R(e,ay).) are in a one-to-one correspondence. More generally, the linear system ker z(R.)

is D-isomorphic to the linear system obtained by setting all but one variables x;’s to a; € k (e.g.,
a; =0) (resp., all the variables z;’s to a; € k) in the presentation matriz R.

Example 2.5.2. Let us consider the following linear OD time-delay system ([76]):
g1(t) —y1(t —h) +2y1(t) + 292(t) — 2u(t — h) =0,
1(8) + 92(t) — a(t = h) —u(t) = 0.

Let D = QJ0, d] be the commutative polynomial ring of OD time-delay operators with rational
constant coefficients (i.e., dy(t) = y(t), d y(t) = y(t — h)) and the presentation matrix of (2.71):

R 0—06+2 2 —246
N B, o —05—1

(2.71)

) € D**3. (2.72)

Using Algorithm 2.2.2; we can check that R admits a right inverse S defined by:

. 0 0
S:5 6+2 —26 | e D3*2,
9 -2

Then, using 2 of Corollary 2.3.3, the D-module M = D'*3/(D'*2 R) is projective, i.e., free by
the Quillen-Suslin theorem (see 2 of Theorem 2.1.2). Applying Theorem 2.5.1 to the matrix
R and ay = 0, the linear OD time-delay system (2.71) is equivalent to the linear OD system
obtained by setting d to 0 in the presentation matrix R, i.e., (2.71) is equivalent to:
21(t) +221(t) +222(¢) =0,
2(8) + 21 (1) + 220 -
z21(t) + 22(t) —v(t) = 0.
Applying a constructive version of the Quillen-Suslin theorem to R, we obtain that a transform-
ation which bijectively maps the trajectories of (2.71) to the ones of (2.73) is defined by:

yi(t) = z1(1),
Yo(t) = 3 (21(t — 2h) + 21(t — b)) + 22(t) + v(t — h),

w(t) = L2t — v
(t) = 3 21(t = h) +v(1), (2.74)
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Applying again Theorem 2.5.1 to (2.73), we obtain that the linear OD system (2.73) is equivalent
to the purely algebraic system obtained by setting to § and 0 to 0 in R, namely:

{ 21(t) + 2x9(t) = 0,

o 0. (2.75)

Applying a constructive version of the Quillen-Suslin theorem to R(0,0), we get that a trans-
formation which bijectively maps the trajectories of (2.73) to the ones of (2.75) is defined by:

z1(1),
z(t) + 3 41(t), (2.76)
o(t )+21( ) + 22().

Zl(t) = t) xl(t
2(t) = za(t) — 5 a1 (), & wa(t) =
u(t) = w(t) — 5 &1(t) + @1 (t) + d2(t), t)

Composing the invertible transformations (2.74) and (2.76), we obtain a one-to-one correspond-
ence between the solutions of (2.71) and (2.75). The solutions of (2.71) (resp., (2.73)) are
parametrized by means of (2.74) (resp., (2.76)), where 21, 22 and v (resp., x1, x2 and w) satisfy
(2.73) (resp., (2.75)). Solving the algebraic system (2.75), we obtain zo = —z1 and w = 0
and substituting these values into the first system of (2.76) and then the result into the first
transformation of (2.74), we find that the injective parametrization of (2.71) is defined by:

yi(t) = z1(?),
Var e F, { yolt) = =1 (1(t — h) — a1 (t—2h) + &1(£) — 21 (t — b) + 221 (1)),
u(t) = 5 (@1(t — h) — i1 (t)).

An OD time-delay system kerr(R.) which defines a free D-module M = D'*4/(D'*4 R) is
called flat and a basis of M corresponds to a flat output of kerz(R.) ([33, 76]). For more details,
see 6 of the forthcoming Definition 2.6.1. The motion planning problem in control theory can
easily be achieved for flat systems (see, e.g., [32, 76, 77, 78, 79, 82]). Corollary 2.5.3 shows that
every linear OD time-delay system is equivalent to the flat (i.e., controllable) linear OD system
obtained by setting all the time-delay operators to 1, i.e., to the corresponding controllable linear
OD system without time-delays ([29]).

g

The following generalization of Quillen-Suslin theorem was proposed by Lin and Bose in [63].

Lin-Bose’s problems: Let k be afield, D = k[z1,...,z,], R € D?*P a full row rank matrix such
that the ideal of D generated by the ¢ x g-minors {m;};—1 ., of R satisfies (m1,...,m,) = (d),
where d is the greatest common divisor of the ¢ x ¢ minors of the matrix R.
1. Find two matrices R € D?P and R” € D%%? such that R = R" R, det(R") = d and
R’ € D?*P admits a right inverse.

2. Find a matrix T € DP~9*P such that det((RT T7)T) =d.

1 and 2 were shown to be equivalent in [63].

In [29], we proved that the output of the next algorithm returns the matrix R’ defined in 1
and R” can then be found by means of a factorization using Grobner basis techniques.

Algorithm 2.5.1. — Input: A commutative polynomial ring D = k[xy,...,z,] over a
computable field k, a full row rank matrix R € D?*P and the finitely presented D-module
M = DY*P /(D4 R) such that M/t(M) is a free D-module.
— Output: A full row rank matrix R’ € D9*P satisfying M/t(M) = D'*?/(D'*¢ R/).

1. Using Algorithm 2.3.1, compute a matrix Q € D?*P satisfying M /t(M) = D'*? /(D'*? Q).
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2. Using Algorithm 2.2.1, compute a matrix Qs € D%*? satisfying kerp(.Q) = D *% Q,.
3. If kerp(.Q) = 0, i.e., if Q has full row rank, then stop the algorithm with R’ = Q.

4. Using a constructive version of the Quillen-Suslin, compute a basis of the free D-module
L = D4 /(D% Q,) = D'*7 Q. We obtain a full row rank matrix B € D9? such that
{m2(Bie) }i=1,..q is a basis of free D-module L, where 3 : D*¢ — [ is the canonical
projection onto L and B;,e is the i*" row of B.

5. Return the full row rank matrix R’ = BQ € D9*P.

Algorithm 2.5.1 was implemented in the QUILLENSUSLIN package ([29]).

The next algorithm solves the second problem as explained in [29].

Algorithm 2.5.2. — Input: A commutative polynomial ring D = k[xy,...,z,] over a
computable field k, a full row rank matrix R € D?7*P such that the ideal of D generated
by the ¢ x g-minors {m;}i=1 ., of R satisfies (my,...,m;) = (d), where d is the greatest
common divisor of the ¢ x g-minors of R.

— Output: A matrix T € DP~9D*P satisfying det((RT T7)") = d.
1. Using Algorithm 2.3.1, compute a matrix Q € D7 *? satisfying M /t(M) = D'*? /(D> Q).

2. Using a constructive version of the Quillen-Suslin, compute a basis of the free D-module
M/t(M) = D'? /(D' Q). We obtain a full row rank matrix 7' € D®~9*? such that

-----

is the canonical projection onto M /t(M) and T}, is the i*" row of T.
3. Return the matrix U = (RT TT)T.

Algorithm 2.5.2 is also implemented in the QUILLENSUSLIN package ([29]).

Example 2.5.3. Let us consider the OD time-delay model of a flexible rod with a force applied
on one end studied in [77]:

291(t = 1) = 92(t) — 92(t — 2) = 0.

Let D = Q[0, d] be the commutative polynomial ring of OD time-delay operators (i.e., dy(t) =
y(t), Sy(t) = y(t — h)) and the D-module M = D'*3/(D'*2 R) finitely presented by:

0 ) ~1
R= < > € D?*3, (2.77)

{ Ui(t) — g2t — 1) —u(t) =0,

200 —9(1+06%) 0

Using Algorithm 2.3.1, we obtain that the matrix @ is defined by

—28 62+1 0
Q=| -0 a5 1 |eD®3
96 -0 &

satisfies M/t(M) = DY*3/(D'*3 Q) and t(M) = (D3 Q)/(D'*? R). Reducing the rows of @
with respect to D'*2 R, we obtain that the only non-trivial torsion element of M is defined by

m=—208y; + (6> +1)ya, dm =0,

where y1, y2 and y3 are the residue classes of the standard basis { f;};=1,2,3 of D3 in M. Hence,
we get t(M) = Dm. Using Algorithm 2.2.1, the full row rank matrix Q2 = (0 — ¢ 1) satisfies



78 Algebraic analysis approach to mathematical systems theory

kerp(.Q) = D Q2. Then, we have to compute a basis of the free D-module L = D3 /(D Q5).
Using a constructive version of the Quillen-Suslin theorem (e.g., the QUILLENSUSLIN package),
we obtain the split exact sequence

00— D & D1x2 i D —0
.S2 .B
— —
with the following notations:
0 -1 0
-1 0 0
So=101|, P= 0 1], B= :
0 10
1 g 9

In particular, we have D'*3 Q = D'*2 R/, where the full row rank matrix R’ is defined by:

R—BQ-— 26 —6*—-1 0
- -9 a5 1

Then, we get the factorization R = R” R', where the matrix R"” € D?*? is defined by:

0 —1
R = .
(o)

We can check that det R” = 0, where 9 is the greatest common divisor of the 2 x 2 minors of R
(i.e., annp(m)), which solves the first problem. Let us now study the second one. We have to
compute a basis of the free D-module M /t(M) defined by the following finite free resolution:

0 — D 222 pt3 & pb3 T Ar/i(M) — 0,
Using Algorithm 2.2.4, M/t(M) admits the following shortest free resolution
0 — DL3 & pixd OO Ny s,

where Q' = (QT  SI)T. Now, applying a constructive version of the Quillen-Suslin theorem to
the matrix @’ using, e.g., the QUILLENSUSLIN package, we find that a basis of the free D-module
M /t(M) is defined by (7' ®0)(T"), where T" = (1 §/2 0 0). Hence, if T is the matrix defined
by the first three entries of 77, then U = (RT T7T)T satisfies det U = 0.

For more applications of the Quillen-Suslin theorem in mathematical systems theory (e.g.,
computation of (weakly) doubly coprime factorizations of rational transfer matrices ([101])), see
[29] and the QUILLENSUSLIN package. See also Chapters 4 and 5.

Let us now explain the main ideas of the constructive proof of Stafford’s theorem (see 3 of
Theorem 2.1.2) obtained in [108] and implemented in the STAFFORD package ([108]).

We first need to introduce a well-known result due to Stafford ([116]) on the efficient gener-
ation of ideals of the Weyl algebras A, (k) and B, (k), when k is a field of characteristic 0.

Theorem 2.5.2 ([116]). Let k be a field of characteristic 0 and D = A, (k) or By(k). If
v1, V9, v3 € D, then there exist a1, as of D such that the left ideal I = Dvi + Dwvy + Dvs of D
can be generated as follows:

I:D(v1+a103)—|—D(v2+a2v3).

Thus, every left ideal of D can be generated by two elements of D. Similarly for right ideals.
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Example 2.5.4. Let us consider D = A3(Q) and the left ideal I = D (01 + x3) + D92 + D 05
of D. We can check the identity (02 + 03) (01 + x3) — (01 + x3) (02 + 03) = 1, which yields
{ 0y = (82 (82 + 03)) (01 + x3) — (02 ((91 + wg)) (02 + 03),
03 = (03 (02 + 33)) (01 + x3) — (03 (01 + x3)) (D2 + 03),
and shows that I can be generated by 0; + x3 and 0y 4 03, i.e., I = D (01 + x3) + D (02 + 03).
If we now consider the left ideal J = D 01+ D 02+ D 93 of D defined by the gradient operator
in R, then J satisfies J = D 81 + D (02 + x1 83) since we have:
{ Oy = x1 (02 +103) 01 + (=21 01 + 1) (02 + 21 03),
03 = —(02 + 21 05) 01 + 01 (02 + 31 03).
Two constructive algorithms of Theorem 2.5.2 were developed by Hillebrand and Schmale on

the one hand ([42]) and by Leykin on the other hand ([60]). Both strategies were implemented
in the STAFFORD package ([108]).

Let us introduce a few more definitions.

Definition 2.5.2. 1. The elementary group EL,, (D) is the subgroup of GL,,(D) generated
by all matrices of the form I,, + r E;;, where r € D, i # j and E;; is the matrix defined
by 1 at the position (7, j) and 0 else.

2. A column vector v = (v; ... vy)T € D™ is called unimodular if it admits a left inverse,
i.e., if there exists w = (w1 ... wy,) € D™ such that wv = Y7, w;v; = 1. The set of
unimodular column vectors of D™ is denoted by Uy, (D).

Example 2.5.5. Upper and lower triangular matrices with 1 on the diagonal belong to the
elementary group ([74]).

Proposition 2.5.2 ([108]). If k is a field of characteristic 0, D = A, (k) or Bn(k), m > 3 and
v € Up(D), then there exists a matriz E € E,, (D) satisfying:

Ev=(10 ... 07

More precisely, let a1, as € D be such that D v+ D ve+ D vy, = D (v1+aq vp) + D (va+ag vy,),
anddy,...,dn—1 € D satisfying the Bézout identity Z?;l d; v = 1, with the following notations:

U’lzvl—i—alvm, Ué:'l}g—l-agvm, Vi>3, vll-:vi.
If v = (W) =1 —wp)d;, foralli=1,...,m—1, and
00 ... 0 aq
1 0 0
01 0 ... 0 ao
0 1 0
01 ... 0 0
Ey = L. . . . GEm(D), Ey = : : . : : : EEm(D)v
06 ' io 0O 0 0 ... 1 0
00 0 01 of vy vy L vl
00 0 -1 1 00 0
0 1 0 0 —vh
Ey=| ¢ ¢ € En(D), E4= : ot € En(D),
0 00 0 —v_1 00
00 0 1 —vj+1 0 0
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then we have (E4 E3 Ea Ey)v = (10 ... 0)T.

Proposition 2.5.2 can be used to handle Gaussian elimination on the columns of the formal
adjoint R of R. For more details, see [108]. We have the following algorithm ([108]).

Algorithm 2.5.3. — Input: D = A, (k) or B, (k), where k is a computable field of charac-
teristic 0, a matrix R € D?P which admits a right inverse S € DP*? and p — q > 2.
— Output: Two matrices Q € DP*®P~9 and T € DWP~D*P gatisfying T Q = p—q and

{7 (Tie) }iz1,.. p—q is a basis of the free left D-module M = D**P/(D'*4 R) of rank p — g,

where T}, is the i*" row of T and 7 : D'*P — M the canonical projection onto M.

1. Compute R = 6(R) € DP*% and set i =1, V = R and U = I,.
2. Denote by V; € DP~*+1 the column vector formed by taking the last p — i 4 1 elements of
the 7" column of V.

3. Applying Proposition 2.5.2 to V;, compute F; € E,_;41(D) such that F; V; = (10 ... 0)T.

L1 O
0 F

5. If i < g, then return to 2 with V «— G; V, U «— G; U and i «—— i + 1.

6. Define G = G4 U and the matrix P formed by selecting the last p — g rows of G.

7. Define Q = §(P) € DP*(P=9) and compute a left inverse T € DP~D*P of Q.

4. Define the matrix G; = ( > € E,(D) where G; = F1.

Algorithm 2.5.3 is inspired by a result of [66, 67] obtained for commutative rings.
Example 2.5.6. Let us consider the first Weyl algebra D = A;(Q), the following matrices

T

09 0 -1 000 —1

R= e D4 §= € D2, (2.78)
d 0 —t 0 t 09 0

and the left D-module M = D'**/(D**2 R). We can easily check that S is a right inverse of R.
Therefore, M is a stably free left D-module and rankp (M) = 2. 3 of Theorem 2.1.2 then shows
that M is free left D-module of rank 2. Using Algorithm 2.5.3, let us compute a basis of M.

Let us first compute the formal adjoint R of R:

T
-0 0 -t 0

Let us now consider the first columnv; = (0 —d 0 —1)T of R. Thevectorv), =(1 —8 0)"
is unimodular since w’ = (1 0 0) is a left inverse of v{. Then, we can take a; = —1, ag = 0,
d1 =1, ds = 0 in Proposition 2.5.2. Applying Proposition 2.5.2 to v, we get:

1 0 0 -1 1 0 0 O
01 0 O 01 00
E1 = 5 E2 = )
0 01 0 0 010
0O 0 0 1 1 0 0 1
1 0 0 -1 1 0 0 O
01 0 O o1 0 0
E3 = , Ey=
0 01 O 0 01 0
00 0 1 0 0 0 1
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In particular, we have:

0 00 -1 1
G =E B e -] 00 0 €E4D), GiR= 0
=Rl b2 li=1 0 4(D), L=,
1 00 O 0 -0
Let us now consider the subcolumn vy = (0 —¢ — )" of the second column of matrix

G1 R. We can easily check that vh = (=9 — )7 has a left inverse defined by wh = (t — 9).
Hence, taking a1 =1, ao =0, dy = —t and d» = —0 in Proposition 2.5.2, we get:

1 01 1 0 0 1 0 —1 1 0 0
Eij=|010]|,E,=| 0 10]|,EB,=|01 0 |,E= t 10
00 1 —t 0 1 00 1 d+1 0 1
Then, we have:
1+t -0 t 1
F=E\E\E5E, = tt+1) —to+1 ¢ € E4(D), Fuve=] 0
to+0+2 -0 to+2 0
Let us define the following matrices:
0 0 0 -1
1 0 t t+1 —0 —(t+1)0
G2: y G=G2G1: 9 ( )
0 t tt+1) —to+1 —t(t+1)0
to+2 (t+1)0+2 —-02 —(t+1)0+2)0

Then, we have G R = (I 0)T. Finally, if we consider the following two matrices

2 —to+1
2+t —(t+1)0+1 0 0 t+1 -1
= 5 T: 5 279
@ to+2 —9? t+1 —t 0 0 (2.79)

tt+1)0+2t+1  —(t+1)9?

where @ is formed by taking the last two columns of the formal adjoint G of G and T is a left
inverse of @, then a basis of M is defined by {w((0 0 ¢+1 —1)), n((t+1 —t 0 0))},
where 7 : D% — M is the canonical projection onto M.

Let us consider a left D-module F (e.g., F = C*°(Ry)) and the linear system kerz(R.).
Using the matrix @) defined by (2.79), we obtain the following parametrization of kerz(R.):

n1(t) = 26(1) — téa(t) + &),
E2(t) — us(t) =0, ealf) = 1 V&) — (14 1) Ealt) +Ex(1),
{m(t)—tul(t):o, T ) = i) +26000) — (), (2.80)
up(t) =t (t+1) &) + 2t + 1) &(t) — (1+1) &a(t).
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Finally, since T'Q = I, (2.80) is an injective parametrization of kerz(R.), i.e.:

.Tlt

(t)

( &i(t) ) _p | %= - { §1(t) = (t+ Dua(t) —ua(t), (2.81)
(t) '
(t)

fQ(t) t fg(t) (t + 1) xl(t) — t.%'g(t).
u9 t

U1

In control theory, the OD system kerx(R.) is called a differentially flat system and the basis
(2.81) of the free left D-module M corresponds to a (non-singular) flat output of kerz(R.) ([32]).

For PD examples, see [108] and the library of examples of the STAFFORD package.

Let us now study the case of stably free left D-module of rank 1.

Proposition 2.5.3 ([108]). Let D = A,(Q) or B,(Q) be a Weyl algebra and M a stably free
left D-module of rank 1. If Q € DP is a minimal parametrization of M, then M is a free left
D-module of rank 1 iff the left ideal DYP Q of D admits a reduced Grébner defined by only one
element P of D. If so, then the column vector Q P~' € DP defines an injective parametrization
of the free left D-module M and the residue class in M of a left inverse T € DY*P of the column
vector Q P~1 defines a basis of the free left D-module M of rank 1.

Example 2.5.7. Let us consider the time-varying linear OD system #(t) = t*u(t), k € N,
and let D = A1(Q), Ry = (0 —t*) and My = DY?/(DRy,). Since Ry has full row rank,
according to Corollary 2.3.3, M, is stably free iff the left D-module N = D'*4/(D'*P Ry}),

— T
where Ry, = (—8 — tk) is the formal adjoint of Ry, is reduced to zero:

—A=0, k3 k—1 k—1 N
o = tA+Et"TA=0=>t""A=0= ... = A=0= N=0.
Hence, for all £ € N, the left D-module M}, is stably free of rank 1. Using Algorithm 2.4.1, the
torsion-free left D-module M}, admits the following minimal parametrization:

k+1
Ry, 1x2 -Qk ok 1x2 t
0—D—"5D - D —= D/(D Qr) — 0, Q= .
/( 2 k <t8+k+1 )

Therefore, we get My = D'¥?/(D Ry,) = D2 Q) = DtF*! + D (t0 + k + 1), showing that Mj
is isomorphic to the left ideal I;, of D generated by t**! and ¢t + k + 1. Since D is a domain,
we obtain that M} is a free left D-module iff I} is a principal left ideal of D. However, we
can prove that t**1 and t9 + k + 1 form a reduced Grébner basis of I, iff & > 1, and thus
Mj, is a stably free but not free left D-module when k& > 1 (see also [108]). For k = 0, we
have Ip = Dt + D (t0+ 1) = Dt because 0t = t0 + 1. Hence, I is a principal left ideal of
D and thus My is a free left D-module. Using (t0 + 1)t~! = 9, we obtain that an injective
parametrization of My is defined by Qot~' = (1 9)”. To conclude, the time-varying linear OD
system @ (t) = t* u(t) is flat in a neighbourhood of ¢ = 0 iff k = 0 and, for k > 1, the singularity
at t = 0 of its injective parametrization u(t) = t=% 2(t) over B;(Q) cannot be removed.

If M is a stably free left D = A;(k)-module M which is not free, then B;(k) ®p M is a
torsion-free left Bj(k)-module, and thus a free one by 1 of Theorem 2.1.2 (B;(k) is a principal
left ideal domain). Hence, the obstructions for M to be free come from irremovable singularities.

The next proposition generalizes a remark of Malgrange ([72]) on a result of [73].
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Proposition 2.5.4 ([108]). Let R € DY*P be a matriz which admits a right inverse S € DP*4,
the stably free left D-module M = D**P/(D'*4 R) and 7t : D'*P — M the canonical projection.
IfRR=(R 0)e DI*P+9)  then we have the following split exact sequence

0— Dixa B, pixe+e 9, pixp 0,
o I (2.82)
Vi —

with the notations:

I,- SR

R

g

> e Drtaxp

Hence, we have M @ D'*9 2 D'¥P_j e M @& D4 is a free left D-module with a basis defined
by {K(T%) }Yiz1... p, where Tly denotes the i row of T' and k : DP9 — pIx(p+a) /(D1xa RY)
is the left D-homomorphism defined by K((A1 ... Aptq)) = (T(A1 ... Ap) Apg1 -+ Aptq)-

We have the following system-theoretic interpretation of Proposition 2.5.4.

Corollary 2.5.4 ([108]). With the notations of Proposition 2.5.4, if F is a left D-module, then:
kery:(R’.) = {('r]T CT)T € ]I'(P‘HZ) ‘ Rn — O} — Q/]_-p
Moreover, for all ¢ € F? and alln € kerx(R.), there exists a unique { = n+ S ¢ € FP such that:

¢ = RE.

Finally, the linear system kerr(R'.) = kerz(R.) @ F9 projects onto the linear system kerz(R.)
under the canonical projection p : FPT9 — FP defined by p((n” ¢T)T) =7T.

If D = A;(k), then Corollary 2.5.4 can be interpreted as the blowing-up of the singularit-
ies: embedding the linear system kerrz(R.) C FP into a larger space F@#+9) | the new system
kerz(R'.) = kerz(R.) ® F? has no more singularities, i.e., it is free. The situation is similar to
the blowing-up in algebraic geometry ([27]).

Example 2.5.8. Let us consider again Example 2.5.7 and particularly the stably free but not
free left D = A;(Q)-module M = D'*2/(D R) of rank 1, the matrix R = (0 — t), which is
associated with the time-varying linear system #(t) — tu(t) = 0. If F is a left D-module, then
using Algorithm 2.3.1, we obtain the following parametrization of kerz(R.):

a(t) = —t&(t) + &) + 12 &(1),
u(t) = =& (t) + t&(t) +2&(t).

But, we cannot express the potentials & and & in terms of z, u and their derivatives, i.e., this
parametrization is not injective since it would imply that rankp (M) is 2 whereas it is 1.

The left B1(Q)-module B1(Q) ®p M = B1(Q)*2?/(B1(Q) R) is free and the corresponding
system kerg(R.), where G is any left B;(Q)-module, admits the injective parametrization:

w(t) = (1),
u(t) = (1)

v§17§2€f7 {

Y eqg, {
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The fact that M is not a free left D-module means that we cannot remove the singularity at
t = 0. However, if R = (R 0) € D'*3, Corollary 2.5.4 shows that the linear OD system

kers(R.) ={(z w v)l € F|a(t)—tu(t) =0}
admits an injective parametrization defined by the matrix Q' = ((Is — S R)T RT)T ¢ D3x2

: _ o(t) = —t g1 (t) + eu(t) + 2 @a(t),
{HOHOZ0 o = a0 40 +200),
veF, )
v(t) = ¢1(t) — tea(t),
where ¢1(t) = z(t) + tv(t) and w2(t) = u(t) + 0(t). Hence, Corollary 2.5.4 allows us to “blow

up” the singularity at ¢ = 0 and the non-flat linear system kerz(R.) is the projection of the flat
behaviour ker£(R'.) = kerz(R.) ® F = F? under the following canonical projection:

p:F3 — F?

(z u v)l' — (z w7

Let us now show how the previous results on Stafford’s theorem can be extended to the case
of D = A(0), where A = k[t] and k is a field of characteristic 0, or k{t} and kK =R or C.

Theorem 2.5.3 ([111]). If A = k[t] and k is a field of characteristic 0, or A = k{t} and k =R
or C, D = A(0) and vy, va, v3 € D, then there exist two elements a1, ay € D such that the left
ideal I = D vy 4+ Dwvo + Dws can also be generated as follows:

I= D(’U1 +a103) —I—D(UQ +a2v3).
In particular, every left ideal of the ring D = A(J), where A is defined in Theorem 2.5.3,
can be generated by two elements ([35, 69]).

Proposition 2.5.2 can also be extended to the ring of OD operators D = A(J) for the
differential rings A introduced in Theorem 2.5.3. Let us give an explicit example.

Example 2.5.9. If D = R{t}(d) and v = (0 sin(t) 9)7, then v admits a left inverse since
bringing the OD linear system vy = 0, i.e.,

©1 = 07
®y = sin(t) y,
O3 = 33/,

to formal integrability, we successively obtain 0 ®o — sin(t) ®3 = cos(t) y and:

sin(t) @9 + cos(t) (0 Py — sin(t) P3) = y.

Hence, the column vector v admits the left inverse w = (0 cos(t) d + sin(t) — cos(t) sin(t))
and D0+ D sin(t) + DO = D. Taking a; = 1 and az = 0, we get [ = D (04 9) + D sin(t)
and thus v] = 9, vh = sin(t), di = —cos(t) sin(t), da = cos(t) 0 + sin(t), v{ = cos(t) sin(¢),
vl = — cos(t) & — sin(¢t). Then, we can define the following four matrices:
1 01 1 0 0
Ei=l010]|, E-= 0 1 0|,
0 01 cos(t) sin(t) —cos(t)d —sin(t) 1
1 0 -1 1 0 0
Es=|01 0 |, Es=| —sin(®) 1 0
0 0 1 —-0+1 0 1
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Hence, the matrix E = E4 E5 Es Ey € E3(D) defined by

1 — cos(t) sin(t) cos(t) O + sin(t) — cos(t) sin(t)
E = sin(t) (cos(t) sin(t) — 1) — cos(t) (sin(t) 0 — cos(t)) sin?(t) cos(t) ,
(cos(t) sin(t) — 1) 0 + 2 cos®(t) —cos(t) (0% +1) cos(t) (sin(t) 0 + 2 cos(t))

satisfies Ev = (1 0 0)7. Finally, we check that B~ € D3*3 ie., E € GL3(D), since:

0  —cos(t)0—sin(t)  cos(t) sin(t)
E~' = sin(t) 1 0
0 cos(t) 0 +sin(t) 1 — cos(t) sin(t)

Theorem 2.5.4 ([111]). If A = k[t] and k is a field of characteristic 0, or A = k{t} and k =R
or C, then every finitely generated projective left D = A(Q)-module M of rank at least 2 is free.

We can use Algorithm 2.5.3 to compute bases of free left A(J)-module M of rank at least 2.

Example 2.5.10. Let us consider the following time-varying linear OD system:

io (1) — ug(t) = 0,
Ealf) — al) (2.83)
%1(t) — sin(t) uy (t) = 0.
We can easily check that (2.83) admits the following injective parametrization:
&1(1)
t) = ,
ul®) = 5 (2.84)

(%) (t) = .%"2 (t) .

This injective parametrization is singular at ¢ = 0 since sin(¢t)~' = t~! +¢/6 + O(t?) and thus
{x1, 22} is a basis of the free E = R{t}[t"!](d)-module L = E'**/(E'*2 R) of rank 2, where R
is the system matrix of (2.83) defined by:

r_[(0@ 0 —1
“\ 9 0 —sint) 0 /°

This result can be checked again by means of the computation of a Jacobson normal form of
the matrix R over the principal left ideal domain E = R{t}[t~1](0) (see, e.g., [25]), namely,

0 00 1
-1 0 0 01 0 1 0 00
o4 | R R = : (2.85)
0 —sin(t) 0 1 0 sin(t)~"0 01 00
1 0 0 0

and by considering the last two columns of third matrix of (2.85).

Let us now study whether or not (2.83) admits a non-singular injective parametrization at
t = 0. To do that, we consider the left D = R{t}(d)-module M = D*4/(D'*2 R) finitely
presented by R. Since R has full row rank, rankp(M) = 2, and R admits the right inverse:

0 cos(t) sin(t)
S = 0 0 e D%,
0 cos(t)d — 2 sin(t)

-1 0
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Therefore, the left D-module M is stably free of rank 2 and thus free by Theorem 2.5.4. Let us
compute a basis of M. Applying Algorithm 2.5.3 to the first column Re; = (0 -0 0 - nr
of the formal adjoint R of R, i.e.,

0 —0

é — _a 0 c D4><2
0 —sin(t) ’
-1 0

we can take a; = 1 and ag = 0 since DO+ D (=9)+ D (-1) =D (0—1)+ D (=0), i.e., vj = —1,
vy = —0 and v = 0, and thus d; = —1, dy =0, d3 = 0, v{ = 1, v§ = 0 and v§ = 0, and we
define the following matrices:

1 0 01 1 0 00 1 0 0 -1 1 0 0 0
01 0 0 01 0 0 01 0 O o1 00
Ey = , By = , B3 = , By =
00 1 0 00 10 001 O 00 10
00 01 1 0 0 1 0 0 0 1 2 0 0 1
Then, we have:

00 0 -1 1 0
B EBE—| YT € E4D), F R= 00

00 1 0 —sin(t)

1 0 0 0 -0

We now apply again Algorithm 2.5.3 to the vector (0 —sin(t) — 9)T. Up to a sign, this
was already done in Example 2.5.9. Therefore, we obtain that the matrix Fo = —F satisfies
F (0 —sin(t) —9)T=(1 0 0)7, where E is defined in Example 2.5.9. Then, the matrix

Go = diag(1, F2) Iy € Eq(D) is such that G, R=(I7 07T and thus RV = (I 0), where the
matrix V = Gy € Ey(D) is defined by:

0 cos(t) sin(t)
Vo 0 —1 + cos(t) sin(t)
B 0 cos(t) 0 — 2 sin(t)
—1 (cos(t) sin(t) — 1) 9 + 2 cos?(t) — 1
—cos(t) sin?(t) cos(t) sin(t) 0 — 1
—sin(t) (cos(t) sin(t) — 1) (cos(t) sin(t) —1)0 —1
—cos(t) sin(t) & — 3 cos?(t) + 1 (cos(t) 0 —2 sm( )0
(sin(t) — cos(t) + cos®(t))  — 3 cos?(t) sin(t) + sin(t) + cos(t) (cos(t) sin(t) — 1) 9? — 2 sin?(t) 0

The matrix @ formed by the last two columns of V' defines an injective parametrization of (2.83),
i.e., kerr(R.) = QF? for all left D-modules F, and T'Q = I, where the matrix 7' € D?** is
deﬁned by V-1 = (RT TT)T where:

0 0 0 -1
V-1l 0 0 —sin(t) 0 c pixd
cos(t) 0 — 2 sin(t) —cos(t) 0+ 2 sin(t) -1

—1 + cos(t) sin(t) — cos(t) sin(t) 0 0
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Finally, the residue classes of the two rows T1, and The of T in the D-module M, namely

{ 21 = (cos(t) & — 2 sin(t)) a1 + (—cos(t) &+ 2 sin(t)) w2 — w1, (2.86)

zo = (=1 + cos(t) sin(t)) 1 — cos(t) sin(t) x2,
defines a basis {z1, 22} of the free left D-module M of rank 2 and:
(.731 T2 Ul UQ)T = Q (2:1 ZQ)T.

Within the language of control theory ([32]), the linear system (2.83) is differentially flat and
it admits the non-singular flat outputs (2.86) and the non-singular injective parametrization
kerr(R.) = Q F>.

The computation of bases of free modules will play an important role in Chapters 4 and 5.

2.6 Applications to multidimensional control theory

We shortly explain recent applications of the constructive algebraic analysis to control theory.
For more results, see [16, 17, 25, 29, 31, 33, 76, 81, 83, 91, 95, 108, 109, 123, 126, 127].

Definition 2.6.1. Let D be a noetherian domain, R € D?*P, F an injective cogenerator left
D-module and kerz(R.) = {n € FP| Rn = 0} the linear system defined by R and F. Then, we
have the following definitions:

1. An observable of kerz(R.) is a left D-linear combination of the system variables n;’s.
An observable ¥(n) is autonomous if it satisfies a non-trivial equation over D, namely,
d(n) =0 for some d € D\ {0}. An observable is said to be free if it is not autonomous.

2. The linear system kerz(R.) is autonomous if every observable of kerz(R.) is autonomous.
3. The linear system kerz(R.) is autonomous-free if every observable of kerz(R.) is free.

4. The linear system kerz(R.) is parametrizable if there exists a matrix @ € DP*™ such that
kerr(R.) = QF™, i.e., for every n € kerz(R.), there exists £ € F" satisfying that n = Q &.
The matrix @ is then called a (potential-like) parametrization of ker z(R.) and & a potential.

5. Let R=(R1 R2) be a partition of the matrix R and
kerr(R.) ={n=(n{ m)" €F’|Rim + Ry12 =0}

the corresponding linear system. Then, n; is said to be observable from n9 if 11 is uniquely
determined by 72 in the sense that ¢ = (¢ nd)7 € kerr(R.) implies that (; = m; or,
equivalently, Ry ({1 —n1) = 0 yields ¢; = m1.

6. The linear system kerz(R.) is flat if it admits an injective parametrization, namely, there
exists a parametrization Q € DP*™ of kerz(R.) which has a left inverse T' € D"*P| i.e.,
T Q = I,. In other words, kerz(R.) is flat if it is parametrizable and every component &;
of the corresponding potential £ is an observable of the system. The potential £ is then
called a flat output of kerz(R.).

The concepts of observables and autonomous or free observables were first introduced in [87].
For the introduction of the concept of parametrizable systems in the literature of mathematical
systems theory, see [32, 87]. Moreover, flat systems were first introduced in [32]. The concept
of observables of a linear system defined in 1 of Definition 2.6.1 and borrowed from quantum
mechanics, must not be confused with the concept of an observable variable defined in 5 of
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Definition 2.6.1. Finally, within the behavioural approach (see, e.g., [84, 81, 83, 95, 123, 126]),
a parametrization of a linear system is called an image representation and a flat system is a
behaviour admitting an observable image representation. In the light of the algebraic analysis
framework, it appears that the terminology developed by different communities should be unified.

We give module-theoretic characterizations of the system properties defined in Definition 2.6.1.

Theorem 2.6.1 ([16]). Let D be a noetherian domain, R € D?P, F an injective cogenerator
left D-module, kerg(R.) = {n € FP|Rn = 0} the linear system defined by R and F and
M = DYP /(D4 R) the left D-module finitely presented by R. Then, we have:

1. The observables of kerz(R.) are in a one-to-one correspondence with the elements of M.

2. The autonomous elements of kerz(R.) are in a one-to-one correspondence with the torsion
elements of M.

3. The linear system kerz(R.) is autonomous iff the left D-module M is torsion.

4. The linear system kerz(R.) is autonomous-free iff the left D-module M is torsion-free.

5. The linear system kerz(R.) is parametrizable iff the left D-module M is torsion-free. Then,
any parametrization Q € DP*™ of M, i.e., M = D'¥P Q, defines a parametrization of the
system kerg(R.).

6. The linear system ker z(R.) is flat iff M is a free left D-module. Then, the bases of M are
in a one-to-one correspondence with the flat outputs of kerr(R.).

7. If R = (R1 Rg) denotes a partition of R, where Ry € DY*P1 and Ry € DY*P2, and
kerg(R.) = {n = (I )T € FP | Rim + Rama = 0} the corresponding system, then,
m is observable from ny iff we have My = DY*P1/(DY*4 Ry) = 0, i.e., iff Ry admits a left
inverse S1 € DP1*4 d.e., S1 Ry = I,.

We recall the concept of controllability for state-space linear OD systems due to Kalman.

Definition 2.6.2 ([46]). Let D = R[J] be the commutative polynomial ring of OD operators,
AeR™ BeR™" R=(0I,—A —B)c D= (+m) and F a D-module. Then, the linear
system kerz(R.) is said to be controllable if the state = of the system can be transferred from
any initial state z(0) = xo to any given terminate state x7 € R™ at any time 7' > 0, i.e., there
exists an input w : [0, 7] — R™ such that z(T") = z7.

In mathematical systems theory, the following results are nowadays very classical.
Proposition 2.6.1 ([45, 46, 84]). Let D = R[] be the commutative ring of OD operators,
AcR™ BeR™" R=(0I,—A — B)eDYmtm and F=C®R,). Then, we have:

1. kerz(R.) is controllable iff rankg(B AB A?B ... A" ! B)=n.

2. kerz(R.) is controllable iff R admits a right inverse S € DP*?, ie., RS = 1,.

Example 2.6.1. Let D = R[9] be the principal ideal domain of OD operators, the matrices
A € R™™ and B € R" ™ the presentation matrix R = (01, — A — B) € D> (tm) and the
finitely presented D-module M = D (+m) /(D1*" R)If x; (resp., u;) is the residue class of the

i™ vector of the standard basis of D*("+™) in M for i =1,...,n (resp., i =n+1,...,m), then
the family of generators {x1,...,Zn, u1,...,uy} of M satisfies the following D-linear relations

n m
8xi:ZAijxj+ZBikuk, i=1,...,n,
j=1 k=1
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ie, = Ax+ Bu, where z = (21 ... 7,)7 and u = (uq ... up)?. If F is a D-module (e.g.,
F = C*(R4)), then we have:

homp (M, F) = kers(R.) = {(z” ") € F"*™ | & = Az + Bu}.

Since D is a principal ideal domain, the D-module M is torsion-free iff M is free (see 1 of
Theorem 2.1.2). Since R has full row rank, using Corollary 2.3.3, the D-module M is torsion-free
1ff N = D"/(RD"™) =0, i.e., iff the adjoint D-module N = D'*"/(D*("+m) R) — 0, where

=(-0I,- AT — BT ¢ D(”+m)xn If we denote by A; the residue class of the jth vector
of the standard basis of D'*" in N then the family of generators {\;},—1, ., satisfies

1 éa)\-f-AT)\:O,
pe = BT A =0.
In the literature of control theory, (2.87) is called the dual system. (2.87) is generally not formally

integrable since (2.87) contains a first order and a zero order ODE, i.e., (2.87) is generally not
a Grobner basis of DY*("+m) R Hence, applying 0 to the zero order equation, we get that

(2.87)

BTOX = 0 and taking into account X = —AT X, we obtain the new zero order equation
BT AT \ = 0. Repeating again the same process and using the Cayley-Hamilton theorem saying
that A™ = > 01 a; A%, for some ;s belonging to R, we obtain the formally integrable system
w1 =0+ AT\ =
Xo BT
(2.87) < X1 BT AT
= )\ = O’
anl BT (AT)n—l

where the elements X;’s are defined by:

{ Xo = pa,
Xi = BT (AT) I (=0 Ly + (=1)" & g, i=1,...,n—1.
Then, (2.87) is reduced to 0, i.e., M is a torsion-free D-module, iff:
rankg(B AB A?’B ... A" !'B)=n. (2.88)

Hence, kerz(R.) is controllable iff the D-module M is torsion-free, i.e., using 4 of Theorem 2.6.1,
iff ker#(R.) is autonomous-free ([31, 87]). The previous result can be interpreted as the observ-
ability test for the dual system (2.87). Now, according to 2 of Corollary 2.3.3, M is a stably free
D-module iff the matrix R admits a right inverse S € D™ j o RS = I,,, or equivalently,
iff 91, — A and B are left-coprime. If the rank condition (2.88) is satisfied, then there exists a
matrix C' = (Cp ... Cp_1) € R™ (™" guch that C(B AB A?B ... A ' B)T = I,. Then,
we have A = Co Xog+ ... +Cp 1 Xp g andif A= (1 -9 0% ... (—9)" 1T, then we get
A= C BT H(AT) A 1 + C A po, where the matrix H is defined by:

0O 0 0 0 00
I, 0 0 0 0 0
L I, 0 0 0 0
VLeR™™ HIL)=| * L I, 0 0 0
2 2 L I, 0 0

=2 =3 =t I, 0
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Moreover, if U = C BT H(AT)A V = CA, then A = U py + V pg, which yields the Bézout
identity U (01, + AT) + V BT = I,,. Applying the involution # of D defined by (2.20) to this
Bézout identity, we get (01, — A) X — BY = I,,, where:

n—2 n—1 n—1
X=-0U)=-) ( > AlleClT) o, Y ==0V)==> clo"
k=0

k=0 \l=k+1

Now, a non-minimal parametrization of kerz(R.) can be obtained by applying the involu-
tion 6 to the compatibility conditions of RA = u (see Algorithm 2.4.1). These compatibility
conditions are obtained by substituting A = U 1 + V pg into RA = p to get:

((8In+AT)U—In (M”AT)V) (m ) -

2.89
BTU BTV -1, 12 (289)

Hence, we obtain the following non-injective parametrization of kerz(R.):

Ve e Flmtm) v\ _(X0O0L-A-I, -XB ¢
’ u Y(©0I,-A)  -YB-1I, )"

Minimal parametrizations of kerz(R.) can be obtained by setting to zero n components of the
potential £&. For instance, considering ¢ = (0 — x7)?, where x € F™, we obtain:

v Fm r o\ X B
x€25 Vw) " \yveer, | ©

Now, if the linear system @ = Ax + Bu is not controllable, then, in control theory ([45,
46, 84]), it is well-known that there exists P € GL,(R) such that the transformation T = Px
defines an equivalent system Z = (P A P~Y)T + (P B) u of the form

{ 1= A1 71 + A1272 + B u, (2.90)

Ty = Ay T,
with the notations A = P A P~! and B = P B ([46]). (2.90) is called the Kalman’s decomposition

of # = Ax + Bu. The dimension of the vector T is | = n —rankg(B AB A?B ... A" 1 B).
Clearly, the invertible transformation Z = P x is only a change of generators of the D-module M

from {x1,...,zp,u1,. .., up} to {T1,...,Tn,u1,...,un}. Hence, (2.90) is only another present-
ation of the D-module M. In (2.90), we can easily see that all the components To;’s of Ty satisfy
det(0 I} — Ago)To; = 0,4 = 1,...,1, i.e., define torsion elements of M, and thus, autonomous

elements of kerz(R.). Finally, using the following integration by parts

)\T(a’c—Aa:—Bu):—xT(}\+ATA)—uT(BT)\)+%()\T1:),

we can easily compute first integrals of motion of ker#(R.). Indeed, if n = (27 u™)T € kerz(R.)
and ) is the general solution of the adjoint system

A AT A =0,
BT\ =0,

which, by assumption, is non-trivial, then ® = Az = Y"1 | \; z; is a first integral, i.e., b =0.
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MNT, 400 = "Nf [T,400[

N T

Figure 2.1: Controllability a la Willems

Definition 2.6.2 was generalized by Willems for general time-invariant OD systems.

Definition 2.6.3 ([84]). Let D = R[J] be the commutative polynomial ring of OD operators,
R € D?*P a full row rank matrix and F a D-module. Then, kerrz(R.) is controllable if for all
T > 0 and for all 7, and 7y € kerr(R.), there exists 1 € kerz(R.) such that:

{ M]=00,0] = Tlp|]-00.,0] (2.91)
[T 40 = 11| [T,+oo[-

According to Definition 2.6.3, a time-invariant linear system kerz(R.) is controllable if it can
switch from any arbitrary pasted trajectory 7, of kerz(R.) to any arbitrary future trajectory n;
in a given time T by means of a third trajectory n of kerz(R.). See Figure 2.1.

Example 2.6.2. Let D = R[J] be the commutative polynomial ring of OD operators, R € D9*P
a full row rank matrix (e.g., R = (R; — R2), where R; € D79 det Ry # 0, Ry € D?*P) and
M = D'*?P/(D'¥4 R) the D-module finitely presented by R. Using 1 of Theorem 2.1.2, M is a
torsion-free D-module iff M is free. According to Corollary 2.5.2, the D-module M is free iff
the matrix R can be embedded in V' € GL,(D), i.e., iff there exist three matrices S € DP*4,
Q € DP*(P=9) and T € DWP~D*P guch that the following two Bézout identities hold

R I, 0 R
(1) a-(5 L) a(2)-s

which are equivalent to the following split exact sequence:

0 — Dxa B pixp @ pixe-o __

If F is a left D-module (e.g., F = C*°(R)), then applying the functor homp( -, F) to the above

split exact sequence, we obtain the following split exact sequence
R o R o P

S. T.
— —

0— F1
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which shows that @ is an injective parametrization of the flat linear OD system kerz(R.), i.e.,
kerr(R.) = QFP=9 and TQ = Ip—q)- The injective parametrization n = Q& of Rnp = 0 is
called the controller form and & = T'n the generalized state of the linear system kerz(R.) (see
[45]). We note that the generalized state & is observable from 7 (see 5 of Definition 2.6.1).

The generalized state & of kerz(R.) can be used to find again Willems’ approach to con-
trollability. Indeed, we can define §, = T'n, and §; = T'ny. Now, if F = C*°(R), then, using
the partition of unity on the compact subset [0,7] of R, we can find £ € F (P=9) gatisfying that
§11=00,00 = &p|]—o00,0] AN &[T 4oo] = & | [T400[- Then, n = Q§ satisfies (2.91), which shows that a
free D-module M defines a controllable linear OD system kerz(R.).

Finally, since D is a principal ideal domain, the full row rank matrix R € D?*P admits
a Smith normal form, namely, there exist two matrices V € GL4(D) and W € GL,(D) such
that V RW = diag(dy,...,d,), where d; € D\ {0} and d;|dij1 for i = 1,...,q. Now, let
M' = DY¥" /(D™4 R') be the D-module finitely presented by the matrix R’ = diag(ay, ..., a,)
and 7’ : D'P — M’ the canonical projection onto M’. We can easily check that the D-
homomorphism f : M — M’ defined by f(7()\)) = 7’ (A W) is an isomorphism (see Chapter 4),
and thus M’ = M. If {e;}i=1,. 4 is the standard basis of D4, then we have:

q q q
M’ = DY/ <@Ddi ei) =@ D/(Dd;) ® DP9 = kerg(R.) = Pkers(d;.) & FP~,
=1 i=1 =1

Hence, if M = M’ is not a free D-module, then one the d;’s is a non-invertible element of D
and defines a torsion element corresponding to the non-trivial cyclic D-module D /(D d;). Then,
kerz(d;.) is clearly non-controllable and so is kerz(R.), which finally proves that a linear OD
system kerz(R.) is controllable iff M is a free D-module, i.e., iff M is a torsion-free D-module.

Proposition 2.6.2 ([31, 87, 91]). Let D = R[J] be the commutative polynomial ring of OD
operators, M = DY*P /(D'*4 R) the D-module finitely presented by a full row rank matriz R and
F = C*®(R). Then, the linear system kerx(R.) is controllable iff the D-module M is torsion-free.

Pillai and Shankar have extended Willems’ definition of controllability and Proposition 2.6.2
to the case of underdetermined linear PD systems with constant coefficients ([83]).

Theorem 2.6.2 ([83]). Let D = R[0,...,0,] be the commutative polynomial ring of PD oper-
ators, R € DT F = C°°(), where ) is an open convex subset of R®, M = D'*P/(D*4 R)
the D-module finitely presented by R. Then, the following two assertions are equivalent:

1. kerz(R.) is controllable in the sense that, for alln; and ny € kerz(R.) and all open subsets
Uy and Us of Q such that their closures Uy and Uy do not intersect (i.e., Uy NUy = 0),
there exists n € kerz(R.) which coincides with 1 on Uy and with ny in Us.

2. The D-module M = DY*P/(D'¥4 R) is torsion-free.

The next theorem, due to Malgrange and Komatsu, shows how closely the algebraic and
analytic properties of linear PD systems with constant coefficients are interlinked.

Theorem 2.6.3 ([51, 71]). Let D = R[d\,...,0,], R € DYP and M = DY*? /(D4 R) be the
D-module finitely by R. Then, the following assertions are equivalent:

1. extl,(M, D) = 0.

2. For all bounded open convex subset Q0 of R™, the restriction D-homomorphism is surjective:

Tq : homp (M, C*(R™)) — homp(M, C=(R" \ ).
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3. For all bounded open convex subset Q0 of R™, the restriction D-homomorphism is surjective:
It : homp (M, D'(R")) — homp (M, D'(R™\ Q)).
According to Theorem 2.1.1, the D-homomorphism I', is equivalent to the D-homomorphism:

YQ - kerCoo(Rn)(R.) — kerCOO(R"\Q) (R)

n = "Nrn\Q-

(2.92)

Example 2.6.3. Let M = D'3/(DR) be the D = R[y, 02, d3]-module finitely presented
by the divergence operator R = (9; d2 03) in R3. The Auslander transposed D-module
N = D/(RD3) = D/(D"3 RT) of M is to the D-module defined by the gradient operator:

B A=0,
B\ =0,
B3\ = 0.

Let Q be a bounded convex open subset of R3. Then, homp (N, C®(R3 \ )) is the D-module
formed by constant functions defined over the small open neighbourhood of R3 \ Q. Then, the
restriction map g defined by (2.92) is clearly surjective. Then, we find again that the D-module
M defining the divergence operator is torsion-free (see Example 2.3.5).

Definition 2.6.4. Using the previous notations, the linear PD system homp(M,C>(R"™))
(resp., homp (M, D'(R™))) is said to be extendable if it satisfies 2 (resp., 3) of Theorem 2.6.3.

We obtain the following corollary of Theorems 2.6.3 and 2.3.1.

Corollary 2.6.1 ([104]). With the previous notations, the following conditions are equivalent:
1. The linear PD system kercoorn)(R.) is controllable.

2. The linear PD system kercoo(Rn)(R) is extendable.
3. The linear PD system kerD/(Rn)(R.) is extendable.
4. M = DY*P /(D4 R) is a torsion-free D-module.

Example 2.6.4. Example 2.6.3 shows that the system formed by the smooth solutions of the
divergence operator in R? is controllable in the sense of 1 of Theorem 2.6.2.

If R has full row rank, then exth(M, D) =2 N = D?/(R DP) is the Auslander transpose of
M = D**?/(D'*4 R). Corollary 2.3.3 shows that M is a stably free, and thus, a free D-module
by the Quillen-Suslin theorem (see 2 of Theorem 2.1.2), iff exth (M, D) = N = 0.

Corollary 2.6.2 ([104]). Let D = R[d4,...,0,] and M = DY*P/(D*9R) be the D-module
finitely presented by a full row rank matriz R € D?*P. Then, the conditions are equivalent:

1. The D-module M is a free D-module.

2. The linear PD system kerceorny(R.) is extendable.

3. The linear PD system kerp/rny(R.) is extendable.

4. The linear PD system kergeogny(R.) is flat.

5. The linear PD system kerp(gny(R.) is flat.
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Corollary 2.6.2 extends the above results obtained for time-invariant linear OD systems.

Let D = A(01,...,0y,) be a ring of PD operators with coefficients in a differential ring A,
R € D?*P a matrix of PD operators of order r, F an injective left D-module and kerz(R.) the
linear PD system defined by R and F. Let us introduce the quadratic Lagrangian function

1
Lin) = 3 L, (2.99)
where n = (1 ... np)T, 0%n, = OF' ... 0% ny, where a = (a1 ... a,)? € N is a multi-index
of length |a| = a1+ ...+ an, 7 = (0%, || =0, . .. ,r)le’._.7p and L a symmetric matrix with
entries in A, i.e., LZ{G = Llﬂ’ffa forall k, 1 =1,...,pand for all o, 3 € N" such that || =0,...,r
and |3] =0,...,r. Let us study the problem of extremizing the following Lagrangian functional

1
I:i/§nszd% n € kerg(R.),
Q

under the differential constraint formed by the linear PD system kerz(R.). The first variation
of the Lagrangian density is

OL ;
D SR R D D L
|a|:0,...,r, k:177p T’k |ﬁ|:0,...,7‘,i:1,...,p
where §(0%ny) denotes the variation of 9“ny. Let us introduce the following PD operator:
B:F — FP

n o= (Siaeo, (Do 7k (2.94)

)k:l,...,p ’

Using the symmetry of L, namely, Lzlﬁ = Lg’ka, we can prove that B = B (196]), where B is the
formal adjoint of B. If A € F? is a Lagrange multiplier, using the following identity

AT Ry =0T RX+ div(®()\, 1)), (2.95)

where @ is a vector of bilinear forms in A, n and their derivatives and div = (0 ... 0y) is the
divergent operator in R™ (see, e.g., [69, 88]), then we get

5/ (L(n) = AT Ry) de = / 6n)” (B — R de + / div(®(\, o)) dz,
Q Q Q
which proves that a necessary condition for the existence of an extremum of the previous vari-

ational problem is By — RA = 0, where 1 € kerz(R.). We obtain the following result.

Proposition 2.6.3 ([96]). If F an injective left D-module, then a necessary condition for the
existence of n € kerz(R.) which extremizes the Lagrangian functional (2.93) is

Rn =0,
- (2.96)
Bn—RA=0,

where X is a Lagrangian multiplier, R the formal adjoint of R and B is defined by (2.94).

Moreover, zf@ € DP*™ 4s a matriz defining the compatibility conditions of the inhomogeneous
linear system R\ = u, i.e., kerp(.R) = D™ Q, then (2.96) is equivalent to

fn=0, 2.97
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where o denotes the composition of differential operators. Finally, we have the following diagram

of exact sequences:
o L

1 B

o & o B om

Example 2.6.5. Let us extremize the following Lagrangian functional

t1 ] Ly 0O x 1
I= - T dt + = z(t)" Sz(t
\ (x w) (0 L2><u> +2£E(1) Sax(ty),

where L (resp., Lo, S) is a positive definite (resp., semi-definite) symmetric real matrix and x
and u satisfy the linear system @ = Ax + Bu and z(ty) = 2o (see Example 2.6.1). We then get:

B . fn+m N ]:ner
T L1 O T Lz
[ g .
U 0 Lo U Low
Using Proposition 2.6.3, the optimal system (2.96) is defined by:

t—Azx—Bu=0, xz(t) = o,
AN ATA+ Lz =0, Mty) = Sz(t), (2.98)
Loyu+ BT XA =0.

For instance, let [ = OT 5 (2(t)? + u(t)?) dt, where z and u satisfy the linear OD system:

(t) +z(t) —u(t) =0, x(0)= xo. (2.99)

Using the integration by parts A (i+z—u) = (—A4+\) z—\ ut+4 (A x), we get R=(-8+1 -1)T.
Moreover, computing the first variation of I, namely,

. /OT(:U(t) Sz (t) + u(t) u(t)) dt = /OT(5x(t) du(t)) ( x(ti ) dt,

u(t

we obtain B = I. Therefore, the optimal system (2.96) is defined by:

z(t) +x(t) —u(t) =0, xz(0) =z,
At) = AMt) +z(t) =0, XT)=0,
A4u=0.

Since R clearly defines an injective operator, the linear OD system (t) + 2(t) — u(t) = 0 is
controllable. For more details, see Example 2.6.1. Hence, substituting A = —u in the previous
optimal system, we obtain that (2.97) is defined by:

{ (t) +z(t) —u 0,
u(t) —u(t) —x 0,
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Example 2.6.6. Let us consider the electromagnetism Lagrangian functional

1 . 1 -
/5 (60 VEI2-L B ||2) dt dzy dwy das,
Ho

where €q is the dielectric constant and pg is the magnetic constant, under the differential con-
straint formed by the first set of Maxwell equations (see Example 2.3.6):

OB o 4 =

— +VAE=0,

ot (2.100)

-

V.B=0.
Varying the Lagrangian functional, we obtain that B is defined by:

]:6 i} ]:6
. 1 5
B -—2B
- — Ho
E e F
Using (2.49), we obtain that the optimal system (2.96) is defined by
0B - = -
- +VAE=0,
o "
V.B =0,
1 - oC o
-——B=—-—— -VG,
o ot
€0 E 6 VAN C

If Q is the compatibility conditions (2.51) of the formal adjoint of the first set of Maxwell
equations (2.100) (see Example 2.3.6), then the PD operator Q o B : F% — F* is defined by
lo = OFE
- — VAB—¢— =17,
(B, E) — o ot
e«V.E=p,

where 7" (resp., p) is the density of current (resp., charge) and corresponds to the second set of
Maxwell equations for the electromagnetism induction D=¢F and H = B/Mo Hence, using
(2.50), we obtain that the optimal system (2.97) is defined by

9B - L

— +VAE=0

8 bl

V.B=0,

1 o (2.101)
~VAB- =0

Mov Cor T

egﬁ.E_::O,

which is the complete set of Maxwell equations in vacuum. Using Algorithms 2.3.1 and 2.3.2, we
can prove that the finitely presented D = Q(eg, 10)[0, 01, D2, 03]-module associated with (2.101)
is torsion and the components of the fields B and E satisfy the following wave equations

1 1
Vi=1,2,3, (26,?—A> E; =0, (263—A> B; =0,
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where A = 82 + 82 + 83 is the Laplacian operator and ¢ = 1/(e su0), i.e., the fields B and E
are space-time waves. A modern formulation of the previous results uses the rewriting of the
Maxwell equations in terms of differential forms (2-forms) on space-time and the Hodge duality.

According to Corollary 2.3.3, if the matrix R has full row rank, then the left D-module
M = DY*P/(D1%4 R) is stably free iff there exists a matrix S € DP*? satisfying R.S = I,. Then,
we have SR = I,, where S is the formal adjoint of S. In this case, pre-multiplying the last
equation of (2.96) by S, we obtain A = (SoB)n

Proposition 2.6.4 ([96]). Let us suppose that the matriv R € D?P has full row rank and
M = D™P? /(D' R) is a stably free left D-module. Then, from (2.96), we obtain X = (SoB)n,

where S € DI*P s g left inverse ofR Hence, the Lagrange multiplier A can be observed from
the system variables n in the sense of 5 of Definition 2.6.1.

Using (2.95) and (2.96), if € kerx(R.), then
n" Bn=n" RA= " Ry —div(®(\, 7)) = —div(®(), ),

and thus we get:

I:/ TBT)d:L‘_—*/dIV (Am)) :—f/q))\n
Q2

Using Example 2.6.1, every controllable time-invariant linear OD system satisfies the hypo-
theses of Proposition 2.6.4. Hence, if n = 1, then we obtain:

I:/T;nTBndtZ (@(A(0),1(0)) = ®(A(T),n(T)))
0

=5 (2((S 0 Bn)(0),7(0) = (S 0 By)(T), n(T)))-

(2.102)

L

Now, let us suppose that the linear system kerz(R.) is parametrizable, i.e., the left D-
module M = D'¥P/(D'¥4 R) is torsion-free. Then, there exists a matrix @ € DP*™ satisfying
that kerr(R.) = QF™. Substituting n = Q¢ into the Lagrangian I, the previous variational
problem becomes a variational problem without differential constraint, which can be solved by
computing the corresponding Euler-Lagrange equations. Let us illustrate this idea.

Example 2.6.7. We consider again Example 2.6.5. Using Algorithm 2.3.1, we can easily check
that the linear OD system (2.99) is parametrizable and an injective parametrization of (2.99) is:

{ £(t) = (1),
(1) +£(6) = u(t).

Substituting the previous parametrization into I, the previous optimization problem is then
equivalent to extremizing the following Lagrangian functional
1 2 : 2
=/ 5 (€@ + (€(t) +&(1)7) dt

under the only algebraic constraint £(0) = xp. We can easily check that we have

5T — /OT(_g(t) +26(1)) S€(t) dt + [(E(t) + £(1)) FE )T,
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and thus, the optimal system is equivalent to the following OD linear system:

Et) —2£(t) =0, £(0) =m0, &(T)+&(T) =0,
£(t) = a(t), (2.103)

E(t) + (1) = u(t).
Integrating (2.103) and eliminating x( between z and u, the optimal controller is defined by:

eY +e v

ew — e—w'

u(t) = (\/§ cothw — 1)_1 z(t), w=+v2(t—-T), cothw=

Finally, using Example 2.6.5, the bilinear form ® is defined by ®(\,n) = Az, which, using
(2.102), yields I = % (A(0) mg — A(T") 2(T")) = 5 A(0) zo because A(T') = 0. Finally, using A = —u
(see Example 2.6.5), the extremum value of the Lagrangian functional is then:

1 -1
I = 3 (\@ cothwy + 1) a:g, wo=V2T.

Corollary 2.6.3 ([96]). With the previous hypotheses and notations, let us suppose that the
linear PD system kerg(R.) is parametrized by a matriz Q € DP*™, i.e., kerg(R.) = QF™.
Then, a necessary condition for the existence of an extremum of the Lagrangian functional

1
I:/inanr dxydxy ... dxry,

where n € kerp(R.) and L is a symmetric matriz with entries in A, is given by

{A§:07 (2.104)
n=Q¢

where A : F™ — F™ is the self-adjoint PD operator defined by A = QoBoQ, ie, A= A.
Finally, we have the following twisted exact diagram:
Q. R.
Fmo =  FPr — Fi
l A | B (2.105)

Foo & o B
Example 2.6.8. Let D = R[J], R € D?*P and F = C*°(R..). Using Proposition 2.6.2, the linear
OD system kerz(R.) is controllable iff the D-module M = D'*?P/(D'*4 R) is a torsion-free. If
so, then there exists a matrix @ € DP*™ satisfying kerz(R.) = Q F™. IfL is a symmetric real
matrix, then Corollary 2.6.3 shows the optimal system which extremizes [, 0T (t) Ln(t)dt is
defined by:

{n:Q&

Ag=(QoLoQ)E=0.

If § = det(A), then 6(9) = det(A(9)T) = det(A(—0)) = 6(—9), and thus the eigenvalues of the
dynamics of A& = 0 are symmetric with respect to the real axis, which leads to the importance
concept of spectral factorization A = DoD in optimal control problems (see, e.g., [52] and the
references therein).

We now show how Corollary 2.6.3 can be applied to the case of the Maxwell equations.
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Example 2.6.9. We consider again Example 2.6.6. In Example 2.4.4, we proved that the first
set of Maxwell equations (2.45) were parametrized by means of the quadri-potential (A, V'):

= _.\: N é . . .
VA4=B, 9B G AE=T0,
oA . . & ot

—5 " VV=E V.B=o.

The PD operator A : F* — F* is obtained by substituting the previous parametrization into
the last two equations of (2.101) and by using the relation VAV A A =V (V.A4A) - AA If
c2 = 1/(eg po), where cq is the speed of light in vacuum, then we obtain:

-
! (1 RN <V.A+1av>> =7

e V2 92 2
. Ho \ cg Ot cs Ot
(AV)— 0 2 0
1 07V 0 (= » 10V
S AV -—— (V. A+ — )| =p.
0 <cg o2 ot ( T2 8t> r
Then, using to Corollary 2.6.3, the optimal system can be rewritten as (2.104), i.e.:
1 9?4 e
- = —AA+V (V. A+ = =0
2 ot? * ( * c? 375) ’
1 9*v 0 (e - 10OV
- AV -— (V. A+ —)=0
2 o ot ( T2 > ! (2.106)
VAA=B,
04 - .
—-———-VV=F.
ot v
In electromagnetism, the previous equations are generally simplified as follows
1 9?4 -
— —AA=0
2 ot? ’
1 0%V
5 72 A V — 0,
2 ot (2.107)
VAA=B,
04 -
—-———-VV=EFE
ot v '
) - - 19V i
by fixing the so-called Lorenz gauge defined by V. A + — i 0. This result shows that each
=0

component of the quadri-potential (ﬁ, V) is a space-time wave. The use of the Lorenz gauge
can be explained by the fact that the quadri-potential (A, V') is not uniquely defined since:

o5 _ < 0A o
a5 =V ~= VvV =0

See Example 2.4.4. Hence, if we consider the new potential (A;,VQ = ([f—l— VEV =6, 5)

instead of (A, V), where ¢ is an arbitrary function of F = C°°(£2) and € is an open convex
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subset of R%, then we can easily check that (2.106) is unchanged but (A, V) is replaced by
(A4, Vy). Moreover, since F is an injective D = Q(eg, po)[0s, 01, 02, 03]-module, there always
exists £ € F satisfying the following inhomogeneous PDE
1 0% = 1 v
ot’

LIS S
ct ot? $=V +cg

so that the new quadri-potential (A;, V. ) satisfies the Lorenz gauge.

Finally, we have the following corollary of Proposition 2.6.3.

Corollary 2.6.4 ([96]). With the previous hypotheses and notations, if the PD operator B
defined by (2.94) is invertible, then the optimal system (2.97) can be rewritten only in terms of
the new variable u = Bn as follows:

RoB YHpu=0,
{ S I (2.108)
Qu=0.
Moreover, the optimal system (2.96) is equivalent to the following linear PD system
CA=0,
~ (2.109)
n=(B"'oR)A,

where the PD operator C : F4 — F1 is defined by C = RoB~'o R:

FP B 1

15 Te

P L ora

Example 2.6.10. We consider again Example 2.6.5 where the matrix Ly is a now supposed to
be positive definite. Hence, the operator B is invertible and B~ is defined by:

(o () (5 2 o
u 2 0 L 2 Ly~ po

According to Corollary 2.6.4, the optimal system (2.98) is equivalent to (2.109), i.e.:

LA+ (AL - LTV AN A+ (ALY AT + BL; ' BT A =0,
z=—L7 (A + AT N),

u=—Ly' BT\,

SLl_1 ()\(t1) + AT A(t1)) + A(t1) = 0,

Ato) + AT X(to) + Ly o = 0.

For instance, if we consider again the second half of Example 2.6.5, where Ly = Lo = 1,
A=-1,B=1,5=0,t =0and t; =T, then (2.109) is defined by:

=0, MNT)=0, XO0)—A0)+zo=0,
t) + A(t),
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The previous results also apply to linear elasticity. Let us consider again Example 2.4.9.

Example 2.6.11. For an isotropic material, the stress-strain relations are defined by

2(1-v) 2v 2v 00
1-2v 1-2v 1-2v
Tz Ca 2v  2(1—v) 2v 00
Ty Ey 1-2v 1-2v 1-2v
o € _
= |l_p |, B=c¢ 2v 2v 2(1-v) 00 o .
Tyz Yyz 1-2v 1-2v 1-2v
Tzx Vzx 0 0 0 1 0 0
Tzy Yy 0 0 0 010
0 0 0 0 01

where v is the Poisson’s ratio and G the modulus of rigidity. The linear operator B is invertible
and its inverse B! is defined by

1 v v
g 8 8 00
v 1 v
N o 8 00
Y Oy v v 1
£, . o, . —E —E E 0 0 0
=B , BT = ,
Tyz Tyz 0 0 0 ~ 0 o0
Yzx Tzx G
Yy Txy 0 0 0 0 é 0
1
0 0 0 0 0 a

where E is Young’s modulus defined by E' = 2G (1 + v). Using the constitutive law B, the
notations and the results of Example 2.4.9 and P = —PT, Q = QT and R = —R”, we obtain
the following twisted exact diagram

Q

0 — kerg(P) —  F3 T o A A I = SN 0
1A l B Tec. 1 D.
0 N F3 L FO ‘Q_ Fo L F3 — ker]:(]??.) «— 0,

where A = PoBoP,C=QoB 'oQ and D = RoCoR = 0. More precisely, if A = 8%4—85—#83,
then the PD operator A is defined by:

o (1-2v)A + 02 Oy Oy Oz 0, U
8, 0. 9, 0. (1-20)A + 82 w

In other words, we have A = -G (A Is + (1_7121/) grad div), where div = (9, 0, 0,)=grad”,
or A= —(uAIzs+ (A+ p)grad div), whenever A and p are the two Lamé constants defined by:
FEv E

AT (7 M T B
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Ifé=(u v w)7 is the displacement and f = (fi fo f3) the density of forces acting on the
continuous medium, then the PD operator A¢ = f is usually called the Lamé-Navier operator.

Let us now explain how the Lamé-Navier equations appear the theory of elasticity. The
equation of equilibrium is defined by Po = f, where 0 = (0, 0y 0. Ty Tu Twy)T. If
there is no density of forces, i.e., f = 0, then according to Proposition 2.6.3 and Corollary 2.6.3,
the extremization of the energy of deformation defined by the following Lagrangian functional
)T

I

1
/ieTBedxdydz, e=(x € €2 VTyz Yoz Vay

under the PD constraint () e = 0 gives the following equivalent linear PD systems:

{ Qe=0, o { @e=0, N { A&=0, (2.111)
Be—Q\=0, (PoB)e=0, e=P¢.

Using Algorithms 2.3.1 and 2.3.2, we can prove that the D = Q(G, v)[0,, 0y, 0;]-module associ-
ated with the PD operator A is torsion and the components u, v and w of the displacement &
satisfy A2u =0, A0 =0 and A?w =0, i.e., u, v and w are three biharmonic functions.

Since the constitution law B is invertible, the second system in the above chain of equivalences
shows that the optimal system (2.111) can be expressed only in terms of the stress tensor
o= (0p Oy O0s Ty: Tax Tay) = Be as follows:

oBHo=0,
(@oB")e (2.112)
Po=0.
In the forthcoming Example 4.4.2, we shall prove that (2.112) is equivalent to:
1 92
A xX 71, N a9 x 4 = )
o +(1+u) 92 (0z+0y+0.)=0
1 &
A0y+m67y2(gx+ay+JZ):O7
1 02
A z 77, .\ a9 Yz z) =Y
J+(1+V)822(0 toy+o:) =0
1 d?
ATy, + —o ——— (0s L) =0,
Ty +(1+1/) ayaz(a +oy+0,)=0
1 0?
Ar. ) =0 (2.113)
k +(1+V)828.CC(U oyt o) ’
1 0*
A x 7T . N a_ Ao x z = )
Ty+(1+l/) 8x8y(a +oy+0,)=0
0oy OTup | OTyy
=0
Ox + 0z + oy ’
oy  O1y. | OTay _0
Oy 0z Oz ’
Jo, 01y, OTuy _0
0z oy Ox )

The first six equations of (2.113) are called the Beltrami-Michell equations and the last three
ones are the equilibrium equations. Using Algorithms 2.3.1 and 2.3.2, we can prove that the
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D-module associated with (2.112) is torsion and each component o; of o satisfies A%20; = 0
for i = 1,...,6. Hence, we have A2¢ = 0 and, since ¢ = Be and B is invertible, we also get
A%¢e =0, i.e., both the strain and stress tensors are biharmonic tensors.

Substituting the parametrization o = Q A of the linear PD system kerz(P.) in (2.112), we
obtain the following linear PD system depending only on the Lagrangian multiplier A:

CA=0,
{ = (B-lod)A (2.114)

See Corollary 2.6.4. Using again Algorithms 2.3.1 and 2.3.2, we can prove that the D-module
associated with the PD operator C is torsion and the components \;’s of A satisfy A2 \; = 0 for
i=1,...,6, i.e., the components of A are also biharmonic functions.

Finally, (2.114) can be simplified by considering a minimal parametrization of the equilibrium
system kerz(P.) such as Maxwell’s or Morera’s parametrization (see Example 2.4.9):

L. If we consider Maxwell’s parametrization (2.62) of (2.61) obtained by selecting the first
three columns of the formal adjoint @) of ) defined in Example 2.4.9, namely,

0 02 o7
0? 0 0?2
~ o2 02 0
Ql = ’
—80,0, 0 0
0 —0,0. 0
0 0  —0,0,

ie.,o= @vl x and y is Maxwell’s stress function, then we obtain the twisted exact diagram

0 — kerg(P.) — F3 N F6 & ad LN F6 —
l A T B-1. T ¢ T Ds.

0 P B Fb Leoom kers(Qp.) «— O,

where C; = QoB to Qvl and D; = 0. Then, (2.112) is equivalent to the following system:
{ Cl X = 0,
e=(B1to 671) X-

2. If we now consider Morera’s parametrization (2.63) of (2.61) obtained by selecting the last
three columns of the formal adjoint @ of ) defined in Example 2.4.9, namely,

~9,0. 0 0

0 -0, 0, 0
N 0 0 9,0,
QQ = 1 )
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ie,o= @vg 1 and v is Morera’s stress function, then we obtain the twisted exact diagram

0 — kerg(P) —  F3 N as Q- F6 RN F6 —.0
LA TB_I. TCQA TDQ.
0 — B LI Fo R £ kerz(Q2.) «— O,

where Cs = Q o B~ 0 Q5 and Dy = 0. Then, (2.112) is equivalent to the following system:

{ CZ’(/]:O?
e=(B"1oQs).

Finally, for more results, details and examples on constructive algebraic analysis and its
applications to mathematical systems theory and mathematical physics, see [105].



Chapter 3

Monge parametrizations and purity
filtration

“La structure d’une chose n’est nullement une chose que nous puissions “inventer”.
Nous pouvons seulement la mettre & jour patiemment, humblement en faire connais-
sance, la “découvrir”. S’il y a inventivité dans ce travail, et s’il nous arrive de faire
ceuvre de forgeron ou d’infatigable batisseur, ce n’est nullement pour “faconner”, ou
pour “batir”, des “structures”. Celles-ci ne nous ont nullement attendus pour étre, et
pour étre exactement ce qu’elles sont ! Mais c¢’est pour exprimer, le plus fidélement
que nous le pouvons, ces choses que nous sommes en train de découvrir et de sonder,
et cette structure réticente a se livrer, que nous essayons a tatons, et par un langage
encore balbutiant peut-étre, & cerner. Ainsi sommes-nous amenés a constamment
“inventer” le langage apte a exprimer de plus en plus finement la structure in-
time de la chose mathématique, et a “construire” a l'aide de ce langage, au fur et a
mesure et de toutes pieces, les “théories” qui sont censées rendre compte de ce qui a
été appréhendé et vu. Il y a la un mouvement de va-et-vient continuel, ininterrompu,
entre ’appréhension des choses, et I’expression de ce qui est appréhendé, par un
langage qui s’affine et se re-crée au fil du travail, sous la constante pression du besoin
immédiat”.

Alexandre Grothendieck, Récoltes et Semailles, Réflexions et témoignage sur un
passé de mathématicien.

3.1 Baer’s extensions and Baer’s isomorphism

In Chapter 2, we showed how to compute ext}) (M, D), whenever M was a finitely presented
left or right D-module. In this section, we study the abelian group exth (M, N), when M and
N are two finitely presented left D-modules. Moreover, we explain Baer’s interpretation of the
elements of ext}j(M ,N) in terms of equivalence classes of short exact sequences of the form

0—N-LE 2 m—0

for a certain equivalence relation. In particular, we explicitly parametrize all the possible left
D-modules E. The results developed in this section will be abundantly used in the next sections.
They are important techniques for the study of mathematical systems theory.

We first introduce the concept of Baer extensions. For more details, see, e.g., [15, 27, 68, 115].

105
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Definition 3.1.1. 1. Let M and N be two left D-modules. An extension of N by M is a
short exact sequence e of left D-modules of the form:

e:0—N-L B2 Mo (3.1)

2. Two extensions of N by M, e; : 0 — N LN E; F M — 0 for i = 1, 2, are said to be
equivalent and denoted by e; ~ ey if there exists a left D-homomorphism ¢ : £y — FE»
such that the following commutative exact diagram holds

0— N N B 2 oM —o

[ Lo |
0— N 2 B 2 oM o,

i.e., such that fo = ¢o f; and g1 = g 0 .
3. We denote by [e] the equivalence class of the extension e for the equivalence relation ~.

The set of all equivalence classes of extensions of N by M is denoted by ep(M, N).

Remark 3.1.1. Applying the snake lemma to the commutative exact diagram defined in 2 of
Definition 3.1.1 (see e.g., [15, 27, 68, 115]), we obtain that the left D-homomorphism ¢ defined
in 2 of Definition 3.1.1 is necessarily an isomorphism. Hence, we can easily check that ~ is an
equivalence relation (see 3 of Definition 3.1.1).

We point out that two extensions of N by M, e;: 0 — N LR E; 25 M —0fori=1,2,
where F1 = FEs are not necessarily equivalent because if ¢ : £ — FEj5 is a left D-isomorphism,
then the conditions fo = ¢ o f; and g1 = g2 © ¢ are not necessarily satisfied.

Let us illustrate Definition 3.1.1 with a simple but important example.

Example 3.1.1. Let us consider an extension e of N by M defining the split short exact
sequence (2.8) where M' = N, M = E and M" = M (see 7 of Definition 2.2.1). Then, we have
the following commutative exact diagram
0— N L E 2 M —0
[ | (k,9) [
0— N % NoM 2 M —o,

with the following notations:
¢:0— N X NoM 2 M —o.

n — (n,0)

(n,m) — m
We obtain that the extensions e and e’ of N by M are equivalent, i.e., [e] = [¢/] € ep(M, N).

Let us introduce the concept of Baer sum of two extensions.

Definition 3.1.2 ([15]). Let ¢; : 0 — N ELN E; 25 M — 0 for i = 1, 2 be two extensions
of N by M and let us define the following two left D-homomorphisms:

—fi®fo: N — FEi®E, (g1,—92) : E1®Ey — M
n — (=fi(n), f2(n)) (a1, a2) +—— gi(a1) — g2(az2).
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Then, the Baer sum of the extensions e; and eo, denoted by ey + es, is defined by the left D-
module E3 = ker(g1, —g2)/im (—f1 @ f2), i.e., by the equivalence class of the following extension

00— N £> Esg 2, M — 0,
n +— w((fi(n), 0)) = @((0, f2(n)))
w((a1, az)) — gi(a1) = g2(a2)

where w : ker(g1, —g2) — FE3 is the canonical projection onto Fs.

We note that E3 is exactly the defect of exactness of the following complex at Ey & Es:

0— N —f1® f2 B & E, (91, —92) M — 0.
The Baer sum can also be defined using the concepts of pullback and pushout ([27, 115]).
The following classical result on extensions can be traced back to Baer’s work [3].

Theorem 3.1.1 ([15, 68, 115]). The set ep(M, N) equipped with the Baer sum forms an abelian
group: the equivalence class of the split short exact sequence (2.8) defines the zero element of
ep(M, N) and the inverse of the equivalence class [e] of (3.1) is defined by the equivalence class
of the following equivalent extensions:

0—N-Lrp 2m—o o—-NLEZL M0

The next theorem is an important result of homological algebra.

Theorem 3.1.2 ([68, 115]). Let M and N be two left D-modules. Then, the abelian groups
exth (M, N) and ep(M, N) are isomorphic, i.e.:

ep(M,N) = exth (M, N).
Similarly for right D-modules.

We note that Theorem 3.1.2 explains the etymology of the name of the bifunctor ext}, (-, -).
Similar interpretations of the ext, (M, N)’s for i > 2 can be found in [124] (see also [27]).
In what follows, we shall assume that D is a noetherian domain.

Let us explicitly characterize the abelian group ext}, (M, N) for two finitely presented left
D-modules M = D'*P /(D4 R) and N = D'*¢/(D'** S). We first consider the beginning of a
finite free resolution of the left D-module M:

D1><'r _EQ_) D1><q _R> DlXP T, M — 0. (32)

Applying the contravariant left exact functor homp(-, N) to the exact sequence (3.2), we get
the following complex of abelian groups (see Section 2.2)

NT £ No B NP homp (M, N) «— 0, (3.3)
where (R;.)(n) = R;n for i = 1,2. In particular, we have:

exth (M, N) = kern(Rs.)/imy(R.).
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We recall that the abelian group exth (M, N) characterizes the obstructions for the existence
of £ € NP satisfying the inhomogeneous linear system RE& = (, where ( is a fixed element of
N4 verifying the compatibility conditions Ro ¢ = 0. Hence, the vanishing of ext},(M, N) implies
that Ry ¢ = 0 is a necessary and sufficient condition for the existence of £ € NP satisfying:

Re=¢(.
Let us explicitly characterize ext})(M , N). If we consider a finite presentation of N
pixt S, plxs 0, N (3.4)
then, taking the direct sum of m copies of (3.4), we obtain the following exact sequence
prxt S, prmxs Mn @0, nm g, (3.5)

where (id,, ® §)(A) = (6(Ate) .. 3(Ame))T for all A € D™*5. We say that (3.5) is obtained by
applying the covariant exact functor D™ ®p - ([15, 68, 115]) to (3.4). This functor is exact since
D™ is a free right D-module (and thus, a flat right D-module) ([57, 115]). Then, combining (3.3)
and (3.5), we get the following commutative diagram of abelian groups with exact columns:

0 0 0
i 7 7
NT (_Ri N4 L NP
Tid, ®4 Tidg®6 Tidp®4 (3.6)
Dr><s & Dq><s i DpXS
T.5 1.5 1.5
rxt Ro. Xt R Xt
D — D1 — DpPxt,

Indeed, for every A € D7*¢, we have

(A1e) 21 (R2)156(Aje) 0 (Z?ﬂ(RQ)U Aj')
Ry(id, ® 6)(A)) = Ry : = : = :
5(Age) Y01 (Ra)ry 3(Aze) 5 (S0 (Ra)rg Aje )
= (id, ® 8)(Ry A),

i.e., we have (Ry.)o(id;®0) = (id,®J)o(Rs.). Similarly, we have (R.)o(id, ®6) = (idg®J)o(R.).
Now, for every I' € D' (Ry.0.5)(T') = Ro (I'S) = RoT'S = (R2T') S = (.S o Ry.)(T"), which
shows that Ry.0.S = .S o Ry.. Similarly, we have R.o.S = .S o R., which proves that (3.6) is a
commutative diagram whose columns are exact.

We can now use the commutative diagram (3.6) to characterize the following abelian groups:

kery(Ry.) = {(id, ® 6)(A) € N9 | A € DT : R, ((id, ® §)(A)) = 0},
imy(R.) = {(id, ® 6)(A) € N9 | A€ D : 3 X € DP**, (id, ® 6)(A) = R ((id, ® §)(X))}.

Since the columns of (3.6) are exact sequences of left D-modules, we get:
Ry((idy ® 0)(A)) = (id, ® §)(R2 A) =0 & 3 Be D™ : RyA=BS.

(idg ® 0)(4) = R((idp ® 6)(X)) = (idg ® §)(RX) & (idy®§)(A—RX)=0
< 3YeD™. A=RB+YS.
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Lemma 3.1.1. With the previous notations, we have:

kery(Re.) = {(id, ® 6)(A) € N?| A€ DI**: 3B € D", Ry A= BS},
imy(R.) = {(id, ®§)(A) e N1 | A€ DT**: 3X € DP** Y € D', A=RX +Y S}
= (RDP** 4 D9t §) /(D?*! S).

If we introduce the following abelian group
Q={Aec D" |3BeD™*: RyA= BS}, (3.7)
then we have the following isomorphism of abelian groups

exth (M, N) & kery(Ry.)/imy(R.) —= Q/(RDP*$ 4 DI*tS),

p((dg ©8)(A)) +— e(A), (38)

where A € Q, p : kery(Ry.) — kery(Ra.)/imy(R.) and € : Q — Q/(R DP*$ + D%t S) are the
respective canonical projections.

The proof of Lemma 3.1.1 is just a straightforward application of the classical third iso-
morphism theorem in module theory (see, e.g., [115]), namely

exth (M, N) = kery(Ry.)/imy(R.) = [Q/ (D7 S)]/[(R DP** + D9t ) /(D7 S)]
> (/(RDP*® + DI*' ),
for all finitely presented left D-modules M = D'*?P/(D*4 R) and N = D'*s/(D*t S).
Remark 3.1.2. If kerp(.R) =0, i.e., Re = 0, then Lemma 3.1.1 yields Q = D7*%.

In [109, 110], we explicitly characterized the isomorphism ep (M, N) = Q/(R DP** + D%t S)
and obtained the next theorem which exhibits a representative of each equivalence class of Baer’s
extensions of N by M in terms of €(A) € Q/(R DP** + D%t S).

Theorem 3.1.3 ([109, 110]). Let M = D'*?/(D'4R) and N = D'**/(D'*! S) be two fi-
nitely presented left D-modules and Ry € D™ 9 satisfying kerp(.R) = D'¥" Ry. Then, every
equivalence class of extensions of N by M 1is defined by the following extension of N by M

e:0—N-E2 Mo, (3.9)

where the left D-module E is defined by

R —-A
Dix(att) “Q, pix+s) ¢, p | 0, Q= ( 0 g ) € Dlatt)x(p+s) (3.10)

A is a certain element of the abelian group Q= {A € D9 |3 B € D™ : Ry A= BS} and

a:N — FE 6:E — M
o(n) = ou(0 L)), o) = 7\, 0)T),
where w : DY — M (resp., § : D'*® — N, o : D*ts) E) is the canonical projection
onto E (resp., N, E).

The equivalence class [e] depends only on the residue class e(A) of A € ) in the abelian group
Q/(RDP*s + D%t §) = v(exth, (M, N)), where v is the Z-isomorphism defined by (5.8).
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Theorem 3.1.3 will be illustrated in what follows. Let us characterize the matrices A € Q
defining the left D-module E defined in Theorem 3.1.3.

Corollary 3.1.1 ([109]). With the notations of Theorem 3.1.3, if we consider an extension of
N = DY /(DY S) by M = D'*P/(D'*9 R) defined by

0—N-“%F-M-—0, (3.11)
and if {f;}j=1,..p is the standard basis of DY*P, y; = w(f;) for all j =1,...,p, z; € F any pre-
image of y; under v, then Z]]?:l R;jz; € imu for alli=1,...,q, and, since u is injective, there
exists a unique n; € N satisfying u(n;) = Z?Zl R;j zj. If we consider any pre-image a; € D'xs
of n; under d, i.e., n; = d(a;) for alli=1,...,q, then the extension (3.11) of N by M belongs
to the same equivalence class of (3.9), where the left D-module E is defined by (3.10) with:

al
A= : € D15,
Qq

Equivalently, we have the following commutative exact diagram

D1><q _R> D1><p SUEN M —0
Lo R |
0o— N S F 4©H M —0,

where the left D-homomorphisms ¢ and ¢ are respectively defined by

:D>P — F ¢:D>4 — N
fi — z, j=1...,p, ei — ni=0(a;),i=1,...,q,

and {e;}i=1,.. q is the standard basis of D'xq,

Remark 3.1.3. With the notations of Corollary 3.1.1, if A € kerp(.R), then using the commut-
ative exact diagram of Corollary 3.1.1, we get u(¢(A\)) = (A R) = ¥ (0) = 0, and thus ¢(\) =0
since u is injective. Therefore, ¢ € homp(D'*9 N) yields a unique ¢ € homp(D'*9 R, N)
defined by ¢(e; R) = n; foralli = 1,...,q. Applying the contravariant exact functor homp( -, N)
to the short exact sequence 0 — D4 R L5 DX T, M — 0 and using exth (D'*?, N) = 0
since D'*P is a projective left D-module (see Propositions 2.1.1 and 2.2.2), Theorem 2.2.1 yields
the following exact sequence of abelian groups:

0 — homp (M, N) — homp(D*P, N) — homp(D**? R, N) = ext}, (M, N) — 0.
Hence, ¢ € homp (D' 4 R, N) defines a unique x'(¢) € ext} (M, N) = ep(M, N) and (3.11).

Let now compute exth (M, N) for a commutative ring D. In this particular case, ext, (M, N)
inherits a D-module structure since kery (Rs.) and imy (R.) are then both D-modules. Moreover,
if D is a noetherian ring, then the D-module exth (M, N) can be characterized by means of
generators and relations. To do that, we first recall the definition of the Kronecker product.

Definition 3.1.3. The Kronecker product of U € D™*™ and V' € D9*P is defined by:

UnV UpV ... UnpV

UnV UxV ... UV

UV 2 (U, V)= e Draoxmp,

UnV UV ... UV
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The next lemma on Kronecker products is classical for a commutative ring D (see [115]).

Lemma 3.1.2. Let D be a commutative ring and U € D***, V € D¢, W € D Then
row(U VW) =row(V) (UT @ W),
with the notation row(V) = (Vie ... Vie) and where Vie denotes the it" row of the matriz V.

If D is a commutative ring, using Lemma 3.1.2, then we have:

{ row(Ry A) = row(Ry AI,) = row(A) (R} ® I,),
row(B S) =row(Il, BS) =row(B) (I, ® S5),

= RpA=BS & (row(A) —row(B)) ( R} ® I )

I, ®S

Moreover, an element A € R DP*% 4+ D%t § can be written as A = RX +Y S where X € DP*$
and Y € D% and, using the Kronecker product, we then get:

row(R X) = row(R X I,) = row(X) (R ® ),
{ row(Y S) =row(l, Y S) =row(Y) (I, ® S),

RT ® I,
Let us denote by:
T T
L = R ®© IS S D(pS‘HIt)XqS P = R2 ®© IS S .D(q s+rt)><7’s‘ (312)
I,®S ’ I, @58

If D is a noetherian ring, then kerp(.P) is a finitely generated D-module, and thus there
exists a matrix (' — U) € D**@5t71) where T € D**5 and U € D"*"*, such that:

kerp(.P) = DY“(T -~ U).
Hence, the D-module Q/(R DP** 4+ D%t S) can be rewritten as the following D-module:
J = (DY) /(DY Pstat) 1), (3.13)

Let us now find a finite presentation of the D-module J defined by (3.13). The inclusion
DWxstal) [, € DT yields the existence of a matrix F' € D®Psta)xu gatisfying [ = FT.
Denoting by V € DV*% a matrix satisfying kerp(.7) = D'*? V', then Proposition 2.3.1 yields:

J ~ Jl — DIXU/ (Dlx((ps+qt)+v) ( ‘F/ )) . (314)

If D = k[z1,...,z,] is a polynomial ring over a computable field k£ (e.g., k = Q or [, for a
prime p), then using Grobner basis techniques, we can explicitly describe the D-module J and
thus the D-module ext}, (M, N) in terms of generators and relations. In particular, using (3.14),
J1 =0, ie., J Zexth(M,N) =0, iff the matrix (F7 VT)T admits a left inverse, which can be
tested by means of Algorithm 2.2.2.

Let us sum up the previous results in the following algorithm.
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Algorithm 3.1.1. — Input: Two matrices R € D?P and S € D' with entries in a
commutative polynomial ring D = k[z1,...,x,]| over computable field k£ and which define

two finitely presented D-modules M = D'*?/(D1X4 R) and N = D'*¢/(D'*t §).
— Output: A matrix X € D(Ps+tat)+v)xu pregenting the following D-module:

J = Dlxu/(Dlx((ps+qt)+v) X) ~ Q/(RDpxs + DXt S).

1. Compute a matrix Ry € D"*4 satisfying kerp(.R) = D'*" Ry.
2. If R has full row rank, i.e., Ry = 0, then return the matrix:

RT ® I,
X:( ®

e DPstat)xgs,
I,®8

Otherwise, compute the matrices L and P defined by:

T T
I = RY ® I, e D(ps+qt)xqs P R2 ® I c D(q s+7"t)><7"5'
I,®8 ’ I, ®S

3. Compute a matrix (I’ — U) such that kerp(.P) = DY*“(T  —U), where T € D"*4%
and U € D",

4. Compute a matrix F € D®sta)x% gych that L = FT.
5. Compute a matrix V € DX satisfying kerp(.T) = D*V V.
6. Return the matrix X = (FT  VT)T,

For an implementation of Algorithm 3.1.1, see homalg ([4]) and OREMORPHISMS ([20]).

Example 3.1.2. Let us consider the commutative polynomial ring D = Q[x1, x2], the matrices

T 0
R = To X1 € D3><2, S = (.1:1 — 1‘2) €D,
0 xI9

and the finitely presented D-module M = D'*2/(DY3 R) and N = D/(x1 — 22) = Q[r1].
Following Algorithm 3.1.1, let us compute the D-module ext}, (M, N). We first obtain that the
matrix Ry = (z3 — x3m2  2?) is such that kerp(.R) = D Ry. Hence, we get p = 2, ¢ = 3,
r=1,s=1,t=1 and the matrices L and P are defined by:

I T2 0 9
T3
0 I xI9
—X1 T2
L=| z1 — a9 0 0 e D53, = ) e D*
T
0 Tr1 — T2 0
1 — X2
0 0 Xr1 — T2

Computing the syzygy D-module of D'*4 P, we obtain kerp(.P) = D4 (T — U), where:

1 1 0 9
T T 0 0

rT=| " 7 eD¥3 U=— € D,
0 -1 -1 1

0 X1 T2 0
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Using Lemma 3.1.1, we have exth (M, N) = Q/(R D? + D?S), where the abelian group 2
is defined by Q = {A € D3 |3 B € D: RyA= BS}. Using (3.13), J = (D4 T)/(D"® L).
Moreover, we have L = F'T and kerp(.T) = DV, where:

0 1 0 0
0 0 0 1
F=| -2, 1 0 0 |eD>, V=@ -1 —az5 —1)eD
0 0 a9 1
0 0 —x1 -1

Using (3.14), if X = (FT  VT)T € D54 then J; = DY*4/(D'6 X) = J. Let {e;}i=1,.. 4 be the
standard basis of D'*# and o : D% — J; the canonical projection. Using Algorithms 2.3.1
and 2.3.2, we can check Jj is a torsion D-module and:

x10(e;) =0, 1=1,3,

xQU(ei):0, ’i:1, 3,

ole]) =0, i=2,4.
Using the D-isomorphism (2.36) defined in Proposition 2.3.1, we finally obtain that the residue
classes of the first and third rows of T" in J generate the torsion D-module J, i.e., the residue
classes ¢((1 1 0)7)and ¢((0 —1 —1)T) generate the D-module Q/(R D? + D3 S) or, in
other words, using (3.8), p((6(1) (1) 6(0))T) and p((5(0) — (1) —8(1))T) generate the
torsion D-module exth (M, N). In particular, we have:

6(1) 6(1)
Ry | 0(1) | = (23 — 21 22)0(1) = 6(2z2 (22 — 21)) = 0, (1) | ¢ imy(R.),
6(0) 5(0)
5(0) 5(0)
Ry | —=6(1) | = (122 —22)6(1) = §(21 (z1 — 22)) = 0, —0(1) | ¢ imn(R.).
—4(1) —4(1)

Contrary to the case of a commutative ring D, exth (M, N) has generally no left or right D-
module structure when D is a noncommutative ring. It is generally only an abelian group and a
k-vector space when D is a k-algebra and k a field (see, e.g., [115]). If M and N are two holonomic
left modules (see the forthcoming Definition 3.3.6) over the ring D = A(d,...,0,) of PD
operators with coefficients in A = k[z1,...,xy], k[z1,...,z,], where k is a field of characteristic
0, R{x1,...,2,} or C{z1,..., 7}, then ext}, (M, N) is a finite-dimensional k-vector space (see
[10, 11]). Hence, a basis of the finite k-vector space exth (M, N) can be computed using, for
instance, the algorithms developed in [80, 121]. Unfortunately, contrary to what happens in the
study of special functions and in combinatorics ([18]), most of the classical linear systems of
PD equations studied in mathematical physics and engineering sciences do not define holonomic
differential modules. In this case, we can only obtain a filtration of €2 by computing the matrices
A € Q formed by PD operators of fixed order and degree/valuation. But, we cannot generally
check whether or not €(Q) is reduced to 0 in /(R DP*¢ + D%t §) = exth (M, N).

Example 3.1.3. Let us consider a noncommutative ring D (e.g., A, (k) or B, (k)), two elements
R and S of D and the finitely presented left D-modules M = D/(D R) and N = D/(D S). Using
Lemma 3.1.1, we get exth(D/(DR),D/(DS)) 2 D/(RD + DS). Hence, ext},(M,N) = 0 iff
there exists X and Y € D satisfying the identity RX +Y S = 1.
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3.2 Monge parametrizations

“Jespere [que ces résultats] pourront contribuer a appeler 'attention de quelques
jeunes mathématiciens sur un sujet difficile et bien peu étudié”, E. Goursat, [36], p. 250.

In Chapter 2, we studied when a linear system kerz(R.) could be parametrized by means
of potentials, namely, by arbitrary functions of all the independent variables. In other words,
we studied the existence of a matrix @ € DP*" such that kerz(R.) = Q F™. When F is a rich
enough functional space (i.e., an injective (cogenerator) left D-module), the obstructions for the
existence of a parametrization of the linear system kerz(R.) are given by the torsion elements
of the left D-module M = D'*?/(D'*4 R) finitely presented by the system matrix R € DI*P,
If M admits non-trivial torsion elements, namely, elements m € M \ {0} satisfying dm = 0 for
a certain d € D \ {0}, then we can wonder if the concept of a potential-like parametrization
can be generalized. In this section, we study the so-called Monge parametrization obtained by
glueing the parametrization of the parametrizable linear subsystem kerz(R’'.) of kerz(R.), where
M /t(M) = D' /(D'4¢ R'), with the integration of the torsion elements, i.e., with the elements
of homp(¢(M), F). This new kind of parametrizations, called Monge parametrizations, allows us
to parametrize kerz(R.) by means of a certain number of potentials but also by a certain number
of arbitrary functions in fewer independent variables (e.g., arbitrary constants). This problem
was first studied by Monge in [75] for nonlinear OD systems (the so-called Monge problem).

“Le probleme de Monge & une variable indépendante dans le sens le plus large,
consiste & intégrer explicitement un systéme de k (k < n — 1) équations de Monge

Fi(x1, 9, ..., xny1;d2ry,dee, ... dxnsy) =0, (1=1,2,...,k)

les I étant des fonctions homogenes par rapport a dxi,dzo, ..., dxy 1.

Par intégration explicite nous entendons celle ou l'on exprime les variables x
par des fonctions déterminées d’un parametre, de n — k fonctions arbitraires de ce
parametre et de leurs dérivées jusqu’a celle d’un certain ordre, pouvant contenir aussi
un nombre fini de constantes arbitraires”, P. Zervos, [125], p. 1.

We first give an application of Theorem 3.1.3 to the parametrization of all the equivalence
classes of extensions of t(M) by M/t(M), when M is a finitely presented left D-module.

Let R € D9*P be a matrix with entries in a noetherian domain D and let us consider the fi-
nitely presented left D-module M = D'*P /(D% R). Computing the left D-module ext}, (N, D),
where N = D7/(R DP) is the Auslander transpose of M, we get a matrix R’ € DY %P gatisfying:

{ t(M) = (D™ R')/(D'*R), (3.15)

M/t(M) = D>? /(D' R)).

See (2.40) and (2.42). We denote by 7 : D'*P — M (resp., #’ : DY*P — M/t(M)) the canon-
ical projection onto M (resp., M /t(M)). Using the following canonical short exact sequence

0 — t(M) - M -2 M/t(M) — 0, (3.16)
we have 7' = p o m, where p is the canonical projection M — M /t(M). See the commutative

exact diagram (2.43). Using Proposition 2.3.1, let us find an explicit finite presentation for the
torsion left D-submodule t(M) of M (see also (2.41)). If R” € D% and R, € D"*? are
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respectively defined by R = R” R’ and kerp(.R') = D" R}, then applying Proposition 2.3.1
to the left D-module ¢(M), we obtain the following left D-isomorphism

x:T 2 DY /(D™ R+ D" R,) — t(M)

S(v) — w(vR), (3.17)

where § : D¢ — T is the canonical projection onto T, i.e., t(M) = T. For more details, see
(2.41). The left D-module t(M) then admits the following finite presentation

17 /' T
DlX(q-H“') ’(R r RQT) D1><q/ xod t(M) —50
where the left D-homomorphism y o ¢ is defined by:

xod:D™ — (M)
v — w(vR).

Hence, we obtain the following straightforward corollary of Theorem 3.1.3.
Corollary 3.2.1 ([109, 110]). With the previous notations, an extension of t(M) by M /t(M)
60— t(M) - E 2 M/t (M) — 0 (3.18)

is defined by the left D-module E = DY w+d) /(DI +a+") Py yhere

R A
Pi=| 0 R’ | e DlFatr)xp+d) (3.19)
0 R,

and A is an element of the abelian group Q defined by:
/ / ! / R//
Q:{AGD‘”‘I\EIBGDTX(“’“):R’QA:B( )} (3.20)
Ry
Moreover, the equivalence classes of the extensions of t(M) by M/t(M) depend only on the

residue classes e(A) of A € Q in the following abelian group

Rl/

Q/ (R’ Dprxd 4 pax(a+r’) ( o
2

)) = v(exth (M /t(M),t(M))), (3.21)

where v is the isomorphism defined by (3.8).
Example 3.2.1. Let M = D'*2/(D'*2 R) be the left D = A3(Q)-module finitely presented by:

R— I 81+1 T2 81 6D2X2_
r1 0o r9 09 +1

Using Algorithm 2.3.1, we obtain that R’ = (1 x2) and Q = (—z2 x1)7 satisfy:
t(M)= (DR)/(D"*R), M/t(M)=D"?/(DR)~D"?Q =Dz + Du,.

Moreover, using Proposition 2.3.1, we get t(M) =T = D/(D0y + D 0s). If I = Dz + D x9,

then the short exact sequence (3.16) yields the short exact sequence 0 — T JoM 2T —o.
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Since the left ideal I of D admits the finite free resolution 0 — D - p1x2 “%, 1 0, then
kerp(.R') =0, i.e., R = 0, and Remark 3.1.2 shows that Q@ = D and (3.8) yields:

2
:D/(D61+D82+a;1D+x2D).

exth(M/t(M),t(M)) = exth,(I,T) = D/ <D1X2 < gl ) + (21 xQ)D2>

Then, exth (M /t(M),t(M)) is reduced to 0 iff 1 € D9y + D 02+ x1 D +x2 D, i.e., iff there exist
di,do,ds,dy € D satisfying dy O +doOs+x1d3+x0ds = l,ie.,1—z1d3—xz9dy € Do +D 82,
which shows that we can always assume that ds, dy € k[x1, 22] and yields 1 — z1 d3 — 2o dy = 0.
This equation is impossible since (0, 0) is a common zero of z; and x2, which proves that
the abelian group extl (M /t(M),t(M)) is not reduced to 0. Finally, since R” = (9, )7,
Corollary 3.2.1 shows that every extension of ¢(M) by M/t(M) can be defined by the short
exact sequence (3.18), where the left D-module E = D'*3/(D'*3 P,) is finitely presented by

r1 X9 —A
Py = 0 0 o ,
0 0 0O

and A € Q = D is any representative of the residue class €¢(A) € D/(D 01+ D 02 +x1 D + 22 D).
In particular, we can always choose A € k[z1, z2].

Example 3.2.2. If we redo Example 3.2.1 with the following new matrix

p_( % 9o e
010, 2

then we obtain R’ = (01 ), Q = (=02 01)T, t(M) = (DR)/(D*?R) = D/(D; + D )
and M/t(M) = D'*2/(DR') = D'*2Q = D8 + D ds, where M = D'¥2/(D'*2 R) is the left
D = A3(Q)-module finitely presented by R. Then, Remark 3.1.2 and (3.8) yield = D and:

2

extp (M/t(M), t(M)) = D/ (Dm ( 9

) +(81 82)D2> :D/(D61—|—D62—|—81D—|—82D).

In this case, we have ext}, (M /t(M),t(M)) = 0 since the following identity holds:
1=01x1—2100€ DO +DIy+01 D+ 0y D.

Then, Theorem 3.1.2 shows that the only equivalence class of extensions of t(M) by M /t(M) is
trivial one, namely, £ = ¢(M )@ M /t(M), i.e., the one defined by (3.18), where the left D-module
E = DY3/(DY3 Ry) is finitely presented by the following block-diagonal matrix:

0 02 O
Py = 0 0 O
0 0 O

Corollary 3.2.1 gives a parametrization of all the equivalence classes of extensions of ¢(M) by
M/t(M). In particular, the left D-module M defines the extension (3.16) of t(M) by M /t(M).
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Hence, there exists a matrix A € Q such that E = D>*®+d) /(DIx(d'+a+") p,y = M. Using
(2.43) and (3.17), we can easily check that the following commutative exact diagram holds

pixd E pue Ty —o0

l¢ I |

1

0— T X M L MM —0,

where ¢ : D¢ — T is defined by ¢(hi) = 0(hy) =m(hp R') for k= 1,...,¢ and {hp}p=1,. ¢
is the standard basis of D'*?". Hence, using Corollary 3.1.1, we can take A = Iy in (3.19).

Theorem 3.2.1 ([109, 110]). Let R € D¥?, R' € DY*P R" € DY and R, € D" *7 be
four matrices satisfying M = D™P/(D'¥4R), M/t(M) = D>*?/(D"*Y R), R = R"R' and
kerp(.R') = D™ R,. Moreover, let E = D@+d) /(D> +a+1") Py be the left D-module
finitely presented by the matriz P defined by

R, _Iq/
p— 0 R" c D(Q’+Q+T’/)><(P+‘I')’ (3.22)
0 R,

and o : DY*0t4) — E (resp., m: DY*P — M) the canonical projection onto E (resp., M ).
1. IfU=(I, 0)¢€ DP*W+d) then we have the following left D-isomorphism

M — E =DWwtd) /(DX +atr) py
T(A) — e(AU),

ie., M= E.
2. The following two extensions of t(M) by M/t(M) defined by

0 — t(M) — M 25 M/H M) — 0, 0 — t(M) - E 2% M/t(M) — 0,

belong to the same equivalence class in the abelian group ep(M/t(M),t(M)).
3. For every left D-module F, kerz(R.) = homp(M,F) = homp(E,F) = kerg(P.), i.e.

R(—0=0,
Rnp=0 < R"6 =0, (3.23)
RL6 =0,

and we have the following invertible transformations:

v :kerg(P.) — kerg(R.) v~ 1ikerg(R) — kerr(P.)

()= ()= G-(2)

We point out that the presentation matrix P of the left D-module E is block-triangular.

Theorem 3.2.1 can be used to parametrize the linear system kerz(R.). Indeed, (3.23) shows
that the linear system kerz(R.) can be integrated in cascade: we first integrate the linear system

{ R"6 =0,

3.24
Ry6 =0, (3.24)
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and then solve the inhomogeneous linear system R'7n = . Hence, 1 is the sum of a particular
solution n* € FP of R'n = 6 and of the general solution of the homogenous linear system R’ n = 0.
Since the torsion-free left D-module M/t(M) = D'*? /(D% R'), 1 of Corollary 2.3.2 shows that
M/t(M) admits a parametrization, i.e., there exists Q € DP*™ such that M/t(M) = D*P Q.
If F is an injective left D-module, then 1 of Corollary 2.4.1 proves that kerz(R'.) = Q F™, i.e.,
every element 1 € kerz(R'.) has the form n = Q ¢ for a certain £ € F. Therefore, the elements
of kerz(R.) can be parametrized as follows:

VEeF™, n=n"+Q%¢ (3.25)

The parametrization (3.25) is called a Monge parametrization of the linear system kerz(R.).

If we consider an injective left D-module F and apply the exact functor homp( -, F) to the
commutative exact diagram (2.43), then we get the following commutative exact diagram

0
T
homp (t(M), F)

T
Fa PELCI o kerz(R.) «—0

TR”' || T

, RIZ' ’ R’. /

Froo2 F4 — FP — kel"]:(R.) — 0,

7

0

where homp (t(M), F) = homp (T, F) = kerr((R"" RY)T.) and kers(R'.) = Q F™. Hence, the
above remark can be found again by an easy chase in the previous commutative exact diagram.

Algorithm 3.2.1. — Input: A matrix R € D?*P over a noetherian domain D for which
Buchberger’s algorithm terminates for admissible term orders and F a left D-module.
— Output: A non-empty affine subset of elements of kerz(R.).

1. Applying Algorithm 2.3.1 to the left D-module M = D'*P/(D'*4 R), compute two matrices
R’ € DY*P and Q € DP*™ such that:

M/t(M) — Dlxp/(Dlxq/ R/>, kerD(.Q) _ Dlxq/ n

2. Factorize R by R’ to get a matrix R’ € D79 satisfying R = R" R/.
3. Compute a matrix R € D' %4 satisfying kerp(.R') = D'*"’ R),.
4. Find the F-solutions of the linear system (3.24), i.e.:

R0 =0,
R, = 0.

If F is a cogenerator left D-module, then a solution of the previous system always exists.

5. Find a particular solution n* € FP of the linear inhomogeneous system R'7n = 6, where 0
is a general solution of (3.24). If F is an injective left D-module, then such a particular
solution n* always exists.

6. For all £ € F™, the element n = n* + Q & belongs to kerz(R.).
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Example 3.2.3. We consider the linear PD system v (ﬁ V) = 0 appearing in mathematical
physics, where V = (0; 92 03)T (see Example 2.2.3), namely:

o1 (81 v1 + O U9 + O3 ’1)3) =0,
O (81 v1 + O vg + O3 1)3) =0, (3.26)
03 (81 v1 + O vg + O3 123) =0.

For instance, in acoustic, the speed @ satisfies the PD linear system d; v//c? — v (6 .¥) = 0, where
¢ denotes the speed of sound ([55]). Hence, if we want to compute the stationary solutions, then
we have to solve the linear PD system V (V. %) = 0.

Let us parametrize all the 7 = C°°(R?)-solutions of (3.26). Let D = Q[0y, 2, 03] be the
ring of PD operators with rational constant coefficients and M = D'*3/(D1*3 R) the D-module
finitely presented by the presentation matrix R € D3*3 of (3.26). Using Algorithm 2.3.1 and
(2.40), we obtain that the matrices R = (8, 9o 03) € D3 and R” = (01 0 03)T € D?
satisfy M/t(M) = DY3/(D R'), kerp(.R') = 0 and t(M) = (D R)/(DY3 R) = D/(D*3 R").
Then, Theorem 3.2.1 shows that kerz(R.) = kerz(P.), where P is defined by (3.22), i.e.:

Orv1 +0Gova +03v3 —0 =0,

910 =0,
920 =0,
930 = 0.

Then, 6 is a constant C' € R and we have to parametrize all the F = C®(R3)-solutions of the
inhomogeneous linear PD system V.v = C. We can easily check that a particular solution
of this inhomogeneous system is 7* = (Cx; 0 0)7. A more symmetric particular solution

is 7% = % (r1 a9 w3)T. Since the smooth solutions of the divergence operator in R? are

parametrized by the curl operator (see Example 2.4.3), all F-solutions of (3.26) are of the form:
10z + 008 — 0383
VOCER, VEECF?, G=0"+VAE=| 1Caa+036 -1
3Cx3— &1+ 016
Example 3.2.4. Let us consider a model of the motion of a fluid in a one-dimensional tank
studied in [82] and defined by the following system of OD time-delay equations
yl(t) — yg(t — 2h) + Oéyg(t - h) = 0,
yi(t —2h) — go(t) + ags(t — h) =0,

where h is a positive real number. Let D = Q(«)[0, ] be the commutative polynomial ring of
OD time-delay operators with rational constant coefficients (i.e., dy(t) = y(t), 0 y(t) = y(t—h)),

R:< o -0 ay5>€DM3

(3.27)

082 -0 «ad?*s

the presentation matrix of (3.27) and the D-module M = D'*3/(D'*2 R) finitely presented by
R. Using Algorithm 2.3.1 and (2.40), we obtain that the following matrices

—add

11 0 o 0
e — 5 " _
i <o-4—$(ma>’Q ;fy A <aﬂ a)
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(DY2 R /(D2 R) = D'2/(D'2R"). Let us find a Monge parametrization of kerrz(R.),

satisfy M/t(M) = D3 /(D2 R'), kerp(.Q) = D3 R’ R= R" R, kerp(R'.) = 0 and t(M)
where F is an injective D-module. In order to do that, we first need to compute kerz(R".), i.e.,

(c1 —c2)
2h

O2(t) = —(t) + 1 —

t
-~

{ 01(t) + Oy

t) =0,
01(t — 2h) + 6y(t) = 0, (c1 — )

2
2h
where ¢; and ¢y are two arbitrary real constants and 1 is an arbitrary 2 h-periodic of F.

Then, we have to solve the inhomogeneous system R’'7n = 6, namely:

(c1 —ca)
2h

—y2(t) —y2(t —2h) + ays(t —h) = =¢(t) + 1 —

yi(t) +y2(t) = ¥(t) + t

(c1 — ¢) (3.28)

t.
2h

We can easily check that a particular solution of (3.28) is defined by:

y1(t) = % (Wt) I (012—h02) . (c1 202))
ya(t) = % <¢(t) I (012—hc2) p_ (c1 —25— (:2)>7
y3(t) = 0.

Finally, using kerz(R'.) = Q F, (3.25) shows that every element of kerz(R.) has the form

y1(t) = = (P(t) + C1t + Ca) — a&(t — h),

N~ N

ya(t) = = (P(t) + C1t — Ca) + a&(t — h),
y3(t) = &(t) +&(t —2h),

where C and Cs are two arbitrary real constants, ¢ an arbitrary 2 h-periodic function of F and
¢ an arbitrary function of 7. We find again a parametrization of (3.27) obtained in [82].

Let us explain how the search for a particular solution * of the inhomogeneous linear system
R’ 1 = 0 can be simplified in certain cases by means of a “method of variation of constants”.

Theorem 3.2.1 and Corollary 3.2.1 show that £ = D'*@+¢) /(D1*(@'+a+7") P,y = M where
the matrix P4 is defined by (3.19) for all matrices A € € belonging to the same equivalence

class as €(I,,,/) in the abelian group €/ (R’ Drxd 4 DI'xa R 4 DIxr’ R’2), i.e., for all matrices
A=1y - R'X —YR”—ZLIQ,

where X € DP*4 | Y € D?*1 and Z € DY*" are arbitrarily matrices. Taking A = 0, the
block-diagonal form of Py shows that the left D-module F finitely presented by the matrix P
defines the trivial extension of t(M) by M /t(M), i.e., FF = t(M)®M/t(M). Hence, the canonical
short exact sequence (3.16) splits iff €(I,,/) = €(0), i.e., iff there exist three matrices X € DP*?',
Y € D?*9 and Z € D9*" satisfying R* X + Y R’ + Z Ry = I .
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Proposition 3.2.1 ([106, 109, 110]). Let R € D?*?, R’ € DY*P and R, € D"*¢ be three
matrices such that M = DYP /(D4 R), M /t(M) = D*?/(D**9 R') andkerp(.R') = D" R),.
Then, the canonical short exact sequence
0 — t(M) - M -5 M/t(M) — 0 (3.29)
splits, i.e., M = t(M)@®M /t(M), iff there exist X € DP* Y € DI*9 and Z € DT*"" satisfying
RX+YR'+ZR,=1,. (3.30)
or equivalently, if there exist two matrices X € DP*? and Y € DY satisfying:
R -RXR =YR. (3.31)
Then, the following left D-homomorphism

o:M/t(M) — M
m(A) — w(A (L, - X R)),

where 7w : DYP — M and ©' : DYP — M /t(M) are respectively the projections onto M and
M/t(M)), is a right inverse of the canonical projection p : M — M /t(M) onto M/t(M), i.e.:

poo =idysan-

Let us explain why (3.30) is equivalent to (3.31). Post-multiplying (3.30) by R’ and using
the relations R = R” R’ and R R’ = 0, we get (3.31). Conversely, using R = R” R, (3.31) yields
(Iy —R'X~-YR')R =0, ie, D7 (I, — R"X — Y R") C kerp(.R'") = D" R}, and thus
there exists Z € D?*"" such that I, — R' X — Y R = Z R}, i.e., we get (3.30).

Remark 3.2.1. If D is a commutative polynomial ring, using Kronecker products, then we get:

R/T ® Iq/
(3.30) & row(ly) = (row(X) row(Y) row(Z)) | Iy®R"
Iy ® R

Then, the existence of the matrices X, Y and Z satisfying (3.30) is reduced to checking whether
or not row(/y) belongs to the D-module generated by the rows of the last matrix. If so, then
the computation of the normal form of row(/,) with respect to a Grébner basis of the matrix
defined in the above equation gives matrices X, Y and Z satisfying (3.30).

If M =t(M)® M/t(M), then we can use (3.30) to obtain a particular solution n* € FP of
the inhomogeneous linear system R'n = 6. Indeed, post-multiplying (3.30) by 0, we get

0=R (X0)+Y (R'0)+Z(R,0) =R (X0),

since § € F9 satisfies (3.24). Therefore, n* = X 6 is a particular solution of R'n = # and thus
every n € kerz(R.) has the form
n=X0+Q¢,

for all £ € F™ and 0 satisfying (3.24). Hence, the elements of the linear system kerz(R.) are
parametrized by those of the linear system (3.24) and arbitrary elements £ of F™.
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Corollary 3.2.2 ([106]). Let M = DYP/(DY*9 R) be a finitely presented left D-module and let
us suppose that the canonical short ezact sequence (3.29) splits, where M /t(M) = D*?/(D'*4 R).
Moreover, let F be an injective left D-module. Then, every element n of kerz(R.) has the form

n=X0+QE¢,

where 0 € F9 is a solution of (3.24), & an arbitrary element of F™ and the matriz X € ppxd
(resp., Q € DP*™) satisfies (3.30) (resp., kerp(.Q) = DY*P R’ ).

Example 3.2.5. Let us consider the another model of the motion of a fluid in a one-dimensional

tank studied in [26] and defined by the following system of OD time-delay equations

{ yi(t = 2h) +ya(t) — 29s(t — h) =0, (3.32)

y1(t) +y2(t = 2h) = 293(t — h) =0,

where h is a positive real number. Let D = Q[0, 0] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., dy(t) = y(t), dy(t) = y(t — h)),

2 1 —206
R:< L _285>€D2X3, (3.33)

and the D-module M = D*3/(D1*2 R). Using Algorithm 2.3.1, we obtain that the matrices

260

) 1 -1 0 " 6% 1
R = ) , Q=] 260 |, R'= :
0 1+6* —206 - 11

satisfy M/t(M) = DY3 /(D2 R'), kerp(.Q) = D3 R', R=R" R/, kerp(R'.) = 0 and t(M) =
(D2 R /(D2 R) = D™2/(D'2R"). Let us find a Monge parametrization of kerz(R.),
where F is an injective D-module. In order to do that, we first need to compute kerz(R".), i.e.,

(5291—1—92 =0, O = —01,
01 +65=0, 5291—91:0,

which shows that 6 is a 2 h-periodic function of . Then, we have to find a particular solution
n* € F3 satisfying R'n = 6. Using Remark 3.2.1, we can check that the following matrices

Y 1[0 0
X=-|-10 Y = .
2 A 2(1 1)

satisfy (3.31). Then, Corollary 3.2.2 shows that (3.32) is parametrized by

yi(t) = 5 01(t) + 2£(t — h),
ya(t) = =5 01(t) + 2£(t — h),
y3(t) =&(t) +&(t —2h),

where & (resp., 61) is an arbitrary function (resp., 2 h-periodic function) of F (see also [26]).
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If M/t(M) is a projective left D-module, then Proposition 2.2.5 proves that the canonical
short exact sequence (3.29) splits. We note that combining Proposition 2.2.2 and Theorem 3.1.2,
we get ep(M/t(M),t(M)) = exth,(M/t(M),t(M)) = 0, which proves again that (3.29) is a split
short exact sequence. Moreover, Proposition 2.3.2 proves that the presentation matrix R’ of the
left D-module M/t(M) = D*?/(D'*¢ R') admits a generalized inverse, namely, there exists
a matrix X € DP*? satisfying R’ X R’ = R'. Hence, if M/t(M) is a projective left D-module,
then (3.31) holds with Y = 0, and the hypothesis of Corollary 3.2.2 is fulfilled.

Corollary 3.2.3. Let M = D'*P/(D'9 R) be a left D-module such that the torsion-free left
D-module M/t(M) = DY /(DY R is projective and X € DP*9 q generalized inverse of the
matriz R'. If F is an injective left D-module, then every element n of kerz(R.) has the form

n=X0+Q¢, (3.34)

where 0 € FU is a solution of (3.24) and & an arbitrary element of F™.

Example 3.2.6. Let us consider the commutative polynomial algebra D = Q|9, §] of OD time-
delay operators (i.e., dy(t) = y(t), d y(t) = y(t — h), where h € R} ) and the following matrix

R_ 0 —06 -1 ¢ p2x3
206 —0(1+4%) 0 ’
which describes the torsion of a flexible rod with a force applied on one end studied in [77]:
y1(t) — g2t — h) — ys(t) =0,
291t = h) = ga(t) — g2t — 2h) = 0.

Using Algorithm 2.3.1, we can prove that the D-module M = D'*3/(D'*2? R) admits non-trivial
torsion elements and t(M) = (D**3 R')/(D**2 R) and M /t(M) = D*3 /(D3 R'), where:

(3.35)

—25 1462 0
R=| -0 95 1 |eD>3
96 -9 &

Moreover, we have R = R” R' and kerp(.R’) = D R, where

0 -1 0
R//:<0 _5 1>’ Ré:(a —5 1)’

and the matrix Q = (1+42 26 (1-—6?) a)T is such that kerp(.Q) = D@3 R'. Moreover,
using Algorithm 2.3.3, we can check that R’ admits a generalized inverse X defined by

. 5§ 00
X:5 2 0 0 | eD¥3,
—96 2 0

which shows that the D-module M /t(M) is projective by 2 of Proposition 2.3.2. Now, (3.24) is
the following linear OD time-delay system:

—0y =0, 060, =0, 0 =c€eR,

—66y + 03 =0, =2 0, =0, =4 0, =0,

001 —66s+05=0, 03 =0, A3 = 0.
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Then, Corollary 3.2.3 shows that (3.35) admits the following Monge parametrization

yi(t) = 3c+£(t) +£(t—2h),
Ya(t) = ¢+ 26(t —h),

ys(t) = &(t) —&(t —2h),

where ¢ is an arbitrary constant and £ an arbitrary function of F.

If D = A(9), where A = k[t] or k[t] and k is a field of characteristic 0 or A = k{t}
and k = R or C, then Example 2.2.13 shows that gld(D) = 1, i.e.,, D is a hereditary ring.
Thus, Theorem 2.3.1 proves that the torsion-free left D-module M /t(M) = D'*?/(D'*¢ R') is
projective, and thus Corollary 3.2.3 holds for all finitely presented left D-modules M.

Now, if the matrix R’ € D?*? in Corollary 3.2.3 has full row rank and the left D-module
M/t(M) = D"*P /(D' R') is free, then Corollary 2.5.2 shows that there exists U € GL,(D)
such that R'U = (I, 0). If we write U = (X @), where X € DP*? and Q € DP*(P=9) then
(3.34) becomes n = U (0T ¢1)T (see also (2.68)). Using 1 of Theorem 2.1.2, this result holds
when D = K[0] and K is a differential field such as a field k, k(t), k[t][t '] or k{t}[t~!], where
kE =R or C, since the torsion-free left D-module M /t(M) is then free.

In this section, we proved that a Monge parametrization of the linear system kerz(R.) could
be obtained by glueing the parametrization of its parametrizable linear subsystem kerz(R’.) with
the elements of homp(t(M),F) (which are the obstructions for kerz(R.) to admit a potential-
like parametrization). This result, based on the system equivalence (3.23), generalizes 1 of
Corollary 2.4.1. In Section 3.4, we shall show that Theorem 3.2.1 and (3.23) are just the
first steps to more precise characterizations of M and kerxz(R.) based on the concept of purity
filtration of the left D-module M ([10, 11]). In particular, we shall give an equivalent block-
triangular form of the linear system (3.24) which is more suitable for its closed-form integration
(if it exits) (see 4 of Algorithm 3.2.1) and for the study of the structural properties of (3.24).

Finally, let us shortly explain one application of the Monge parametrization to the study
of variational problems and optimal control problems. Substituting a Monge parametrization
n*+ Q& of kerr(R.) in (2.96) instead of a potential-like parametrization n = @ £ as it was done
in Corollary 2.6.3, we then obtain the following generalization of Corollary 2.6.3.

Theorem 3.2.2 ([107]). Let D = A(01,...,0n) be a ring of PD operators with coefficients in a
differential ring A, R € DY*P a matriz of PD operators of order r, F an injective left D-module
and kerr(R.) a linear PD system. Let us consider a Monge parametrization of kerr(R.):

VEeFE, n=n"+Q¢L

Then, a necessary condition for the existence of an extremum of the Lagrangian functional

1
I= /infLm dz, 1 € kerz(R.),

where L is a symmetric matriz with entries in A, is defined by

" n=n"+Q¢,
reen {Af+<c§08>n*=o, (330

where A= QoBoQ is defined as in Corollary 2.6.3.
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Example 3.2.7. Let us consider the following quadratic optimal problem

T
= /O % (@2(0) + 22(8) + u2(0)) dt, (3.37)

under the differential constraint defined by the state-space linear OD system:
i1 =x9+u, do=ux1+u, x1(0)=2 12(0) =29 (3.38)

Let us choose F = C*°(R;). We can easily check that (3.38) is not controllable but stabil-
izable (namely, for every autonomous element 7 of kerz(R.), we have lim; .1 7(t) = 0). By
Corollary 3.2.2, the F-solutions of (3.38) are parametrized by:

m(t) = (29 — 23) ™" +£(1),
veeF, { () =€), (3.39)
u(t) = —(2f — ) e~ + £() — £(1).

If we substitute (3.39) into (3.37), then we obtain a variational problem without differential
constraint and the corresponding Euler-Lagrange equations yield:

E(t) = 3&(t) = (2 —af) e, &(T) —&(T) = (af —af)e™ ™, £(0) = a3, (3.40)
(3.40) corresponds to (3.36). The explicit integration of (3.40) yields:
1 e 2V3T (e7t — e\/?:t) + (2 - \@) (e7t — e*“/gt) eV3(=2T) 4 (2 - ﬁ) e~ V3t 0

t) = —= i — 29) +
5() 9 6_2\/§T—i—2—\/§ (1 2) 6_2\/§T—i—2—\/§
Hence, if we substitute the previous expression of £ into (3.39), then we obtain
x1(t z9 — 29 29 — 29
D) py (L) wm=m [ T, ). (3.41)
z2(1) Ty xy

where P = (P;j);,j=1,2 and Q = (Q1;)j=1,2 are defined by:

6_2\/§T(6\/§t+6_) +(2 f)e\/gtJre b
(6 2\[T_|_2_\/§
b, = TS e + (2 - V3)
2(e2V3T +2— /3
P19 = Poo = P11 + Py,
o = WA DEID i1

Eliminating the initial conditions #{ — 3 and xJ from (3.41), we obtain the optimal controller

o=k (20,

where K = (K11 Ki2) = Q P! is defined by:
Qll B (\/g_ 1) (e‘/g(FQT) B e*\/§t>
Py 2(eV3(t-2T) 4 (2 — \/3) e V31)

Finally, if T is taken to be +o00, then we only need the condition that (3.38) is stabilizable and
not controllable as it is required within the behavioural approach to optimal control problems.

P =

)

e -3t _ t)

Y

(
)
(
3)

K1 =Ko =
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3.3 Characteristic variety and dimensions

“Le savant n’étudie pas la nature parce que cela est utile ; il I’étudie parce qu’il y
prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas belle,
elle ne vaudrait pas la peine d’étre connue, la vie ne vaudrait pas la peine d’étre
vécue.”

Henri Poincaré, Science et Méthodes, Philosophia Scientize, Cahier Spécial 3,
1998-1999, Editions KIME, p. 22.

In this section, we introduce a few classical results of algebraic analysis on the dimension
of the characteristic variety of a left D-module M and on the dimension of the left D-modules
ext’, (ext’, (M, D), D)’s ([10, 11, 13, 47, 69]). These results will be used in the next section
to develop the purity filtration of a finitely presented left D-module M = D'*P/(D'*4 R),
which will allow us to generalize the results obtained in the previous section on the Monge
parametrization of the linear PD system kerr(R.).

In what follows, we shall assume that A is either a field k, k[z1,..., 2], k(x1,...,2,) or
k[z1,...,x,], where k is a field of characteristic 0, or k{z1,...,x,}, where k = R or C.

An element P € D = A(01,...,0,) is uniquely defined by P = 37, — ,aa 0% where
o € A, @ = (a1,...,a,)7 €N |a| = a1 + ...+ a, and 9% = 9" ...9%. Then, we can
introduce the order filtration of D, namely, D, = {ZOSIa\Sr aq 0% | aq € A} for all » € N, with
the convention that D_; = 0. Then, we can check that the following filtration conditions hold:

1.Vr,seN,r<s = D, C Ds.

2. D =U,enDr.

3.Vr,seN, D.Ds C D, .

The ring D is then called a filtered ring and an element of D, is said to have a degree less or
equal to r. We can easily check that Dy = A and D, is a finitely generated A-module.

If dy,dy € D, then we can define the bracket of di and dy by [di,d2] = dyde — dad;.
Now, if di € D, and dg € Dy, then dj de and dsd; belong to D, since D, Dy C D,4¢ and
Dg D, C D,4s. Moreover, we can check that [dy,ds] € Dyjs-1, i.e., [Dy, D] € Dypis—1.

Let us now introduce the following A-module:

gr(D) = P Dr/Dy—1.

reN

If 7, : D, — D,/D,_4 is the canonical projection for all » € N, then the A-module gr(D)
inherits a ring structure defined by:

7. (dy) + 7s(do) = mi(dy + do) € Dy/Dy_1, t = max(r, s),
Wr(dl) 7Ts(d2) £ 7Tr+s(d1 d2) € Dr+s/Dr+sfl-

gr(D) is called the graded ring associated with the order filtration of D. If we now introduce

leeDr, vd2€DS7 {

Vi=1,...,n, Xi:ﬂl(ai)EDl/Do,

then 7([0;,0;]) = 0 and m1([0;,a]) = 0 for all @ € A and all 4,5 = 1,...,n since [9;,0;] = 0
and [0;,a] € Dy, which shows that gr(D) = A[x1,...,Xn] is the commutative polynomial ring
in x1,-..,Xxn with coefficients in the commutative noetherian ring A.

We can now generalize the concepts of filtered and graded rings to modules.
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Definition 3.3.1 ([10, 13, 69]). Let M be a finitely generated left D = A(d, ..., dy)-module.

1. A filtration of M is a sequence {M},en of A-submodules of M (with the convention that
M_; = 0) such that:

(a) For all ¢, r € N, ¢ < r implies that M, C M,.
(b) M = quN M.
(c) For all ¢, » € N, we have D, My C My,
The left D-module M is then called a filtered module
2. The associated graded gr(D)-module gr(M) is defined by:

(a) gr(M) = @qu Mq/qul-

(b) For every d € D, and every m € M,, we set 7,(d) o4(m) £ 04r(dm) € Myir/Myyr—1,
where o, : My — M, /M, is the canonical projection for all ¢ € N.

3. A filtration { M, },en is called a good filtration if it satisfies one of the equivalent conditions:

(a) M, is a finitely generated A-module for all ¢ € N and there exists p € N such that
D, M, = My, for all r € N.

(b) gr(M) = D,eny My/My-1 is a finitely generated gr(D) = A[x1,. .., X»]-module.

Example 3.3.1. Let M be a finitely generated left D-module defined by a family of generators
{y1,...,yp}. Then, the filtration M, = 3P, D, y; is a good filtration of M since we then have
gr(M) =>""_, gr(D) y;, which proves that gr(M) is a finitely generated left gr(D)-module.

If M is a finitely generated left D = A(0y, ..., dy)-module, then gr(M) is a finitely generated
module over the commutative polynomial ring gr(D) = Alxi,...,xn). Hence, we are back to
the realm of commutative algebra. Based on techniques of algebraic geometry and commutative
algebra, we can then characterize invariants of gr(M) (e.g., dimension, multiplicity) which are
important invariants of the differential module M.

Let us recall the concept of prime ideals of a commutative ring.

Definition 3.3.2. A prime ideal of a commutative ring A is an ideal p C A which satisfies that
ab € p implies a € p or b € p. The set of all the proper prime ideals of A is denoted by spec(A)
and is a topological space endowed with the Zariski topology defined by the Zariski-closed sets
V(I)={p € spec(A) | I C p}, where I is an ideal of A.

Example 3.3.2. If (a1,...,a,) € C", then the finitely generated ideal m = (x —ay, ..., 2z, —ay)
of the ring D = Clxy,...,x,] is a maximal ideal of D, namely, m is not contained in any proper
ideal of D different from m. A maximal ideal m is a prime ideal. Indeed, if we have x ¢ m and
xy € m, then, since m is maximal, we get Ax +m = A, and thus, there exist a € A and b e m
such that az +b = 1. Then, we have y = a (zy) + (yb) € m, which proves that m is prime. For
instance, the twisted cubic is defined by the prime ideal p = (zo — 2%, 23 — 2%) of C[z1, 9, 73).

We now introduce the important concept of a characteristic variety of a differential module.

Proposition 3.3.1 ([10, 13, 69]). Let M be a finitely generated left D = A(0, ..., d,)-module
and G = gr(M) the associated graded gr(D) = A[x1, .. ., Xn]J-module for a good filtration of M.
Then, the characteristic ideal I(M) of M is the ideal of ring gr(D) = Alxi,. .., xx»] defined by:

I(M) = y/ann(G) £ {a € gr(D)|3In € N: a" G = 0}.
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The characteristic ideal I(M) does not depend on the good filtration of M. The characteristic
variety of M is then the subset of spec(gr(D)) defined by:

charp(M) =V (I(M)) = {p € spec(gr(D)) | y/ann(G) C p} .

According to Example 3.3.1, every finitely generated left D = A{dy,...,0,)-module M
admits a good filtration and thus a characteristic variety. The dimension of the left D-module
M can then be defined as the geometric dimension of the characteristic variety charp(M) of M.

Definition 3.3.3 ([10, 13, 69]). Let M be a finitely generated left D = A(d,...,d,)-module.
Then, the dimension of M is the supremum of the lengths of the chains pg C p1 Cp2 C ... C pyg
of distinct proper prime ideals in the commutative ring gr(D)/I(M) = A[x1,...,Xxn)/I(M). If
M =0, then we set dimp (M) = —1.

For simplicity reasons, we shall write dim(D) instead of dimp (D).

Example 3.3.3 ([10, 13]). We have dim(k[z1,...,2,]) = n and dim(B,(k)) = n. Now, if
A = klzy,...,zy], k[z1,...,2,], where k is a field of characteristic 0, or k{z1,...,x,}, where
k=R or C, then we have dim(A(0,...,0,)) =2n.

Example 3.3.4. Let us consider the following linear PD system:

{ @1:(84—33382—1)3/:0,

3.42
Py = (03 —2401)y = 0. (3.42)

We can check that (3.42) is not formally integrable ([85, 87]) since
(84 — 21309 — 1)(132 + (:E4a1 —83)@1 = (82 —81)3/ =0

is a new non-trivial first order PD equation which does not appear in (3.42). Adding this new
equation to (3.42), then we can check that the new linear PD system defined by

(04 —2302 — 1)y =0,
(83 — T4 81) Yy = 0, (3.43)
(02 —01)y =0,

is formally integrable and involutive ([85, 87]). Therefore, using the Cartan-Kéahler-Janet’s
theorem (see [85, 87]), we can obtain a formal power series (analytic) solution of (3.43) in a
neighbourhood of a = (a1, as, a3, as) € R* which satisfies an appropriate set of initial conditions.

Using (3.43), the characteristic variety of the left D = A4(C)-module M = D/(D'*2? R)
finitely presented by the matrix R = (04 — 2392 —1 03 — x401)7 is defined by the ideal

I(M) = (x4 — 3 X2, X3 — 4 X1, X2 — X1)

of the commutative polynomial ring gr(D) = C|x1, z2, 23, T4, X1, X2, X3, X4]. The characteristic
variety charp(M) of M is then the affine algebraic variety of C® defined by the ideal I(M) of
gr(D). We can easily check that we have:

charp(M) = {(z1, z2, 3, T4, X1, X1, Ta X1, 23 X1) | X1, 2 € C, i =1,...,4}.
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Therefore, the Krull dimension of charp(M) is 5, i.e., dimp(M) = 5. If instead of D = A4(C),
we use the second Weyl algebra B4(C), then the characteristic variety of M becomes

charp (M) = {(x1, x1,za X1, 23 X1) | x1 € C},

which proves that charp (M) is a 1-dimensional family of algebraic varieties parametrized by the
point (z1,x2,x3,24), i.e., dimp(M) = 1. Finally, we point out that we must transform (3.42)
into the involutive system (3.43) (i.e., a Grobner basis) to study the characteristic variety of M.

Let us introduce the important concept of the grade of a finitely generated left D-module.

Definition 3.3.4 ([10, 11]). The grade of a non-zero finitely generated left D-module M is:
jp(M) =min {i > 0 | ext},(M, D) # 0}.
If M # 0, then using Proposition 2.2.8, ext?{l(M, D) =0 for all i > gld(D), which yields:
0 <jp(M) <gld(D). (3.44)
Theorem 3.3.1 ([10, 13]). Let M be a finitely generated left D = A(0,...,0n)-module. Then:
jp(M) = dim(D) — dimp(M). (3.45)
A similar result holds for finitely generated right D-modules.

Remark 3.3.1. A ring D satisfying jp(M) = dim(D) — dimp (M) for all finitely generated
left D-modules M and a dimension function dimp(-) is called a Cohen-Macaulay ring. Hence,
the previous rings of PD operators are Cohen-Macaulay. Moreover, they are also Auslander
reqular rings, namely, noetherian rings with a finite global dimension which satisfy the Auslander
condition, namely, for every i € N, every finitely generated left (resp., right) D-module M and
every left (resp., right) D-module N C ext, (M, D), then jp(N) > i ([10, 11, 13]).

If M = DY*P/(D'4R) is a left D-module finitely presented by a full row rank matrix R,
then Theorem 3.3.1 can be used to check the module properties of M. If N = D?/(RDP) =
exth, (M, D) is the Auslander transpose right D-module of M, then a right module analogue of
Theorem 2.1.1 implies homp (N, D) = kerp(.R) = 0. Then, jp(/N) > 1 and Theorem 3.3.1 yields
dimp(M) < dim(D) — 1. The computation of dimp (M) then gives jp(M), i.e., the smallest
i > 1 such that ext®, (N, D) # 0. Using Theorem 2.3.1, we obtain the following interesting result.

Corollary 3.3.1 ([92]). Let M = D**?/(D'*4 R) be a left D-module finitely presented by a full
row rank matriz R, i.e., kerp(.R) =0, and N = D?/(R DP) its Auslander transpose. Then:

1. t(M) #0 iff jp(N) =1, i.e., iff dimp(N) = dim(D) — 1.

2. M is torsion-free iff jp(N) > 2, i.e., iff dimp(N) < dim(D) — 2.

3. M is reflexive iff jp(N) > 3 i.e., iff dimp(NN) < dim(D) — 3.

4. M is projective (stably free) iff N =0, i.e., iff dimp(N) = —1.

4 of Corollary 3.3.1 was already proved in Corollary 2.3.3. Corollary 3.3.1 shows that we
only need to compute dimp (V) to check whether or not a left D-module M finitely presented
by a full row rank matrix R admits torsion elements or is torsion-free, reflexive or projective.
Hence, if M is finitely presented by a full row rank matrix R, then we only need to determine the
dimension of the left D-module N = D'*/(D'*? R) by means of a Grobner basis computation
to check the module properties of the left D-module M = D'*?/(D'*4 R).
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Example 3.3.5. If we consider again the D = Q[d;, 92, 93]-module M = D'*3/(D R) finitely
presented by the divergence operator R = (91 02 03) in R3, then the Auslander transpose
N = D/(RD?) = D/(D"3RT) of M is finitely presented by the gradient operator. Since
charp(M) = {(0,0,0)}, then dimp(N) = 0 and jp(IN) = 3 — 0 = 3. Therefore, we get
extl,(N,D) = 0 for i = 0,1,2 and ext}(N,D) # 0. Using Theorem 2.3.1, we find again
that M is a reflexive but not a projective D-module.

In the theory of linear PD systems, the following definitions are generally used.

Definition 3.3.5. Let M be a finitely generated left D = A{(dy, ..., 0y )-module.
1. M is said to be determined if ext),(M, D) = 0 and exth(M, D) # 0.
2. M is said to be overdetermined if ext’,(M, D) = 0 for i = 0, 1.
3. M is said to be underdetermined if ext% (M, D) # 0.

These definitions can be easily explained by means of Theorem 3.3.1: if M is determined,
then jp(M) = 1, and thus dimp (M) = dim(D) — 1. Moreover, if M is overdetermined, then
jp(M) > 2, which yields dimp(M) < dim(D) — 2. Finally, if M is underdetermined, then
jp(M) =0, and thus dimp(M) = dim(D).

If M # 0, then (3.44) and (3.45) yield dimp (M) > dim(D) — gld(D).

Example 3.3.6. Using Examples 2.2.13 and 3.3.3, if M is a non-zero left D = A(0y,...,0y),
then dimp (M) > n when A = klz1,...,xy], k[z1,...,2,], where k is a field of characteristic 0,
or k{z1,...,zn}, where k = R or C. Moreover, dimp (M) > 0 whenever A =k or k(z1,...,Zn),
where k is a field of characteristic 0.

Definition 3.3.6 ([10, 13, 69]). Let A = k[z1,...,zy), k[z1,...,2,], where k is a field of
characteristic 0, or k{x1,...,x,}, where k = R or C, and M a non-zero finitely generated left
D = A(04,...,0,)-module. If dimp(M) = n then M is called a holonomic left D-module.

Example 3.3.7. The time-varying OD equation defined by ¢t¢y — y = 0 defines the holonomic
left D = A1(C)-module M = D/D (t0 — 1). Indeed, the characteristic variety charp(M) of
M is defined by the characteristic ideal I(M) = (tx) of the commutative polynomial ring
gr(D) = CJt, x], which implies that charp(M) = {(¢,0)|t € C} U {(0, x)|x € C} is a 1-
dimensional affine algebraic variety of C2, i.e., dimp (M) = 1.

Example 3.3.8. If D = A(0), where A = k[t] or k[[t] and k is a field of characteristic 0, or k{t}
and k = R or C, then one can prove that a left (resp., right) D-module M is holonomic iff M is
a torsion left (resp., right) D-module. For more details, see [10, 11, 13, 47, 69].

Proposition 3.3.2 ([10]). Any holonomic left D = A(0,...,0n)-module M is cyclic, i.e., M
can be generated by one element as a left D-module. More precisely, if {y;}j=1,.p is a set of
generators of the holonomic left D-module M, then there exist da,...,d, € D such that M is
generated by z = y1 +daya + - - + dp yp. Similar results hold for holonomic right D-modules.

Let us state two difficult but important results of algebraic analysis.

Proposition 3.3.3 ([10, 11, 13]). Let M be a finitely generated left D = A(0, ..., 0p)-module.
1. dimp(ext’, (M, D)) < dim(D) — i.
2. dimp (ext’?™) (M, D)) = dim(D) — jp(M).
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Theorem 3.3.2 ([10, 11, 13]). Let M be a finitely generated left D = A0, ..., 0n)-module.
1. ext%(extiD(M,D),D) =0 for j <i.
2. If extl, (ext’, (M, D), D) is non-zero, then dimp (extt,(extl, (M, D), D)) = dim(D) — i.
3. jp(extip™ (M, D)) = jp(M),

In particular, 3 of Theorem 3.3.2 asserts that the first non-zero ext’, (M, D)’s of a left D-
module M, i.e., ext}} (M) (M, D), satisfies the following conditions:

extd (ext’?M (M, D), D) =0, j=0,....5p(M)—1,
ext? M (exti M) (A1, D), D) # 0.

Let us introduce the concept of a pure module which will play an important role in Section 3.4.

Definition 3.3.7. A finitely generated left D-module M is said to be pure or jp(M)-pure if
Jp(N) = jp(M) for all non-zero left D-submodules N of M.

Remark 3.3.2. If M is a pure left D-module, then the cyclic left D-module D m = D /annp (M)
generated by m € M \ {0} satisfies jp(Dm) = jp(M). Moreover, if N is a left D-submodule of
a jp(M)-pure left D-module M, then N is also a jp(M)-pure left D-module since every left D-
submodule of N is a left D-submodule of M and jp(N) = jp(M). Finally, if M is a jp(M )-pure
left D-module, then using (3.45), every left D-submodule of M has dimension dim(D) — jp(M).

Theorem 3.3.3 ([10, 11]). If M is a non-zero finitely generated left D-module, then we have:
1. The left D-module ext®,(ext’, (M, D), D) is pure with jp(ext’,(extl, (M, D), D)) = i.
2. M is pure iff ext’,(extl,(M, D), D) = 0 for i # jp(M).
3. M is pure iff M is a left D-submodule of extg’(M) (ext‘g’(M)(M,D), D).

Example 3.3.9. Using 3 of Theorem 3.3.3, M is O-pure iff M is a left D-submodule of the left
D-module homp(homp(M, D), D). Using 3 of Theorem 2.3.1, we obtain that M is O-pure iff
M is a torsion-free left D-module. In particular, the left D-module M /t(M) is either zero or a
0-pure left D-module.

Example 3.3.10. If the left D-module M = D'*?/(D'*P R) is finitely presented by a full row
rank square matrix R € DP*P and R ¢ GL,(D), i.e., M # 0, then M is a torsion left D-
module, i.e., M = t(M). Since N = DP/(R DP) = ext},(M, D), then using 1 of Theorem 2.3.1,
M = t(M) = ext}(exth, (M, D), D) # 0. By Theorems 3.3.1 and 3.3.2, we get

dimp (M) = dimp(exth(exth (M, D), D)) = dim(D) — 1,

and M is a l-pure left D-module. This result was first conjectured by Janet in 1921 (“Etant
donné un systéme linéaire comprenant autant d’équations que de fonctions inconnues ; si ces
équations sont supposées indépendantes, peut-on affirmer que la solution, ou bien est entiérement
déterminée, ou bien dépend de fonctions arbitraires de n—1 variables 7”) and proved by Johnson
in 1978 ([44]). For more details, see [44, 92, 100]. See also [100] for a generalization of this result.
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3.4 Purity filtration of differential modules

“Les mathématiciens “appliqués” considérent parfois leurs collegues “purs” comme
des artistes élaborant des constructions théoriques sans doute jolies pour ceux qui
les comprennent, mais totalement inutiles. Et méme chez les mathématiciens dits
“purs” cette dichotomie se perpétue. Les analystes sont persuadés que l'intégrale de
Lebesgue, c’est du concret, et laissent le maniement des diagrammes aux fanatiques
de P'algebre homologique. D’ailleurs Siegel disait en parlant de Grothendieck que ce
n’est pas en répétant “Om Om” que I'on démontrera des théorémes sérieux (jeu de
mots entre le “Om” tantrique et le “Hom” des algébristes).” !

P. Schapira, Défense du conceptuel, Le Monde, 26/04/96.

Based on the concept of purity filtration of the left D-module M = D'*?/(D'*4 R) ([10, 11]),
the purpose of this section is to generalize Theorem 3.2.1. We show that every linear PD system
in n independent variables is equivalent to a linear PD system defined by an upper block-
triangular matrix P of PD operators: each diagonal block of P is respectively formed by the
elements of the left D-module M of dim(D) — j, for j = 0,...,n. The linear PD system Rn =0
can then be integrated in cascade by successively solving (inhomogeneous) linear i-dimensional
PD linear systems to get a Monge parametrization of its solution space kerz(R.).

The existence of the purity filtration of the left D-module M is proved by means of spectral
sequences, i.e., by means of powerful but rather involved homological algebra techniques (see,
e.g., [10, 11, 88]). The spectral sequences computing the purity filtration of differential modules
have recently been implemented in the GAP4 package homalg by Barakat ([5]), which is an
important “tour de force” for symbolic computation. However, in this section, we shall show
how the purity filtration of the left D-module M can be explicitly characterized and computed
by simply generalizing the idea developed in Section 2.3 (particularly the characterization of
t(M) in terms exth (N, D) (see 1 of Theorem 2.3.1)) ([102, 103]). The corresponding results are
implemented in the PURITYFILTRATION package ([102]). Finally, the techniques developed here
can be used to compute the closed-form solutions (if they exist) of linear PD systems which
cannot be solved by means of the classical computer algebra systems such as Maple ([102]).

In this section, we shall detail the main results concerning the purity filtration since they
illustrate the different techniques and results developed in the previous sections and in Chapter 2.

Let D be a noetherian domain and M a left D-module defined by the following beginning of
a finite free resolution:

0 M < plxpo fr plxpr Fo pixps M3 plxps
Then, the defects of exactness of the following complex of right D-modules

0 — pro B ppr B2 pp B3 pyps (3.46)

1. “Applied” mathematicians often regard their “pure” colleagues as artists (cut-rate dancers) spinning the-
oretical constructs which are no doubt pleasing to those who understand them but are totally useless. And
among these so called “pure” mathematicians much the same dichotomy reappears. Analysts are sure that the
(Lebesgue) integral is concrete, and leave diagram-chasing to fanatics of (homological) algebra. Think of Siegel (a
very great mathematician) saying of Grothendieck (an even greater mathematician, in my opinion) that one can’t
prove serious theorems by repeating “Om, Om.” (A pun between the tantric “Om” and the algebraist’s “Hom.”),
P. Schapira, Defense of the Conceptual, Mathematical Intelligencer, 19 (1997), 7-8.
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are defined by:

ext? (M, D) = kerp(R3.) /(R DPY),
extp, (M, D) = kerp(Rz.)/(Ry D¥0.), (3.47)
ext), (M, D) = kerp(Ry.).

To characterize the exth, (M, D)’s for all 0 < i < 2, we need to study kerp(R;.). For
1 < k < 3, considering the beginning of a finite free resolution of kerp(Ry.), we obtain the
following long exact sequence of right D-modules

R—1)k-

pr—vr Bok ppor Bk ppye Fake DP-1k Brke ppre fkk, Nie — 0, (3.48)
with, for a fixed k from 1 to 3, the notations Ryx = Rg, pkk = Pk» P(k—1)k = Pk—1 and:
N = cokerD(Rkk.) = DPkk/(Rkk Dp(k_l)k).

The choice of these notations is natural if we consider the 3 long exact sequences (3.48) for all
k =1,2,3 on the same page, where (3.48) is written at the level k, i.e.:

pr-1z fos . ppey B ppy B ppay Haae o ppgy ka3, N33 — 0,
Roa. Rio. Rao.

Dp-12 02, ppoa M2, ppla 22 ppss 52,0 N, ()
Rox. Ri1.

pr-1n L ppo ML oppun B AL 0.

Then, the free right D-module DPi* is at position (j,k) and Rjj arrives at DPit with j < k,
which is a good mnemonic device.

Since (3.46) is a complex, we get Ryx R(p_1)(k—1) = Bk Rx—1 = 0 for all k = 2,3, and thus:
Rg—1y(j—1) DP*=20=D C kerp(Rpx.) = Ry DPE-2*.
Therefore, for k = 1,2, 3, there exists a matrix Fi,_g) € DP(=2)kXP(-2)(k=1) guch that:
Ri—1)(k—1) = R—1)k Flre—2)k- (3.49)

Then, using (3.49), we get Riu_1)k Flr—2)k Bk—2)(k—1) = Be—1)(h—1) Bk—2)(k—1) = 0, i.e.,
Vk=23, Fu_ok Ru—2ypk—1)DP*3¢1 Ckerp(Rp_1)k-) = R(p_a) DPE-9*,

and thus, there exists a matrix Fij,_3), € DP(k=3)k*P(k=3)(k=1) such that:

Re—2)k Flr—3)k- (3.50)

Similarly, for k = 3, there exists F'_13 € DP-13*P-12 gych that:

Foz Roo = Roz F_13.

Fle—ok Rr—2)(k-1)

Therefore, we obtain the following commutative diagram of right D-modules

DP-13 Ros.| DPo3 ELEIN P13 Ras. P23 Rss. Dpss K83, N33 — 0
T Fqs. T Fos. T Fus. H
Dp-12 Roz-, DPo2 Pz, P12 B2 Py K22, Nog —> 0
T Fo1a. T Foa. H
DPp-11 Eoi‘_, Dpo1 Eﬁ_, P11 RA2E N Ny — 0
1 |
0 — DPoo ﬂ0—> N[)() I O,

(3.51)
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whose horizontal sequences are exact and where:
Roo =0, Noo=DP®/0= DYPO pog=po1, pi2 =pi1, pas =P (3.52)
If we denote by Nj; the right D-module defined by
Njj, = cokerp(Rji.) = DPi* /(Rjj, DPG-DF),

then, using (3.51), we obtain the following commutative diagram

DP-13 Ros. | DPo3 REEIN P13 f13, Nis — 0
T F_1s. T Fos. T Fis.

Dp-12 Foz . ppoo Bz ppie 20 Ny —— 0 (3.53)
T F_12. T Foz. |

DPp-11 Bor-, Dpo1 Bu. p11 o, Nii — 0,

whose horizontal sequences are exact. Moreover, we have the following short exact sequences:

0 — Ni3 — DP? — Nag — 0,

0 — Nog — DP33 — N33 — 0, (3.54)
0 — Nig — DP?2 — Nyp — 0, '

0—>N01 — DP11 %NH — 0.
Now, using (3.47), we obtain the following characterization of right D-modules ext’, (M, D)’s:

ext?, (M, D) = kerp(Rss.) /imp(Raz.) = (Rag DP'3)/(Rg DP'2),
exth, (M, D) 2 kerp(Ras.)/imp(Ry1.) = (Ri2 DP0?)/(Ryy DPO1), (3.55)
extd, (M, D) 2 kerp(Ri1.) /imp(Roo.) = Roy DP-11.

Then, using (3.52), (3.55) yields the following three short exact sequences of right D-modules:

0 —> ext? (M, D) —> Nay = DP2 /(Rgy DP12) — Nyg = DP2 /(Ry3 DP13) — 0,
0— extlD(M, D) — Nll = Dp12/(R11 me) — ng = Dp12/(R12 Dpog) — 0, (356)
0— ex‘cOD(M7 D) — Ngg = DPo0 — Ny; = DPO /(Rgy DPO1) — 0.

Applying the contravariant exact functor homp( -, D) to the three short exact sequences of
(3.56) and using Theorem 2.2.1, we obtain the following long exact sequences of left D-modules:

0 — exth(Nog, D) — exth(Nog, D) — extd(ext} (M, D), D)
1
<, exth(Naz, D) — exth(Nag, D) — extl(ext} (M, D), D)
5—z> ext? (Nag, D) — ext}(Nag, D) —  ext? (extd (M, D), D)
BN ext3D(N23, D) — ext?’D (N9g, D) —

0 — exth(Nig,D) — exth(Nyy, D) — exth(exth(M, D), D)
= exth(Nig, D) — exth (N1, D) — exth(extl (M, D), D)
U—> eXt2D(N12, D) — ext%(NH, D) —_—
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0 — exth(Noi, D) —  exth(Nog, D) — exth(extd (M, D), D)
1
T—> ext}D(Nm, D) — ethD(Nog, D)
If D is an Auslander regular ring (see Remark 3.3.1), then we have ext%(exti) (M,D),D)=0
for all 0 < ¢ < j. In particular, we have:

exth(exth(M, D), D) =0, ext(ext?(M,D),D) =0, exth(exth(M,D),D)=0.

Moreover, exth(Nog, D) is reduced to 0 since Nog = DP® is a free, and thus a projective right
D-module (see Proposition 2.2.2). Therefore, the above three long exact sequences yield the
following exact sequences of left D-modules:
0 — ext}y (N3, D) — exth(Na, D) — ext%(exth(M, D), D),
0 — exth(Ni2,D) — exth(Ni1,D) — exth(exth(M, D), D),
0 — exth(Noi,D) — exth(Noo, D) — ext)(exth(M,D),D) — exth(Noi, D) — 0.
(3.57)
Applying Proposition 2.2.3 to the short exact sequences of (3.54), we obtain:
ext3D(N33, D) = eXtQD(Ngg, D) = extlD(ng, l))7
eXtQD(NQQ, D) = extb(ng, D),
EXtQD(Nll, D) = ext}j(Nm, D)
Since N1; = DP11 /(Ry1 DPo1) is the Auslander transpose of M = D*Po1 /(D1XP11 Ry1) 1 of The-
(

orem 2.3.1 yields (M) = ext}, (N1, D). Moreover, a right D-module analogue of Theorem 2.1.1
gives ext®,(No1, D) = kerp(.Rp1) and (2.42) implies M/t(M) = D*Po0 /kerp(.Rp1).

Therefore, (3.57) yields the following two exact sequences of left D-modules:

0 — exth(Nsz, D) 22 ext? (N, D) 2 ext? (ext?(M,D),D) —  cokernygs — 0,

0 — ext?(Nog, D) 2% t(M) 2L exth(exth (M, D), D) — coker 11 — 0,
0 — exth(No;, D) 2% Dlxpoo 29, ext® (exth (M, D), D) — ext?(Ny,D) — 0.

Combining the above long exact sequences with (2.26), i.e.,
0 — t(M) — M = exth (exth (M, D), D) — ext?,(Nyy, D) — 0,

(see 3 of Theorem 2.3.1), and using cokere = M /t(M), we obtain the following important exact
diagram of left D-modules

0
!
0— ext3D(N33,D) MELN extQD(Ngg,D) — cokervyzy — 0
L2
0 — t(M) M 2 M) —o0, (3.58)
!

coker o1

l
0
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where:
coker y32 = im 99 C ext?,(exth (M, D), D),
coker y1 = im 1y C ext}(exth (M, D), D), (3.59)
cokeri = M/t(M) = coker y19 = im oo C ext), (ext®, (M, D), D).

Thus, using Remark 3.3.2, coker~yss is a 2-pure left D-module, coker s is a 1-pure left D-
module and M /t(M) is a O-pure left D-module (see Example 3.3.9). Moreover, using 1 of
Proposition 3.3.3 and 2 of Theorem 3.3.2, we obtain:

dimp (ext?,(N33, D)) < dim(D) — 3,
dimp(coker y32) = dim(D) — 2,
( )—1
( )

3.60
dimp (coker y21) = dim(D ( )

dimp(M/t(M)) = dim(D

If the matrix R3 has full row rank, i.e., kerp(.R3) = 0, then N33 = ext},(M, D), and thus
extd,(Nag, D) = ext?, (extd (M, D), D) is a 3-pure left D-module and:

dimp (ext?) (N33, D)) = dim(D) — 3. (3.61)
Then, we obtain the filtration {M;};—_1, 3 of the left D-module M defined by:

M_1 =0C My = (y210732) (ext?)(Nag, D)) € My = 91 (ext?,(Nag, D)) C My = t(M) C M3 = M.

(3.62)
We note that Mo/M_; = ext},(ext?, (M, D), D) is a 3-pure left D-module, M; /My = coker ys2
is a 2-pure left D-module, My /M; = coker 72 is a 1-pure left D-module and Ms/My = M /t(M)
is a O-pure left D-module, i.e., the successive quotients of the elements of {M;}i—_1 . 3 are all
pure left D-modules. This filtration {M;};=_1 3 is called a purity filtration of M ([11]).

The purpose of the rest of the section is to apply Theorem 3.1.3 on Baer’s extensions to the
short exact sequences of (3.58) to find a presentation matrix of the left D-module M defined by
a block-diagonal matrix P, where the block-diagonal matrices of P finitely present the (pure)
left D-modules M /t(M), coker y21, coker y32 and ext?, (N33, D).

Let us now precisely describe the left D-homomorphisms 735 and 21 and the left D-modules
coker y32 and coker 1. Applying the contravariant left exact functor homp(-, D) to the com-
mutative exact diagram (3.53), we obtain the following commutative diagram:

D1xp-13 Ao D1xpos s D1xpis
| Foas | Fos | .Fis

pDixp-1z  Bo2 o pixpey  fiz pixp (3.63)
| P2 L Foz |

plxp-un B pixper B pixpn

The defect of exactness of the first (resp., second, third) horizontal complex is ext} (Ny3, D)
(resp., exth (Nia, D), ext} (N1, D)). Let us introduce the following canonical projections:

3 :kerD(.Rog) — kerD(.Rog)/(Dlxms ng) = ext})(ng, D) = ext%(Ngg, D),
P2 :kerD(.Rog) e kerD(.Rog)/(D1Xp12 ng) 1D(N127 D) = eXt%(NQQ, D),
P1 :kerD(.R01) — keI‘D(.R()l)/(DlXpn RH) = ext 1D(N11,D) = t(M)

HZ
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The commutative diagram (3.63) induces the following two left D-homomorphisms:

3o : keI"D(.R(B)/(DlXplS R13) — keI'D(.ROQ)/(D1XP12 ng)

p3(A) —  pa(AFus), (3.64)

Q9] : kerD<.R02)/(D1><p12 Rm) — keI‘D(.Rm)/(DlXpH RH)

p2(p) —  p1(pFo). (3.65)

Chases in the commutative diagram (3.63) show that p3 and po are well-defined (see, e.g., [115]).

Let us now find a finite presentation of the left D-modules ext?,(N3s, D), ext?,(Nag, D) and
exth (N1, D). Let R, € DPox*Pix b,e a matrix such that kerp(.Rop,) = D' *Pi Ellk fork=1,2,3.
Moreover, since DY*P1k Ry, C DY¥Pik R],, there exists a matrix R}, € DP#*Pix such that:

Riy, = Riy Ry (3.66)
If R, € DP1*Par s such that kerp(.R};) = D<oy, RY,;., then using Proposition 2.3.1, we obtain

Xk : Ly £ DVP /(DY Ry + DYPo RYy)  — (D% Ryy) /(DY Ryg) 2 extip (N, D),
PN — pe(ARY,),

(3.67)
where p) : DY¥Pu. — L. is the canonical projection onto the left D-module Ly
Since Rllk For RO(kfl) = Rllk Ror F_1 = 0, then
D1Xp’1k (Rllk FOk) C kerD(-Ro(kfl)) — D1><p/1(k—1) Rll(k—l)’
and thus there exists a matrix F], € DPi*Pio1) such that:
Similarly, we can prove that there exists Fy;, € D" 2XPak-1) such that:
Vk=23, Ry Fi,=FyRyy_q) (3.69)
Therefore, we obtain the following commutative exact diagram of left D-modules:
pixp-1z B3 pixpes ;E,l_S D1xpis ;Ijlz’i D1Xpas
|l Fois | Fos | .Fy, | .F3,
pixp—iz Bz pixpe Mz pig, B2 i, (3.70)
J, F_19o l .Fo2 l ~F{2 l 'F2,2
D1xp-11 Ho D1xpo1 e'R,“_ DIxP1y <_'R/21 D1xpy;

Remark 3.4.1. If Ry, = 0, i.e., kerp(Ryx.) = 0, then applying the functor homp(-, D) to the

short exact sequence 0 — DPok Bk, ppue Sk, Ny — 0, we obtain the following complex:

0 DlXp()k Rk Dlxplk'

Hence, we get kerp(.Rox) = DV*Pok ie., Ry, = I, , P = pox and RY, = 0.
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Let us now deduce two identities which will be useful in what follows. Combining (3.49) for
k =2 with (3.66) for k = 1 and k = 2 and with (3.68) for £ = 2, we obtain

/! / /! / /! / /
11 411 = Ry1 = Rig Fo2 = R12 12 Fop = R12 F12 11>

and thus (R{; — R, Fi5) R}y = 0, i.e,, D11 (RYy — Riy Fip) C kerp(.Ry;) = DPo1 Rjy,, which
proves the existence of a matrix X5 € DP11*P21 guch that:

11 = Ry Fiy + X12 Ry, (3.71)
Combining (3.50) for £ = 3 with (3.66) for £ = 2 and k = 3 and with (3.68) for & = 3, we obtain
Fi3 (Ry Rig) = Fis Riz = Rig Fog = (R{3 Ry3) Foz = Ri3 Fi3 Ry,

which proves the existence of a matrix X9 € DP13%P22 such that:

Fis Ry — Ry Fis = X2o Rjy. (3.72)

Let us recall that:

Ly = DY /(DY>Pu RY 4 DYXPor R ) 22 exth (Nyy, D) = t(M),
Ly = DYz /(DYPiz R, DVP2 Rh)) = ext? (Nag, D), (3.73)
L3 = DYP1s /(DYP13 Ry + DYPas R)) & ext?) (Nag, D).

Then, we can define the left D-homomorphism @32 = x5 Yo g 0 x5 : Ly —> Lo, where the y;’s
are defined by (3.67) and agg is defined by (3.64). Using (3.68) for k = 3, we have

az(ps(V) = (xz ' 0 as2)(p3(A Ris)) = x5 (p2(A Riz Fos) = x5 ' (p2(A Fi3 Rip)) = py(A Fi),

for all A € D15, Moreover, using (3.72) and (3.69) for k = 3, we get

( '1'3>F, <F13R’1’2—X22R’22><F13 —X22> ( '1’2)
13 — - )
b3 Fy5 Ry 0 Fi 5

which yields the following commutative exact diagram:

. R//T R/T T /

D1x(p13+ph3) M Dlxpis 3, Ls —50

Fi3 —Xa2 ) l
l . F! l a2
13
(% o

) R//T R/T T /

D1><(p12+p'22) (RY5 22 D1><p’12 Pa L2 0.

Up to isomorphism, the short exact sequence
0 — ext})(Na3, D) 22 ext? (Nog, D) — coker y33 — 0
becomes the following short exact sequence:
0 — L3 225 Ly %2, cokerasy — 0. (3.74)

Using 3 of Proposition 4.4.1, the left D-module coker @30 is defined by:

/ / /
coker @gy = D*Pr2 /(DY*Ps Ff, + DY*P2 R, 4 DYP22 R,
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Then, we can easily check that the following commutative exact diagram holds

0
/
D1><p12 Rlll2 +D1><p22 R/22
DX (03 +Pr2+phy) D1xP12 22, cokeraizys — 0
L s L oh I

6 _
0— Ls =2, Ly 2, cokeraizy — 0,

l
0

T T T\T
(F{z Ry  Ry)

ol
@
©

where thy : DY*PrstP124p5:) o ig the left D-homomorphism defined by:

{ pg(el) izlu"'7p,13a

Po(e;) = .
' 0, i=pi3+1,...,p13 + pi2 + ph.

Applying Theorem 3.1.3 to the short exact sequence (3.74) with the matrix

P13
_ |5 P124Phy) XD,
A= 0 | e DPistriztry)xpis

0

(see Corollary 3.1.1), we obtain the following characterization of the left D-module L in terms
of the presentations of the left D-modules L3 = ext, (N33, D) and coker aiza.

Proposition 3.4.1 ([102, 103]). Let D be an Auslander regular ring (e.g., D = A{d1,...,0n),
where A is either a field k, k[xy,...,x,], k(x1,...,2,) or k[z1,...,2,], where k is a field of
characteristic 0, or k{xy,...,z,}, where k = R or C). With the previous notations, let us
consider the following two matrices

/
F13 _IP,13
/!
R 12 0
/ / / / / / /
Q2 — /12 c D(p12+p22)><p12, P2 — /22 0 c D(p13+p12+p22+p13+p23)><(p12+p13)’
22
0 13
/
0 23

and the following two finitely presented left D-modules:

Ly = D72 /(DV¥P12 Rl + D'¥%2 R)),
E, = D1X(p’12+p’13)/(D1X(p’13+p12+p’22+p13+p'23) Py).

If 0o : DY*P12tPis) — By s the canonical projection, then we have Ey = Lo, where the left
D-isomorphism is defined by:
¢2: Ly — Ep ¢y By — Ly

ph(p) +— QQ(/L(II,/H 0)), 02(v) — plg(l/(fgjm Fl/:j’:)T) (3.75)
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Now, if F is a left D-module, then applying the functor homp(-,F) to the isomorphism
E; = Ly and using Theorem 2.1.1, we obtain kerz(Q2.) = kerr(P,.). More precisely, using
(3.75), we obtain the following corollary of Proposition 3.4.1.

Corollary 3.4.1 ([102, 103]). If F is a left D-module, then we have kerz(Q2.) = kerg(Pa.),
i.e., the following system equivalence holds

Flam9 — 13 =0,
v =0, :1,27—2:0’
{ R’22U:O, = R227—2:O,
Ri3m3 =0,
Rbs 13 =0,

under the following invertible transformations:
0: kery:(Pg.) — keI'}‘(QQ.) oL keI“}‘(QQ.) — keI']-‘(PQ.)
— U =Ty, v o = ; V.
T3 T3 Fis

Now, we can introduce the left D-homomorphism @y = X1_1 o g1 0 X2 : Lo — Ly, where
the x;’s are defined by (3.67) and «w; is defined by (3.65). Then, using (3.68) for k = 2, we get

@o1(ph(n)) = (X7 0 am)(p2(u Ria)) = xi ' (p1(u Ria o)) = X1 (o1 (1 Fiy Riy)) = 1 (1 Fy),
for all u € DY*Pi2. Moreover, using (3.71) and (3.69) for k = 2, we have

T\ o (B —XeRy \ [ L, X i
/ F12 - / / - / / ’
22 F22 21 0 F22 21

which yields the following commutative exact diagram:

11T 1TN\NT /
D1x(p12+ph,) M, Dixpl, P2, Loy -0
I —X12 _
L. ( o F, ) L -F, | a2
. RI/T R/T T /
DIx(pr1+ph,) ARy Ry) pixp, L —

Up to isomorphism, the short exact sequence
0 — ext%(Nog, D) 25 t(M) — coker 9, — 0,
becomes the following short exact sequence
0— Lo o2, Ly LN coker gy — 0, (3.77)
where, using 3 of Proposition 4.4.1, the left D-module coker @ is defined by:
coker @iy = DY¥Pui /(DVPrz [, + DVP1L RY 4 DY¥Pou RY .

Using the left D-isomorphism ¢, ' : Ey — Lo defined by (3.75), the short exact sequence
(3.77) yields the following short exact sequence

— -1
Q21 0 ¢y
_—

0 _
0 — Ey L1 =% cokeran; — 0,
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where the left D-homomorphism @s; o ¢y L. FEy — Ly is defined by:

/ / I F,
Vv e Dhatrs)  (m —1 _ = / Pla _ 12 '
v (@210 ¢y )(02(v)) = Q21 | pa | ¥ Fi A\ pL

Now, we can check that the following commutative exact diagram holds

0
!

D1><p11 Rlll1 +D1Xp’21 R/21
!

/ (oa —
Dxru L coker@y — 0

L Lol |

G100, " 01 _
0— E, — 14 — cokeran; — 0,

l
0

(FF R R

DX (0o +pr1+py,)

where ¢y : DY*Pratputrh) By s the left D-homomorphism defined by

QZ(f]F)u j:]-a"°7p,127

U1(f5) I{ .
07 j:p/12+17’p,12 +p11 +pl21)

R ; ; 1x(plo+p11+p5) .
where {fj}j=1,.. 1, +p11+py, 1S the standard basis of D** P12 21) and:

Ip/12 0
F — 0 0 (= D(pl12+p11+p/21)><(p’12+p/13)‘
0 0

If we apply Theorem 3.1.3 to the short exact sequence

Qg1 O¢;1 01 _
0— By ————— 1 — cokerag; — 0

with the matrix A = F' (see Corollary 3.1.1), then we obtain the following proposition.

Proposition 3.4.2 ([102, 103]). With the hypotheses of Proposition 3.4.1 and the previous
notations, let us consider the following two matrices

Ry, (P11+p5;) X P
Q1= , cD 21)%P11

21
/
Fly ~I;, 0
‘ 0 0
b 0 0
0 F,, —I / / / / / / / / /
Pl — 13 P13 c D(p12+p11+p21+p13+p12+p22+p13+1723)><(p11+P12+Z713)’
0 i 0
0 ho 0
0 0 13
0 0 53
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and the following two finitely presented left D-modules:

/ /
Ly = DY /(DIXn9) Qy),
E; = DYXP1utpiatpis) /(DI (Pratpiitphy +P15tP12 400 tP13003) P,

If 01 : DY Putpitrs) s By s the canonical projection, then we have Fy = L1, where the left
D-isomorphism is defined by:

o1t By — Iy

¢1: L1 — By Ip/n (3.78)
pi(v) — oi(v(ly, 0 0)), 01(A) — i A Fiy '
Fis I,

Finally, we have Ly = t(M), with the following left D-isomorphisms:

9:Ly — t(M) It (M) — Ly
p(v) — w(vRy), m(vRy) — pi(v).

If F is a left D-module, then applying the functor homp( -, F) to the isomorphism F; = L
and using Theorem 2.1.1, we obtain kerz(Q;.) = kerz(P1.). More precisely, using (3.78), we get
the following corollary.

Corollary 3.4.2 ([102, 103]). If F is a left D-module, then we have kerz(Q1.) = kerg(P.),
i.e., the following system equivalence holds

Flom —m =0,
Rf; 71 =0,
Rl?l T = Oa
110 =0, Fizm—13=0,
{ L0 =0, = Ry =0,
RIQQTQ - 07
1373 =0,
Rhs 13 =0,

under the following invertible transformations:

w:kerg(P.) — kerg(Q1.) w ! kerp(Qr.) — kers(Pyr.)

T1 1 Ip/12
T — 0=, 0 — T2 = F1,2 0.

(3.79)
Using Proposition 3.4.2, let ¥ o ¢! : By — t(M) be the left D-isomorphism defined by:
/
11

@Wogr )W) =7 | X | FaRy
Fiz Fia Ry
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Then, the short exact sequence 0 — ¢(M) MM Jt(M) — 0 yields the following one:

iovogy!
- =

0— E; M 25 M/t(M) — 0. (3.80)

Now, we can easily check that the following commutative exact diagram holds

’ ’

D1xpi; e Dot T M/H(M) — 0
Lw L= I
ioﬁoqﬁ;l P
0— E — M  — M/t(M) —0,

where the left D-homomorphism ¢ : D'*P11 — E) is defined by ¥(g) = 01(gx (I, 0 0)),
and {gk}k=1,...,p’u is the standard basis of D'P11. Then, we can apply Theorem 3.1.3 to the

short exact sequence (3.80) with A= (I, 0 0) € DPi*(P1+P12413) (see Corollary 3.1.1) and
we obtain the following main theorem.

Theorem 3.4.1 ([102, 103]). With the hypotheses of Proposition 3.4.1 and the previous nota-
tions, let us consider the following matriz

,11 _Iplll O 0
0 F{Q _Ip/12 0
0 ‘ 0 0
0 - 0 0
P= 0 0 Fly —I, e DPLHPia+P11+PY +P 3 +P124Phy+P13+P)3) X (P01 +P)1 +P15+P5)
13 ’
0 0 1o 0
0 0 59 0
0 0 0 s
0 0 0 b3

and the following two finitely presented left D-modules:

M = D1><P01/(D1><p11 Rll)’
E = Dlx(p01+p’11+p’12+p’13)/(D1x(p’n+p’12+pu+p’21+p’13+p12+p’22+p13+p’23) P).

If o : DY*@PortPutPiatPis) s B s the canonical projection, then we have E = M, where the
left D-isomorphism is defined by:

o FE — M
¢ M E Ip()l
: — /
3.81
AN — o0 0 0 0) ol — m|e . (8D
F12R11
Fly Fly Ry

If F is a left D-module, then applying the functor homp( -, F) to the isomorphism F = M
and using Theorem 2.1.1, we obtain kerz(R;;.) = kerz(P.). More precisely, using (3.81), we get
the following corollary.
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Corollary 3.4.3 ([102, 103]). If F is a left D-module, then we have kerz(Ri1.) = kerg(P.),
i.e., the following system equivalence holds

R, (—711 =0,
Flym — 10 =0,
Rl 1 =0,
Ry 7 =0,
Rlln:O = F{37_2—7'3 :0, (3.82)
Ry 19 =0,
Rby 19 =0,
Rlsm3 =0,
R/237'3 :0,

under the following invertible transformations:

v :kerg(P.) — kerg(Ri1.) vt ikerg(Ry.) — kerg(P))

C C IPOl
/
71 _ L 11
. — n=C n o — = o 7.
2 2 12
! / /
T3 T3 Fig Fiy Ry

(3.83)
Remark 3.4.2. If we set
Fiy Fiy

/!
/ 1" /1 13

So =Ry, S1= 11 , Sy = 12 ) 53:( , )7
/ / 23

21 22

then using (3.60), we get:

1. kerz(S3.) = homp(Ls, F) = homp(ext?, (N33, D), F) is either 0 or has dimension less or
equal to dim(D) — 3,

2. kerz(S2.) = homp/(coker @szz, F) = homp/(coker y32, F) has dimension dim(D) — 2 when it
is non-trivial,

3. kerz(S1.) = homp(coker @z, F) = homp(coker y21, F) has dimension dim(D) — 1 when it
is non-trivial,

4. kerr(Sp.) = homp(M/t(M),F) has dimension dim(D) when it is non-trivial.

If R3 has full row rank, i.e., kerp(.R3) = 0, then N33 & ext? (N33, D) and thus extD(Ngg, D)=
ext?, (ext?, (M, D), D), and kerf(Sg ) is either 0 or has dim(D ) — 3 (see (3.61)).

The linear system kerz(R;;.) can be obtained by first integrating the linear system kerz(P.),
i.e., by integrating in cascade the linear system ker #(S3.) of dimension less or equal to dim(D)—3,
then the inhomogeneous linear systems of dimension respectively dim(D) — 2, dim(D) — 1 and
dim(D). If F is an injective left D-module, then kerz(R};.) = Ro1 FP-1*.

Using the regular patterns of the matrix P and (3.81), we can easily generalize Theorem 3.4.1,
Corollary 3.4.3 and Remark 3.4.3 when kerp(.R3) # 0, i.e., for a finitely presented left D-module
M = D'*por /(D1XP11 Ry1) defined by a longer finite free resolution of the form:

0 M & phxwo AL pxpn M2 plxps A8 plxps JJa 0 Bm plxgm
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If kerp(.R,,) = 0, then the corresponding generalization defines a purity filtration of M. For
more results, details and examples on Baer’s extensions and purity filtrations, see [105]. See also
the PURITYFILTRATION package ([102]) for an implementation of these results.

Even if the size of the matrix P is larger than the one of Rj;, P is more suitable for a
fine study of the module properties of the left D-module M = E than Ri;, for the study of
the structural properties of the linear system kerz(R;;.) = kerz(P.) as well as for computing
closed-form solutions of kerz(Ry;.) (if they exist). We refer the reader to [102] for examples of
linear PD systems kerz(R11.) which cannot be integrated by means of computer algebra systems
such as Maple contrary to their equivalent forms kerz(P.).

Finally, let us illustrate Theorem 3.4.1 with an example coming from [89].

Example 3.4.1. Let us consider the D = Q[0, 0o, 83]-module M = D'**/(D'*6 R) finitely
presented by the following matrix:

0 —201 03—20,—01 —1

0 85-28, 28,-30 1
p_| B 6a 28,-500
0 &-0 -0 0
9 —0 —9 -0 0
a0 —20, 0

Using Algorithm 2.2.1, the D-module M admits the following finite free resolution:

R .R. R
O<—M<LD1X4<—D1X6(_—2—D1X4(_—3—D(—O,

20y 0o —0s —03 03 0
Ry — 201 0o —201+ 0y —03 801—03 —802+203
0 o1 — Oy o1 — 0o 03 —801+03 8Dy — O3 ’
0 0 0 A —01 2

Rg = ((91 82 — 62 33)

Using the notations R1; = R, Roa = Rg and R33 = R3, the commutative diagram (3.51) becomes
the following commutative diagram

Rys. Ros. Rss.
O D 13 D4 23 D4 33 D K33 N33 O
T Fos. T Fis. |
Rio. Roo.
0 — D3 e N DS =22 Dt B Ny — 0
T Foo. |
Ro1. 4 R 6 K11
00— D —/ D — D — Ny — 0
0o — D* 00, Nyo — 0,

whose horizontal sequences are exact and with the following notations:

1 0 0
1 -1 401—03 0 —03 0 0 O
Roy = -1 Ry = 1 401 —03 03 Ry = 0 0 1 0 ’
1 0 01—-02 0 0 01 -1 05
01 —202+ 03 0 01—02 0 o 0 0 0
0 0 o1
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— 0y
P 0 —201 —01—20,+03 -1
Ri3 = 03 , Foe=10 -1 -1 0o |,
1 -1 -2 0
O
0 0 0 1 —1 0
2 1 -1 0 0 0
F13 == ) F03 = (0 0 1) )
201 Oy —201+0y —03 891 —03 —80,+203
0 0 0 0 0 1

Rp3 = 0 and Rp2 = 0. Using Remark 3.4.1 with pg3 = 1 and pg2 = 3, we obtain R = 1,
'o = I3 , Rh3 = 0 and R}3 = 0. The commutative diagram (3.70) becomes the following one

/
R

0 «— D — D «— 0
| Fos | .Fy,

0 — D1><3 & D1><3 — 0
L Foz L .F,

p B pixa S D3,

with the following notations:

1 0 —1 0 0 —20; 1
/11 = 0 1 1 0 , F{3 = Fj3, F{Q = 0 -1 0
0 0 01 —209+03 —1 1 -1 0

Moreover, using (3.66), we have R/s = Ry3, R}, = Ri2 and:

0 -2 1
0 —20,+05 —1
, | 85 68 1
71 0 —o+2 0
82 —81 0
o ) 0

Since kerp(.R3) = 0, N33 = ext?, (M, D) and thus ext?, (N33, D) = ext} (ext, (M, D), D),
which shows that the filtration {M;};—_1_ 3 of the left D-module M defined by (3.62) is a
purity filtration of M.

-----

Using (3.73), if N3 = DY/(Ry1 D*), Nog = D*/(Ra2 DY) and N33 = D/(R33 D*), then we
obtain the finitely left D-modules:

Ly = DY3/(D™6 R|) = extl,(N11, D) = (M),
L2 = D1X3/(D1X6R12) = eXt2D(N227D)7
L3 = D/(D"* Ry3) = ext?, (N33, D).
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Theorem 3.4.1 yields M = E = D11 /(D23 P) where the matrix P is defined by:

10 -1 0 -1 0 0 0 0 0
01 1 0 O -1 0 0 0 0
0 0 01—20,+03 -1 O 0 -1 0 0 0 0
0 0 0 0 0 —20, 1 -1 0 0 0
0 0 0 0 O -1 0 O -1 0 0
0 0 0 0 1 -1 0 O 0 -1 0
0 0 0 0 0 —20; 1 0 0 0 0
0 0 0 0 0 —-2014+03 -1 0 0 0 0
00 0 0 03 —60; 1 0 0 0 0
0 0 0 0 0 —=01+02 0 0 0 0 0
0 0 0 0 0O -0 0 0 0 0 0
P={(00 0 0 O -0 0 O 0 0 0
0 0 0 0 0 0 0 O 0 1 -1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 -1 40,—035 O 0
0 0 0 0 O 0 0 1 401—03 03 O
0 0 0 0 0 0 0 0 01—02 O 0
0 0 0 0 0 0 0 0 0,—-02 0 0
0 0 0 0 0 0 0 O 0 o 0
0 0 0 0 O 0 0 O 0 0 —0»
0 0 0 0 0 0 0 0 0 0 —03
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 O 0 0 O 0 0 O

If F = C>(R3), then let us explicitly compute kerz(P.). We first integrate the last diagonal
block of P, i.e., the O-dimensional linear system kerz(R13.):

_827-3 = 07
*(937'3:0, & 13=c €R
a1’7—3 =0,

Then, we integrate the inhomogeneous linear system in 7 = (121 722 723)7 and 73 formed by

the third triangular block of P, namely:

To3 — 73 =0,
To3 = T3 = Ci,

791 = 0,

—T91 4+ (401 — 03) 722 =0, <

To1 + (401 — 03) To2 + 03 23 = 0,

(O — 02) 722 =0,

721 = 0,
(401 — 03) T2 = 0,
(81 — (92) 7929 — 0.

We obtain 151 = 0, 792 = fi1(x3 + i (z1 + x2)), where f; is an arbitrary smooth function, and
To3 = 1, where ¢ is an arbitrary constant. Then, we have to integrate the inhomogeneous linear
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system in 7y = (111 712 713)7 and 73 formed by the second triangular block of P, namely:
—201 112 + 7113 — 21 =0,
—Ti12 — To2 = 0,

T11 — T12 — 723 = 0,

—201 712+ 113 = 0, T2 = —To2 = —fi(ws + § (z1 + 22)),
(201 + )12 —113 =0, & T =Ti2 + 723 = — fias + 1 (@1 + 22)) + a1,
03711 — 601 12 + 113 = 0, 713 =201 T1a + 71 = —3 fi(ws + § (21 + 22)).

(=01 + 02) 112 = 0,
O — 01112 =0,

0111 — 01112 =0,

The entries of 7 are 1-dimensional and not 2-dimensional. This result can be explained by the
fact that the matrix S; defined in Remark 3.4.2 admits a left inverse, and thus kerz(S;.) =
homp (coker @a;, F) = homp(coker y21, F) = 0. Finally, we integrate the inhomogeneous linear

system in ¢ = (¢; ... ()T and 7y formed by the first triangular block of P, namely:

G1—¢—m1=0, G—CG=—filzs+ 1 (@1 +32)) + 1,
G2+ (3 —T12=0, e G+G=—filzz+ 3 (214 22)),
(01 =202+ 03) (3 — (4 — 113 = 0, (01 =200+ 03) (3 — G = —1% filzs + 3 (21 + 22)).

(3.84)
The D-module M/t(M) = D4 /(D'*3 R},) is parametrized by Ro1, i.e., M/t(M) = D** Ry;.
Since F is an injective D-module (see Example 2.4.2), the linear system kerz(R};.) is paramet-
rized by Ry, i.e., kerr(R);.) = Ro1 F. Since the matrix R}; admits the right inverse

10 0
01 0
X = ,
00 0
00 —1

2 of Corollary 2.3.3 shows that M /t(M) is a stably free D-module, and thus M /t(M) is a free D-
module of rank 1 by the Quillen-Suslin theorem (see 2 of Theorem 2.1.2). Hence, Corollary 3.2.2
proves that the general F-solution of (3.84) is defined by ¢ = Rp1 § + X 71, i.e.:

G =¢— filas+ § (@1 + 22)) + 1,

Go=—¢— filws+ 1 (214 32)),

G =¢&,

C=(0h —202+03) &+ % fi(xs + % (x1 + x2)).
Finally, using the D-isomorphism ~ defined by (3.83), we obtain

VEECC®RY), Vf1€C®R), Ve €R,

—201m2 +03m3 —202m3 — 01 M3 —na = 0,

O3m2 —201m2+202m3 —301m3+1m1 =0, m=E&— fi(zs+ (21 +22)) + 1,

O3m1 —601m2 —202m3 —501m3 —ns =0, o m ==& — files + 5 (21 + 22)),

Oamg — O1me + 0amz — d1mz3 =0, ns =&,

Oom —O1mg — Oamz — 01z =0, ma= (01— 202+ 03)E+ 5 frlws + § (21 + 22)),
Om—0ime—201n3 =0,

where & (resp., fi, ¢1) is an arbitrary function of C°°(R?) (resp., C°°(R), constant).



Chapter 4

Factorization, reduction and
decomposition problems

Nowadays, mathematics focuses on the concept of categories (see [15, 68, 115]) which sim-
ultaneously study objects and homomorphisms between objects. In Chapter 2, we studied
the objects of the category pMod/ formed by finitely generated left D-modules and left D-
homomorphisms between finitely generated left D-modules, where D is a noetherian domain
or a noncommutative polynomial ring for which Buchberger’s algorithm terminates for any ad-
missible term order. In this chapter, we study the left D-homomorphisms between two finitely
generated left D-modules, i.e., between two finitely presented left D-modules since D is a left
noetherian domain.

We shall explain that the computation of homomorphisms has many interesting applica-
tions in mathematical systems theory. In particular, the elements of the endomorphism ring
endp(M) = homp(M, M) of a finitely presented left D-module M = D*P/(D'*4 R) natur-
ally define the internal symmetries of the linear system kerz(R.), where F is a left D-module,
namely, linear transformations which send elements of kerz(R.) to elements of kerr(R.). The
subgroup autp (M) of endp (M) formed by the automorphisms of M (namely, the bijective left
D-homomorphisms of M) defines Galois-like transformations of kerz(R.). A first application of
the computation of homomorphisms is the computation of quadratic conservation laws of linear
PD systems coming from mathematical physics. They can be obtained in a purely algorithmic
way without any knowledge of physics. Other applications of the computation of endp (M) are
the so-called factorization, reduction and decomposition problems largely studied in the symbolic
computation literature. These problems aim at factoring a matrix of functional operators (e.g.,
PD operators, OD time-delay operators, difference operators) or at finding an equivalence matrix
having a block-triangular or block-diagonal structure. We study those problems by generalizing
the eigenring approach developed for linear OD systems by Singer and others ([7, 97, 119]) to
more general linear functional (determined/underdetermined/overdetermined) systems.

4.1 Homomorphisms between two finitely presented modules

As explained in Chapter 2, if M = D'*? /(D4 R) (resp., M’ = D'*?' /(D'*7 R')) is aleft D-
module finitely presented by R € D?? (resp., R € D?*F') and if {ej}j=1,..p (resp., {€}} k=1, )
is the standard basis of D'*? (resp., D), then {r(e;)}j=1,.p (vesp., {7'(€})}r=1.. ) is a
family of generators of M (resp., M'). Now, f € homp(M, M’) sends the generators of M to
some elements of M’, i.e., we have f(m(e;)) = >h_; Pjr'(e},) for j =1,...,p, where the Pj;’s

149
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are elements of D which must satisfy the relations coming from f(0) = 0, i.e., f must send the
left D-linear relations Z?:l Rijm(e;) =0 for i =1,...,q between the generators m(e;)’s of M
to 0. Hence, for ¢ = 1,...,q, by left D-linearity, we have:

f (Zp: Rij W(ej)) = ZP:RU f(m(ej)) = Zp:Rz‘j (p Pk W'(ek)) =7 (i ( p Ry ij) 62;) =0,
J=1 7j=1 7=1 k=1 k=1 \j=1
and thus, (35_) Rij Pj1, .-, 25— Rij Pjy) € D4 R’  i.e., there exists Q; € D**7 such that
(P RijPi,.. Y Rij Pipy) = Qi R IEQ = (QF ... QT € D7, then we obtain:
RP=QR.

We can check that the Pj;’s are not uniquely defined by f € homp (M, M’). Indeed, if we
have f(m(e;)) = Zilzl P, 7' (€),), where the Pji’s are elements of D, then we have

P’ P’
Vi=1,...,p, u Z(P]k_P]k)e;c :Z(ij—ij)’]T,(€§€):0,
k=1 k=1
and thus, the row vector Pjo — Pje = (Pj1 — Pj1,...,Pjy — Pjy) belongs to D4 R e,
there exists Z; € D4 gatisfying Pjo — Pje = Z; R'. Hence, we obtain P — P = Z R/, where
Z = (z¥...ZI)T € DP9 Finally, if Ry € D" is a matrix satisfying kerp(.R') = D" R}
and Z' € D" is any arbitrary matrix, then we have

RP=RP+RZR =QR +RZR =(Q+RZ)R = (Q+RZ+Z Ry R,
which proves that we have RP = Q R where Q = Q + RZ + Z' Ry € DI*¢

Proposition 4.1.1 ([19]). Let R € D? and R’ € DY*? be two matrices, M = D'*? /(D4 R)
and M' = DIXp,/(Dlxq/ R’) two finitely presented left D-modules and the canonical projections
7 DYP — M and 7' : DY*P" — M’. Then, f € homp (M, M’) is defined by

Vm=mn()\), A& D*P: f(m)=7'(\AP), (4.1)
where P € DP*?' s such that DY*1 (RP) C DY R’ .., such that the following identity holds
RP=QR, (4.2)
for a certain matriz Q € D99 . Then, we have the following commutative exact diagram:
Dixa B plxp T A g
l.Q l.p L (4.3)
D1><q’ ﬂ) D1><p’ L/) M —0.

Conversely, a pair of matrices (P, Q) satisfying (4.2) defines f € homp(M,M') by (4.1), i.e.:
homp (M, M)~ {P e D" |3Q e D7 : RP =QR'}/(D"*Y R') (4.4)
The matrices P and @Q are defined up to a homotopy equivalence: the matrices defined by

{ P=P+ZR,

~ . (4.5)
Q=Q+RZ+Z Ry,

where Z € DP*9 and Z' € DY are arbitrary matrices and the matriz Ry € D™ *9 is such that
kerp(.R') = DY R}, satisfy the relation RP = Q R' and define the left D-homomorphism f.
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Remark 4.1.1. Applying the contravariant functor homp(-, M’) to the finite presentation

Dxa B, plxp T Nr 0 of M , we obtain the following exact sequence of abelian groups:
M'TE AP keryy(R.) — 0.

Theorem 2.1.1 shows that homD(M M) = kerpp(R.) = {n € M'P | Rn = 0}. More precisely,
it p = (7'(p1) ... 7(up))’ € kerpyp(R.) and P = (ud ... up) € DP*P' | then, using (2.2),
x(n) = ¢, € homp(M, M’) is defined by

on(m(N) = Ay = 3 A7 (1) (z W) _Z(\P),

7j=1

where the p; € DY*P' for j=1,...,psatisfy Rn =0, i.e.,

P
Vi=1,...,q, ZRZ]W 1) (ZRUMJ)—O
j=1

which implies the existence of v; € DY for i = 1,...,¢ such that Z§:1 Rijuj = v R, ie.,
such that (4.2) holds where Q = (v{ ... I/g)T € D?%9  which also leads to Proposition 4.1.1.

Let us now explain one of the main interests of characterizing homp (M, M").

Applying the contravariant left exact functor homp(-,F) to the commutative exact dia-
gram (4.3) and using Theorem 2.1.1, i.e., the Z-isomorphism kerz(R.) = homp(M,F) (resp.,
kerz(R'.) 2 homp(M’', F)), we get the following commutative exact diagram of abelian groups

Fe Ao L kerr(R.) «—0
TQ TP Tr
’ R’ ’

Fio o L kerg(R'.) «— 0,

where f* : kerr(R'.) — kerg(R.) is defined by f*({) = P( for all ¢ € kerg(R'.). Indeed,
RP=QR and R'¢( =0yield R(P¢{)=Q (R'¢)=0,1ie.,n=P(€kerg(R.).

Corollary 4.1.1 ([19]). Let F be a left D-module, R € D?P, R' € D?*? and the linear
systems kerr(R.) = {n € FP | Rn = 0} and kerr(R'.) = {17 e F¥' | R’y = 0}. Then,
an element f € homp(M,M') defined by matrices P € DP*V and Q € D% satisfying (4.2)
induces the following abelian group homomorphism:

f*ikerg(R.) — kerg(R.)
n — n=Pry.

Corollary 4.1.1 shows that an element of homp (M, M') defines a transformation which sends
the elements of kerz(R'.) = homp(M', F) to those of kerz(R.) = homp(M,F). If M' = M,
then the elements of the D-endomorphism ring endp (M) = homp (M, M) of M define internal
transformations of kerz(R.). We note that the ring endp (M) contains the subgroup autp(M)
formed by the left D-automorphisms of M, namely, the bijective endomorphisms of M. The
elements of autp (M) define Galois-like transformations of the linear system kerz(R.).

Proposition 4.1.1 and Corollary 4.1.1 allow us to find again the theory of eigenrings ([7, 119]).
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Example 4.1.1. Let D = A(0) be the ring of OD operators with coefficients in a differential
ring A, E, F € AP, R=01I,— E € DPP R =91,— F € DP*?, M = D*P/(D**P R) and
M' = D'¥?/(D'*P R'). Let 7 (resp., ') be the canonical projection of D'*P onto M (resp., M’)
and {e;j};—1, ., the standard basis of the free left D-module D'*P_ As explained in Section 2.1,
{y; = 7(ej)}j=1,..p (vesp., {z; = 7' (ej)}j=1,..p) defines a family of generators of M (resp., M')
and the y;’s (resp., z;’s) satisfy the following left D-linear relations:

P P
Vi=1,...,p, Oyi:ZEijyj, (resp.,azi:ZFijzj) . (4.6)
j=1 j=1

Let us now consider a non-trivial f € homp (M, M'). Then, f sends the generators y;’s of M to
left D-linear combinations of the generators z;’s of M’, i.e., there exists a matrix P € DP*P such
that f(y;) = Z§:1 Pjjzj fori=1,...,p. Using (4.6), every left D-linear combination of the z;’s
can be rewritten in the form of an A-linear combination of the z;’s, i.e., we can suppose without
loss of generality that all the entries P;; of P belong to A, i.e., P € AP*P. By Proposition 4.1.1,
there exists a matrix Q € DP*P such that (4.2), and thus:

(42) & (0, -E)P=Q(0I,~F) & PI+P-EP=Q0—-QF. (4.7)

Since the degrees of P 0 and @ 0 are respectively 1 and r + 1, where r is the maximum of the
degrees of the entries of @), then we must have r = 0, i.e., Q € AP*P a fact yielding

Q=P

; (4.8)
P=FEP-PF.

(47) & (P-Q)0+(P-EP+QF)=0 & {
Any f € homp(M, M') can then be defined by f(m())) = '(AP), where P € AP*? satisfies
P=FEP—PF. If Fisaleft D-module, ¢ € kerg(R'.), i.e., 0( — F( =0, and n = P, then:

Rn=0(P{)—E(P¢)=PdC+P(—(EP)(=P(0C—F¢) =0 = neckerr(R.).

If P € GL,(A), then the second equation of (4.8) yields F = P~ E P— P~ P. In particular,
if P is a constant matrix, i.e., P = 0, then we find again the transformation F = P~'EP
classically used in the integration of first order linear OD systems with constant coefficients.

If F' = F, then the second equation of (4.8) defines the eigenring of the linear OD system
on = En, namely, £ = {P € AP*P | P = E P — P E}, introduced by Singer in [119]. Using the
properties of the trace tr(P, + P2) = tr(P2 + P1) and tr(Py Py) = tr(P, Py) for all P € £, we get

dtr(PF) d P* d(P...P)
VkeENR, di "\ ' ( di )

=tr(PP* 14+ PPP24 P2P P34 4 PMLP) = ktr(PPFTY

= ktr((EP - PE)P* 1 = ktx(EP*— PE P )

= ktr(EP* -~ EPF) =0,
i.e., the tr(P*)’s are first integrals. Since the coefficients a;’s of the characteristic polynomial
of P are symmetric functions of the eigenvalues of P and they can be expressed in terms of
the tr(P¥)’s (Newton’s formulas), they are also first integrals. Therefore, the eigenvalues of P

are first integrals because they are algebraic functions of the a;’s, i.e., P € £ is isospectral.
Following the ideas of [7, 97, 119], we can then compute a Jordan normal form of P € £ and use
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the corresponding change of bases to transform the linear OD system 07 = En into ¢ = E(,
where EJ € AP*P is either a block-triangular or a block-diagonal matrix.

Let us illustrate the results with the following explicit example over A = Q][t]:

t(2t+1) -2t —2t*+1 ) 4272,

2t —t(2t+1) (4.9)

n=En, EZ(

Using algorithms which compute polynomial solutions of linear OD systems ([1, 7]), we get:
ap—ag(t+1) ast(t+1
g:{P:( ! 2( ) 2( )>|CL1,CL2€Q}.
—as ast+ ay

If P €&, then det(P — A1) = (A —a1) (A — a1 + a2) and the Jordan normal form of P is:

0 i+l _
J—vulpy=| ™ U= T B U
0 a1 —as -1 1 1 —t

If¢=U'tnp=(m—({t+1)n m —tn)T, then the linear OD system 7 = E 7 is equivalent to:

G =Cre /2
(o =y et?/2,

-t 0

o
(=U"Y(BU U>4—<0 t

)C & VO, Cy eR, {

Finally, using the invertible transformation n = U (, we obtain the general solution of (4.9):

m=—Crte /24 Cy(t+1)e’/?,

v Cl’ 02 E R’ { ”[72 = _Cl €—t2/2 + CQ et2/2'

Example 4.1.1 can be generalized to the so-called integrable algebraic connections ([97]).

Let D = By, (k) be the second Weyl algebra, where k is a field, and E; € k(x1,...,z,)P*P for

i=1,...,n. Then, an algebraic connection is a linear PD system of the form:
hy—Ery=0,
: (4.10)
Ony — Eny=0.

Let V; = 0; I, — E; € DP*P for i = 1,...,n. Then, the algebraic connection (4.10) is said to be
integrable if the following integrability conditions are satisfied:

OF; 0E;
8a;j ({9931

[Vi,Vj]éViVj—VjVi: +EE;,-EjE=0, 1<i<j<n. (4.11)

The next proposition characterizes the ring of endomorphisms of an integrable connection.

Proposition 4.1.2 ([19]). Let D = B,,(k) be the second Weyl algebra over a field k, n matrices
Er,...,Ey € k(z1,...,1,)P*P satisfying (4.11), R = ((01 I, — E1)T -+ (0, I, — E,)T)T € DnPxp,
and the left D-module M = DY*P /(D' "P R). Then, f € endp(M) is defined by the matrices
Pek(xy,...,zn)P*P and Q € k(x1,...,z,)"P*"P satisfying the following relations

oP
PE,—FE;P=0, i=1,...
81‘Z+ (2 7 I 1 Y 7n7 (4'12)

Q = diag(P,..., P),

where diag(P, ..., P) denotes the diagonal matriz formed by n matrices P on the diagonal.
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Example 4.1.2. The strain tensor € = (€;;); j—1,2 is defined by the Killing operator, i.e., the Lie
derivative of the euclidean metric of R? defined by w;j = 1 for i = j and 0 otherwise, namely

€11 = O &1,
€12 =€ =3 (0261 + D &), (4.13)
€22 = 0o &,

where, using the euclidean metric of R?, & = ¢4, i =1, 2, and & = (¢!, €2) is a displacement.

Let us consider (4.13) with € = 0, i.e., the system corresponding to the Lie algebra of the
Lie group of rigid motions in R? ([86, 87]). (4.13) can be written as the integrable connection:

000 00 —1 &
Vi:1,2, Vi:ailg—Ei, E1: 0 01 s EQZ 0 0 0 , Y= 52
00 0 00 0 &

Let D =R[01,02], R= (VT VI)T and M = D3/(D'*® R). According to Proposition 4.1.2,
f € endp(M) can be defined by P € R3*3 satisfying:

a 0 7
PE —EP=0,
P=|10 a g |, Va, 8, 7vy€R. (4.14)
PFEy— EyP =0, -
!

We can easily check that the general solution of V;n(x1,x2) =0 for i = 1, 2 is defined by:
Va,b,ceR, mn(x1,29) =—axa+0b, mnxi,x2)=ax1+c, n3(x1,22)=a.
Finally, if P is defined by (4.14), then according to Corollary 4.1.1,

—(aa)za + (ab+va)
(=Pn= (aa)z1 + (ac+ fa)

aa

is another solution of the integrable algebraic connection V;n(x1,22) =0 for i =1, 2.

4.2 Computation of left D-homomorphisms

We now turn to the problem of solving the general equation R P = Q R'. The situation is
different if we consider a commutative or a noncommutative ring D. Indeed, if D is a commutat-
ive ring, then homp (M, M’) is a D-module whereas homp (M, M') is usually an abelian group if
D is a noncommutative ring (see Section 2.1). If D is a noetherian commutative ring, then M’
is a noetherian D-module for all k£ € N, and thus so is the D-module ker;/ (R.) = homp (M, M')
(see, e.g., [57, 115]). Thus, homp (M, M’) is a finitely generated D-module, and thus a finitely
presented D-module since D is a noetherian ring (see Section 2.1). Hence, homp (M, M') can be
defined by a finite number of generators and of D-linear relations, i.e., by a finite presentation.

If D is a noetherian commutative ring, then let us explain how to find a finite presentation
of the D-module homp (M, M'). Let R € D¥P, R’ € DY*¥' | P ¢ DP*P" and Q € DI be four
matrices satisfying (4.2). Since D is a commutative ring, then using Lemma 3.1.2, we obtain

row(R P) = row(R P Iy) = row(P) (RT ® I,,),
row(Q R) = row(I, @ R) = row(Q) (I, & R),
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RT' @1

(12) & (ow(P) —row(Q) L =0, L:( o R

) c pPr'+ad)xap’

Let Ly € D**®?'+144) be such that kerp(.L) = D'** Ly. Augmenting the rows of Ly, we find
a set of matrices {P;};=1,. s and {Q;}i=1, s, where P; € DP*?" and Q; € D9%Y, satisfying the
relation RP; = Q; R for i = 1,...,s. Moreover, every solution P € DP*P" and Q € D?*? of
(4.2) has the form
{ P=370; P
Q=371 @ Qi

where o € D fori =1,...,s, i.e.,, {P;}i=1,. s is a set of generators of the following D-module:
E={PeDP? |3QeD™ : RP=QR}.

Therefore, the set {P;}i=1.. s of the residue classes of the matrices P;’s in the D-module
E/(DP*9 R') generates E/(DP*? R'), i.c., generates homp (M, M') = E/(DP*9 R') up to iso-
morphism (see (4.4)). In particular, if P; = P; + Z; R’ for certain matrices Z; € DP*? and
i=1,...,s, then we can introduce the matrices Q;, = Q; + RZ; fori =1,...,s, and P; and Q;
satisfy RP; = Q; R fori=1,...,s, i.e., they induce f; € homp(M, M') defined by:

YAeDYP filn(\) =7 (AP;), i=1,...,s.

Then, {fi}i=1,.s is a family of generators of homp (M, M'). A D-linear relation Y>_; d; f; =0
between the f;’s is equivalent to the existence of Z € DP*? satisfying ijl djPj=ZR, ie.:

row(P1)
Zdj row(Pj) —row(Z) (I, ® R) =0 <& (di ... ds —row(Z)) - =0.
j=1 row(Ps)
I,®R

= — T / / /
If we introduce the matrices U = (row(Pl)T row(PS)T) € D*PP V = [,® R € DP7*PP

and W = (UT vTT ¢ DE+pd)xpr' | then there exist X € D and Y € DP9 gatisfying
kerp(.W) = D™ (X —Y). If Y;; denotes the i x j entry of the matrix Y and

Yivl T }/ivq/
Y’ /+1 P Y72 /

7 = sy Tl eprxd, =1,
Y;,(pfl)q“rl o Yipg

then 3771 Xij Pj = Z; R, and thus the f;’s satisfy the following D-linear relations:
S
Y X fi=0, i=1,..,L (4.15)
j=1

Hence, homp (M, M') = D¢ /(D! X)), i.e., homp (M, M') is finitely presented by X € D'*.
Let us now study the particular case M’ = M, i.e., using (4.4):

endp(M) = {P € D’*? |3Q € D™%: RP = QR}/(D"IR).
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We note that A £ {P € DP*P | 3Q € D99: RP = QR} is a ring. Indeed, 0 € A, I, € A and
if P, Pe A, ie., RP, = Q1 R and R P, = ()3 R for certain matrices Q1, Q2 € D9*%, then:

{R(P1+P2):(Q1+Q2)R, N {P1+P2€A,
R(PIP)=(Q1R)P,=0Q1(RP) = (Q1Q2) R, PP, e A

The other properties of a ring can easily be checked. Ring A is generally a noncommutative ring
since P P, is generally different from P, P;. Moreover, [ £ DPX4 R is a two-sided ideal of A.
Indeed, if P;, P, € A and Z1 R, Zs R € I, where Z; € DP*? for i = 1, 2, then:

{ P (Zl R) + Py (ZQ R) = (Pl Z1+ P ZQ) R,
(ZlR)Pl“F(ZQR)PQ:Z1Q1R+Z2Q2R:(ZlQl“rZQQQ)R.

Therefore, B 2 A/I is a ring. If K : A — B is the canonical projection onto B, then the
product of B is defined by x(Py) k(P) £ k(P P») for all P, P, € A.

The ring structure of endp (M) can be characterized by the expressing of the compositions
fi o fj in the family of generators {fy}r=1,. s fori,j=1,...,s, ie.:

S
Vij=1,....s, fiofi=> Yijkfe: %ijk € D (4.16)
k=1

The ;;1’s look like the structure constants appearing in the theory of finite-dimensional algebras.
Hence, if F = (f1 ... fs)7, then the matrix T' formed by the Vijie satisfies F®@ FF =TF. T’
is called a multiplication table in group theory. Finally, if D(fi,... fs) is the free associative
D-algebra generated by the f;’s and if

S S
I:<ZXZ]f]7Z:17)l7 flof]_zfywkfk7 7’732177S>
7j=1 k=1

is the two-sided ideal of D generated by the polynomials corresponding to the identities (4.15)
and (4.16), then the noncommutative ring endp (M) is defined by

endp(M) = D(f1,... fs)/1, (4.17)

which shows that endp(M) can be defined as the quotient of a free associative algebra by a
two-sided ideal generated by linear and quadratic relations ([20]).

We sum up the previous results in the following algorithm.

Algorithm 4.2.1. — Input: Two matrices R € D9P and R € DY*? defined over a
commutative polynomial ring D over a computable field k.
— Output: A finite family of generators {f1,..., fs} of the D-module homp (M, M'), where
M = DY¥? /(D4 R) (resp., M' = D'¥' /(D% R')) and a set of D-linear relations of the
fi’s defining the D-module structure of homp (M, M’).

RT @ Iy
I,®R
2. Using Algorithm 2.2.1, compute a matrix Ly € D3*®P'+44) gatisfying kerp(.L) = D *5 Ly.

1. Compute the matrix L = ( ) e Dep'+ad)xqp
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3. For i =1,...,s, construct the matrices P, € DP*? and Q; € D99 defined by

Pi(j,k)=L(i,(j—1)p'+k), j=1,....p, k=1,...,0,
Qullom) = —L(i,pp/ + (1= 1)d +m), 1=1,....q, m=1,....d,

where L(i,7) is the ¢ x j entry of the matrix L. We then have:

RP=Q;R, i=1,...,s.

4. Compute a Grobner basis G of the rows of R’ for a total degree order.

5. For i =1,...,s, reduce the rows of P; with respect to G by computing their normal forms
with respect to G. We obtain the matrices P; which satisfy P; = P; + Z; R/, for certain
matrices Z; € DP*? which can be obtained by means of factorizations.

6. For i = 1,...,s, define the following matrices Q; = @Q; + R Z;. The pair (P;,Q;) then
satisfies the relation R P; = Q; R’ and the D-module homp(M, M) is finitely generated
by {fi}i=1. s, where f; € homp(M, M') is defined by f;(m(\)) = 7'(A P;), for all A € D1*P,
and 7 : D'P — M (resp., 7’ : D'*P" — M) is the projection onto M (resp., M’).

7. Form the three matrices U = (row(P1)” ... row(P,)")T € D>*PP |V = [,@R' € DPa>p¥
and W = (UT VT) e Dstpd)xpy,

8. Using Algorithm 2.2.1, compute a matrix (X —Y), where X € D'*5 and Y € D*P?
such that kerp(.W) = DY/ (X  —Y). Then, the family of generators {fi}i—1, s of the
D-module homp (M, M’) satisfies the D-linear relations X F' = 0, where F' = (f; ... fo)7,
i.e., homp(M, M) = D' /(D™ X).

9. If R = R, then, fori,j = 1,...,s, compute the normal form of row(P; P;) with respect to
a Grobner basis of the D-module DY* (429 1. With these formal forms, form the matrix
(I'y Tq) € DSQX(SQ“"?), where I'; € D% and Ty € D¥°*P4, Then, the matrix I'y defines
the multiplication table of family of generators {f;}i=1 . s of the D-module endp(M).

Example 4.2.1. Let us consider a commutative ring D, R € D? a column vector with entries
in D, I = D4R the ideal of D generated by the entries R; of R and M = D/I the D-
module finitely presented by the matrix R. Then, a D-endomorphism f of M is defined by
f(w(N\) = w(AP), where w: D — M is the canonical projection onto M, A € D and P € D is
such that there exists @ € D9*? satisfying R P = Q R. Since D is a commutative ring, we can
choose any P € D and Q = P I, a fact showing that we can take P =1 and f = idys generates
the endomorphism ring endp(M). The relations satisfied by idjs are obtained by computing
kerp(.W), where W = (1 RT)T: if A\ = (A A2) € kerp(.W), where A\; € D and Ay € D4,
ie, A1+ A2 R =0, then A\ = —X2 R, ie., A= —X(R —1), a fact showing that we can take
X =RandY = 1. Hence, we get Ridjy; = 0 and endp(M) = M = D/I as a D-module. Finally,
idps oidps = idys defines a trivial ring structure on endp (M) and:

endD(M) = D<1dM>/<R1 idM, PN ,Rq idM,idM o idM — idM> = D/I =M.

We note that we could have directly obtained endp(M) = M = D/I by applying the left

contravariant functor homp( -, D/I) to the finite presentation D!*4 . p T p /I — 0 of
the D-module D/I to get the following exact sequence of D-modules

(D/I)? £~ D/I «— endp(D/I) — 0,
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i.e., kerp,r(R.) = endp(D/I). Using the fact that all the R;’s belong to I, we then get

Ry m(Ry d) 7(d Ry)
vdeD, Rr(d)=| : |nd)= : - : =0,
R, T(Rqd) m(d Ry)

which finally shows that endp(D/I) = kerp,;(R.) = D/I.

Example 4.2.2. Let us consider again the model of the motion of a fluid in a one-dimensional
tank studied in Example 3.2.5. Let D = Q(«)[0, 0] be the commutative polynomial ring of OD
time-delay operators with rational constant coefficients (i.e., dy(t) = y(t), 0 y(t) = y(t — h)),

02 1 =206
R = € D¥3 (4.18)
1 62 —206 ' '

the presentation matrix of (3.32) and the D-module M = D'*3/(D'*2 R) finitely presented by R.
Applying Algorithm 4.2.1 to R, we obtain that endp (M) is generated by the D-endomorphisms
fers fens fes and feo, defined by fo(7(\)) = 7(\ P,) for all A € D3 where

Qaq Q9 20300
a1 — 2040 a9 +2a40
P, = g +2040 a1 —2040 2a300 , Qo = ,
o o
oy 0 —a4 0 ar +ag+az (62 +1) 2 !

a = (1 as ag ag) € DY* and {e;}i=1._ 4 is the standard basis of D**. To simplify the
notations, we denote by f; = f.,. We can check that the generators { f;}i=1,. 4 of the D-module
endp (M) satisfy the following D-linear relations:

(0*=1)fs=0, Ffi+fa—fz=0, fi+6>fo—f3=0. (4.19)
A complete description of the noncommutative ring endp (M) is given by the knowledge of the
expressions of the compositions f; o f; in the family of generators {f;}x=1,. 4 fori,j=1,..., 4
flofi:fioflzfi7 7::17...,4,
Fofo=f fzofs=(82+1) fs,
2 2=J1
f3ofa=20f1—20f2+2fu,
fao fs=fsofo=fs, fdof 0 ' ? (4.20)
4 3=VY,
Jaofa=20f1—20 fa+ fa,
fiofas=-20fs.
fio fo=—fu,

Denoting by f. o f, the composition of an element f. in the first column by an element f, in the
first row, we can write (4.20) in the form of the following multiplication table:

’ fcofr H fl ‘ f2 ‘ f3 ‘ f4 ‘
f1 fi] fo /3 Ja

Ja fo| N /3 20f1=20fa+ fa
I3 fa | f3 | (0°+1)f3|20fi—20fa+2f4
Ja fi | —fa 0 =20 f4
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We finally obtain endp(M) = D{f1, f2, f3, fa)/I, where

I={(*-1f,% i+ fo—fa i+ fo—fa, fiofi—fi, .., fao fa+20 f1)

is the two-sided ideal of the free D-algebra D(f1, fa, f3, fa) generated by the polynomials defined
by the identities (4.19) and (4.20).

If D is a noncommutative polynomial k-algebra, where k is a field, then homp (M, M’) has
generally no D-module structure but is a k-vector space. Thus, we cannot repeat what we have
done for commutative rings. Let us explain what we can be done if D = A, (k) or B, (k) and k
is a field. For 7, s, t € N, let us introduce the finite-dimensional k-vector spaces:

kElxi,...,zm]s = {a € k[z1,...,2m] | dega < s},
E(xi,...,xm)se = {a/b € k(z1,...,2m) | 0# b,a € klz1,...,2,], dega < s, degb < t},
Eg - {P - Z|:u|=0,“.,r au or ‘ Ap € k[xlv ce 7$m]€><p/}7

/
Efy={P =Y =0,.rau0" | a, € k(z1,... T

s,t

We note that Ey, = Ej and Ej = {P = ¥, =, , 29" | a, € k}. Even if homp (M, M’)
is generally an infinite-dimensional k-vector space, we can compute the finite-dimensional k-
vector space {P € ES, | RP € Dv?" R } by solving the algebraic systems of equations in the
coeflicients of an ansatz P € EY, obtained by reducing to zero the normal forms of the rows of
the matrix R P with respect to a Grobner basis of the left D-module D¢ R'. More precisely,
we have the following algorithm which computes the elements of homp (M, M') defined by means
of a matrix P with a fixed total order in the operators 0; and a fixed degree (resp., degrees) in
x; for the polynomial (resp., for the numerators and denominators of the rational) coefficients.

Algorithm 4.2.2. — Input: A noncommutative polynomial ring D for which Buchberger’s
algorithm terminates for any admissible term order, R € D7 and R’ € DY*?" and three
non-negative integers «, § and ~.

— Output: A finite family {f;}ics of elements of homp (M, M'), where M = D'*P/(D'*4 R)
and M' = D7 /(D7 R'), defined by matrices P; € EJ ., i.e., satisfying R P; € D?P R/
and f;(7(\)) = 7' (A P;), where 7 : D'*P — M (resp., «’ : DV — M’) is the canonical
projection onto M (resp., M') and A\ € D*P.

Take an ansatz L =}, o, o au 0" € E3..

Compute the product R L and denote the result by F'.

Compute a Grébner basis G of the left D-module DY*P R’ for a total degree order.
Compute the normal forms of the rows of I’ with respect to G.

Solve the system for the coefficients a, so that all the normal forms vanish.

Substitute the solutions into the matrix L. Denote the set of solutions by {L;}icr.

No ot W

For ¢ € I, form the matrix P; obtained by computing the normal forms of the rows of L;
with respect to G.

Remark 4.2.1. We note that algebraic systems obtained in the case Ef = Ef , are linear, and
thus, their solutions belong to the field k£, whereas the solutions of systems of algebraic equations
corresponding to Eg . for v > 1 belong to the algebraic closure £ of k.
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Example 4.2.3. Let us consider the Euler-Tricomi equation ([23]) appearing in transonic flow:
0% u(xy, z0) — 21 03 u(zy, 22) = 0.

Let D = A3(Q) be the first Weyl algebra, R = (0? — x103) € D and M = D/(DR). We
can easily check that endp(M) is an infinite-dimensional Q-vector space. Let us denote by
endp(M): the Q-vector space formed by the elements of endp (M) defined by PD operators P
whose total orders (resp., degrees) in the 0;’s (resp., x;’s) are less or equal to 7 (resp., s).

Below, we list of a few examples of endp(M)", where the a;’s belong to Q:

— endp(M)J is defined by P = Q = a;.

- endD(M)% is defined by P = a1 4+ a2 05 + %aga:g@g +azx1 01 and Q = P + 2as.
— endp(M)3 is defined by P = Q = a; + az 02 + a3 03.

— endp(M)? is defined by:

P:a1+a262+%a3x282+a3x181+a4822+%a5x28§+a5x18182,
Q=P+2a3+2a50s.

Example 4.2.4. Let us consider the first Weyl algebra D = A(Q) and the finitely presented
left D-module M = D'*2/(D'*2 R) defined by the following matrix of PD operators:

[ 01 —x109 2%2
we(B Yo

The left D-module M is associated with the so-called comjugate Beltrami equations. The en-

domorphism ring endp (M) is an infinite-dimensional Q-vector space and, using the notations

defined in Example 4.2.3, we obtain the following examples of endp(M)%:
— endp(M)Y is defined by P = Q = a1 I3, where a1 € Q.

— endp(M)} is defined by:

oA a1 + as Oy 0
P_Q_( 0 a1+(1282>, (Il,CLQGQ.

— endp (M)} is defined by:

p_ a3 (xg 02+ 2101 — 1) + a2 02+ ay 0
—a3 0z ag 2 0y + ag Or + a;
. as (3?2 Oy + 11 81) + a9 09 + aq as x1 O
Q_< 0 ags Oy +azxo Oy +ay |’ a1, 02,03 € Q.

4.3 Conservations laws of linear PD systems

Let D = A(01,...,0,) be aring of PD operators with coefficients in a differential ring A and
R € D?7%P. One can prove that the formal adjoint R € DP*? of R satisfies the following identity

n

(A, Rn) = (E)\ﬂ?) +Zaz (A, m), (4.21)
=1

where (-, -) denotes the standard inner product of R? and the ®;’s are bilinear forms in the
variables 7;’s and \;’s (see, e.g., [69, 88]). If F is a left D-module (e.g., F = A) and 7 € kerr(R.),
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then (4.21) yields (RA\,n) + 37, 0;®;(\,n) = 0. Now, if we choose A € kerz(R.), then the
vector @ = (®1(\,n),...,P,(\,n))7 satisfies

n

i=1
i.e., ® is a conservation law of the linear PD system kerrz(R.) ([54, 55]).

If n =1, then ® = @, is a first integral of the linear OD system kerz(R.) (see, e.g., [53, 91]).
Moreover, if R has full row rank and A is either k, k[t], k(¢), k[t] or k{t}, where kK = R or
C, then Corollary 3.3.1 shows that M = D'*P/(D'*4 D) is torsion-free, i.e., stably free (see
Example 2.2.13 and Corollary 2.3.3), iff N = D9/(RDP) = 0, i.e., iff N = D'¥9/(D'*P R) = 0,
which yields kerz(R.) = homp(N,F) = 0. Hence, if F is a cogenerator left D-module (see
Remark 2.4.2) and M admits a torsion element, i.e., N # 0, then ker]:(]tx;.) = homD(N,]:) #0,
and thus kerz(R.) admits a first integral.

Example 4.3.1. Let us consider the following linear OD control system:
T, = T2 + u,
Ci?g =1 — U.

Let D = Q[0] be the commutative polynomial ring of OD operators, M = D'*?/(D1*? R) and
N = D'*2/(D'*3 R) the D-modules respectively presented by the following matrices:

g -1 -1 -0 -1
R = R=0R) =] -1 -0
(207 ) w1

We can check that z = x1 + x9 satisfies 9z = 0, i.e., is a torsion element of M. Thus, if
F = C*(R4), then the linear OD system kerz(R.) admits a first integral. Integrating the linear
OD system kerz(R.), we obtain:

voer, [ M0

’ Ay = Cet.
Using the identity AT (Rn) =7 (RA) 4 0 (A 1 + A2 22), where 5 = (1 22 u)T € kerg(R.),
the first integrals of kerz(R.) are defined by ® = C' e~ (21 + z3), i.e., ® = 0.

Example 4.3.2. Let us consider again the first set of Maxwell equations defined by (2.45). In
Example 2.3.6, we proved that the corresponding differential module was torsion-free, and thus
parametrizable (see Example 2.4.4). If B and E satisfy (2.45), and C and G satisfy (2.49), using
(2.48), we obtain that (2.45) admits the following conservation law:
0 /o o o L. L
5 (C.B)+V. (GB-CnE) =0,
Now, if we substitute the quadri-potential (/Y, V) by (é, G) in Example 2.3.6, we obtain that
the smooth solutions of (2.49) are parametrized by
¢ = ., = C=-V¢
-————-VG=0, ’
ot & ¢ { e F=CPRY,
VAC=0, G=5p
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a fact proving that (2.45) admits the following family of conservation laws:

0 - = - [(0€
— (-V¢.B =
o ((VEB) Y (é%
The differential module defined by the first set of Maxwell equations is torsion-free (see Ex-
ample 2.3.6). Hence, contrary to the OD case (see above), a PD linear system can admit

conversation laws even if its underlying differential module is torsion-free.

VEeF, §+65AE):0.

The above computation of conservation laws of the linear PD system kerz(R.) requires the
knowledge of a solution of the adjoint system ker _T-(R) The computation of a particular solution
of kerz(R.) is generally a difficult issue. If M = D'¥P/(D'¢R) and N = D'*¢/(D'*? R),
then f € homp(N, M) is defined by P € D?P and Q € DP*? satisfying RP = QR and

Corollary 4.1.1 shows that f induces the Z-homomorphism f* : kerz(R.) — kerz(R.) defined
by f*(n) = Pn. We can consider A = P n, which yields a quadratic conservation law of kerz(R.).

Theorem 4.3.1 ([19]). Let D = A(d1,...,0n) be a ring of PD operators with coefficients in
a differential ring A, R € DTP, F a left D-module (e.g., F = A) and the linear PD system
kerg(R.). Moreover, let R € DY*P be the formal adjoint of R and let us introduce the left D-
modules M = D'*P /(D' R) and N = D'Y4/(DY™P R). Then, f € homp(N, M), defined by
P e DI*P gnd Q € DP*Y satisfying R P = Q R, induces the quadratic conservation law

O = (21(Pn,n) ... Pu(Py,m))"
of kerr(R.), i.e., > iy 0; ®; =0, where the ®;’s are the bilinear forms defined by (4.21).

We point out that no integration of the formal adjoint linear PD system is needed to compute
the quadratic conversation laws of the system. Only Grobner basis techniques is needed.

Example 4.3.3. Let us consider the Mazwell equations in the vacuum ([54, 86, 87])
OB

— +VAE=0,

‘ft oF (4.22)
—VAB—¢— =0,

o ot

where B (resp., E) is the magnetic (resp., electric) field, po (resp., €y) the magnetic (resp.,
electric) constant. Let D = Q(puo, €0)[0r, 01,02, 03] be the polynomial ring of PD operators,

Oy 0 0 0 —03 15}
0 815 83 0 _81
R— 0 0 O —0s 01 0 c pox6
0 —03/po 020 —e€0 0, 0 0
03/ o 0 —01/ o 0 —€0 O 0
—02/po 01/ o 0 0 0 —€0 O
the presentation matrix of (4.22) and M = DIXG/(D1><6 R). Then, the formal adjoint R of R is:
-0 0 0 0 —03/po 02/ o
0 -0 0 33/ o 0 —01/ 1o
A 0 0 =0 —02/po O1/po 0 c Dbx6.
0 —03 O €0 Oy 0 0
O3 0 -0 0 €0 04 0
—82 81 0 0 0 €0 8,5
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If we denote by n = (By By B3 By Ey FE3)” and A = (Cy Cy C3 Fy 5 F3)”, then we have:

3 3 C3 By — Cy E3 + (F3 By — F» B3) /o

(/\,R?]) = (U,R)\) =+ 815 (ZCZBZ — € ZFZE1> + V. Cl E3 — CgEl + (Fl Bg — F3B1)/,u0

=1 =1 Cy By — C1 Es+ (Fy By — F1 Ba) /1o

) ) (4.23)

Denoting by N = D'*6/(D'*6 R) the adjoint D-module of M, an element f € homp(N, M)
can be defined by the following two matrices:

/w0 0O 0 0 0
0 1/pwp O 0 0 0

P 0 0 1/wp O 0 O __o.
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 o 0 0 -1

We can easily check that f is an isomorphism, i.e., N = M. Hence, if n is a solution of the
system Rn =0, then A = P, i.e., C; = B; /o, F; = —F; for i = 1,2, 3, is a solution of R\ = 0.
Using (4.23), we obtain the following conservation law of (4.22):

1 — — —d 1 — —
8, < I B2+ || E |2> v <(E/\B)) —o.
Ho 12%)

w = % | B ||2 +e || E ||? is the electromagnetic energy and 11 = (E A B)/uo the Poynting
vector. Other conservation laws can be obtained by considering different elements of endp(M).

Example 4.3.4. The movement of an incompressible fluid rotating with a small velocity around
the axis lying along the x3 axis can be defined by

ouq dp
TN 9,0 i
P05, po 2o ug + Bt 0,
0 0
oS24 2 po Qo uy + o2 =0,
ot Oxs
(4.24)
Qus | Op _
po ot dxs
(‘9u1 8u2 aU3 -0

dzy | Owy  Owy

where @ = (u1  us u3)? is the local rate of velocity, p the pressure, pg the constant fluid density
and Qo the constant angle speed ([55]). Let D = Q(po, Q0)[0, 01, 02, J3t] be the commutative
polynomial ring of PD operators,

P00y  —2pof 0 O
R 2p0Q0  po O 0 O c pixa
0 0 L0 8t 33

o 0o a3 0

the presentation matrix of (4.24) and the D-module M = D'*4/(D'*4 R) associated with (4.24).
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If we denote by n = (u; uz us p)7, then we have the following identity

po (A1 w1 + Ao ug + Az ug)
AP+ Aug
A2 p+ A ug
A3p+ Aguz

(A Rn) =, RN+ (0 01 02 0s) , (4.25)

where R = —R is the formal adjoint of R. Hence, we get N = D™ /(D4 R) = M and
homp (N, M) = endp(M). Hence, if (u1 us wug p)T is a solution of (4.24), then A; = uy,
A2 = ug, A3 = u3 and Ay = p is a solution of R\ = 0. Taking A = 7, i.e., idy € endp(M),
and using (4.25), we obtain d; (po (u? +u3 +u3)) + 0 (2pu1) + 92 (2pug) + 03 (2pug) = 0, i.e.,
(4.24) admits the following quadratic conservation of law:

o (2 171°) + 9. (v =0
Other conservation laws can be obtained by considering different elements of endp(M).

More examples of quadratic conservation laws of physical systems can be found in [105].

4.4 System equivalences

If f € homp(M,M'), then we have the following left D-modules:

ker f = {m e M | f(m) =0}, coim f = M/ ker f
imf={m'eM |ImeM: m' = f(m)}, coker f = M'/im f.

Let us explicitly characterize the kernel, image, coimage and cokernel of f € homp (M, M),
where M and M’ are two finitely presented left D-modules.

Proposition 4.4.1 ([19]). Let M = D'? /(D4 R) (resp., M' = D'*¥ /(D¢ R')) be a left
D-module finitely presented by R € DY*P (resp., R € DY*¥' ). Let f € homp (M, M') be defined
by the matrices P € DP*?" and Q € D1*Y satisfying the relation RP = Q R'. Then, we have:

1. ker f = (DY 8)/(D'*9 R), where S € D"*P is a matriz defined by:

P /
kerp ( ( Iy >> =D (S —T), TeD*. (4.26)

/ P !
2. coim f = DYP/(DX7 ) 2 im f = <D1X(P+‘1) ( B >> /(DY R,

/ p P
3. coker f = DYP'/ (Dlx(pﬂ) ( R ))

The left D-module coker f admits the following beginning of a finite free resolution:

/

( : )
ixr (8 =T) 1x(p+q’) R 1xp' €
pir 51 p N2 pré € coker f — 0. (4.27)
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4. We have the following commutative exact diagram of left D-modules

0
Dxr Dxr =, coiinf —0
. . 4
Dllx;: LR Dllxgj’j N ]\i/f 0, (4.28)
cok{e:f

.S
—

where f*: coim f — M’ is defined by f*(k(\)) = 7' (A P) for all X € D'*P.

Corollary 4.4.1 ([19]). With the notations of Proposition 4.4.1, f € homp(M,M') is:
1. The zero homomorphism, i.e., f =0, iff one of the following equivalent conditions holds:

(a) There exists a matriz Z € DP9 such that P = Z R'. Then, there exists Z' € D%%
such that Q = RZ + Z' Rly, where R}, € D%*9 s such that kerp(.R') = D'% R).

(b) The matriz S admits a left inverse, i.e., there exits X € DP*" such that X S = I,,.
2. Injective, i.e., ker f = 0, iff one of the following equivalent conditions holds:

(a) There exists a matriz F € D% such that S = F R. Then, if p: M — coim f =
M/ ker f is the canonical projection onto coim f, then we have the following commut-
ative exact diagram of left D-modules:

0 0
7 T
Dixa B, pixp T, M — 0
T.F | To?
pixr 5, plxp &, coimf — 0.
T T
0 0

(b) The matriz (LT ST)T admits a left inverse, where L € DI%" is such that R = LS.

3. Surjective, i.e., im f = M’, iff (PT  R'™)T admits a left inverse.
Then, the long exact sequence (4.27) splits. In particular, there exist (X Y) e DP'*w+d)
and (UT V)T € DWH)<" yhere X € DP'*P| Y € DV'*X4 | U € DP*" and V e D77,
such that the following identities hold:

XP+YR =1,
PX+US =1,
PY -UT =0, (4.29)
RX+VS=0,
RY -VT=1I,.
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Moreover, we have the following commutative exact diagram of left D-modules:

0
7
DT S, plxe By coim f —0
Ty 1o W
pixa  Eopoe T g g
7
0

4. An isomorphism, i.e., M = M', if the matrices (LT SI)T and (PT  R'™)T admit left
inverses. The inverse f~1 of f is then defined by

YN e DX i (V) = 7 (N X)),

where X € DV'*P s defined in 3 and we have the following commutative exact diagram

Dlxq R pe T M — 0
1. -VF T .x I (4.30)
D1><q’ i D1><p’ Ll) M —0,

where ' € D™ Y s such that S = F R.

Example 4.4.1. Let us consider two PD systems used in the theory of elasticity: the Lie
derivative of the euclidean metric of R? defined in Example 4.1.2 and its Spencer operator:

01 =0,

0 — (=0,
9,6, =0, 2 C1— (2
1 01 ¢ =0,
7 (0261 +01&) =0, _
8{‘ —0 81C3+C2_07
2T 2 (3 =0,

02 (2 = 0.

For more details, see [85, 87] and Example 4.1.2. Let D = Q[d,02] be the commutative
polynomial ring of PD operators with rational constant coefficients,

o 0 o1 8 0 0 0 0\
R=| 10, 0, |eD™ R=|0 -1 0 1 0 0, € D53, (4.31)
0 62 0 0 0 81 82 0

and the finitely presented D-modules M = D'*2 /(D3 R) and M’ = D'*3/(D'*6 R’). We can
check that the following matrices

P_100 Q_1
~\oo 1)’ T2

S = O
o O O
S = O

0
0|, (4.32)
0

S O N
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satisfy the relation RP = Q R/, i.e., define f € homp (M, M’) by f(&) = ¢ and f(&) = (3.
With the notations of Proposition 4.4.1, we obtain that f is injective since the matrices

T
:<82 0, O 0> e
0 &

o 0

S O = O

2
0
20,

0
0

— 0,

satisfy the relation S = F' R. Moreover, f is surjective since the matrix (P7T R'T)T admits the
left inverse (X Y') defined by:

X:

These results prove that f is a D-isomorphism, M = M’ and f~! is defined by:

1 0
0 -0
0 1

Q) =4,

FHG) =—01& =0 &,

000000
eD>? Y=100010 0|eD>>
000000

FHG) = &.

(4.33)

Example 4.4.2. In Example 2.6.11, without giving a proof, we stated that (2.112) defined by

1/(85+83) 1/833—82 —85—%1183 25,8
1+v 1+v 1+v vy
vd2 -9 v (02+0?) -9 +vd? 0
1+v 1+v 1+v
vor-op  —aver v(%B49)
1+v 1+v 1+v
0y 0, _ayazu _uayaz 52
1+v 1+v 1+v r
_uaxaz Oz 0, _uaxaz 5,0,
14+v 14+v 14+v
v Oy Oy v Oz Oy Oy Oy 9, o,
14+v 14+v 14+v
Ox 0 0 0
9, 0 0.
0 0 0, Oy

20,0,

20,0,

(4.34)
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was equivalent to (2.113) defined by

2 H2 2
A+ —= L L 0O 0 O
1+v 1+v 1+v
0?2 0? 0?2
Y A+ —Y Y 0 0 0
1+v 1+v 1+v
2 2 2
% & A+ o 0 0 0 Oz
14+v 14+v 14+v
9, 0 9, 0 0, 0. 7y
A 0 O o,
l1+v 1+v 1+v =0, (4.35)
az az aa; 8z 8;3 az 0o A 0 Tyz
1+v 1+v 1+v Tox
0z Oy Oy Oy Oz Oy 0 0 A Tay
1+v 1+v 1+v
Oy 0 0 0 0. 0y
0 dy 0 9: 0 O
0 0 0, Oy 0 0

where A = 92 + (95 + 0?2 is the Laplacian operator in R3. Using Corollary 4.4.1, let us prove
this result. Let D = Q(v)[0s, 0y, 0] be the commutative polynomial ring of PD operators with
coefficients in Q(v) and R € D?*% (resp., R’ € D*%) the presentation matrix of (4.34) (resp.,
(4.35)). Using the OREMORPHISMS package ([20]), we can prove that R =V R, where V is the
unimodular matrix defined by:

14+v 1 1

1 _2+1/ _2—|—1/ 00 0 =0, 0y 0,
1 14+v 1

_2+V 24+ v _2—|—1/ 0.0 0 —3y 02
1 1 1

_2+V _2+1/ 2+4+v 0.0 0 ay —0

V= 0 0 0 1 00 0 -0, —8y € GLy(D).

0 0 0 01 0 -9, 0 —0y
0 0 0 001 =9y —0, 0
0 0 0 0 0 O 1 0 0
0 0 0 0 0O 0 1 0
0 0 0 0 0O 0 0 1

We have the following consequences of Corollary 4.4.1.

Corollary 4.4.2 ([105]). Let F be a left D-module, R € D?P, R' € DY*?' M = D' /(D% R),
M' = DY /(D™ R') and f € homp (M, M') defined by two P € DP*?" and Q € D?*Y satis-
fying RP = QR'. Then, we have:

1. If coker f = 0, then the following Z-homomorphism is injective:

[*ikerg(R.) — kerg(R.)
¢ — PC
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2. If ker f = 0 and exth(coker f, F) = 0 (i.e., F is an injective left D-module), then the Z-
homomorphism f* is surjective. Moreover, if homp(coker f, F) =0, then f* is bijective.

3. If f is a left D-isomorphism, then so is f* and f*~' is defined by

f*likerg(R) — kerg(R')
no— X,

where the matriz (X Y) is a left inverse of (PT  R'™)T with X € DY *P and Y € DP'*?
and we have the following commutative exact diagram of abelian groups:

T L kerg(R) —0
| -VE 1 x 1t
Fd L kerp(R) 0.

The next result is due to Fitting. But, we give here an explicit formulation.

Theorem 4.4.1 ([22]). Let M = DY¥? /(D¢ R) and M’ = D'*¥ /(D¢ R} be two left D-
modules finitely presented respectively by R € DU and R' € DV and ¢ : M — M' a
left D-isomorphism. Moreover, let Ry € D™ (resp., R € DT/X‘],) be a matriz such that
kerp(.R) = D" Ry (resp., kerp(.R') = D" R}). Then, there exist P € DP*?' | P’ ¢ DP'*P,
Qe D™, Q e DI*, Ze DP9, 7' € DV*Y Zy e D" and Zh € DI*"" such that:

RP=QR, PP +ZR=1, QQ +RZ+ZyRy =1,
R'P'=Q'R, P'P+Z R =1, QQ+RZ +Z,Ry=1I,.

1. The following two matrices

I, 0 R Q
I, P 0 Iy, —-P Z'
X = , Y= :
—P I,—P'P -Z P 0 PZ-2ZQ
-Q -R 0 7y Rl

are unimodular, i.e., X € GLp1p (D) and Y € GLyjp1ptq (D), and:

Z> Ry 0 -R -Q

woi_ (PP =P va_| PZ-z@ o P =7
B P’ Ly )’ B Z -P I, O

Q' R 0 I

2. The following commutative diagram of left D-modules holds

0 0 0

l ! !
D1x(g+p' +p+q') L, DIx(+p) 0 M -0

Ly | x lg (4.36)
D1x(g+p' +p+q') i) DIx(+p) 0’ M 0,

1 ! !

0 0 0
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where m &0 and 0 & ©' are defined by

Dix+p) TOO0 4r Dix@+p) 087 40
A XN) — 7w\, ANy — TN,

and with the following notations:

R 0 0 0

I = 0 Iy e platr'+p+d)x(+r") 1/ — 0 0 e Dlatp' +p+d)x(p+p)
0 0 ’ I, 0
0 0 0 R

Hence, we have LX =Y L', i.e., L' =Y VL X or equivalently L =Y L' X 1.

Example 4.4.3. Let us consider again Example 4.4.1. With the notations of Theorem 4.4.1,
the matrices X € GL5(D) and Y € GL14(D) are defined by

1 0 10 0 0 0 —-10 0
0 1 00 1 0 0 0 0 —1
X=|l-1 0 00 0], X*t=]l1 0o 1 0 0o [,
0 0 01 & 0 01 0 1 0
0 -1 00 0 0 1 0 0 1
1 0 0 0 O 0O &9 0 1 00 0 00
o 1 0 O 0 0 %8 300 0 3 0 3 0 0
o 0 1 0 0 0 0 & 0 00 0 1 0
o o0 o 1 0 0O -1 0 0 00 0 00
o o0 o0 O 1 0 0O 94 0 00 1 00
o o o o O 1 0O -1 0 00 0 00
y_| © 0o 0o 1 0 0 0o 0 0 00 0 00
o o0 o0 O O 1 0O 0 0 00 0 0 0]}
-1 0 0 - 0 0 O O 0 00 0 0 0
0O -2 0 -8 1 0 O 0 0 00 0 00
—0y 200 0 0 -3 0 0 0 -3 K 1 0 0 0
o 0 o0 0O -1 -9 0 0 0 00 0 0 0
o 0 -1 0 0 -39 0 0 0 00 0 00
0 0 & 0 -9 0 0 0 0 0 0 -3 O 1
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0 0 0 0 0 0 -0 0 -1 0 0 0 0 O
0 0 0 0 0 0 —3& -16, 0 -3 0 —3 0 0
0 0 0 0 0 O 0 —-0d 0 0 0 0 -1 0
0 0 0 0 0 O 1 0 0O 0 0 0 0 O
0 0 0 0 0 O 0 -0 0 0 0 -1 0 O
0 0 0 0 0 O 0 1 0o 0 0 0 0 O
v-1_ 0 0 0o -1 0 O 1 0 0o 0 0 0 0 O
0 0 0 0 0 -1 0 1 0O 0 0 0 0 O
1 0 0 o0 0 0 0 0 10 0 0 0 O
0 2 0 0 -1 0 0 0 0o 1 0 0 0 O
Oy —201 O 0 O 0 0 0o 0 1 0 0 O
0 0 0 0 1 o 0 0 0O 0 0 1 0 0
0 0 1 0 0 O 0 0 o 0 0 0 1 0
0 0 —-01 0 0 O 0 0 0o 0 0 0 o0 1
Then, the matrices L = (diag(R, I3)T 07)7 € D¥*% and L' = (07 diag(ls, R))T) € D*3
are equivalent, namely, we have:
00 0 0 O 01 0 0 00
000 0 0 2% 301 0 0 0
00 0 0 O 0 d 0 00
00 0 0 O 0 0 100
00 0 0 O 0 0 010
00 0 0 O 0 0 0 01
10 0 0 O 1 0 0 000
=Y X.
01 0 0 O 0 0 000
000, 0 O 0 0 000
00 0 -1 0 0 0 000
00 0 o O 0 0 000
00 0 1 0O 0 0 000
00 0 0 02 0 0 000
00 0 0 O 0 0 0 00

Finally, let us show how to use Theorem 4.4.1 to prove the result stated in Remark 2.3.1
on the Auslander transposes. Let M = D'*?/(D'*4 R) and M’ = D'*?' /(D% R') be two left
D-modules finitely presented respectively by R € D9P and R’ € DY*? and ¢ : M — M’ a
left D-isomorphism. Moreover, let N = D4/(R DP) (resp., N’ = DY /(R' D*")) be the Auslander
transpose right D-module of M (resp., M') and k : DI — N (resp., & : DY — N’) the
canonical projection onto N (resp., N'). With the notations of Theorem 4.4.1, we get:

cokerp(L.) = D\t +p+d) /([ p®+¥)) = pa/(R DP) @ DWHPHD) )(DP) = N g P+
cokerp(L'.) = DlatP'+p+d) /(p/ pe+p)y o platr'+e) /(pPy ¢ D /(R' DP') = D) gy N'.

Now, applying the contravariant left exact functor homp( -, D) to the commutative exact
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diagram (4.36), we obtain the following one:

0 0 0
| 1 t 1
0—— N Dwtd) SOty pgrretd) L Do) homp(M,D) «— 0
[RE Tx [
0 — Dlatr) g N Mt O pgapapre) L pot) homp (M, D) «— 0.
T ! T
0 0 0
(4.37)
Since Y € GLg4p/4p+q) (D), (4.37) induces the following right D-isomorphism
- D(a+P) @ N7 N @ Dw+d)
7 % (4.38)

(idgyp @ K)N) +— (k@ idprqg) (Y N),

which proves that N & D®+4¢) =~ N’g D@+r) We have just explicitly proved a result first due
to Auslander (see, e.g., [2]) which plays an important role in Chapter 2 (see Remark 2.3.1).

Theorem 4.4.2 ([2, 22, 94]). Let us consider two finite presentations of a left D-module M :
pa B, pixe a0 prxd A poal T

If we denote by N = D /(R D) and N' = DY /(R' D?') the Auslander transposes, then we have
the right D-isomorphism v defined by (4.38), i.e., N @ DWwtd) =~ N’ @ D) which proves
that N and N' are two projectively equivalent right D-modules.

Example 4.4.4. Let us consider again Example 4.4.1. Using Theorem 4.4.2, the Auslander
transposes N = D3/(RD?) = DY3/(D*2 RT) of the D-module M = D*2/(D'*3 R) and
N’ = DS/(R' D3) = D'*6/(D'*3 R'T") of the D-module M’ = D'*3/(D'*6 R') satisfy:

Na@ D8 =N o DS.

In particular, the above D-isomorphism is defined by (4.38), where the matrix Y € GL14(D) is
defined in Example 4.4.3. The D-module N corresponds to the following linear PD system

0_11
oot + 0,02 =0,
R | 2042 |=0 & TR (4.39)
29 81 o+ 82 g7 = 0,
o

where (o'l 012 022) is the symmetric stress tensor ([56]). Moreover, the D-module N’ corres-

ponds to the following linear PD system

Sl
S12
1 0ol + 0,02 =0,
RI| B =0 & {apt+dp?+o?—o2=0, (4.40)
222 81021+82022=O,
2
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where (0!, 0'2 021 522) is a possibly non-symmetric stress tensor and (u!, pu?) a couple-stress

([56]). In particular, if the couple-stress vanishes, then (4.40) becomes (4.39). (4.39) corresponds
to the equilibrium of the stress tensor (i.e., without couple-stress and density of forces) and (4.40)
corresponds to the equilibrium of the stress and couple-stress tensors (i.e., without density of
forces and volume density of couple) ([56]). This last system was discovered by E. and F. Cosserat
in 1909 and it is nowadays used in the study of liquid crystals, rocks and granular media.
See [86, 87] for a general variational formulation of Cosserat’s equations based on the Spencer
operator and Lie pseudogroups ([86, 87]) and extensions of Cosserat’s ideas in mathematical
physics (e.g., electromagnetism, general relativity).

4.5 Factorization problem

The next theorem gives a sufficient condition for the existence of a factorization of R.

Theorem 4.5.1 ([19]). Let M = D'? /(D4 R) and M’ = D'? /(D9 R') be two finitely
presented left D-modules and f € homp(M,M'). Every element f € homp(M,M') defines a
factorization of the matriz R € D?*P of the form

R=LS, (4.41)

where L € D" and S € D™ P are such that coim f = DYP /(D" §),

The following commutative exact diagram of left D-modules holds

0
!
0 ker f
! Li
pixa Eopoe Tooar (4.42)
l.r | iy
Dixr S, plxp 5 coim f 0,
! !
0 0

where p : M — coim f is the canonical projection onto coim f = M/ker f and p is defined by
p(m(N) = k() for all X\ € DY*P. In particular, if f is not injective, i.c., ker f # 0, then the
factorization R = LS is non-trivial.

If F is a left D-module and R = L S is a factorization, then kerz(S.) C kerz(R.), i.e., every
F-solution of the linear system Sn = 0 is a F-solution of the linear system Rn = 0.

Corollary 4.5.1 ([19]). With the notations of Proposition 4.4.1, if L € D" (resp., So € D"™*")
is a matriz such that R = L S (resp., kerp(.S) = D'*™2 S,), then we have:

ker f = pxry (i (1))
Sa

Moreover, if U = (LT STT ¢ DWtr2)XT and F is a left D-module, then the following short
exact sequence of abelian groups holds

0 — kerr(S.) — kerr(R.) — kerz(U.), (4.43)
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where the Z-homomorphisms 1 and w are respectively defined by:

t:kerr(S.) — kerg(R.) w:kerr(R.) — kerg(U.)
¢ — G n o= S

Finally, if F is an injective left D-module, then w is a surjective Z-homomorphism and:
kerr(R.)/ kerz(S.) = kerx(U.).

Example 4.5.1. Let us consider the acoustic wave for a compressible perfect gas

1 Op(z,t)

po V. 0(x,t) + R 0, a4
oz, t) = '
po i + Vpla,1) =0,

where = (1, o2, x3), ¥ = (v1 va v3)T (resp., p) is the perturbations of the speed (resp., pres-
sure), po the average density of gas and ¢ the speed of sound ([55]). Let D = Q(po, ¢)[0¢, 01, 02, 03]
be the commutative polynomial ring of PD operators with coefficients in Q(py, ¢),

0,
poOr pod2 po 03 C%

R—| P00 O 0 a |¢ D4,
0 L0 Oy 0 02
0 0 Po 8t 83

and the finitely generated D-module M = D'**/(D'*4 R) associated with (4.44). Comput-
ing the set of generators of the D-module endp(M) and their D-linear relations by means of
Algorithm 4.2.1, we obtain that a D-endomorphism f of M is defined by the following matrices:

0 03 —0y 0 0O O 0 0

-0 0 o 0 0 O 03 —0

P 3 1 7 Q _ 3 2
0y =01 0 0 0 —03 0 o1

0 0 0 0 0 0 —-01 0

Using Algorithm 2.2.1, we can compute kerp(.(PT  RT)T) and we obtain a presentation matrix
S of coim f and the factorization R = L S defined by:

o 0 33 0 o 00 0 Q;

pod 0 0 0 ¢

s=| 0o pa o of, =09 100
0 0 pod O 0 01 0 0O

0 0 0 1 0 00 1 &

We can check that ker f = (D'*58)/(D'** R) # 0, which shows that R = LS is a non-trivial
factorization of R and coim f = D'4/(D'*58) is a non-trivial D-submodule of M. If we
consider F = C°°(), where ) is an open convex subset of R* (e.g., @ = Ry x R?), then all
F-solutions of S = 0 have the form:

Uz, t) = v(z),

V. 3(z) =0,

p(z,t) =0,
Finally, we can check that this solution of Sn = 0 is a particular solution of (4.44).

N { ft) v b= o ¥3)T € C®OQNRY).
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Let us introduce the concept of a generic solution of the linear system kerz(R.).

Definition 4.5.1. Let F be a left D-module, M = D'*P/(D'*9 R) a finitely presented left
D-module and 7 : D'*P — M the canonical projection. Then, n € kerz(R.) is called a generic
solution if the left D-homomorphism ¢, : M — F defined by ¢, (7(\)) = A7 is injective.

Equivalently, n € kerz(R.) is generic if the left D-homomorphism ¢, : M — F defined by
é(yj) = n; for all j =1,...p, is injective, where {y; = m(f;)}j=1,. p is the set of generators of
M defined in Section 2.1 and {f;};—1,.., is the standard basis of D'?_In particular, we have

P P ¢ p
j=1 =1 =t a

and thus (d; ... dp) € D4 R. This is equivalent to saying that the solution 7 does not satisfy
other equations than those defined by the left D-module D'*9 R,

Example 4.5.2. Let M = D'*?/(D'*4 R) be a non-trivial finitely presented left D-module and
{y;}j=1,..p a family of generators of M, where 7 : D'*P — M is the canonical projection onto
M and {f;}j=1,.p the standard basis of D*P. As explained at the beginning of Section 2.1,
y=(y1 ... yp) € MP satisfies Ry = 0 and y corresponds to ¢, = idy; € endp(M) by the
isomorphism y : kerps;(R.) — endp(M) defined in Theorem 2.1.1, which shows that y is a
generic solution of the linear system kerps(R.) = endp(M).

Example 4.5.3. Let us consider the commutative polynomial ring D = Q[9] of OD operators,
the matrix R = (0> — 9) € D2 the D-module M = D'*2/(DR) and the D-module
F = D(R) of compactly supported smooth functions on R. If n = (11 172)7 € kerz(R.), i.e.,
0?m — On2 =0, then 9 (0n; —m2) = 0, i.e., m — 72 must be a constant of F. Since the only
constant of F is 0, we get dn; — n2 = 0, which proves that every n € kerz(R.) satisfies the new
equation dn; —ne = 0, i.e., kerg(R.) = kerz((0 —1).) =2 F and shows that no solution of
kerr(R.) is generic since (0 —1)¢ D R.

Let us study the converse of Theorem 4.5.1.

Corollary 4.5.2 ([105]). If R € D?*P, then the following assertions are equivalent:
1. There exist L € D" and S € D™ such that D' R C D" S and R=LS.
2. There exist a finitely presented left D-module F and f € homp(M,F) such that:

ker f # 0.

3. There exists a finitely presented left D-module F such that the linear system kerz(R.)
admits a non-generic solution in the sense of Definition 4.5.1.

Example 4.5.4. In this example, we show that an operator R € D can admit a non-trivially
factorization R = LS even if endp(M) is trivial (see [7, 97, 119]). Let us consider the OD
operator R = 02 +t0 € D = B1(Q). Without loss of generality, any element of endp(M) can
be defined by P = ad + b, where a, b € Q(t), which satisfies RP = Q R for a certain @ € D.
But, we first have:

RP=(0*4+1t0)(ad+b)=ad®+ (2a+ta+b)d*+ (a+t(a+b) +2b)d+b+th.
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Hence, @ has the form @ = a9 + ¢, where ¢ € Q(t), which yields
QR=(ad+c)(0*+td)=ad®*+ (ta+c)0*+ (a+tc)d,

and thus R P = @ R is equivalent to the following linear OD system:

2a4+b—c=0,
i+t(a+b—c)+2b—a=0,
b+tb=0.

If we denote by d = b, then the last equation gives d +td = 0, ie., d = C} e_tz/Q, and thus
b=C f(f =52 ds + Cy, where C1 and Cy are two arbitrary constants of Q. Since b € Q(t),
then C7 =0, i.e., b = (. The above system then becomes:

i—ta—a=2(a—ta)=0,
b:027
c=2a+ Cs.

The integration of the first equation gives @ —ta = Cs and thus a = (C4 +Cj [; e /2 ds)et’/?,
where C3 and Cy are two arbitrary constants of Q. Since, a € Q(t), we must have C5 = Cy = 0,
ie,, a =0 and b = ¢ = (3. Hence, we obtain P = @ = Cy, i.e., any element of endp (M) has
the form of f = Cyidys, where Cy is an arbitrary constant of QQ, and thus ker f = 0. Efficient
algorithms for computing rational solutions of linear OD systems, which do not need an explicitly
computation of the whole linear OD system, can be found in [1, 6] and the references therein.

Corollary 4.5.2 asserts that R admits a non-trivial factorization iff there exists a finitely
presented left D-module F and f € homp (M, F) such that ker f # 0. If we consider the finitely
presented left D-module F = D/(D 9) = Q(t), then the OD equation 7j + t7 = 0 admits the
non-generic solution n = C' € Q since 7 = 0, which shows that f € homp(M,F) defined by
f(m(N) = k(CA) for all A € D, where k : D — F is the canonical projection onto F, admits
the kernel ker f = (D 0)/(D R) # 0, which yields the non-trivial factorization R = L S, where:

L=0+t, S=0.
Let us now introduce the concept of a simple module.

Definition 4.5.2. A non-zero left D-module M is called simple if M has only 0 and M as left
D-submodules.

Example 4.5.5. The holonomic left D = A3(Q)-module M = D/(D &1 + D d2) = k[z1, 2] is
simple. Indeed, if L is a left D-submodule of M and z = dy is an element of L, where d € D,
y = 7w(1) is the generator of M and 7 : D — M the canonical projection onto M, then we can
assume without loss of generality that d € k[x1, 2] since y satisfies the following equations:

Dy =0
{ =" (4.45)
(92 Yy = 0.

Differentiating z with respect to x1 and z2 a certain number of times and using (4.45), we obtain
y =d z for a certain d’ € D, i.e., y € L, which proves L = M and M is a simple left D-module.
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Using Theorem 4.5.1, we obtain that the existence of a non-trivial factorization of R of the
foorm R = L S, i.e., D'*4 R C D" S implies that ker f # 0, which shows that M is not a simple
left D-module. Hence, if M is a simple left D-module, then any non-zero left D-endomorphism
of M is injective. Moreover, since im f is a non-zero left D-submodule of M and M is simple,
we get im f = M, which shows that any non-trivial f € endp(M) is an automorphism, i.e.,
f € autp(M). This last result is the classical Schur’s lemma stating that the endomorphism
ring endp (M) of a simple left D-module M is a division ring (see, e.g., [74]).

4.6 Reduction problem

Let us now state the second main result of this chapter on the reduction problem.

Theorem 4.6.1 ([19]). Let R € D9, M = DY? /(D' R) and f € endp(M) be defined by
two matrices P € DP*P and QQ € D9*9 such that RP = Q R. If the left D-modules

kerp(.P), coimp(.P), kerp(.Q), coimp(.Q),

are free of rank m, p—m, 1, ¢ — L, then there exist four matrices Uy € D™*P, Uy € DP—m)*p
Vi € D9 and Vo € DU=DX9 sych that

U=Ui vhT ecL,(p), v=Wl viHT e CQL,(D), (4.46)

and

ViRW, 0
VoRW1 Vo RWa

where U=t = (W, Wa) € DP*P, W, € DP*™ and W, € Dpx(p-m)

R:VRU1:< )eDW,

In particular, the full row rank matriz Uy (resp., Uz, Vi and Va) defines a basis of the free
left D-module kerp(.P) (resp., coimp(.P), kerp(.Q) and coimp(.Q)), namely, we have

kerp(.P) = DY Uy,
coimp(.P) = k(DX*E=m) 1,),
kerp(.Q) = DYV,
coimp(.Q) = p(D™ =D Vy),
where k : DY*P — coimp(.P) (resp., p: D4 — coimp(.Q)) is the canonical projection onto

coimp(.P) (resp., coimp(.Q)) and satisfy (4.46). In particular, we have the following two split
exact sequences

0 — pixm U pip T2 pixeem) g
.W1 ~U2
— —=

0 Dixl Wi D1xq L2 D1x(a=1) 0,
.Z1 ~V2
— —=

where U= = (W1 Wa) and V=1 = (Z1  Z5).

Example 4.6.1. Let us consider the following four complex matrices:

00 0 —i 0 0 0 -1 0 0 —i 0 10 0
N . | o010 s o 0o o L o1 o
7 o i o o |7 o 10 o |7 i 0o o o | 00 -1

i 0 0 0 100 0 0 —i 00 0 -1
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The Dirac equation for a massless particle has the form

L o)
jz::lfw on, 0, (4.47)

where ¥ = (1 o 3 i)l ([23]). Let D = Q(4)[01, 02, 03, O4] be the commutative polyno-
mial ring of PD operators (04 = —i 0),

Oy 0 —i 03 —(’i o + 82)
R— .O . O4 —301 + O 103