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We use recent improvements in the parametrizations of controllable linear multidimensional systems to show how to
transform the study of a linear quadratic optimal problem into that of a variational problem without constraints. We give
formal conditions on the differential module defined by the linear control system to pass from the Pontryagin approach
to a purely Euler–Lagrange variational problem. This formal approach uses the cost function in order to link the locally
exact sequence formed by the controllable system and its parametrizations with the sequence formed by their formal
adjoint operators. In the case of partial differential equations, this scheme is typical for any problem of linear elasticity
theory and electromagnetism.

1. Introduction

In this paper, we show how recent results on the

parametrization of linear multidimensional control

systems can be used to find new results on optimal

control and variational calculus. In particular, we are

interested in knowing how the structural properties of

a linear multidimensional control system, described

within the framework of module theory, can be useful

in order to reduce a constrained variational problem to

a free/unconstrained one.

We first recall the fact that a controllable linear system,

in the sense that the system determines a torsion-free

differential module (Pommaret and Quadrat 1999 a,

Wood 2000, Zerz 2000, Pommaret 2001), is parametri-

zable and we show how to find effectively its param-

etrizations (Pommaret and Quadrat 1998, 1999 a). The

problem investigated in this paper is to optimize a func-

tional under the constraint given by a linear multidimen-

sional control system. We prove that if the control system

defines a torsion-free module and if the differential

sequence formed by the system and one of its param-

etrizations is locally exact, then, by substitution, we are

led to a simple variational problem without constraints.

In particular, if the control system defines a projective

differential module (e.g. controllable ordinary differential

systems), one can always reduce our problem to this case.

Moreover, if the system is defined by a surjective differen-

tial operator (i.e. by differentially independent equations)

and the differential module associated with the system is

projective, then the Lagrange multipliers can always be

obtained explicitly without any integration. Many ex-
amples illustrate the formal approach developed in this
paper and, in particular, we show how it can be used in
order to study linear quadratic problems such as the ones
arising in linear elasticity theory and electromagnetism.

Finally, we hope to convince the reader that these
algebraic and geometric methods, developed for linear
control theory (Pommaret and Quadrat 1998, 1999 a, b
Pommaret 2001) and using, as main ingredients, the
formal adjoints of differential operators, differential
sequences and differential module theory, are in fact
closely related to some physics principles such as the
duality existing between geometry and physics in
the sense of H. Poincaré.

2. Mathematical tools

Let us first briefly recall some results about the
formal theory of differential operators (Spencer 1965,
Pommaret 2001) and its dual approach in terms of dif-
ferential modules. See Palamodov (1970), Bjork (1979),
Pham (1980), Maisonobe and Sabbah (1993) and
Pommaret and Quadrat (1999 b) for more details.

Let E and F be trivial vector bundles over a differ-
ential manifold X of dimension n with local coordinates
x ¼ ðx1, . . . , xnÞ (Pommaret 2001). In what follows, we
shall take R

n for X or open subsets. Let

E �!
D

F

ðx, �kðxÞÞ ! ðx,��ðxÞ ¼
X

0�j�j� q, 1�k�m

a��k ðxÞ @��
k,

1 � � � l Þ ð1Þ

be a differential operator from E to F, where the fibered
dimension of E (resp. F ) is equal to m (resp. equal to l ),
� ¼ ð�1, . . . ,�nÞ is a multi-index of length j�j ¼
�1 þ � � � þ �n and we adopt the notation @� ¼
@�1

1 , . . . , @�n
n . If we denote by Y the kernel of the

differential operator D, then we have the following
exact sequence

0�!Y�!E �!
D

F : ð2Þ

International Journal of Control ISSN 0020–7179 print/ISSN 1366–5820 online # 2004 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/00207170410001726813

INT. J. CONTROL, 2004, VOL. 77, NO. 9, 821–836

Received in final form 1 June 2002.
*Author for Correspondence. e-mail: Alban.Quadrat@

sophia.inria.fr
yCERMICS, Ecole Nationale des Ponts et Chaussées, 6 et

8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 02,
France.
z INRIA Sophia Antipolis, CAFE project, 2004, Route des

Lucioles BP 93, 06902 Sophia Antipolis Cedex, France.



Now, we associate with any differential operator D
an algebraic object, namely a differential module M, in
the following way (see Pommaret and Quadrat 1999 b,
Pommaret 2001 for more details). For that, when K is a
differential field containing Q with commuting deriva-
tions @1, . . . , @n (Ritt 1950, Kolchin 1973), let us intro-
duce the ring D ¼ K ½d1, . . . , dn� of differential operators,
i.e. the ring of elements of the form P ¼

P
0�j�j<1 a� d�,

where the coefficients a� belong to K and where the
derivatives di satisfy

diða djÞ ¼ a di dj þ @ia dj:

We associate with (1) the D-homomorphism :D
defined as

Dl
�!
:D

Dm

ðP�Þ ! ð
P

0� j�j� q, 1� �� l

P� a
��
k d�, 1 � k � mÞ ð3Þ

i.e. we let operate D on the right of a row vector of Dl to
obtain a row vector of Dm. Now, we associate with (2)
the finitely presented left D-module M defined by the
exact sequence

D�K F? �!
:D

D�K E?�!M�!0

where E? and F? denote the dual vector bundles, or
simply, because the vector bundles are trivial

Dl
�!
:D

Dm
�!M�!0 ð4Þ

i.e. M ¼ Dm=Dl
D. See Pham (1980), Maisonobe and

Sabbah (1993), Pommaret and Quadrat (1999 b) and
Pommaret (2001) for more details.

When D : �� � is a sufficiently regular differential
operator (Pommaret 2001), the compatibility conditions
of the inhomogeneous system

D � ¼ � ð5Þ

are defined by a differential operator D1 : F ! F1. In
other words, all the necessary conditions on � in order
to have the local existence of � satisfying (5) are gene-
rated by D1� ¼ 0. If D1 denotes the compatibility con-
ditions of the differential operator D, then we have the
formally exact sequence (Spencer 1965, Pommaret 2001)

0�!Y�!E �!
D

F �!
D1

F1: ð6Þ

In the differential module language, the formally
exact sequence (6) means that we have constructed the
beginning of a free resolution (see, e.g. Rotman 1979) of
the left D-module M associated with D, i.e. we have the
following exact sequence

Dl1�!
:D1

Dl
�!
:D

Dm
�!M�!0: ð7Þ

We can repeat the same procedure with D1 instead of
D and we obtain a long formally exact sequence of
compatibility conditions, in the operator language

(Pommaret 2001), or a free resolution of left D-module
M, in the algebraic one (Rotman 1979).

An historical problem was to construct effectively
the operator D1 and it was investigated by C. Riquier
and E. Cartan at the beginning of the century (Riquier
1910, Cartan 1945) but received a nice improvement
with M. Janet’s work in the 1920s (Janet 1929) and a
final achievement with the work of D. C. Spencer in the
1970s. From the works of D. C. Spencer (Spencer 1965),
we know that the operator D1 can be constructed by
bringing the operator D to involutiveness (Spencer
1965, Pommaret 2001) and we can find a projective reso-
lution of M (see, e.g. Definition 1 and Rotman 1979) of
length equal to n, where n is the number of derivations @i
or, equivalently, the number of derivatives di in D.
However, the Spencer resolution is generally very diffi-
cult to compute, and thus, it is much easier to compute
the Janet sequence (see Pommaret (2001) for more
details)

0�!Y�!E �!
D0

F0 �!
D1

F1 �!
D2
� � � �!
Dn�1

Fn�1 �!
Dn

Fn�!0

giving rise to a free resolution of M of length equal to
nþ 1

0�!Dln�!
:Dn

Dln�1�!
:Dn�1
� � ��!

:D2
Dl1�!

:D1
Dl0�!

:D0
Dm
�!M�!0

ð8Þ

obtained by replacing D by an involutive operator
D0 : E ! F0 with the same kernel Y (Pommaret 2001)
and where the Di are involutive first-order operators. In
this case, we know that the last operator Dn : Fn�1 ! Fn

defines a projective D-module (see, e.g. Definition 1 and
Rotman 1979).

Applying the functor homDð�,DÞ to (8) (Rotman
1979), we obtain the dual sequence

0 �Dln �
Dn:

Dln�1 �
Dn�1:
� � �  �

D2:
Dl1 �

D1:
Dl0 �

D0:
Dm

 � homDðM,DÞ � 0 ð9Þ

where Di:means that we make Di operate on the left of a
column vector of Dli�1 to obtain a column vector of Dli .
The defect of cohomology at Dli is denoted by

extiDðM,DÞ ¼ ker ðDiþ1:Þ=im ðDi:Þ:

The defects of cohomology extiDðM,DÞ do only
depend on M and not on its resolution (8), that is, if
we have two different resolutions of the same left
D-module M, then we obtain the same defect of
cohomology (up to an isomorphism) from the two
different dual sequences (see Rotman (1979)).

Now, we have to note that, using the fact that
D is both a left and right D-module, we can endow
the abelian group homDðM,DÞ of D-morphisms
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(D-linear maps) from M to D with the structure of a
right D-module by

8a 2D, 8� 2 homDðM,DÞ : ð�aÞðmÞ ¼ �ðmÞa, 8m 2M:

The cokernel of D: : Dm
! Dl is the right D-module Nr

defined by

0 �Nr �D
l
 �
D:

Dm
 �homDðM,DÞ �0: ð10Þ

It can be shown that Nr only depends on M up to a
projective equivalence (Pommaret and Quadrat 200 b).
If we want to give an interpretation of the extension
functor derived from the functor homDð�,DÞ in terms
of differential operators, we have to use the concept of
formal adjoint (Maisonobe and Sabbah 1993, Pommaret
and Quadrat 1998, Pommaret 2001): if T? denotes the
cotangent bundle of X and D : E ! F is a differential
operator, then its formal adjoint is the operatoreDD : eFF ¼ Vn T?

� F?! eEE ¼ Vn T?
� E?, defined by

using the three following formal rules equivalent to
integration by parts:

. the adjoint of a matrix with entries in K (zero-
order operator) is the transposed matrix,

. the adjoint of @i is �@i,

. for two linear partial differential operators P, Q
that can be composed, then: gP �QP �Q ¼ eQQ � ePP.

Moreover, we have the relation

h�, D1 �i � heDD1 �, �i ¼ dð�Þ

expressing a difference of n-forms and where d is the
standard exterior derivative.

In homological algebra language, if we denote by
T ¼ D1=K , where

D1 ¼

�
P 2 D j ordðPÞ

¼ sup

(
j�j jP ¼

X
0�j�j

a� d�, a
�
6¼ 0

)
� 1

)
,

then
Vn T �K � is called the side changing functor

(Pham 1980, Bjork 1993, Maisonobe and Sabbah
1993, Pommaret 2001) and it allows to pass from a
right D-module Nr to a left D-module. Thus, the left
D-module N ¼

Vn T �K Nr is the module defined by
the formal adjoint eDD of D and we have the following
exact sequence:

0 �N �
^n

T �K Dl
 �
:eDD ^n

T �K Dm: ð11Þ

Now, let us start with an involutive differential
operator D0 : E ! F0 and let us denote by M the
D-module associated with D0. We give an algorithm to
check whether or not extiDðM,DÞ is equal to zero
(Pommaret and Quadrat 1999 b, Pommaret 2001).

Algorithm 1: Computation of extiDðM,DÞ

Step 1. Start with D0.

Step 2. Find the sequence of the compatibility condi-
tions operators Dr up to Di.

Step 3. Construct the adjoint sequence formed by the
differential operators eDDi and eDDi�1.

Step 4. Find the generating compatibility conditions
eDD0
i�1 of eDDi.

Step 5. Check whether or not eDDi�1 generates all the

compatibility conditions eDD 0
i�1 of eDDi. If yes,

then extiDðM,DÞ ¼ 0 else extiDðM,DÞ is defined
by all the compatibility conditions which are in
eDD 0
i�1 and not in eDDi�1.

We can represent the above algorithm by the
diagram

1 E�!
D0

F0�!
D1
� � � � � ��!

Di�2
Fi�2 �!

Di�1
Fi�1 �!

Di
Fi 2

3 eFFi�2  �
eDDi�1 eFFi�1  �

eDDi eFFi

4 eFF 0i�2  �eDD0i�1
where the number indicates the step of the algorithm.

Example 1: Let us denote by @ij ¼ @i @j and let D : �!�
be defined by

@12� ¼ �
1

@22� ¼ �
2

)

D ¼ R ½d1, d2� and let M ¼ D=ðDd1d2 þDd2
2 Þ be

the D-module associated with D. Let us check whether
or not ext1DðM,DÞ is equal to zero. We first find that
the compatibility conditions D1 : �!� of D � ¼ � are
defined by @1�

2
� @2�

1
¼ �: Its formal adjointeDD1 : �!�, obtained by multiplying D1 on the left by a

test function � and integrating by parts, is defined by

@2� ¼ �1

�@1� ¼ �2:

)

The compatibility conditions eDD0 : �!� of eDD1 are gener-
ated by @1�1 þ @2�2 ¼ �

0, whereas the formal adjoint eDD
of D is defined by @12�1 þ @22�2 ¼ �: Thus, eDD does not
generate all the compatibility conditions of eDD1 as we
have the relation @2�

0
¼ �: Finally, we obtain

ext1DðM,DÞ ¼ D ðd1 : d2Þ=D ðd1 d2 : d
2
2 Þ 6¼ 0:

From algebraic analysis (Palamodov 1970,
Kashiwara 1995, Pommaret and Quadrat 1999 b,
Pommaret 2001), we have the following first main
theorem.

Differential operator approach to optimal control 823



Theorem 1: We can embed the left D-module M into the
following exact sequence

0�!M�!Dl�1�!
:D�2

Dl�2�!
:D�3
� � � �!

:D�rþ1
Dl�rþ1�!

:D�r
Dl�r ð12Þ

if and only if extiDðN,DÞ ¼ 0, i ¼ 1, . . . , r, where N is the
left D-module associated with eDD and which corresponds to
the right D-module Nr defined by (10).

Equivalently, within the differential operators frame-
work, we have the following formally exact sequence

E�r�!
D�r

E�rþ1�!
D�rþ1
� � � �!
D�2

E�1�!
D�1

E0�!
D

F ,

where E0 ¼ E and each differential operator generates all
the compatibility conditions of the preceding one, if and
only if extiDðN,DÞ ¼ 0, i ¼ 1, . . . , r.

Then, we say that the differential operator D (resp.
D�i) is parametrized by the differential operator D�1
(resp. D�i�1).

Let us recall a few definitions coming from module
theory (Rotman 1979).

Definition 1:

. A finitely generated D-module M is free if it is
isomorphic to copies of D.

. A finitely generated D-module M is projective if
there exist a free D-module F and a D-module N
such as F ¼M �N. Then, N is also a projective
D-module.

. A finitely generated D-module M is reflexive if
M ffi homDðhomDðM,DÞ,DÞ.

. A finitely generated D-module M is torsion-free if:

tðMÞ ¼ fm 2M j 9 0 6¼ P 2 D : Pm ¼ 0g ¼ 0:

We call t(M) the torsion submodule of M and
m 2 tðMÞ a torsion element of M.

We have the following standard results.

Theorem 2:

. We have the following inclusions of D-modules

free 	 projective 	 reflexive 	 torsion� free: ð13Þ

. If D is a principal ideal domain (e.g. D ¼ K½d=dt�),
then every torsion-free D-module is free.

. If k ¼ fa 2 K j @i a ¼ 0, i ¼ 1, . . . , ng is the field
of constants of K, then every projective D ¼
k½d1, . . . , dn�-module is free.

We refer to Rotman (1979) for the proofs. The
third point is the famous non-trivial Quillen–Suslin
theorem.

Now, we can state the second main theorem
coming from algebraic analysis (Palamodov 1970,

Kashiwara 1995, Pommaret and Quadrat 1999 b,

Pommaret 2001).

Theorem 3: Let M be a finitely presented left D-module

associated with the differential operator D and N be the

left D-module associated with eDD. We have the following

propositions:

. M is a torsion-free left D-module, ext1DðN,DÞ ¼ 0.

. M is a reflexive left D-module , extiD ðN,DÞ ¼ 0,

i ¼ 1, 2:

. M is a projective left D-module, extiD ðN,DÞ ¼ 0,

i ¼ 1, . . . , n:

Let us note that, if n¼ 1, then it directly follows from

Theorem 3 that a finitely presented torsion-free left

D-module is projective.

If D ¼ k½d1, . . . , dn� is a commutative polynomial

ring over a field of constants k, then the concepts of

torsion-freeness and projectiveness are the intrinsic

formulations of the concepts of minor left coprimeness

and zero minor coprimeness used in multidimensional

systems theory (Youla and Gnavi 1979, Youla and

Pickel 1984, Wood et al. 1998, Zerz 2000) for matrices

with maximal generic rank. See Oberst (1990) and

Pommaret and Quadrat (1999b) for more details.

Example 2: We let the reader check that the sequence

of compatibility conditions of the gradient operator

D : �!� in R
3, defined by ~rr� ¼ �, is formed respectively

by the curl operator D1 : �!�, defined by ~rr ^ � ¼ �,
and the divergence operator D2 : �!	, defined by
~rr: � ¼ 	. Moreover, we can easily verify that the formal

adjoint of the gradient (resp. the curl, the divergence)

operator is minus the divergence (resp. the curl, minus

the gradient) operator.

Now, let us start with the divergence operator and

let us denote by M ¼ D3=Dðd1 : d2 : d3Þ the D ¼

R ½d1, d2, d3�-module associated with D. Then, we easily

check that ext1DðN,DÞ ¼ 0 because the divergence

operator is parametrized by the curl operator, namely,

a generating set of compatibility conditions of ~rr ^ � ¼ �
is ~rr: � ¼ 0. Moreover, we have ext2DðN,DÞ ¼ 0 because

the curl operator is parametrized by the gradient opera-

tor, namely, a generating set of compatibility condi-

tions of ~rr� ¼ � is ~rr ^ � ¼ 0. Finally, ext3DðN,DÞ ¼

D=D3
ðd1 : d2 : d3Þ

T
6¼ 0 because the gradient operator is

not formally injective, i.e. ~rr� ¼ 0 6) � ¼ 0. Hence, using

Theorem 3, we obtain that the D-module M is reflexive

but not projective, and thus, not free.

Similarly, we can prove that the D-module defined

by the curl operator is only torsion-free and the gradient

operator defines a torsion D-module.

Example 3: Let us consider the differential operator

D : �!� defined by

824 J.-F. Pommaret and A. Quadrat



@1�
1
þ @2�

2
� x2�1 ¼ �:

Let D ¼ Rðx1, x2Þ½d1, d2� and M ¼ D2=Dðd1 � x2 : d2Þ
be the left D-module defined by D. Let us study the
algebraic properties of M. First of all, we have to
notice that D is formally surjective, i.e. D has no
compatibility condition. The differential operatoreDD : �!� is defined by

�@1�� x2� ¼ �1

�@2� ¼ �2:

)
ð14Þ

Then, from (14), we easily check that we have
� ¼ @1�2 � @2�1 þ x2�2 which implies that eDD is an
injective operator. If we define the operator ePP : �!�
by @1�2 � @2�1 þ x2�2 ¼ �, then ePP � eDD ¼ ideFF , i.e. ePP is a
left-inverse of eDD. Then, the

V2 T �K D-morphism
:eDD :

V2 T �K D2
!
V2 T �K D is surjective because,

for all a 2
V2 T �K D, we can define b ¼ aePP and we

easily check that a ¼ beDD. Hence, the left D-module N,
defined by (11), satisfies N ¼ cokerð:eDDÞ ¼ 0, which
implies that ext1DðN,DÞ ¼ 0, i ¼ 1, 2, and thus, by
Theorem 3, M is a projective left D-module. Dualizing
the operator ePP, we obtain a right-inverse P of D, i.e.
D � P ¼ idF . We refer the reader to Pommaret and
Quadrat (1998) and Quadrat (1999) for the applications
of left and right-inverses. Substituting in (14) the expres-
sion of � in terms of �1 and �2, we obtain the operatoreDD�1 : �!
 defined by

@11�2 � @12�1 þ 2x2 @1�2 � x2 @2�1 þ ðx
2
Þ
2 �2 þ �1 ¼ �1

@12�2 � @22�1 þ x2 @2 �2 þ 2 �2 ¼ �2:

)
Dualizing eDD�1, we obtain the following differential
operator D�1 : 	! � defined by

�@22	
2
� @12	

1
þ x2 @2	

1
þ 2 	1 ¼ �1

@12	
2
þ @11	

1
� x2 @2	

2
� 2x2 @1	

1
þ ðx2Þ2 	1 þ 	2 ¼ �2:

)
We let the reader check by himself that the compatibility
conditions of D�1 	 ¼ � exactly generate by D � ¼ 0.
Hence, D is parametrized by D�1 in agreement with
the fact that any projective module is torsion-free (see
Theorem 2). Finally, let us point out that checking
whether or not the left D-module M is free is a difficult
problem. Indeed, the Quillen–Suslin theorem stated in
the last point of Theorem 2 is no longer valid in this case
as M is a left module defined over the non-commutative
ring D ¼ Rðx1, x2Þ½d1, d2�.

3. Controllablity of linear multidimensional systems

In this section, we also briefly recall how the results
of the preceding section can be used for analysing the
structural properties of linear multidimensional systems.
We refer the reader to Pommaret and Quadrat (1999 a,b)
and Pommaret (2001) for more details.

In agreement with the concept of controllability used

in multidimensional control theory, we have the follow-

ing definition (Pommaret and Quadrat 1999 a, Wood

2000, Zerz 2000, Pommaret 2000).

Definition 2: A linear control system, defined by the

differential operator D1 : F0! F1, is controllable if the

left D-module M ¼ Dl0=Dl1 D1 associated with D1 is tor-

sion-free, i.e. tðMÞ ¼ 0.

By Theorem 3, a linear control system, defined by the

operator D1, is controllable iff we have ext1DðN,DÞ ¼ 0,

where N ¼ ð
Vn T �K Dl1Þ= ð

Vn T �K Dl0ÞeDD1 is the left

D-module associated with eDD1. In the case where the

system is controllable, using Theorem 1, we know that

D1 can be parametrized by a differential operator D0, i.e.

D1 represents exactly all the compatibility conditions

of D0. If we want to check whether or not a system is

controllable, compute effectively the differential operator

D0 or the autonomous elements of the system (i.e. the

torsion elements of M), we have to proceed in the

following way.

Algorithm 2: Controllability test

Step 1. Start with D1.

Step 2. Construct its formal adjoint eDD1.

Step 3. Find the compatibility conditions of eDD1 � ¼ �
and denote this differential operator by eDD0.

Step 4. Construct its formal adjoint D0 ð¼ eeeD0Þ.
Step 5. Find the compatibility conditions of D0 � ¼ �

and denote this differential operator D0
1.

This leads to two different cases:

. If D1 generates exactly the compatibility condi-

tions D01 of D0, then the linear system defined by

D1 determines a torsion-free left D-module M and

D0 is a parametrization of D1.

. Otherwise, the operator D1 is among, but not

exactly, the compatibility conditions D01 of D0.

Then, the torsion elements of M are all the new

compatibility conditions modulo the equations

D1 � ¼ 0.

We refer the reader to Chyzak et al. (2003, 2004) for

more details concerning effective computations of the

extension functors extiDð�,DÞ. Algorithms 1 and 2 have

recently been implemented in the symbolic package

OreModules using non-commutative Gröbner bases.

See Chyzak et al. (2003, 2004) for more details and

examples.

Remark 1: For a full row rank matrix R 2 Dl
m

with entries in a commutative polynomial ring

D ¼ R ½�1, . . . ,�n�, it is well-known that the D-module

M ¼ Dm=Dl R is torsion-free iff 1 is the greatest common

Differential operator approach to optimal control 825



divisor on all the l 
 l-minors of R (Oberst 1990, Wood
et al. 1998, Pommaret and Quadrat 1999 b, Zerz 2000).
However, Algorithm 2 can be used for more general
systems (variable coefficients case, non-full row rank
matrices). Moreover, if the left D-module M is torsion-
free, Algorithm 2 effectively computes a parametrization
of the system and, if the module is not torsion-free, it
gives a family of generators of the torsion submodule
t(M). Finally, let us point out that the concept of param-
etrization developed in this paper generalizes the
concept of controller form (Kailath 1980) to linear multi-
dimensional systems defined by non-surjective differen-
tial operators (Pommaret and Quadrat 1999 a).

Example 4: In Example 3, we saw that, up to a change
of notations, the system defined by the differential
operator D1 : �! � as

@1�
1
þ @2�

2
� x2 �1 ¼ �

determines a projective left D-module, and thus, the
linear multidimensional system

@1�
1
þ @2�

2
� x2 �1 ¼ 0

is controllable. Moreover, we found a non-trivial
parametrization D0 : �! � of D1, defined by

�@22�
2
� @12�

1
þ x2 @2�

1
þ 2 �1 ¼ �1

@12�
2
þ @11�

1
� x2 @2�

2
� 2 x2 @1�

1
þ ðx2Þ2 �1 þ �2 ¼ �2:

)

Let us point out that there exist some parametrizations
of D1 which have the minimal number of arbitrary
parameters (also called potentials) �. These parametriza-
tions are called minimal parametrizations (Pommaret
and Quadrat 1999 b). We refer to (Pommaret and
Quadrat (1999 b) for an effective algorithm which com-
putes them (see also Chyzak et al. 2004). For instance,
we have the following two minimal parametrizations
of D1

�@22 � ¼ �
1

@12 �� x2 @2 �þ � ¼ �
2

(
�@12 �þ x2 @2 �þ 2 � ¼ �1

@11 �� 2x2 @1 �þ ðx
2
Þ
2 � ¼ �2:

(

We have the following corollary of Theorem 3.

Corollary 1: A linear ordinary differential control
system defined by a surjective differential operator D1,
i.e. D1 has no compatibility condition, is controllable iff
its formal adjoint eDD1 is an injective differential operator,
namely eDD1� ¼ 0) � ¼ 0.

Proof: Let M be the left D ¼ K ½d=dt�-module defined
by the surjective differential operator D1. Then, the left
D-module N is defined by

0 �N �T �K Dl1 �
:eDD1

T �K Dl0 :

If eDD1 is an injective differential operator, then there exists
an operator ePP1 : eFF0 !

eFF1 such that ePP1 �
eDD1 ¼ id ~FF1

: This
implies that the D-morphism :eDD1 : T �K Dl0 ! T �K Dl1

is surjective. Indeed, for all a 2 T �K Dl1 , if we define
b ¼ aePP1 2 T �K Dl0 , then we have a ¼ beDD1. Hence,
we have N ¼ cokerð:eDD1Þ ¼ 0, and thus, ext1DðN,DÞ ¼ 0,
which implies that M is a torsion-free left D-module
by Theorem 3 and the control system defined by D1 is
controllable by Definition 2.

Conversely, let us suppose that M is a torsion-free
left D-module. Since D is a principal left ideal domain,
by Theorem 2, M is a projective left D-module. Thus,
the following exact sequence

0�!Dl1�!
:D1

Dl0�!M�!0

splits (see Rotman 1979 for more details), i.e., there exists
a D-morphism :P1: D

l0 ! Dl1 such that ð:P1Þ � ð:D1Þ ¼

:idDl1 , that is to say, :ðD1 � P1Þ ¼ :idDl1 , and thus, we
have the following matrix equality D1 � P1 ¼ idDl1 . By
duality, we obtain that ePP1 �

eDD1 ¼ idT�KD
l1 , which shows

that eDD1 is an injective differential operator with a left-
inverse ePP1. œ

Example 5: Let us consider the Kalman system
� _xxþ AðtÞ xþ BðtÞ u ¼ 0, where A is a square n
 n
matrix and B is n
m. By Corollary 1, the surjective
ordinary differential operator D1 : �! �, defined by
� _��1 þ AðtÞ �1 þ BðtÞ �2 ¼ �, defines a controllable
system iff the formal adjoint operator eDD1 : �!�,
defined by

_��þ �AðtÞ ¼ �1

�BðtÞ ¼ �2

�
is injective. Differentiating the zero-order equation and
using the first one, we obtain that

� ðAB� _BBÞ ¼ 0) � ðA2B� _AAB� 2A _BBþ €BBÞ ¼ 0 . . . :

Therefore, the differential operator eDD1 is injective iff the
rank over K of the controllability matrix

ðB : AB� _BB : . . . : An�1Bþ � � � : � � �Þ

is equal to n. Of course, we can proceed similarly if A
and B do not depend on time, and we recover the clas-
sical Kalman test (Pommaret and Quadrat 1999 b).

4. Linear quadratic optimal problems

After having recalled in }} 2 and 3 some results about
differential operators, algebraic analysis and control-
lability of linear multidimensional systems, let us study
the main problem of this paper, namely the linear
quadratic optimal problem for multidimensional control
systems.

In what follows, we shall use the following jet
notation �q ¼ ð��, 0 � j�j � qÞ. For example, if we take
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X ¼ R, i.e. in the ordinary differential case, we have
�q ¼ ð�, _��, €��, . . . , �

ðqÞ
Þ.

Let us consider the differential operator D1 : �! �
of order q and the following Lagrangian function

Lð�qÞ ¼
1
2
�Tq R �q,

where R is a symmetric matrix (R, �k, l ¼ R�, l, k ) with entries
in K and � ¼ ð�k, 1 � k � mÞT. Let us consider the prob-
lem of minimizing ð

Lð�qÞ dx ð15Þ

where dx ¼ dx1 ^ � � � ^ dxn, under the differential
constraint

D1 � ¼ 0: ð16Þ

The variation of the Lagrangian function is given by
�Lð�qÞ ¼

P
0�jj�q, 1�k�m 



k � �

k
, where


k ¼
@Lð�qÞ

@ �k
¼

X
1�l�m, j�j�q

R, �k, l �
l
�

and � �k denotes the variation of �k. Let us define the
differential operator B : �!� by

B � ¼
X

0�jj�q

ð�1Þjj d


k ¼ �:

For any section � of F0, B � belongs to eFF0 ¼
Vn T?

� F?0
and we have the diagram

F0�!
D1

F1

# BeFF0:

Proposition 1: The operator B :F0!
eFF0 is a self-adjoint

operator, namely eBB ¼ B.
Proof: If we multiply B � on the left by a vector 	 2 F0

and integrate by parts, we obtain the following result
once using implicit summation on the dumb indices

hB �, 	i ¼ ð�1Þjj ðd


k Þ 	

k

¼ 
k d 	
k
þ dð�Þ

¼ R, �k, l �
l
� d	

k
þ dð�Þ

¼ R, �k, l 	
k
 �

l
� þ dð�Þ

¼ ðð�1Þj�j d� 

�
l Þ �

l
þ dð�Þ

¼ h�,B 	i þ dð�Þ:

Finally, the result holds once we note that we

have
eeFF0
eFF0 ¼ F0. œ

Definition 3 (Pommaret 2001): The sequence of differ-

ential operators F0�!
D1

F1�!
D2

F2 is said to be locally exact
at F1 if, for every x 2 X and every section � of F1 in an
open neighbourhood U of x satisfying D2� ¼ 0, there
exists an open neighbourhood V of x with V � U and
a section � of F0 on V such that D1� ¼ � on V.

Let us give the formal optimal system which satisfies
the linear quadratic optimal problem defined by (15)
and (16).

Theorem 4 (Quadrat 1999): The optimal system of the
variational problem (15) and (16) is defined by

D1 � ¼ 0
B �� eDD1 � ¼ 0

�
ð17Þ

where � denotes the Lagrange multipliers.
Moreover, if the compatibility conditions of eDD1 are

written by means of the differential operator eDD0 and if
the sequence

eEE �eDD0 eFF0 �
eDD1 eFF1 ð18Þ

is locally exact at eFF0, then (17) is equivalent to the
following system

D1 � ¼ 0

ðeDD0 � BÞ � ¼ 0:

�
ð19Þ

Moreover, we have the locally exact diagram

F0 �!
D1

F1

. # BeEE  �
eDD0 eFF0  �

eDD1 eFF1:

Proof: If we denote by �ðxÞ the Lagrange multipliers,
then we have

�

ð
ðLð�qÞ � �D1�Þ dx ¼

ð
ðB �� eDD1�Þ � � dxþ � � �

where � � denotes the variation of �. Accordingly, a
necessary condition of optimality is given by

B �� eDD1� ¼ 0 ð20Þ

and we obtain (17).
Let us suppose that (18) is a locally exact sequence ateFF0. Let us prove that (17) and (19) are equivalent. Let us

suppose that we have (17). Then, eliminating the
Lagrange multipliers by composing (20) on the left
by eDD0, we obtain ðeDD0 � BÞ � ¼ 0, i.e. (19). Now, let us
suppose that we have (19). By hypothesis, the sequence
(18) is locally exact at eFF0, and thus, for every x 2 X and
every section B � of eFF0 on an open neighbourhood U of
x, there exist an open neighbourhood V of x with V � U
and a section � of eFF1 on V such that we have eDD1 � ¼ B �
on V. This proves the second part of the theorem. œ
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Let us illustrate Theorem 4 with the following
example.

Example 6: Let us minimize
Ð
1
2
ðð�1Þ2 þ ð�2Þ2Þ dx1 ^ dx2

under the differential constraint

@1�
1
þ @2�

2
� x2�1 ¼ 0:

The operator B : F0!
eFF0 is defined by B � ¼ � and the

adjoint eDD1 of D1 is (see Example 3)

�@1�� x2 � ¼ �1

�@2� ¼ �2:

�
Therefore, the optimal system is defined by the
equations

@1�
1
þ @2�

2
� x2 �1 ¼ 0

�1 þ @1�þ x2 � ¼ 0

�2 þ @2� ¼ 0:

9>>=>>;
In Example 3, we saw that the differential operator
D1 : �! @1�

1
þ @2�

2
� x2 �1 ¼ � defined a projective left

D-module. Thus, the following sequence eEE �~DD0 eFF0 �
~DD1 eFF1

is locally exact at eFF0 because this formally exact sequence
splits (Rotman 1979). Hence, the optimal system is
equivalently given by

@1�
1
þ @2�

2
� x2 �1 ¼ 0

@11�
2
� @12�

1
þ 2x2 @1�

2
� x2 @2�

1
þ ðx2Þ2 �2 þ �1 ¼ 0

@12�
2
� @22�

1
þ x2 @2�

2
þ 2 �2 ¼ 0:

9>=>;
We let the reader check by himself that the above
system is not formally integrable (see Pommaret 2001
for more details) and that its solution space depends
on two arbitrary functions of one variable.

Let us give the first main result of this paper.

Theorem 5 (Quadrat 1999): If the linear control
system defined by the differential operator D1 is control-
lable, that is parametrizable by D0 : E ! F0 in such a way

that the sequences ~EE �
D0 ~FF0 �

~DD1 ~FF1 and E�!
D0

F0�!
D1

F1 are

locally exact at eFF0 and F0, then (17) is equivalent to

A � ¼ 0

� ¼ D0 �

)
ð21Þ

where A is the differential operator defined by

A ¼ eDD0 � B � D0: ð22Þ

Moreover, we have the commutative locally exact
diagram

E �!
D0

F0 �!
D1

F1

A # # BeEE  �
eDD0 eFF0  �

eDD1 eFF1:

Proof: Using the fact that (18) is locally exact at eFF0,

by Theorem 4, we know that (17) and (19) are equiva-

lent. Therefore, let us prove the equivalence between

(19) and (21).

Let us suppose that (19) is satisfied. Using the fact

that E�!
D0

F0�!
D1

F1 is a locally exact sequence at F0, then

there exists a local section � of E which locally satisfies

D1 � ¼ 0, D0 � ¼ �. Moreover, we have ðeDD0 � BÞ � ¼
ðeDD0 � BÞðD0 �Þ ¼ A � ¼ 0, which proves (21).

Now, let us suppose that we have (21). Therefore,

we have D1 � ¼ D1ðD0 �Þ ¼ 0 because D1 generates the

compatibility conditions of D0. Finally, we have A � ¼
ðeDD0 � BÞ ðD0 �Þ ¼ ðeDD0 � BÞ �, which proves (19). œ

Remark 2: Theorem 5 gives the possibility to trans-

form a variational problem for � with a differential con-

straint D1 � ¼ 0 into a variational problem for � without
any differential constraint. Let us note that a similar

result was independently obtained in Pillai and

Willems (2002) within the behavioural framework for

differential operators with constant coefficients (in this

case, the local exactness of the differential sequences

defined in Theorem 5 hold for C1 or D0-sections over

open convex subsets of X. See Oberst (1990) for more

details).

Corollary 2 (Quadrat 1999): If the linear control system

defined by the differential operator D1 defines a projective

left D-module M ¼ Dl0=Dl1 D1, then the optimal system

(17) is equivalent to (21), where A is defined by (22). In

particular, this result holds if the system is a controllable

linear ordinary differential system.

Proof: If D1 defines a projective left D-module

M ¼ Dl0=Dl1 D1, then the differential operator D1 can

be parametrized by a differential operator D0 such

that the following two sequences eEE �~DD0 eFF0 �
~DD1 eFF1 and

E�!
D0

F0�!
D1

F1 split, and thus, are locally exact at eFF0

and F0 respectively. Then, the first part of the result

directly follows from Theorem 5.

Now, if the system is a controllable linear ordinary

differential system, then D ¼ K ½d=dt� is a principal left

ideal domain (see Theorem 2) and, by Definition 2, the

left D-module M ¼ Dl0=Dl1 D1 is torsion-free. Thus, by

Theorem 2, the left D-module M is projective and the

result follows from the previous point.

Remark 3: Corollary 2 explains why the concept of

controllability plays a central role (though not really

emphasized) in the study of optimal control problems

for ordinary differential control systems. For partial dif-

ferential systems, let us point out that controllability is

generally a necessary but not a sufficient condition in

order to have the local exact sequences eEE �~DD0 eFF0 �
~DD1 eFF1

and E�!
D0

F0�!
D1

F1. However, the fact that the left
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D-moduleM is projective is generally a sufficient but not
a necessary condition in order to have these sequences
locally exact. For instance, the Poincaré sequence,
induced by the exterior derivative, is a locally exact
sequence (Pommaret 2001) but none of its operators
defines a projective D-module (see Example 2).

Let us illustrate Theorem 5 and Corollary 2 with an
example of a standard linear quadratic problem for an
ordinary differential control system.

Example 7: Let us minimize
Ð T
0
1
2
ðxðtÞ2 þ uðtÞ2Þ dt,

where x and u satisfy

_xxðtÞ þ xðtÞ � uðtÞ ¼ 0
xð0Þ ¼ x0:

�
ð23Þ

We easily check that (23) is controllable, and thus,
parametrizable and a parametrization of (23) is defined by

�!

�
�ðtÞ ¼ xðtÞ
_��ðtÞ þ �ðtÞ ¼ uðtÞ:

Hence, the previous optimization problem is equivalent
to minimize the Lagrangian

I ¼

ðT
0

1
2
ð�ðtÞ2 þ ð _��ðtÞ þ �ðtÞÞ2Þ dt

with the only algebraic constraint �ð0Þ ¼ x0. We easily
check that we have

�I ¼

ðT
0

� €��ðtÞ þ 2 �ðtÞ
� �

��ðtÞ dtþ ð _��ðtÞ þ �ðtÞÞ ��ðtÞ
� �T

0

and thus, the optimal system (17) is equivalent to the
system

€��ðtÞ � 2 �ðtÞ ¼ 0

�ð0Þ ¼ x0

_��ðTÞ þ �ðTÞ ¼ 0

�ðtÞ ¼ xðtÞ

_��ðtÞ þ �ðtÞ ¼ uðtÞ:

9>>>>>>>=>>>>>>>;
ð24Þ

After integrating (24) and eliminating x0 between x
and u, we finally obtain that the optimal controller is
defined by

uðtÞ ¼
�e

ffiffi
2
p
ðt�TÞ
þ e�

ffiffi
2
p
ðt�TÞ

ð1�
ffiffiffi
2
p
Þ e

ffiffi
2
p
ðt�TÞ � ð1þ

ffiffiffi
2
p
Þ e�

ffiffi
2
p
ðt�TÞ

xðtÞ:

In the particular case of ordinary differential equa-
tions, let us show how to find again some well-known
results developed in the literature (Kwakernaak and
Sivan 1972, Kailath 1980, Anderson and Moore 1990).

Example 8: Let us write s ¼ ðd=dtÞ and let us con-
sider the system be defined by DðsÞ yþNðsÞ u ¼ 0,
where det DðsÞ 6¼ 0 and the polynomial matrix ðD : NÞ
is left-coprime, i.e. controllable (Kailath 1980).

Thus, differential operator D1 : ðy : uÞ ! �, defined by

DðsÞ yþNðsÞ u ¼ �

has a right-inverse and the D ¼ R½d=dt�-module
M ¼ Dl0=Dl1 ðD : NÞ associated with D1 is a projective
D-module (see Example 3 and Pommaret and Quadrat
(1998) for more details). But, D ¼ R½d=dt� is a principal
ideal domain, and thus M is a free D-module, i.e. D1

admits an injective parametrization D0, which is the
controller form

NðsÞ � ¼ y
DðsÞ � ¼ u

�
where the basis � of M is called the partial state
of the system DðsÞ yþNðsÞ u ¼ 0 (Kailath 1980). See
Pommaret and Quadrat (1998, 1999 a) for more details.
The formal adjoint operator eDD0 : ð�1 : �2Þ ! � of D0 is
defined by

N
T
ð�sÞ�1 þD

T
ð�sÞ�2 ¼ �:

Now, let us find the optimal system which corresponds
to the minimization of the costðþ1

0

1
2
�TðtÞR �ðtÞ dt

where � ¼ ðy : uÞT and R is a symmetric matrix with
entries in R. We easily check that B ¼ R, and thus,
we have

eDD0 � B ¼ N
T
ð�sÞ : D

T
ð�sÞ

� 	
� R

and the differential operator A : �! � is defined by

N
T
ð�sÞ : D

T
ð�sÞ

� 	
� R �

NðsÞ

DðsÞ


 �
 �
� ¼ �: ð25Þ

In particular, if we take

R ¼
I 0
0 S


 �
where S is a positive definite symmetric matrix acting
on the inputs, we find that the dynamic of the optimal
system is given by (Kwakernaak and Sivan 1992,
Kailath 1980, Anderson and Moore 1990).

N
T
ð�sÞ �NðsÞ þD

T
ð�sÞ � S �DðsÞ

� 	
� ¼ 0:

Corollary 3 (Quadrat 1999): The differential operator
A : E ! eEE defined by (21) is self-adjoint, i.e. eAA ¼ A.
Proof: We have

eAA ¼ g
ðfD0D0 � B � D0ÞðfD0D0 � B � D0Þ ¼

fD0D0 �
eBB �ffD0D0

fD0D0 ¼ A

because, from Proposition 1, we know that B is a

self-adjoint operator, i.e. eBB ¼ B, and ffD0D0
fD0D0 ¼ D0. œ

Differential operator approach to optimal control 829



Example 9: Let us consider again Example 6. The
operator D1 defines a projective left D-module M ¼

D2=DD1, and thus, the sequence E�!
D0

F0�!
D1

F1 is locally
exact at F0. The optimal system is then equivalent to
A � ¼ 0 and � ¼ D0 �. But, as we have B ¼ id, with a
slight abuse of language, it follows that A ¼ eDD0 � D0

and the fourth-order square operator A is trivially self-
adjoint.

Example 10: We consider again Example 8. We saw
that the dynamic of the optimal system was given by
A � ¼ 0, where A is defined by (25). We easily check
that A is a self-adjoint differential operator. Now, if
we denote by

�ðsÞ ¼ N
T
ð�sÞ : D

T
ð�sÞ

� 	
� R �

NðsÞ

DðsÞ


 �
and �ðsÞ ¼ det�ðsÞ. Thus, we have

�ðsÞ ¼ det ð�ðsÞTÞ

¼ det ð�ð�sÞÞ

¼ �ð�sÞ:

Hence, if there exists s0 2 C such that �ðs0Þ ¼ 0, then
�ð�s0Þ ¼ 0, showing that the eigenvalues of the dynamic
A � ¼ 0 are symmetric with respect to the real axis
(Kwakernaak and Sivan 1992, Kailath 1980, Anderson
and Moore 1990).

Let us give the second main result of this paper.

Proposition 2 (Quadrat 1999): If the surjective differen-
tial operator D1 : �! � defines a projective left D-module
M ¼ Dl0=Dl1 D1, then we can express the Lagrangian
multipliers � as differential linear combinations of �.
More precisely, we then have � ¼ ðePP1 � BÞ �, where ePP1 is
a left-inverse of the injective operator eDD1. Therefore, the
differential operatorePP1 � B : F0 !

eFF1 allows us to observe
� and we have the exact diagram

F0 �!
D1

F1�!0

B # &

eFF0  �
eDD1 eFF1 �0:

�!
ePP1

Proof: The facts that the differential operator D1 is
surjective and the left D-module M ¼ Dl0=Dl1 D1 associ-
ated with D1 is projective imply that eDD1 is an injective
differential operator, and thus eDD1 admits a left-inverseePP1, i.e. we have ePP1 � eDD1 ¼ id ~FF1

(see the end of the proof
of Corollary 1). Accordingly, we have eDD1 � ¼ B �)
� ¼ ðePP1 � BÞ �, which proves the result. œ

Remark 4: By Corollary 1, the linear ordinary differ-
ential control system defined by a surjective differ-
ential operator D1 is controllable iff eDD1 is an injective

differential operator. Therefore, Proposition 2 always
holds in this case.

Example 11: We consider again Example 6. In
Example 3, we saw that eDD1 was an injective differential
operator and that eDD1 admitted a left-inverse ePP1 : �! �
defined by

�@2�1 þ @1�2 þ x2 �2 ¼ �:

Thus, the differential operator ePP1 � B : �! � is
defined by

�@2�
1
þ @1�

2
þ x2 �2 ¼ �:

Hence, we explicitly obtain the Lagrangian multiplier
� ¼ �@2�

1
þ @1�

2
þ x2 �2 in terms of the system vari-

ables �1 and �2 and their derivatives.

The third main result of this paper is motivated by
linear elasticity theory as we shall later see in } 5 and by
the fact that we want to close the diagram of Theorem 5
on the right.

Proposition 3 (Quadrat 1999): If the differential opera-
tor B : F0!

eFF0 is invertible, then the optimal system (17)
is equivalent to the system

C � ¼ 0
� ¼ ðB�1 � eDD1Þ �

�
ð26Þ

where the differential operator C : eFF1! F1 is defined by

C ¼ D1 � B
�1
� eDD1: ð27Þ

Moreover, we have the commutative diagram

F0 �!
D1

F1

B #" B
�1

" C

eFF0  �
eDD1 eFF1

In particular, this result holds if D1 is a first-order
differential operator (e.g. a Kalman system) and B ¼ R
is a positive definite symmetric matrix with constant
entries.

Proof: In Theorem 4, we saw that the optimal system
was given by (17), namely

D1 � ¼ 0

B �� eDD1� ¼ 0:

)
By inverting B in the second equation, we obtain � ¼
ðB
�1
� eDD1Þ �, and thus, by substituting this result in the

first equation, we obtain D1 � ¼ ðD1 � B
�1
� eDD1Þ � ¼ 0,

i.e. (26). Conversely, if we have (26), then, from the
second equation of (26), we obtain eDD1� ¼ B � and thus

C � ¼ ðD1 � B
�1
� eDD1Þ � ¼ D1 ððB

�1
� BÞ �Þ ¼ D1 �

which concludes the proof. œ
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Example 12: We consider again Example 6. The opera-
tor B : F0!

eFF0 is invertible and B�1� ¼ �. Therefore,
the differential operator C : eFF1! F1 is defined by
�� �þ ðx2Þ2� ¼ �: Therefore, by Proposition 3, the
optimal system is governed by the equations

� �� ðx2Þ2 � ¼ 0
�1 ¼ �@1�� x2 �
�2 ¼ �@2�:

9=;
We find again that the optimal system only depends on
two arbitrary functions of one variable, which are
needed for integrating the first equation above.

Example 13: Let us find the solutions which minimize
the following cost

I ¼

ðt1
t0

1
2
ðx : uÞT

Q 0
0 R


 �
x
u


 �
dtþ 1

2
xðt1Þ

T S xðt1Þ

where R (resp. Q, S) is a positive definite (resp. semi-
definite) symmetric matrix with entries in R, while x
and u satisfy the time-invariant Kalman system
_xx� Ax� Bu ¼ 0 and xðt0Þ ¼ x0.

By Theorem 4, we obtain that the optimal system
(17) is defined by

_xx� Ax� Bu ¼ 0

_��þ AT�þQx ¼ 0

Ruþ BT � ¼ 0

xðt0Þ ¼ x0

�ðt1Þ ¼ S xðt1Þ:

9>>>>>>>=>>>>>>>;
ð28Þ

In particular, the operator B : F0!
eFF0 is defined by

B
x
u


 �
¼

Q 0
0 R


 �
x
u


 �
¼

Qx
Ru


 �
:

If we suppose that Q is a positive definite matrix, then
B is invertible and B�1 is defined by:

B
�1 �1

�2


 �
¼

Q�1 0
0 R�1


 �
�1

�2


 �
¼

Q�1 �1

R�1 �2


 �
:

Then, by Proposition 3, the optimal system (28) is
equivalent to the system

�Q�1 €��þðAQ�1�Q�1AT
Þ _��þðAQ�1AT

þBR�1BT
Þ�¼0

x¼�Q�1 ð _��þAT�Þ

u¼�R�1BT�

SQ�1 ð _��ðt1ÞþA
T�ðt1ÞÞþ�ðt1Þ¼0

_��ðt0ÞþA
T�ðt0ÞþQx0¼0:

9>>>>>>>=>>>>>>>;
To our knowledge, the previous system is new. Let us
finish by interpreting the standard Riccati equation
(Kwakernaak and Sivan 1972, Kailath 1980, Anderson
and Moore 1990) as an integrability condition
(Pommaret and Quadrat 2000a, Pommaret 2001). Let us

suppose that R (resp. Q) is a positive definite (resp. semi-
definite) symmetric matrix. Using the fact that R is
invertible, equation (28) is equivalent to the system

_xx� Axþ BR�1BT� ¼ 0

_��þ AT�þQx ¼ 0

u ¼ �R�1 BT�:

9>>=>>;
This new system in x and � is determined, and thus, if
we add to it the new equation �� Px ¼ 0 as a feedback
law for the total system, it becomes non-formally
integrable, i.e. we cannot find step by step the solution
of the system as a formal power series (see Spencer 1965
and Pommaret 2001 for more information). Indeed, if
we differentiate the zero-order equation and take into
account the other equations, we find the new zero-order
equation

ð _PPþ ATPþ PA� PBR�1BTPþQÞ x ¼ 0:

Hence, the system

_xx� Axþ BR�1BT� ¼ 0

_��þ AT�þQx ¼ 0

u ¼ �R�1 BT�

�� Px ¼ 0

9>>>>=>>>>;
has a solution different from zero iff the following
integrability condition on P is satisfied

_PPþ ATPþ PA� PBR�1BTPþQ ¼ 0

that is, iff the previous Riccati equation for P is satisfied.
In this case, we can rewrite the system as

_PPþ ATPþ PA� PBR�1BTPþQ ¼ 0

_xx� ðA� BR�1 BT PÞ x ¼ 0

u ¼ �R�1 BT Px

� ¼ Px:

9>>>>=>>>>;
We have recently shown in Pommaret and Quadrat

(2000 a) that the controllability of a linear system with
unspecified coefficients depends on trees of integrability
conditions on the coefficients. The same thing may
happen in a linear optimal control problem. To finish,
we provide an illustrative example.

Example 14: Let us find the solutions that optimizeð
1
2
ð y2 � u2Þ dt

where y and u satisfy the system _yyþ a y� _uu� u ¼ 0, in
which a is a constant coefficient. System (17) is given by

_��� a �þ y ¼ 0
� _��� �� u ¼ 0
_yyþ a y� _uu� u ¼ 0:

9=;
Let us eliminate � in order to find (19): summing the first
two equations, we obtain the new zero-order equation
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ð1� aÞ� ¼ u� y: Thus, two cases may happen depend-
ing on the value of a:

1. If a¼ 1, then y� u ¼ 0 and the optimal system is
given by

_yyþ y� _uu� u ¼ 0
y� u ¼ 0

, y� u ¼ 0:

�
2. If a 6¼ 1, then � ¼ ðy� uÞ=ða� 1Þ and, after sub-

stituting, we get:

_yyþ a y� _uu� u ¼ 0

_yy� y� _uuþ a u ¼ 0

(
,

_yyþ a y� _uu� u ¼ 0

ðaþ 1Þ ðy� uÞ ¼ 0:

(
We are led to new integrability conditions:

(a) If a ¼ �1 , then the optimal system is given by
the only equation _yy� y� _uu� u ¼ 0. In fact, we
can note that a parametrization D0 : �!ð y : uÞ
of this system is given by

�!
_�� þ � ¼ y
_�� � � ¼ u

�
and thus, 1

2
ðy2 � u2Þ ¼ 2 � _�� ¼ ðd=dtÞ ð�2Þ:

(b) If a 6¼ �1, then the only solution is y ¼ u ¼ 0.

We note that the condition a 6¼ 1 is in fact the condition
on a for the system to be controllable (if a¼ 1, then the
element z ¼ y� u satisfies d=dtþ 1ð Þ z ¼ 0, i.e. z is a
torsion element of the D ¼ RðaÞ½d=dt�-module M ¼
D2=D ðd=dtÞ þ 1 : �ðd=dtÞ � 1ð Þ.

5. Applications to mathematical physics

In this section, we show how all the results obtained
in the preceding sections can be applied to linear multi-
dimensional systems appearing in some applications and
specially in linear elasticity theory (Landau and Lifschitz
1990) and electromagnetism (Bok and Hulin-Jung 1979,
Landau and Lifschitz 1989).

5.1. Linear elasticity theory

Let us denote the displacement in R
n by � ¼ ð�iÞ1�i�n

and contract the index of �i by the euclidean metric
!ij ¼ !ji ¼ �ij, 1 � i, j � n, of Rn in order to lower the
index with �i ¼ !ij �

j. Then, the so-called small strain
tensor is defined by the differential operator

Lð�Þ! :T �! S2T
?

� ! ð�ij ¼
1
2
ðLð�Þ!Þij ¼

1
2
ð@i �j þ @j �iÞÞ1�i, j�n

where L is the Lie derivative of the euclidean metric. In
what follows, we only consider the case n¼ 2. Thus, the
small strain tensor is given by

�11 ¼ @1�1
�12 ¼ �21 ¼

1
2
ð@1�2 þ @2�1Þ

�22 ¼ @2�2:

9=;
See Landau and Lifschitz (1990).

This system has only one compatibility condition of
order two, namely

@11�22 þ @22�11 � 2 @12�12 ¼ 0 ð29Þ

and we have the following formally exact sequence of
differential operators

0�!Y�!E�!
D

F0�!
D1

F1�!0 ð30Þ

where E ¼ T ,F0 ¼ S2T
?,Y is the field of small rigid

displacements and D � ¼ 1
2
ðLð�Þ!Þ: In the spirit of H.

Poincaré, this sequence is only based on geometry
whereas the adjoint sequence, i.e. the sequence formed
by the formal adjoint operators, and the constitutive law
give the physics. Indeed, the formal adjoint eDD : �! f of
the differential operator D is obtained by multiplying �
by � and integrating by parts, i.e.

�11 �11 þ �
12 �12 þ �

21 �21 þ �
22 �22

¼ �11 �11 þ 2 �12 �12 þ �
22 �22

¼ �ð@1�
11
þ @2�

12
Þ �1 � ð@1�

12
þ @2�

22
Þ �2 þ � � �

where we have supposed that �12 ¼ �21. Thus,
�eDD : �! f is given by

@1�
11
þ @2�

12
¼ f 1

@1�
12
þ @2�

22
¼ f 2

(
ð31Þ

where � is the stress tensor and f is a density of forces.
Similarly, the formal adjoint eDD1 of the differential opera-
tor D1 is obtained by multiplying (29) by � and integrat-
ing by parts

� ð@11�22 þ @22�11 � 2 @12�12Þ

¼ @11� �22 þ @22� �11 � 2 @12� �12 þ � � �

and thus, eDD1 : �! � is given by

@22� ¼ �
11

�@12� ¼ �
12

@11� ¼ �
22:

9>=>; ð32Þ

We easily check that all the compatibility conditions ofeDD1 are generated by eDD or by �eDD. Meanwhile, we find
again the well-known parametrization of the stress
tensor by the Airy function �. Finally, we have the
formally exact sequence

0 �eEE �� ~DD eFF0 �
~DD1 eFF1: ð33Þ

In fact, it can be shown that the sequence (30) is locally
equivalent to the Poincaré sequence^0

T?
�!
d ^1

T?
�!
d ^2

T?
�!0

(see Pommaret (2001) for more details), which is a
locally exact and self-adjoint sequence. Hence, the
sequences (30) and (33) are locally exact. Moreover,
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the Poincaré sequence being a self-adjoint one, this is the
reason why the kernel Y of the differential operator D
and the kernel O of eDD1 both depend on three arbitrary
constants.

We can link the two differential sequences (30) and
(33) with the constitutive law, namely the Hooke law
B : �! �, defined by

�11 ¼ ðþ 2�Þ �11 þ  �22
�12 ¼ �21 ¼ 2 � �12
�22 ¼  �11 þ ðþ 2 �Þ �22

9=;
where ð,�Þ are the Lamé constants and we obtain the
locally exact diagram:

0 �! Y �! E �!
D

F0 �!
D1

F1 �! 0

#B

0  � eEE  �� ~DD eFF0  �
D1 eFF1  � O  � 0:

ð34Þ

With such a diagram, we naturally want to define the
operator A ¼ �eDD � B � D : E ! eEE. Now, let us note
that B is a symmetric matrix, i.e. eBB ¼ B, and thus, A
is a self-adjoint differential operator. This fact can be
easily verified on the direct expression of the differential
operator A

ðþ 2 �Þ @11�1 þ � @22�1 þ ðþ �Þ @12�2 ¼ f 1

ðþ �Þ @12�1 þ � @11�2 þ ðþ 2 �Þ @22�2 ¼ f 2

)

or, equivalently, on the so-called Navier equations

ðþ �Þ @1ð@1�1 þ @2�2Þ þ �� �1 ¼ f 1

ðþ �Þ @2ð@1�1 þ @2�2Þ þ �� �2 ¼ f 2:

)

The Hooke law is in fact invertible and the operator
B
�1 is given by

�11 ¼
ðþ 2�Þ

4 � ðþ �Þ
�11 �



4� ðþ �Þ
�22

�12 ¼
1

2 �
�12

�22 ¼ �


4� ðþ �Þ
�11 þ

ðþ 2 �Þ

4� ðþ �Þ
�22

9>>>>>>>=>>>>>>>;
and thus, we obtain the differential operator C ¼
D1 � B

�1
� eDD1 : eFF1 ! F1 defined by

ðþ 2�Þ

4� ðþ �Þ
�� � ¼ �:

Finally, we can sum up the different differential opera-
tors by the locally exact diagram

0 �! Y �! E �!
D

F0 �!
D1

F1 �! 0

#A #B "C

0  � eEE  �� ~DD eFF0  �
~DD1 eFF1  � O  � 0:

To finish this section, let us connect the above results
to parametrizability of multidimensional systems. From
the controllability test, we can conclude from what
precedes, that the operator D1 determines a torsion-
free D-module M, with D0 as a parametrization (it is
not surprising because, by definition, D1 is the compat-
ibility condition of D0). More surprisingly, we proved
that the D-module defined by the differential operatoreDD0 is also torsion-free with the parametrization given
by the differential operator (32).

5.1.1. Case without forces. In the case where there is
no force, let us minimize the energy of deformation
defined by ð

1
2
�T B � dx1 ^ dx2

under the differential constraint D1� ¼ 0. Introducing
new unknowns � as Lagrange multipliers, it is equivalent
to optimize the new integralð

1
2
�T B �� �D1 �

� �
dx1 ^ dx2

where the � are now considered as independent
unknowns. Thus, by Theorem 4, we have to solve the
system

B �� eDD1� ¼ 0
D1 � ¼ 0

�
ð35Þ

or, in other words, the system defined by

ðþ 2�Þ �11 þ  �22 � @22� ¼ 0

2� �12 þ @12� ¼ 0

 �11 þ ðþ 2�Þ �22 � @11� ¼ 0

@11�22 þ @22�11 � 2 @12�12 ¼ 0:

9>>>>=>>>>;
We can solve � ¼ ðB�1 � eDD1Þ � in the first equation

of (35), and, substituting it in the second, we obtain
C � ¼ ðD1 � B

�1
� eDD1Þ � ¼ 0. Finally, we have to solve

the following system

�� � ¼ 0

�11 ¼
ðþ 2�Þ

4� ðþ �Þ
@22��



4 � ðþ �Þ
@11�

�12 ¼ �
1

2�
@12�

�22 ¼ �


4� ðþ �Þ
@22�þ

ðþ 2�Þ

4� ðþ �Þ
@11�

9>>>>>>>>>>=>>>>>>>>>>;
and, from the first equation of the previous system, we
deduce that � is a biharmonic function.
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Also, the differential sequence (30) is locally exact,
and thus, as we saw in Theorem 5, the solution of the
equivalent unconstrained optimization problemð

1
2
�T ðeDD � B � DÞ �� 	

dx1 ^ dx2

is defined by

A � ¼ 0
D � ¼ �

�
or, in other words, we have to solve the following
system of partial differential equations only in the dis-
placements �

ðþ �Þ @1ð@1�1 þ @2�2Þ þ �� �1 ¼ 0

ðþ �Þ @2ð@1�1 þ @2�2Þ þ �� �2 ¼ 0

@1�1 ¼ �11
1
2
ð@1�2 þ @2�1Þ ¼ �12

@2�2 ¼ �22:

9>>>>>>>=>>>>>>>;
5.1.2. Forces coming from a potential. If the force
f comes from a potential  , namely we have

f 1 ¼ @1 
f 2 ¼ @2 

�
then, from (31), we have the system

@1�
11
þ @2�

12
� @1 ¼ 0

@1�
12
þ @2�

22
� @2 ¼ 0

)
ð36Þ

and, if we introduce by �11 ¼ �11 �  , �12 ¼ �12 and
�22 ¼ �22 �  , we find that the new system without
forces is defined by

@1�
11
þ @2�

12
¼ 0

@1�
12
þ @2�

22
¼ 0:

)
ð37Þ

Moreover, we have eDD � ¼ 0, � ¼ eDD1� because the

differential sequence eFF1�!
eDD1 eFF0 �!

eDD eEE is locally exact ateFF0. Hence, (37) is equivalent to the system

�11 ¼ @22�þ  

�12 ¼ �@12�

�22 ¼ @11�þ  :

9>>>=>>>; ð38Þ

Therefore, solving system (36), where � satisfies
� ¼ B�1 � and D1 � ¼ 0, is the same as solving system
(38) with � ¼ B�1 � and D1 � ¼ 0. Hence, substituting
(38) into D1 ðB

�1 �Þ ¼ 0, we have to solve the following
partial differential equation

�� �þ
2�

ðþ 2�Þ
� ¼ 0

and substitute the result in (38) to obtain the cor-
responding stress tensor �. As a matter of fact, when
the only forces involved are of gravitational type, then
� ¼ 0, and we are brought back to the preceding
situation. In particular, see the introduction of
Pommaret (2001) for the construction of a dam.

5.2. Electromagnetism

Let us consider the formally exact sequence

0�!Y�!E�!
D0

F0�!
D1

F1�!
D2

F2�!
D3

F3�!0 ð39Þ

where Y is the kernel of the differential operator
D0 : E ! F0 defined by

�!

~rr� ¼ ~AA

�
@�

@t
¼ V :

8<:
The differential operator D1 : F0! F1 gives the electro-
magnetism field ð ~BB, ~EEÞ from the potential ð ~AA,VÞ, i.e.

ð ~AA,VÞ !

~rr ^ ~AA ¼ ~BB

� ~rrV �
@ ~AA

@t
¼ ~EE:

8><>: ð40Þ

The differential operator D2 : F1 ! F2 is the first set of
Maxwell equations, namely

ð ~BB, ~EEÞ !
~rr: ~BB ¼ �1

~rr ^ ~EE þ
@ ~BB

@t
¼ ~��2

8<:
and the differential operator D3 : F2! F3 defines the
compatibility conditions of D2, i.e.

@�1

@t
� ~rr: ~��2 ¼ 0:

The use of space-time formalism with x4 ¼ c t and spe-
cial relativity amounts to rewrite the formally exact
sequence (39) in the intrinsic form of the locally exact
and self-adjoint Poincaré sequence for the exterior
derivative (Pommaret 2001)

T?
�!
d
^
2 T?
�!
d
^
3 T?
�!
d
^
4 T?
�!0:

Moreover, the differential operator eDD1 : eF1F1!
eFF0

defined by

ð ~HH, � ~DDÞ !
~rr ^ ~HH �

@ ~DD

@t
¼ ~||

� ~rr: ~DD ¼ ��

8<:
is the second set of Maxwell equations, where ~HH is the
magnetic induction, ~DD the electric induction, ~|| the
density of current and � is the density of electric charge.
The compatibility conditions of eDD1ð

~HH : � ~DDÞT ¼
ð ~|| : ��ÞT is the conservation law defined by
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@�

@t
þ ~rr: ~|| ¼ 0: ð41Þ

Again, in space-time formalism, the differential sequence
formed by the formal adjoints of the differential opera-
tors of (39) is isomorphic to the Poincaré sequence, and
thus, it is locally exact.

Now, let us consider the problem of minimizing the
electromagnetism Lagrangian defined byð

1

2�0

k ~BBk2 �
�0
2
k ~EEk2


 �
dx1 ^ dx2 ^ dx3 ^ dx4

where �0 is the dielectric constant and �0 is the magnetic
constant, under the differential constraint formed by the
first set of Maxwell equations

~rr: ~BB ¼ 0

~rr ^ ~EE þ
@ ~BB

@t
¼ 0:

9=; ð42Þ

From the Lagrangian, we obtain the operator
(Minkowski law) B : F1!

eFF1 is defined by

ð ~BB, ~EEÞ !

1

�0

~BB ¼ ~HH

��0 ~EE ¼ � ~DD:

8<:
Therefore, we obtain the commutative locally exact
diagram

F0 �!
D1

F1 �!
D2

F2

# A # B

eFF0  �
eDD1 eFF1  �

eDD2 eFF2

where, using the relation ~rr ^ ~rr ^ ~AA ¼ ~rrð~rr: ~AAÞ �� ~AA,
the differential operator A ¼ eDD1 � B � D1 is defined by

1

�0

1

c2
@2 ~AA

@t2
�� ~AA

 !
þ ~rr ~rr: ~AAþ

1

c2
@V

@t


 � !
¼ ~||

�0 �V þ
@~rr: ~AA

@t

 !
¼ ��

9>>>>>=>>>>>;
and c0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
�0 �0
p

is the speed of light in the vacuum.
See Bok and Hulin-Jung (1979) for more details. Hence,
we obtain that the optimal system (17) is equivalent
to (21), i.e.

1

c2
@2 ~AA

@t2
�� ~AAþ ~rr ~rr: ~AAþ

1

c2
@V

@t


 �
¼ 0

1

c2
@2V

@t2
��V �

@

@t
~rr: ~AAþ

1

c2
@V

@t


 �
¼ 0

~rr ^ ~AA ¼ ~BB

� ~rrV �
@ ~AA

@t
¼ ~EE:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð43Þ

Finally, let us note that the first set of Maxwell equa-
tions (42) is parametrized by (40), where the potential
ð ~AA, VÞ is not uniquely determined. Using the fact that
~AA (resp. V) is defined up to a gradient ~rr� (resp. @�=@t)
of a function �, we can choose the potential ð ~AA, V Þ
in such a way that it satisfies the following equation
(gauge condition)

~rr: ~AAþ
1

c2
@V

@t
¼ 0:

Therefore, system (43) becomes

1

c2
@2 ~AA

@t2
�� ~AA ¼ 0

1

c2
@2V

@t2
��V ¼ 0

~rr ^ ~AA ¼ ~BB

� ~rrV �
@ ~AA

@t
¼ ~EE:

9>>>>>>>>>>>=>>>>>>>>>>>;
ð44Þ

From the first two equations of (44), we deduce that ~AA
and V satisfy a wave equation with a speed of propaga-
tion equal to c0 (electromagnetic waves). We refer to
Pommaret (2001) for a more intrinsic formulation of
the Maxwell equations.

6. Conclusion

We hope to have convinced the reader about the
possibility to extend optimal control theory from ordi-
nary differential systems to multidimensional systems
described by partial differential equations. In particular,
using the parametrizations of controllable linear multi-
dimensional systems, we showed how to transform
variational problems with partial differential equations
constraints into variational problems without differen-
tial constraints. Moreover, different equivalent forms
for the optimal systems were given which depend on the
structural properties of the multidimensional systems.
Finally, within the differential operators and algebraic
analysis frameworks, we illustrated the main new results
either on classical optimal control problems or on varia-
tional problems coming from mathematical physics (e.g.
linear elasticity, electromagnetism).

Let us stress that the different equivalent forms
for the optimal systems obtained in this paper can be
explicitly computed using the algorithms developed in
Pommaret and Quadrat (1998, 1999 a,b), Pommaret
(2001) and Chyzak et al. (2004). We refer the reader to
Chyzak et al. (2003, 2004) for computational issues
as well as for a description of the package OreModules
used to perform such computations.

In forthcoming publications, we shall study the
extension of the results obtained in this paper to more
general classes of linear systems and, in particular, to
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systems defined over Ore algebras (see Chyzak et al.
(2003, 2004) for more details). Such a class of linear
systems includes differential time-delay systems, multi-
dimensional discrete systems, etc.

Moreover, the problem of spectral factorization of
the differential operator A needs to be studied in the
future (see Quadrat 1999). In the particular case of
partial differential operators with constant coefficients,
the independent work (Pillai and Willems 2002) has
shown how such a problem was related to Hilbert’s
17th problem.

Finally, using an extension of the concept of para-
metrization, some generalizations of this paper have
been recently obtained in Quadrat and Robertz (2004)
for uncontrollable multidimensional systems.
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