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Abstract: We give a necessary and suÆcient condition so that a system is internally
stabilizable and we prove that any system � de�ned by a transfer matrix with entries
in the �eld of fractions K = Q(A) of A � is internally stabilizable if and only if A is
a Pr�ufer domain. Hence, if A is a Pr�ufer domain which is not a B�ezout domain,
then there exist some internal stabilizable plants which have no doubly coprime
factorizations. Moreover, we show that if the ring A is a Hermite ring, then it is
possible to parametrize all the stabilizing controllers of an internally stabilizable plant
by means of the Youla parametrization. Finally, our approach of synthesis problems,
based on algebraic analysis [13], allows to recover in a unique framework the di�erent
results obtained in [9,10,15,16]. Copyright C 2001 IFAC.
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1. INTERNAL STABILITY

Let A be an algebra of SISO stable plants which
forms a commutative integral domain and K =
Q(A) its �eld of fractions. Let us consider the
closed-loop formed by a plant P 2 Kq�(p�q) and
a controller C 2 K(p�q)�q given in Figure 1. The
equations of the closed-loop are:

8>><
>>:
e1 = u1 + P e2;
e2 = u2 + C e1;
y1 = e2 � u2;
y2 = e1 � u1:

(1)

De�nition 1. � The closed-loop (1) is well-

posed if the matrix

�
Iq �P
�C Ip�q

�
is invertible.

� The plant P is internally stablizable if there
exists a controllerC such that the closed-loop
is well-posed and:

�
Iq �P
�C Ip�q

��1
2 Ap�p: (2)

Let us write P = Dp
�1Np and C = Dc

�1Nc,
where Dp; Np; Dc; Nc are matrices with entries in
A (e.g. Dp = dp Iq and Dc = dc Ip�q , where dp
(resp. dc) is the product of all denominators of
the entries of P (resp. of C)). We have:

(1),

8>><
>>:
Dp e1 �Np e2 �Dp u1 = 0;
�Nc e1 +Dc e2 �Dc u2 = 0;
y1 � e2 + u2 = 0;
y2 � e1 + u1 = 0:

(3)

Let us de�ne Rp = (Dp �Np); Rc = (�Nc Dc);

R =

�
Dp �Np �Dp 0
�Nc Dc 0 �Dc

�
;

Rs =

0
BB@

Dp �Np �Dp 0 0 0
�Nc Dc 0 �Dc 0 0
0 �Ip�q 0 Ip�q Ip�q 0
�Iq 0 Iq 0 0 Iq

1
CCA ;

and the A-modules:

Mp = Ap=Aq Rp; Mc = Ap=Ap�q ; Rc;
M = A2p=Ap R; Ms = A3p=A2pRs:

Lemma 1. [13] We have Ms =M �=Mp �Mc:



Proposition 1. Let P = D�1p Np be a plant, C =
D�1c Nc a controller and the A-modules Mp =
Ap=Aq (Dp �Np) and Mc = Ap=Ap�q (�Nc Dc).
If the plant P is internally stabilizable by the
controller C, then Mp=t(Mp) and Mc=t(Mc) are
projective A-modules.

Proof. Let us note

T =

�
Iq �P
�C Ip�q

��1
=

�
Rp

Rc

��1�
Dp 0
0 Dc

�

= H (dIp)
�1;

where d is obtained by making all the entries of
T under the same denominator after possible nu-
merators/denominators simpli�cations. We have�

Rp �Dp 0
Rc 0 �Dc

�
d I2p =

�
Rp

Rc

� �
dIp �H

�
;

and the commutative diagram given in Figure 2
where Mt = A2p=Ap (dIp �H) and � :M !Mt

is de�ned by �(m) = �0(u d), with �(u) = m.
By the Snake lemma [2,14], we obtain the two
following exact sequences:

0 �! ker� �!M
��!Mt �! coker� �! 0;(4)

0 �! ker� �! Ap=Ap(Rt
p Rt

c)
t �!

A2p=A2p dI2p �! coker� �! 0:
(5)

P is internally stabilizable if d = 1, i.e.:8<
:
Mt
�= Ap;

A2p=A2p dI2p = 0) coker� = 0;
ker� �= Ap=Ap (Rt

p Rt
c)
t:

Then, using (4), we obtain the exact sequence:

0 �! Ap=Ap (Rt
p Rt

c)
t �!M

��!Mt �! 0: (6)

The A-module Ap=Ap (Rt
p Rt

c)
t is a torsion

module and Mt
�= Ap is a torsion-free A-module.

Thus, we have t(M) �= Ap=Ap (Rt
p Rt

c)
t and

M=t(M) �=Mt
�= Ap: But, t(M) �= t(Mp)�t(Mp),

and thus, we have

M=t(M) �=Mp=t(Mp)�Mc=t(Mc) �= Ap;

i.e. Mp=t(Mp) is a projective A-module.

Theorem 1. The plant P = D�1p Np is internally
stabilizable i� the A-module Mp=t(Mp) is a pro-
jective A-module, where Mp = Ap=Aq Rp with
Rp = (Dp �Np).

Proof. ) It was proved in Proposition 1.

( Let Mp=t(Mp) be a projective A-module. We
have the following commutative exact diagram

0
#

0 0 t(Mp)
# # #

0 �! Aq :Rp�! Ap ��! Mp �! 0
# � k # p

0 �! ker� �! Ap ��! Mp=t(Mp) �! 0;
# # #

coker� 0 0
#
0

(7)

where we have de�ned � = p Æ � and � : Aq �!
ker� is induced by id : Ap �! Ap. Therefore,
there exists an exact sequence of the form:

0 �! ker� �! Ap ��!Mp=t(Mp) �! 0: (8)

The fact that Mp=t(Mp) is a projective A-module
implies that the exact sequence (8) splits [2,14],
and thus, we have Ap �=Mp=t(Mp)� ker�. Thus,
ker� is also a projective A-module.

The fact that ker� is a projective A-module is
equivalent to the existence of a family fa1; : : : ; amg
of elements of A satisfying [2,14]:

(1) the ideal (a1; : : : ; am) is equal to A, i.e. 9 xi 2
A :
Pm

i=1 xi ai = 1,
(2) If Sai = f1; ai; a2i ; : : :g is the mutiplicative set

de�ned by ai, then S
�1
ai ker� is a free S�1ai A-

module.

S�1ai A is a at A-module, and thus, we obtain the
exact sequence of free S�1ai A-modules:

0 �! S�1ai (ker�) �! (S�1ai A)p

S�1
ai

��! S�1ai (Mp=t(Mp)) �! 0:
(9)

The fact that t(Mp) is a torsion A-module im-
plies that rankA(t(Mp)) = 0: Thus, we have
rankA(Mp=t(Mp)) = rankA(Mp) and:

rankA(ker�) = p� rankA(Mp) = q: (10)

If we note S�1ai A = Ai, then S�1ai ker� is a free
Ai-module of rank q. Hence, taking a basis of
S�1ai ker� �= Aq

i , there exists a q � p-matrix Ri

with entries in Ai such that (9) becomes:

0 �! Aq
i

:Ri�! Ap
i �! S�1ai (Mp=t(Mp)) �! 0:

By hypothesis, Mp=t(Mp) is a projective A-
module, and thus, S�1ai (Mp=t(Mp)) is also a pro-
jective Ai-module [2,14]. Hence, the previous ex-
act sequence splits [2,14], and thus, there exists a
p� q-matrix Si with entries in Ai such that:

Ri Si = Iq : (11)

Let us note Rp = (Dp �Np); Ri = (Di �Ni):We
�rst prove that we have P = D�1p Np = D�1i Ni:



By localization of (7) by S�1ai , we obtain the
following commutative exact diagram:

0
#

0 0 S�1ai t(Mp)
# # #

0 �! Aq
i

:Rp�! Ap
i �! S�1ai Mp �! 0

# :R0i k #
0 �! Aq

i
:Ri�! Ap

i �! S�1ai (Mp=t(Mp)) �! 0
# # #

Aq
i =A

q
i R

0
i 0 0

#
0

Hence, we have Rp = R0iRi, i.e.

(Dp �Np) = R0i (Di �Ni); (12)

where R0i is a full rank q � q matrix and
S�1ai t(Mp) �= Aq

i =A
q
i R

0
i. Thus, we have:

P = D�1p Np = (R0iDi)
�1(R0iNi) = D�1i Ni:

Chasing the denominators of each Ri and Si, there
exists �i 2 Z+ such that all the entries of each
matrix a�ii Si Ri are in A. If � = max1�i�m �i,
then we have for i = 1; : : : ;m:

a�i Si Ri = a�i

�
XiDi �XiNi

YiDi �YiNi

�
2 Ap�p: (13)

Using the fact that (a1; : : : ; am) = A, then there
exists a family fb1; : : : ; bmg of elements of A such
that

Pm
i=1 bi a

�
i = 1: From (12), we obtain:

Dp =
mX
i=1

bi a
�
i Dp =

mX
i=1

bi a
�
i R

0
iDi; (14)

Np =

mX
i=1

bi a
�
i Np =

mX
i=1

bi a
�
i R

0
iNi: (15)

Let us de�ne:

S =

mX
i=1

bi a
�
i SiDi: (16)

If we note Si = (Xt
i Y t

i )
t, then we have:

S =

0
@
 

mX
i=1

bi a
�
i XiDi

!t  X
i=1m

bi a
�
i YiDi

!t
1
A
t

:

We claim that the following controller

C = �
 

mX
i=1

bi a
�
i YiDi

! 
mX
i=1

bi a
�
i XiDi

!�1

internally stabilizes the plant P , i.e. all the entries
of the following matrix belong to A:�

Iq �P
�C Ip�q

��1
=�

(Iq � PC)�1 (Iq � PC)�1P
C(Iq � PC)�1 Ip�q + C(Iq � PC)�1P

�
:

We check the four identities given in Figure 3.

Remark 1. Similarly as Theorem 1, one can prove
that P = ~Np

~D�1p is internally stabilizable by

C = ~X�1 ~Y i� ~Mp = Ap�q=Ap ( ~N t
p

~Dt
p)
t is such

that ~Mp=t( ~Mp) is a projective A-module.

Corollary 1. [13] If Mp = Ap=Aq (Dp � Np) is
a torsion-free A-module, then P = D�1p Np is
internally stabilizable i� Mp is a projective A-
module. Moreover, a stabilizing controller has the
form C = �Y X�1; where S = (Xt Y t)t is any
right inverse of Rp = (Dp �Np), i.e. any matrix
S 2 Ap�q satisfying Rp S = Iq .

Proposition 2. [13] Let M = Ap=Aq R be an A-
module de�ned by a matrix R 2 Aq�p. Then,
M=t(M) is a projective A-module i� RAq is a
projective A-module.

Corollary 2. The plant P = D�1N is internally
stabilizable i� (D � N)Ap is a projective A-
module.

This corollary was �rst proved in [9,16].

De�nition 2. [2,14] A domain A is a Pr�ufer do-

main if any �nitely generated ideal is projective,
or equivalently, if any �nitely generated torsion-
free A-module is projective. A Dedekind domain

is a noetherian Pr�ufer domain.

Theorem 2. The propositions are equivalent:

(1) A is a Pr�ufer domain,
(2) any MIMO system de�ned by a transfer

matrix T with entries in K = Q(A) is
internally stabilizable,

(3) any SISO system de�ned by a transfer func-
tion T = n=d, with (n; d) 2 A � An0, is
internally stabilizable.

Proof. 1 ) 2 Let K = Q(A) and T = D�1N 2
Kq�(p�q) be the transfer matrix de�ning the plant
(take for D = d Iq the product of all the de-
nominators of the entries of T ). Therefore, any
system is de�ned by a �nitely presented A-module
Mp = Ap=Aq R, where R = (D �N) 2 Aq�p. If
A is a Pr�ufer domain, thenMp=t(Mp) is a torsion-
free, i.e. projective, A-module, and by Theorem 1,
the plant is internally stabilizable.

2) 3 trivial.

3 ) 1 Any system SISO de�ned by T = n=d
is internally stabilizable. If R = (d � n) is
the full rank matrix with entries in A then, by
Theorem 1, the A-module Mp = A2=AR satis�es
that Mp=t(Mp) is a projective A-module. The
tranposed A-module T (Mp) = A=A2R [12] is



de�ned by 0  � T (Mp)  � A
R: � A2; and we

have the following exact sequence

0 � I
R: � A2  �M?

p  � 0;

where I = (n; d) = RA2 is the ideal of A de�ned
by n and d. By Proposition 2, Mp=t(Mp) is a
projective A-module i� I = (n; d) is a projective
one. Hence, any ideal I generated by two elements
n and d of A is a projectiveA-module, a fact which
is equivalent to A is a Pr�ufer domain [6].

Example 1. For instance, the ring A = Z[i
p
5]

used in [1] is a Dedekind domain [14], and thus,
a Pr�ufer domain. Hence, any MIMO plant over
K = Q(A) is internally stabilizable. In particular,
any SISO plant de�ned by a tranfer function over
K = Q(A) is internally stabilizable [10].

Example 2. � The integral closure of Z into a
�nite extension of Q is a Dedekind domain.
More generally, if A is a one-dimensional
noetherian domain, K its �eld of fractions
and L a �nite algebraic extension �eld of
K, then the integral closure of A in L is a
Dedekind domain.
� Any non-singular algebraic surface de�nes a
Dedekind aÆne domain. More generally, a
one-dimensional noetherian normal domain
is a Dedekind domain.
� The domain of entire functions C < s >, i.e
functions f(s) =

P+1
n=0 ans

n, an 2 C and
limn!+1 janj1=n = 0, is a B�ezout domain
[5], i.e. a Pr�ufer domain. The ring of mero-

morphic bounded Nash functions on a Nash
submanifold of Rn is a Pr�ufer domain [7].

Lemma 2. Let I = (n; d) be an ideal of a ring A
with d 6= 0 and I�1 = fz 2 K = Q(A) j z I � Ag
its fractional ideal [14], then we have:

I I�1 = (d : n) + (n : d);

where (a : b) = fc 2 A j c b 2 (a)g for a; b 2 A.

Proof. Let us prove (d : n) + (n : d) � I I�1. Let
a 2 (d : n) = fa 2 A j 9 p 2 A : an = p dg, then
we have:8>><
>>:

�a
d

�
n = p 2 A;

�a
d

�
d = a 2 A;

)
�a
d

�
2 I�1 ) a 2 I I�1:

Similary, we can prove that

�
b

n

�
2 I�1, and thus,

b 2 I I�1, which proves the inclusion.

Let us prove I I�1 � (d : n)+(n : d). Any element
of c 2 I I�1 can be written as

c =

 
nX
i=1

ai xi

!
n+

0
@ mX

j=1

bj xj

1
A d;

where ai; bj 2 A and xi 2 K is such that
xi n 2 A and xi d 2 A. We have d (

Pn
i=1 ai xi n) =

(
Pn

i=1 ai xi d)n 2 An because
Pn

i=1 ai xi d 2 A.
Similarly, n (

Pm
j=1 bj xj d) = (

Pm
j=1 bj xj n) d 2

Ad, and thus, c 2 (d : n) + (n : d).

Proposition 3. If A is an algebra of SISO stable
systems, then a SISO plant de�ned by a transfer
function p = n=d, with (n; d) 2 A � A n0, is
internally stabilizable i�:

I I�1 = (d : n) + (n : d) = A:

Proof. Following proof 3 ) 1 of Theorem 2 and
using Proposition 2, we obtain that p = n=d is
internally stabilizable i� I = (n; d) is a projective
A-module. Now, using the fact that I 6= 0, it is
easy to prove that I is a projective A-module
i� I is an invertible ideal, i.e. I I�1 = A [14].
Using Lemma 2, we �nally obtain that p = n=d
is internally stabilizable i� I I�1 = A, i.e. i�
(d : n) + (n : d) = A by Lemma 2.

The condition (d : n) + (n : d) = A of internal
stabilization �rst appeared in [15].

2. PARAMETRIZATION OF ALL
STABILIZING CONTROLLERS

Theorem 3. [13] If M = Ap=Aq R is an A-module
de�ned by a full row rank matrix R 2 Aq�p

(0 � q � p), then M is a free A-module i� there
exist matrices R�1, S and S�1 with entries in A
such that we have the splitting exact sequence:

0 �! Aq :R�! Ap :R�1�! Ap�q �! 0:
:S � :S�1 �

Moreover, we have the splitting exact sequence

0 �! Aq :R�! Ap :R�1�! Ap�q �! 0;
:S(Q) � :S�1(Q) �

(17)

with S�1(Q) = S�1 +Q R; S(Q) = S � R�1 Q
and Q is any matrix which belongs to A(p�q)�q .
(17) is equivalent to the following generalized
B�ezout identities:

(1)
�
S(Q) R�1

� � R
S�1(Q)

�
= Ip;

(2)

�
R

S�1(Q)

� �
S(Q) R�1

�
=

�
Iq 0
0 Ip�q

�
:

The map

Q 2 A(p�q)�q !Mc(Q) = Ap=Ap�q S�1(Q)

is the Youla parametrization of all the stabilizing
controllers of M = Ap=Aq R.

Theorem 4. If A is a Hermite domain, then any
internally stabilizable plant de�ned by a transfer



matrix with entries in K = Q(A) has doubly
coprime factorizations and all the stabilizing con-
trollers of a stabilizable plant are parametrized by
the Youla parametrization.

Proof. From Theorem 1 and the exact sequence
(8), we obtain that Mp=t(Mp) and ker� are two
projective A-modules. Using the fact that A is a
Hermite ring, we obtain that Mp=t(Mp) and ker�
are two free A-modules. From (10), we obtain that
ker� �= Aq , and thus, we have the exact sequence

0 �! Aq :R00

�! Ap �!Mp=t(Mp) �! 0;

where R00 is a certain matrix of Aq�p. Using
(7), we obtain that there exists R0 2 Aq�q such
that R = R0R00, and thus, P = D�1N =
(R0D00)�1 (R0N 00) = (D00)�1N 00. Therefore, by
Theorem 3, the plant P has doubly coprime fac-
torizations, and thus, all stabilizing controllers
of P are parametrized by means of the Youla
parametrization.

Proposition 4. [17] Any plant de�ned by a trans-
fer matrix with entries in K = Q(A) has doubly
coprime factorizations i� A is a B�ezout domain.

Hence, if A is a Pr�ufer domain which is not a
B�ezout domain, then there exist some internal
stabilizable plants which have no doubly coprime
factorizations, i.e. the stabilizing controllers of
certain plants cannot be parametrized by means
of the Youla parametrization. In particular, this
is true for A = Z[i

p
5] [1,10,13].

3. CONCLUSION

We hope to have convinced the reader that alge-
braic analysis allowed to unify the di�erent results
on internal stabilization obtained in [9,15,16].
This approach gives a necessary and suÆcient
condition so that a plant is internally stabilizable.
This condition, given in terms of modules, cannot
be obtained into the usual matricial framework
[4,17] and justi�es the introduction of algebraic
analysis in the fractional representation approach
of synthesis problems. We proved that any plant
de�ned by a transfer matrix with entries in the
�eld of fractionsK = Q(A) was internally stabiliz-
able i� A was a Pr�ufer domain. Vidyasagar proved
in [17] that any plant de�ned by a transfer matrix
with entries in the �eld of fractionsK = Q(A) had
doubly coprime factorizations i� A was a B�ezout
domain. Hence, if A is a Pr�ufer domain which
is not a B�ezout domain, then there exist some
internally stabilizable plants which fail to have
doubly coprime factorizations. Finally, we proved
that over a Hermite ring, any internally stabiliz-
able system has doubly coprime factorizations.
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Fig. 1. Closed loop

0 0??y ??y

0 ����! Ap

:

�
Rp �R0p 0
Rc 0 �R0c

�
��������������! A2p �����! M ����! 0

:

�
Rp

Rc

�??y :d I2p

??y �

??y
0 ����! Ap

:
�
d Ip �N

�
���������! A2p �0����! Mt ����! 0;

Fig. 2. Commutative exact diagram

Iq � PC = Iq �D�1p Np

 
mX
i=1

bi a
�
i YiDi

! 
mX
i=1

bi a
�
i XiDi

!�1

= D�1p

"
Dp

 
mX
i=1

bi a
�
i XiDi

!
�Np

 
mX
i=1

bi a
�
i YiDi

!# 
mX
i=1

bi a
�
i XiDi

!�1

= D�1p

"
mX
i=1

bi a
�
i (DpXi �Np Yi)Di

# 
mX
i=1

bi a
�
i XiDi

!�1

= D�1p

"
mX
i=1

bi a
�
i R

0
i (DiXi �Ni Yi)Di

# 
mX
i=1

bi a
�
i XiDi

!�1
(by (12))

= D�1p

"
mX
i=1

bi a
�
i R

0
iDi

# 
mX
i=1

bi a
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Fig. 3. Four blocks of T


