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1. INTRODUCTION

Internal stabilization of certain distributed pa-
rameters control systems uses Banach algebras
as L1(R), H1(C+ ) or the Callier-Desoer alge-
bras A(�) and Â(�) [3]. However, it is known
that all noetherian Banach algebras are �nite-
dimensional [10]. Hence, L1(R), H1(C + ) or the
Callier-Desoer algebras A(�) and Â(�) are not
noetherian rings, i.e. any ideal I of these alge-
bras cannot be written in general under the form
I =

Pn
i=1 Aai for some ai 2 A and n 2 N.

A direct consequence of this remark is that we
cannot study algebraic properties of these Banach
algebras by means of concepts and techniques
developed for noetherian rings, i.e. by means of
the main part of classical algebra.

The concepts of coherent rings and modules �rst
appeared in 1964 in some exercises of Bour-
baki [1]. Coherent rings include noetherian rings,
B�ezout domains, semi-hereditary rings...[9]. We
shall show that the class of coherent modules
is stable by sums, intersections, quotients, ten-

sor products, homomorphisms, localizations, and
thus, constitutes a good class to work with.

It was proved in [4] that if D is the unity disc and
� is a positive measure, then H1(D ) and L1(�)
are coherent rings. The result on H1(D ) was
extended in [8] to any �nitely connected domain
D of C . Thus, H1(C+ ) is also a coherent domain.

We prove that H1(C+ ) is a regular ring of weak
global dimension 2 and a Hermite ring [12] (see
also [13]). The paper shows that there is a one-to-
one correspondence between coherent H1(C+ )-
modules and systems de�ned by matrices with
entries in H1(C+ ). This correspondence is used
to characterize intrinsically the algebraic proper-
ties of these systems. We show that the results
of algebraic analysis obtained in [6,7] for linear
multidimensional systems are still valid for regular
coherent rings and, in particular, for H1(C+ ).
Hence, we try to develop in this paper a theory
of coherent H1(C+ )-modules for the study of
certain classes of distributed systems as the theory
of coherent D-modules is for the study of systems
of linear partial di�erential equations [2].



2. COHERENT RINGS AND MODULES

In the course of the paper, A denotes a commuta-
tive domain with a unity. We refer the reader [1,9]
to for basic de�nitions of module theory.

De�nition 1. � An A-moduleM is �nitely gen-
erated if there exists an exact sequence of the

form F0
d0�! M �! 0, where F0 is a �nite

free A-modules, i.e. F0 �= Ar0 , r0 2 Z+.
� An A-module M is �nitely presented (f.p.)
if there exists an exact sequence of the form

F1
d1�! F0

d0�! M �! 0; where F0 and F1
are �nite free A-modules.

Remark 1. From De�nition 1, we deduce that M
is a �nitely generatedA-module i� there exist r0 2
Z+ and a �nite family fy1; : : : ; yr0g of elements of
M such that:

m =

r0X
i=1

ai yi; ai 2 A; 8m 2M:

If fe1; : : : ; er0g (resp. ff1; : : : ; fr1g) denotes the
canonical basis of F0 �= Ar0 (resp. F1 �= Ar1), then
M is �nitely presented i� (yj)1�j�r0 satis�es:

(d0 Æ d1)(fi) = d0

0
@ r0X
j=1

Rij ej

1
A =

r0X
j=1

Rij yj = 0:

Thus, a �nitely presented A-module is de�ned by
a system with a �nite number of unknowns (r0)
and equations (r1).

De�nition 2. An A-module M is coherent if M is
a �nitely generated A-module and if any �nitely
generated submodule ofM is �nitely presented. A
ring A is coherent if it is coherent as an A-module.

Proposition 1. [1,2] If A is a coherent ring, then
an A-module is coherent i� it is �nitely presented.

Proposition 2. (1) [1,2] Let Mi; 1 � i � 4; and
M be A-modules such that we have the exact
sequence:

M1 �!M2 �!M �!M3 �!M4:

If, Mi are coherent A-modules for 1 � i � 4;
then M is a coherent A-module.

(2) [1,2] Let M;N;M 0 �M;M 00 �M be coher-
ent A-modules, I a coherent ideal and any
A-morphism � :M �! N , then:
(a) ker �; im �; coker� and coim� are co-

herent A-modules.
(b) M � N;M 0 +M 00;M 0 \M 00;M=M 0 are

coherent A-modules.
(c) M 
A N and homA(M;N) are coherent

A-modules.
(d) If S is a multiplicative set, then S�1A is

coherent A-module.
(e) IM is coherent A-module.

(f) ann(M) is a coherent ideal of A.

De�nition 3. � A projective (resp. free, at)
resolution of an A-module M is an exact
sequence of the form

: : :
d3�! P2

d2�! P1
d1�! P0 �!M �! 0; (1)

where Pi is a projective (resp. free, at) A-
module.
� We call projective (resp. at) dimension
pdA(M) (resp. w:dimA(M)) of M the mini-
mum number n 2 N [f+1g such that there
exists a projective (resp. at) resolution ofM
of length n, i.e.:

0 �! Pn
dn�! : : :

d2�! P1
d1�! P0 �!M �! 0:

� The weak global dimension of a ring A is:

w:gl:dim(A) = sup fw:dimA(M)
j 8 A�moduleMg:

Corollary 1. Let A be a coherent ring and M a
�nitely presented A-module, then there exists a
�nite free resolution of M (Fi �= Ari ; ri 2 Z+):

: : :
d3�! F2

d2�! F1
d1�! F0 �!M �! 0: (2)

Proof. By 1 of Proposition 2, we prove by induc-
tion that Ari , ri 2 Z, is a coherent A-module. The
kernel of an homomorphism between two coherent
A-modules is a coherent A-module and, by Propo-
sition 1, it is a �nitely presented A-module...

Remark 2. Using the canonical basis of Fi �= Ari ,
the exact sequence (2) can be written as

: : :
:R2�! Ar1 :R1�! Ar0 �!M �! 0; (3)

where Ri is a ri�ri�1 matrix with entries in A and
:Ri : A

ri ! Ari�1 is de�ned by letting operate a
row vector of length ri on the left of Ri to obtain
a row vector of length ri�1. By Remark 1, M is
de�ned by R1 y = 0, where yi is the class of ei in
M and fe1; : : : ; er0g is the canonical basis of A

r0 .

De�nition 4. LetM andN be twoA-modules and
a projective resolution (1) of M , then:

� The defects of exactness of

: : :
d?2 � homA(P1; N)

d?1 � homA(P0; N) � 0; (4)

where d?i is de�ned by d?i (f) = f Æ di; 8 f 2
homA(Pi�1; N), only depend on M and
N and not on (1) [1,9]. They are called
extiA(M;N). Therefore, we have:
�
ext0A(M;N) = ker d?1 = homA(M;N);
extiA(M;N) = ker d?i+1=im d?i ; i � 1:



� The defects of exactness of

: : :
idN
d2�! N 
A P1

idN
d1�! N 
A P0 �! 0; (5)

where idN 
 di is de�ned by (idN 
 di)(n 

m) = n 
 di(m); 8n 2 N;8m 2 Pi; only
depend on M and N and not on (1) [1,9].
They are called torAi (M;N) and we have:�
torA0 (M;N) = coker(idN 
 d1) = N 
A M;

torAi (M;N) = ker(idN 
 di)=im(idN 
 di+1):

Remark 3. If A is a coherent ring, M a coherent
A-module, then M has a �nite free resolution of
the form (3) and (4) is de�ned by

: : :
R3: � Nr2 R2: � Nr1 R1: � Nr0  � 0;

where Ri: : N
ri�1 ! Nri is de�ned by letting

operate a column vector of length ri�1 with entries
in N on the right of Ri to obtain a column vector
of length ri with entries in N . Therefore, we have:

extiA(M;N) = kerN (Ri+1:)= imN (Ri:); 8 i � 1:

Similarly, (5) becomes the complex

: : :
:R2�! Nr1 :R1�! Nr0 �! 0;

where :Ri : Nri ! Nri�1 is de�ned by letting
operate a row vector of length ri with entries in
N on the left of Ri to obtain a row vector of length
ri�1 with entries in N . Therefore, we have:

torAi (M;N) = kerN (:Ri)=imN (:Ri+1); 8 i � 1:

Corollary 2. If A is a coherent domain, M and
N two coherent A-modules, then extiA(M;N) and
torAi (M;N) are coherent A-modules for i � 0, and
extiA(M;A) is a torsion A-module for i � 1.

Let us note M? = homA(M;A).

De�nition 5. Let M be an A-module de�ned by
a �nite presentation:

F1
d1�! F0 �!M �! 0:

We call the transposed module ofM , the A-module
T (M) = cokerd?1 de�ned by:

0 � T (M) � F ?
1

d?1 � F ?
0 :

Theorem 1. Let A be a coherent integral domain
and K = Q(A) its �eld of fractions. If M is a
�nitely presented A-module such as its transposed
A-module N = T (M) has a �nite projective
resolution of length n, then we have:

� t(M) �= torA1 (K=A;M) �= ext1A(N;A);
� M is torsion-free i� ext1A(N;A) = 0,
� M is reexive i� extiA(N;A) = 0; i = 1; 2;
� M is projective i� extiA(N;A) = 0; 1 � i � n.

The proof can be obtained as in [6,7] in chang-
ing �nitely generated modules (resp. noetherian
rings) by �nitely presented (resp. coherent) ones.

Proposition 3. Let M be an A-module de�ned by
the following �nite free presentation

0 �! F1
d1�! F0 �!M �! 0;

then M is projective i� T (M) �= ext1A(M;A) = 0.

3. H1(D) IS A REGULAR COHERENT RING
& W:GL:DIM(H1(D)) = 2

Theorem 2. [8,4] If D is a �nitely connected
domain of C and � a positive measure, then
H1(D) and L1(�) are coherent rings. In partic-
ular, H1(C+ ), H1(D ), where D is the unit disc,
L1(R+ ) and L1(R) are coherent rings.

We shall only consider the cases D = C+ and D .

The proof of the coherence of H1(D) is based on
the following theorem, which is a weak�? version
of the Beurling-Lax theorem [5]. The condition on
m is given by point 2 of the lemma on the local

rank page 44 of [5] (see also the remark page 45).

Theorem 3. Let R be a q � p-matrix with entries
in H1(D) and the following H1(D)-morphism:

R : H1(D)p �! H1(D)q

z = (z1; : : : ; zp)
t �! Rz:

Then, there exists a p � m-matrix R�1, with
entries in H1(D), such that:

kerR = R�1H1(D)m; (6)

Rt
�1(�s)R�1(s) = Im; (7)

m = p� rankR; (8)

where rankR is the maximal number of H1(D)-
linearly independent rows or columns of R.

Corollary 3. If M is a �nitely presented H1(D)-
module, then pdH1(D)(M) � 2.

Proof. Let H1(D)q
:R
�! H1(D)p �!M �! 0 be

a �nite presentation of M . By Theorem 3, up to a
transposition, there exists a r� q-matrix R1 with
entries in H1(D) such that we have the exact
sequence:

H1(D)r
:R1�! H1(D)q

:R
�!

H1(D)p �!M �! 0:
(9)

From the exactness of (9), we obtain:

rank (ker :R1) + rankM = r + p� q:

From the exact sequence

0 �! im:R �! H1(D)p �!M �! 0;

we deduce rankM = p�rankR: Finally, from (8),
we have r = q�rankR:Therefore, rank (ker :R1) =



0, i.e. ker :R1 is a torsion H1(D)-module. But,
ker :R1 is a sub-module of the freeH1(D)-module
H1(D)q , which is only possible if ker :R1 = 0,
because a free module is torsion-free. Hence, any
�nitely presented H1(D)-module M has a �nite
free resolution of length less or equal to 2.

Example 1. The ideal I =
�

1
s+1 ; e

�s
�
ofH1(C+ )

has the following �nite free resolution

0 �! H1(C+ )
R�1:
�! H1(C + )

2 R:
�! I �! 0;

with R =
�

1
s+1 e�s

�
,R�1 =

�
�1

s+
p
2

s+1
s+
p
2
e�s
�t
:

Hence, the H1(C+ )-module N = H1(C + )=I has
a �nite free resolution of length 2. Finally, N is
de�ned by the following two equations

e�s z = 0;
1

(s+ 1)
z = 0;

where z is the class of 1 in N . We have

inf
Res>0

�
j e�s j +

1

j s+ 1 j

�
= 0;

and, by the Corona theorem [5], 1 =2 I , N 6= 0,
i.e. I is not a free (projective) H1(C + )-module.

Corollary 4. w:gl:dim(H1(D)) = 2:

Proof. Using Corollary 3 and the fact that every
�nitely presented at module is projective [1,9],
then any �nitely presentedH1(D)-moduleM has
a �nite at resolution of length less or equal to 2:

w:dim(M) = pd(M) � 2:

w:gl:dim(H1(D)) is attained by taking the supre-
mum of the weak dimension of �nitely presented
modules [1,9], and, using Example 1, we obtain:

w:gl:dim(H1(D)) = sup fpd(M) jM f.p.g = 2:

Remark 4. Corollary 4 shows that, for any �nitely
presented H1(D)-module M , we have:

extiH1(D)(T (M); H1(D)) = 0; 8 i � 3:

Hence, using Theorem 1, any �nitely presented
H1(D)-module M satis�es only one of the fol-
lowing cases: t(M) 6= 0, M is torsion-free but not
projective or M is projective. These three cases
are the intrinsic formulations of the well-known
concepts for a matrix R to be (or not to be ?)
weakly-prime or to be strongly-prime [11].

Example 2. Let us consider the H1(C + )-module
M de�ned by the following free presentation

0 �! H1(C + )
:R
�! H1(C + )

2 �!M �! 0;

where R is de�ned in Example 1. We have the
following exact �nite free resolution ofN = T (M):

0 � N  � H1(C+ )
R:
 � H2

1(C+ )
R�1:
 � H1(C + ) � 0:

(10)

Dualizing (10), we obtain the sequence:

H1(C+ )
:R
�! H2

1(C+ )
:R�1
�! H1(C+ ) �! 0:

We easily check that:

ext1(N;H1(C + )) = ker(:R�1)=H1(C+ )R = 0;
ext2(N;H1(C + )) = H1(C+ )=H

2
1(C+ )R�1;

= H1(C+ )=J:

where J =
�

�1
s+
p
2
; s+1
s+
p
2
e�s
�

is an ideal of

H1(C + ). We easily check that J = I , where I
is de�ned in Example 1. Thus:

1 =2 J = I ) ext2H1(N;H1(C+ )) 6= 0:

Hence, M is torsion-free but not projective.

Example 3. Similarly, we easily check that the
H1(C + )-module M = H1(C+ )

2=H1(C+ )R,

where R =
�
s�1
s+1 �

e�s

s+1

�
; is projective. We can

also use the Corona theorem [5] to show that
T (M) = 0, and, by Proposition 3, we obtain that
M is a projective H1(C+ )-module.

De�nition 6. A ring A is regular if any �nitely
generated ideal has a �nite projective dimension.

Corollary 5. H1(D) is a regular ring.

Corollary 6. Any f.p. projective H1(D)-module
is free, i.e. H1(D) is a Hermite ring.

Proof. Let M be a projective �nitely presented

H1(D)-module F1
d1�! F0 �! M �! 0; and

N = T (M). Then, N is a coherent A-module and,
by Theorem 3, N has a free resolution of length 2:

0 � N  � F ?
1

d?1 � F ?
0

d?2 � F ?
�1  � 0:

M is a projective H1(D)-module, then by Theo-
rem 1, we have

ext1H1(D)(N;H1(D)) = ext2H1(D)(N;H1(D)) = 0;

which means that we have the exact sequence

F1
d1�! F0

d2�! F�1 �! 0, i.e. M �= F�1 is free.

Corollary 6 was only proved in [12] for full row
rank q � p matrices with entries in H1(D ).

Example 4. The H1(C+ )-module M de�ned in
Example 3 is projective, and thus, free by Corol-
lary 6. M is de�ned by the equation�

s� 1

s+ 1

�
y �

�
e�s

s+ 1

�
u = 0;

where y (resp. u) is the class of e1 = (1 0)
(resp. e2 = (0 1)) in M . We can check that

z = 2 e y+
�
1 + 2

�
1�e�(s�1)

s�1
��

u is a basis ofM :

y =

�
e�s

s+ 1

�
z; u =

�
s� 1

s+ 1

�
z:



Let us call H1(D)-system, any system de�ned by
a matrix R with entries in H1(D), i.e. a system
of the form Rz = 0; where z is a set of variables.

Corollary 7. H1(D)-systems and coherentH1(D)-
modules are in a one-to-one correspondence.

4. COHERENT RINGS OF WEAK GLOBAL
DIMENSION 2

Theorem 4. If A is a Hermite coherent integral
domain with w:gl:dimA � 2, then, for any A-

module M de�ned by F1
d1�! F0 �! M �! 0,

there exist a free A-module F 001 and two homo-
morphisms d001 : F 001 ! F0 and d01 : F1 ! F 001 such
that d1 = d001 Æd

0
1 and we have the exact sequences:

0 �! F 001
d001�! F0 �!M=t(M) �! 0; (11)

0 �! ker d1 �! F1
d01�! F 001 �! t(M) �! 0: (12)

Proof. We have the commutative exact diagram

0 0
# #

ker d01 0 t(M)
# # #

F1
d1�! F0

�
�! M �! 0

# d01 k # p

0 �!ker � �! F0
�
�! M=t(M) �! 0

# # #
cokerd01 0 0
#
0

where � = p Æ� and d01 : F1 ! ker� is induced by
the identity homorphism from F0 to F0. An easy
chase in the diagram shows that ker d01 �= kerd1
and cokerd01 �= t(M). Now, let us prove that
ker� is a free A-module.M=t(M) is a coherent A-
module over a coherent ring, thus, it has a �nite

free presentation P1 �! F0
�
�! M=t(M) �! 0.

Let us take a �nite free resolution of T (M=t(M)):

0 � T (M=t(M)) � P ?
1  � F ?

0  � F ?
�1:

M=t(M) is a torsion-free A-module, and thus,
ext1A(T (M=t(M)); A) = 0, i.e. we have the exact
sequence:

0 �!M=t(M) �! F�1 �! F�1=(M=t(M)) �! 0:

Hence, we have the following exact sequence:

0 �! ker� �! F0
�
�! F�1
�! F1=(M=t(M)) �! 0:

An argument of homological algebra shows that

pdA(F1=(M=t(M))) � 2) pdA(ker�) = 0;

i.e. ker� is a �nitely generated projective (free) A-
module (A is a Hermite ring). Thus, ker� �= F 001
which gives (11) and (12).

Corollary 8. If A is a Hermite coherent domain
with weak global dimension w:gl:dim(A) � 2
and K = Q(A), then every transfer matrix T 2
Kq�(p�q) can be written as T = D�1N where the
matrix (D �N) 2 Aq�p is weakly left-prime, i.e.
Kq (D �N) \ Ap = Ap (D �N).

Proof. By Theorem 4, for any full rank q � p-
matrix R (0 < q � p), there exist a full rank
q � q-matrix R0 and a full rank q � p-matrix R00

such that R = R0R00 and M=t(M) = Ap=Aq R00.
M=t(M) is a torsion-free A-module, and thus, R00

is weakly left-prime [7]. If T is a matrix with
entries inK = Q(A), then we can use the previous
result with R = (dIq � H), where d is the
product of all the denominators of the entries of
T . Hence, we have (dIq � H) = R0 (D � N),
where R00 = (D � N) is left weak-prime and
det(R0) 6= 0. Therefore:�

dIq = R0 D () det(D) 6= 0);
H = R0N;

) T = (dIq)
�1H = (R0D)�1(R0N) = D�1N:

Theorem 5. Let A be a Hermite coherent integral
domain with w:gl:dimA � 2, R a full rank q �
p-matrix (0 < q � p) with entries in A and
M = Ap=Aq R. Then, there exist � 2 A, R�1 2
Ap�(p�q), S 2 Ap�q and S�1 2 A(p�q)�q such
that we have the extended B�ezout identities:

(1)
�
S R�1

� � R
S�1

�
= � Ip;

(2)

�
R
S�1

��
S R�1

�
= �

�
Iq 0
0 Ip�q

�
:

Proof. The matrix R is full rank, and thus, M is
de�ned by the following �nite free presentation:

0 �! Aq :R
�! Ap �!M �! 0:

The A-module N = T (M) is de�ned by the
following exact sequence:

0 � N  � Aq R:
 � Ap  � kerR: � 0:

A is a coherent ring with w:gl:dimA � 2, and
thus, any �nitely presented A-module has a pro-
jective dimension less or equal to 2. In particular,
pdA(N) � 2 ) pdA(kerR:) = 0, i.e. kerR: is a
projective A-module. But, A is a Hermite ring,
and thus, kerR: is a free A-module. Moreover,
rank(kerR:) = p � q, because N is a torsion A-
module. Therefore, kerR: �= Ap�q . Hence, we have
the following exact sequence:

0 � N  � Aq R:
 � Ap R�1:

 � Ap�q  � 0: (13)

Dualizing (13), we obtain the following complex:

0 �! Aq :R
�! Ap :R�1

�! Ap�q �! 0: (14)



The two possible defects of exactness of (14) are:�
ext1A(N;A) = ker :R�1=Aq R;
ext2A(N;A) = Ap�q=Ap R�1:

We have shown in Corollary 2 that extiA(N;A) is
a torsion coherent A-module for i � 1. Therefore,
using (f) of Proposition 2, ann(extiA(N;A)) is
a coherent ideal of A for i � 1. In particular,
ann(extiA(N;A)) is a �nitely generated ideal. Let
�i 2 ann(extiA(N;A)) for i = 1; 2 and:

� =
Y

fi=1;2 j�i 6=0g
�i:

Then, we have � extiA(N;A) = 0 for i = 1; 2: Let
us denote by S the multiplicative set formed with
�, i.e. S = f1; �; �2; : : : ; �k ; : : :g and:

S�1A =
na
s
j a 2 A; s 2 S

o
:

We denote S�1A by A� . ext
i
A(N;A) is a coher-

ent A-module over a coherent ring A, and thus,
extiA(N;A) is a �nitely presented A-module. A�

is a at A-module, and thus, we have [1,9]:

extiA�(A� 
A N;A�) �= A� 
A extiA(N;A) = 0:(15)

Moreover, we can easily prove that:

T (A� 
A M) �= A� 
A T (M) (16)

Finally, using (15) and (16), we see that A� 
A
M is a projective A�-module. Hence, the tensor
product A� 
A � of (14), we obtain the sequence:

0 �! Aq
�

:R
�! Ap

�

:R�1
�! Ap�q

� �! 0; (17)

which is exact because of (15). Therefore, (17)
splits [1,9], and, in particular, there exist S0 2
Ap�q
� and S0�1 2 A

(p�q)�q
� such that we have:

�
�
S0 R�1

� � R
S0�1

�
= Ip;

�

�
R
S0�1

��
S0 R�1

�
=

�
Iq 0
0 Ip�q

�
:

Chasing the denominators of S0 and S0�1, we
obtain the extended B�ezout identities 1 and 2.

5. CONCLUSION

Following ideas of Zames, a class of SISO plants
needs to have a structure of an algebra if we want
to put two systems in series, in parallel or in
feedback. Any mathematical models of plants are
only approximations of real systems. This remark
shows that the algebra of SISO plants has to be
endowed with a norm in order to take into account
the errors in the modelization. It seems to be
fair to ask this normed algebra to be complete to
de�ne a good topology and to deal with a concept

of closeness for two systems. Therefore, we require
that this algebra is a Banach algebra. But, non-
trivial Banach algebras are not noetherian rings,
and thus, a main part of classical algebra cannot
be used to study the properties of these systems.

We hope to have convinced the readers that the
only alternative to study �nitely generated alge-

braic objects is to ask the Banach algebra A,
modelling the class of plants, to be a coherent

domain. Indeed, the fact that any MIMO plant is
de�ned by a means of a �nite number of unknowns
and equations, i.e. by means of a matrix with
entries in A, implies that MIMO plants are in cor-
respondence with coherent A-modules. Coherent
modules are stable by the main standard algebraic
manipulations, and thus, we can characterize the
structural properties of MIMO systems by means
of modules properties using homological algebra.
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