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Formal Elimination for Multidimensional Systems and
Applications to Control Theory*

J. F. Pommaretf and A. Quadratf

Abstract. Following Douglas’s ideas on the inverse problem of the calculus of
variations, the purpose of this article is to show that one can use formal integra-
bility theory to develop a theory of elimination for systems of partial differential
equations and apply it to control theory. In particular, we consider linear systems
of partial differential equations with variable coefficients and we show that we
can organize the integrability conditions on the coefficients to build an “intrinsic
tree”. Trees of integrability conditions naturally appear when we test the struc-
tural properties of linear multidimensional control systems with some variable
or unknown coefficients (controllability, observability, invertibility,...) or for
generic linearization of nonlinear systems.
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1. Introduction

Expansion into power series of analytic or formal solutions of a system of partial
differential equations (PDEs) has been an early powerful tool in mathematics,
physics and engineering sciences. In particular, the wish to have a theory which
computes the dimension of the space of the analytic (formal) solutions of a system
of PDEs, without integrating it explicitly, is not new, as Einstein explained in
1952 [8]: ... we need a method which gives a measure of the strength of a system of
equations ... The set of numbers of “‘free”” coefficients (derivatives of the field vari-
ables at a point) for all degrees of differentiation is directly a measure of the
“weakness” of the system of equations, and through this, indirectly, also of its
“strength”. The dimension of solutions of a system of PDEs has been particularly
studied by Riquier [29], Cartan [3] and Janet [15] during the years 1900-1930. In
particular, Janet has developed effective algorithms in order to compute it without
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integrating the system explicitly. His work has inspired Ritt while he was creating
differential algebra (see the last two chapters of [30] for an exposition of the
Riquier and Janet works). More recently, and independently of these precursors,
the theory of formal integrability has been developed in an intrinsic way by
Spencer, Quillen and Goldschmidt, using the modern techniques of differential
geometry [14], [24], [33].

In this paper we are mainly interested in elimination problems encountered in
control theory. We consider a system of PDEs with two sets of dependent vari-
ables and we search all the conditions (differential equalities and inequalities) that
the first set of variables has to satisfy in order that the system has a solution. In
[32], Seidenberg gives a complete answer to this problem, using a differential
algebra approach [19], [30]. The purpose of this article is to investigate how the
theory of formal integrability can be used to solve this problem. This approach
seems to be more intrinsic and allows one to have a new viewpoint on elimination
theory. In particular, following the Spencer—Goldschmidt criterion developed in
[14] and [33], only three kinds of differential equalities and inequalities may
appear in elimination problems: the first one appears for rank conditions where
we check the conditions of fibred manifolds, the second one occurs where we
test the surjectivity of the projection of prolongations of the system of PDEs,
and the last one appears where we check a more technical property, namely the 2-
acyclicity of the symbol of the system. In the case of a linear system of PDEs with
variable coefficients, these differential relations on the coefficients can be arranged
in order to build an “intrinsic tree”. Each final leaf of the tree represents a solu-
tion of the system of PDEs which depends on the differential relations (knots of
the branches) that the variable coefficients of the system verify. Such a point
of view was first adopted in 1941 by Douglas in his study of the inverse problem
of the calculus of variations [7], using Janet’s ideas and techniques [15]. We pro-
pose in this paper to reconsider this approach to elimination problems within the
framework of the modern theory of formal integrability. A nice problem would be
to revisit the results obtained by Douglas on the inverse problem of calculus of
variation with the theory of formal integrability.

Recently, the theory of differential modules (D-modules) has given new insight
into the structural properties of multidimensional linear control systems. See [9]—
[11], [20], [22], [24]-[27], [35] and the references within. Most of the intrinsic
properties of linear multidimensional control systems such as controllability,
observability, primeness, poles and zeros have been reformulated in terms of the
algebraic properties of D-modules. Formal tests using only formal duality and
formal integrability have been developed in [24] and [26]-[28] to check these
properties of modules. We show that if we consider linear control systems with
variable or unknown coefficients or generic linearization of nonlinear ones, trees
of integrability conditions naturally appear when we test these properties.

Finally, notice that, to our knowledge, elimination theory was first introduced in
control theory by Diop in [4]-[6]. He uses for that the effective methods of differ-
ential algebra developed by Ritt and Kolchin [19], [30] and Seidenberg’s results on
elimination theory [32]. In [1], both differential algebra and Groebner bases [2]
have been used to make recent improvements in the theory of elimination. These



Formal Elimination for Multidimensional Systems 195

algebraic methods are in general more effective than those of formal integrability
theory but less intrinsic (dependence on the coordinate system through the rank-
ing, choice of differential polynomials in the characteristic sets). (See [23] for
more details.) Roughly speaking, we can say that “effectivity always competes with
intrinsicness” .

2. Formal Integrability Theory

2.1. Introduction

We introduce the main ideas of formal integrability theory, before presenting
them by using more technical tools. In the course of this paper, we only consider
differentiable manifolds and maps.

If we want to look for the formal solutions of a system of PDEs, we have to
know the number of “arbitrary” (“free”, “parametric”, ... depending on the au-
thor) derivatives at each order. The solutions y* = f*(x) of a system of PDEs of
order ¢ satisfy a certain number of equations, say ®"(x,d,f k (x)) =0, where
t=1,...,0, k=1,...,m and u= (4;,...,4,) is a multi-index with length
el =y + -+ p,- We may replace the derivative of the unknown functions
£¥(x) solutions by jet coordinates with the same indices (3,f*(x) — y/’j)), that is
to say, we regard any derivative of the /* as new unknowns. We say that a jet
coordinate is of order ¢ if the length of its indice is lower than or equal to ¢, and
of strict order ¢ if the length of its indice is equal to ¢. Thus, ®*(x, d,, 75(x) = 01s
transformed into a pure equation relating the jet coordinates ®(x, yllj) =0. We
suppose that these equations define a fibred manifold %, (no relation among the x
only) in the space of jet coordinates of order ¢. Using the implicit function theo-
rem, we can locally determine certain jet coordinates as a function of dim %, (the
fibre dimension) other jet coordinates (we try to write the greatest number of jet
coordinates of order strictly equal to ¢ as functions of jet coordinates of lower
order). We call the first ones “principal” jet coordinates and the second “para-
metric” jet coordinates. Thus, we have made a partition of the jets of order ¢ into
two sets, the principal and parametric ones, where the first one can be expressed
in terms of the second.

Now, we notice that if we differentiate once the equations of ®(x,d, 75(x))
= 0 with respect to each x’ (prolongation p,), and replace again the derivatives by
the jet coordinates, we obtain

A

ox'!

. 007 HLOX .
d; 0" = — + Z ﬂy,ﬁﬂ_:o, i=1,....,n, v=1,....01. (1)

Thus, the terms of strict order ¢ + 1 appear linearly with coefficients defined on
R, 1.e. with jets satisfying @°(x, yjj) = (. This simple remark allows us to use
linear algebra. We define 2,41 = p;(%,) by

=0, dd =0, i=1,...,n, t=1,...,1L )
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Now, we call M, the vector space defined by

U
k “utl;
lul=q,k=1,...m ay/l

=0, i=1,....n, t=1,...,1 (3)

in the jet coordinates of order strictly equal to ¢+ 1. There are m(q+ n)!/
((g+ D! (n —1)!) jet coordinates of order strictly equal to ¢ + 1 and if we denote
by o1(®) the matrix in the left member of (3), then we have

m(q+n)!
(g+ D! (n=1)

parametric jet coordinates of strict order ¢+ 1. Indeed, we can find in (3),
rk g1 (®) lineary independent equations and, by linear algebra in the upper part of
(2) and substitution of the principal jet coordinates of order ¢ by the parametric
ones, we obtain rk g1 (®) principal jet coordinates of strict order ¢ + 1, which can
be expressed with dim M, | parametric jet coordinates of strict order ¢ 41 and
with dim 2%, ones of order q.

Now, the trouble begins if rk o) (®) < / x n: we have certain equations of (3)
which are linear combinations of rk o) (®) others. Eliminating the jets of order
¢ + 1 in the corresponding equations of (2), we obtain equations of order g. Only
two different cases may happen:

diqu_H = 71'1(0'1((1))

o Substituting the principal jets of order ¢ in these new equations, we are led to
0, then we have no new equations relating the parametric jet coordinates up
to the order ¢. Thus, we have determined for the moment the number of
parametric jet coordinates of strict order ¢ + 1 and obtained / x n — rk o, (D)
identities of the form

> AP(x, yp) di® 4+ B (x, y)®" =0,  0<|ul <q.
LT
We notice that it leads to compatibility conditions in the linear case.

o Substituting the principal jet of order ¢ in these new equations, we are led to
some nonidentically zero equations ¥*(x, yl’j) =0, |yl < ¢, relating the para-
metric jet coordinates of order ¢. This contradicts the fact that they are para-
metric jet coordinates. Then we have to add these new equations to the
system @°(x, yl’j ) = 0 and start anew with the following system:

{d)f(x, yE) =0,

()
W (x, yllj) =0.

g (4)
We have just shown how to compute the number of parametric jet coordinates of
order g + 1. It can be done similarly for each order. We have seen that the feed-
back of information on the lower-order derivatives (new equations ¥*(x, y!'f) =0)
modifies the calculus of the number of parametric jet coordinates and thus the
calculus of the dimension of the space of solutions (the parametric jet coordinates
determine the initial conditions that we have to fix to compute the power series of
the solutions). Hence, certain systems of PDEs seem to be “nicer” than some
others, that is, those in which no feedback of information on the lower-order
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derivatives appears when differentiating the equations of the system and projec-
ting them onto lower-order jet spaces. Hence, we call a system of PDEs formally
integrable whenever the formal power series of its solutions can be determined
step by step by successive derivations without obtaining backward new informa-
tion on lower-order derivatives. We may wonder how to recognize when a system
of PDEs is formally integrable, as we have to verify that no new lower-order
information appears at each order, that is, for an infinity of orders. So, we can
ask: does there exist a finite algorithm testing whether a system of PDE:s is for-
mally integrable or not? In the case where the system is not formally integrable,
we have seen that we have to add new equations. So, does there exist a procedure
which adds enough equations to the system, in order to transform it into a formal
integrable system, with the same solutions? During the years 1960—-1975, Spencer
and coworkers have given positive answers [14], [33] that we now present.

2.2. Main Results

We denote by X a manifold of dimension n with local coordinates (x!,...,x"),
and by T(X) and T*(X), its tangent and cotangent bundles. Let & be a fibred
manifold over X with fibre dimension 7 and local coordinates (x?, y*). We define
the g-jet bundle J,(&) as a fibred manifold with local coordinates (x, yﬁ), u=
(ty,---s1,), 0 < |u| < ¢, and a nonlinear system of PDEs of order ¢ as a fibred
submanifold %, of J,(&), determined locally by ®*(x, yl’j ) = 0. The r-prolongation
of Ry is Ryrr = p.(Ry) = J:(Ry) N Jr14(&), and is obtained by substituting the jet
coordinates by the derivatives, differentiating r times and substituting again the
derivatives by jet coordinates. The projection m/\," : Jyi,is(6) = Jyir(6) in-
duces a projection of %, on #,.,. We denote the image of this projection
by @Efl, Notice that %, and ;%Eflr are not in general fibred manifolds for any
r,s > 0. The linearized system R, of A, is locally defined by

0|y <q,k=1,...m

It is a linear system in v with variable coefficients satisfying @7 (x, yfj ) =10. We
define the symbol M, of #,, as the family of vector spaces over %, by

00"
Z mﬁyffv"za t=1,...,1, (5)

and we denote by (®) the corresponding matrix. Then the symbol M., of Z,,,
is defined by

oo
7§v£+‘,:0, t=1,...,1, (6)

|ul=q,IV|=r,k=1,....m

and only depends on M,. We call ,(®) = o(p,(P)) the matrix in the left member
of (6). We define the J-sequence by

AT @ Mysri1 — AT @ M.,
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where
. A
G)f =dxi nof,  Pl=g+,
where o = (wL‘ = v/’j",dx’) eNT* @ Myyyi1, dxl =dx' A -+ Adxs, i) <---

<5 1 <k <mand |y = q+r+ 1. We verify that d o6 = 0. The cohomology at
N'T* ® M, of the sequence

As—l T* ® Mq+r+1 L} AST* ® Mq+r i) AS-H T ® Mqurfl

is denoted by H,,,.(M,).

Definition 1. The symbol M, of %, is said to be s-acyclic if H, (H, (My)=---=
Hy, (M) =0, for all r >0 and mvolutwe if it is n-acyclic. In particular, every
system £, of ordinary differential equations (ODEs) has an involutive symbol. A

symbol M, is of finite type if there exists an integer r such that M., = 0.

Theorem 1. Let M, be the symbol of the system R, then there exists an integer r
large enough such that M., is involutive.

A test checking the 2-acyclicity of the symbol is still lacking. Indeed, we have to
verify H; 2 (M,) =0 for any r >0, and thus for an infinity of orders. Only the
case of a finite type symbol can be checked as we only have to verify H 2(M )
=---=H, (My)=0 when M, =0 and My, | # 0. Nevertheless, we can
test whether a symbol is involutive or not. However, it must only be done in
“sufficently generic coordinates™: the d-regular coordinates. Roughly speaking, the
o-regular coordinates are not the most generic coordinates but ‘“generic enough”
to give the right dimension of various spaces. We say that v/’j is of class i > 1 if
W =--=p_;=0and y > 0 and of class 1 if 1; > 0. Now, using the equations
defining M,, we try to express the maximum number of vfj of class n, in function
of the other v]. Next, we substitute these v} in the other equations to make the v}
of class n disappear. We respectively do the same for the v/’j ofclassn—1,...,1.
We usually say that M, is in the solved form. We associate a system of “dots” to
these equations, as follows:

equations of class n 1 -~~~ -+ -+ n
equations of class n — 1 I -~ -+ n—1 e
equations of class i | | ° °
equations of class 1 1 o o .. e

Though this classification looks like Janet’s original one, it is in fact quite dif-
ferent. For a detailed study, we refer the reader to [12] and [13]. Moreover let M, i
be the vector space locally defined by a( ) where we have the v “ of class strlctly
lower than i equal to zero. We call o(®)’ the matrix of the equdtlons defining M. i
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We have
.o ml@gt+n—i—1) i _
dim M, = TESNECE] —1ka(D)’, i=0,...,n
We set
océ:diqu"’l—dimM;, i=1,...,n (7)

Theorem 2. The symbol M, is involutive if there exists a system of coordinates,
called o-regular coordinates, in which one of the following properties is satisfied.

1. dim Mgy, = o) + 200 + - + notll.
2. Prolongations with respect to the dots do not bring new equations.

Then we have
n

. (r+i-1)
dlm Mq+r = Zmixq, Vr > 0
i=

We have seen that a “good system” #, of PDEs was a system in which no
lower-order information appeared when projecting its prolongations #y4.ys =
Pris(R4) on lower-order jet space J,.(&). Using the previous notation, it leads to
the following definition.

Definition 2. A system %, is called formally integrable if #,., is a fibred mani-
fold and the projection 7! ™ : Ryyyis — A is surjective, for all r,s >0, i.e.
B, = Ryir.

A system %, is called involutive if %, is formally integrable with an involutive
symbol M,,.

Spencer—Goldschmidt Criterion. If M, is 2-acyclic and %, is a fibred manifold
such that ,%[(11) = Ay, then A, is formally integrable.

The reader has to keep in mind that the previous criterion gives sufficient but
not necessary conditions in order to have a formally integrable system, as is
shown in the following example.

Example 1. The system ;& + ajgf = (2/m)w; 0,&", i, j,r=1,...,n, is neither
2-acyclic nor involutive but the first prolongation becomes 2-acyclic when n > 4
and the system is formally integrable. More generally, any homogeneous system is
formally integrable even if the criterion is not satisfied.

We have the following corollary. See [24] for a proof.

Corollary 1. Let 2, be an involutive system of PDEs and let #,_1 be the projec-
tion of Ry on J,_1(&), then

i

O(q.

(r+i
1!

n
dim 2y = dim 2,y + >
r.
i=1
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Therefore, we have to fix o, I functions in x! funcllons in (x',x?),..., and oy

functions in (x',...,x") to determlne a formal solutzon of Ry.

Definition 3. A system £, is called sufficiently regular if:

1. ﬂqlr is a fibred manifold, for all r,s > 0.

2. The symbol ; 4, 1s induced from a vector bundle over X, for all r,s > 0.

If #, is not formally integrable, then there exists a finite procedure which gives
a formally integrable system with the same solutions as %, [14], [24], [33].

Theorem 3. If %, is a sufficiently regular system, we can find two integers, r,
s >0, such that jfllr is formally integrable (involutive) with the same solutions
as Ry.

Algorithm (“up and down”). We start with #,. Find r > 0 such that %, is 2-
acyclic (involutive). Test whether % JZ = Ryir- If it is the case, then the algorithm
stops, else, start anew with %f, ﬁ, We stop whenever we have found two integers
r,s such that ,%;lr is a formally integrable system (involutive).

2.3. Formal Elimination Theory
We consider the following system of PDEs of order ¢,

d)f(x,yl’j,zf,):o, 0< |y, pv<gq, t=1,...,1 (8)
where y = (p',...,y") and z = (z',...,z*) are two sets of unknowns. We would
like to determine the differential relations that z has to satisfy in order that (8)
admits formal solutions. For that, we look at (8) as a system of PDEs in the
unknowns y, with coefficients in z,, 0 < |v| < ¢

Wiy =0, 0<ld<q t=1,...t 9)

Suppose that z is given, we can locally find the formal solutions of (9) by bringing
it to formal integrability. However, in doing this, we have to check certain rank
conditions which give differential relations (equalities and inequalities) that z has
to satisfy in order that (9) admits formal solutions. These differential relations be-
long to three different classes depending on whether they are obtained

(1) in checking fibred manifold conditions,
(2) in projecting prolongations of the system on lower-order jets bundles,
(3) in testing the 2-acyclicity (or involutivity) of certain symbols.

However, the third kind is a rather “‘technical one” because the definition of for-
mal integrability does not need the 2-acyclicity of the symbol but only fibred
manifolds and projections conditions. However, most of the time, we have to use
the Spencer—Goldschmidt criterion for which the 2-acyclicity (or the involutivity)
has to be tested.
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The following example illustrates the first two kinds of differential relations.
This example is taken from [6] where the elimination has been done by differential
algebra techniques. Difficulties may arise even if the equations are linear in y,
though not in y, z, the z playing the role of arbitrary coefficients.

Example 2. We consider the system defined by

Fl—uz2 =0,

Ry 22l oyt = 0, (10)
zZl—y=0.

In the control framework u is the input, z is the state and y is the ouput and we
look for input—output relations by eliminating the state z. The system R; is not
formally integrable in z = (z',z?). As this system is a system of ODEs, we know
that the symbol M| = 0 is trivially involutive and we have only to saturate the

system by lower-order equations. We have

2l —uz? =0,

22 1 2

) ¢ —z  —uz =0,

R L
z 7y707
uz? —y =0.

. Ifu=0, thenR is defined by

=0,
22 -z1=0,
Zl_y:()a
y=0,

and R ()i a fibred manifold. In this case we have R(2> R () and Rgl) is an
involutive system. Moreover, d1rnR dlmM + dlmR =0+(2-1)
=1, where R< ) is the projection of R Y on Jo( ) (1.e., the zero-order
equations of the system R( ))

2. If u # 0, then R )is a strict subset of R1 , defined by

sl uz? =0,

72—zl —yz2 =0,
RY {zl—y=0,
uz> —y =0,
ujp — (4 u?)y —u*y = 0.
R(lz) is a fibred manifold iff uj — (&t + u?)y — u?y =0 and in this case, R§2>
is an involutive system. Moreover, dim R( = dim M ) + dim R =0+
2-2)=0.

We can notice that the dimension of the fibre is generically equal to zero and
the dimension jumps to one in the differentially algebraic set {u =0,y = 0}.
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Finally, the input—output behaviour [34] is the disjoint union of the two following
systems:

u=20, u#0,
y=0, uj — (+u?)y—u*y=0.
2.3.1. Trees of Integrability Conditions

The dimension of the formal solutions of a system of linear PDEs with variable
coefficients highly depends on differential relations that these coefficients satisfy.
In the case of lincar PDEs with variable coefficients, we can organize these inte-
grability conditions in order to build a tree. Each final leaf of the tree represents a
solution of the system of PDEs which depends on the differential relations (knots
of the branches) that the variable coefficients of the system verify. We use in all
the examples the well-known notation of derivatives 0;0;y = y;;.

Example 3. We define the following system:

Y3z —ayy =0,
Y23 =0,
Ry Y — by =0, (11)
yi3 =0,
Y12 =0,

where @ and b € IR. We have the following multiplicative variables:

v33 —avy; =0, 1 2 3
U3 = O, 1 2 o
M2 Uy — bvll = 0, 1 2 o (12)
v;3 =0, I o o
v =0. I o o
If we prolong with respect to the dots, we find two new equations: av;;; = 0 and

bviy; = 0. Thus M, is involutive if @ = b = 0. Else, if we prolong once the symbol
M;, we obtain M3 = 0, i.e. M> is a finite type and M3 is a trivial involutive sym-
bol. In that case, we can easily check whether the symbol M, is 2-acyclic or not:
we have to compute the cohomology H3 (M) of the following sequence:

0— AT @ My -2 A’T* ® T*.
Thus, we only have to check under what conditions on @ and b, J is injective, with
Yo = vkl,,-jdxi Adxl e N°T*® M,
o(w); = (vk3,12 + V1,23 + vk2,31)a’x1 A dx? A dx3.

Thus 5(60) =0 with v € My = V11,23 = U22,31 = V33,12 = 0= avyy, 12 = 0, b011,31
=0 and ¢ is injective iff @ # 0 and b # 0. In this case, M, is 2-acyclic but not
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involutive otherwise we would have the exact sequence - -- —s A2T* @ M N
AT* ® My — 0 and thus M5 =0 = M, = 0, which is obviously not true.
We obtain the following tree of integrability conditions:

a=0, (max(lal,|b])#0, [a#0,
b=0. | min(|al,|b]) =0. b#0.
M, involutive ~ M> not 2-acyclic M, 2-acyclic

M; #0 M3 = 0 involutive M, not involutive
M3 = 0 involutive

1. Ifa=0, b =0, then M, is involutive and we easily see that R(Zl) = R,. Thus,
R, is an involutive system. Moreover, dim MY = 1,dim M} = 0, dim M3 =
0=0o)=1,03 =0, =0. Thus dim My, = dim Ry, = 1, Vr > 0. We find
the compatibility conditions of

V33 =z, 1 2 3
Vo3 = 22, 1 2 o
Yy =27, 1 2 o (13)
Y13 =24, I o o
y12 = Zs’ 1 b i

by derivating the equations with respect to the dots and projecting on the)
system Rj,. This computation naturally leads to the following inhomoge-
neous first-order system:

22—zl =1, 1 23

Z%—Z%le, 1 2 3

5_ 2 _ 3

Zz le t4, 1 2 3 (14)
23—z, =17, 1 2 3

Z?—Z%:ls, 1 2 e

237213:[6. 1 2 e

We let the reader check that the corresponding homogeneous system is
involutive (it is a general property of involutive systems [23]). Differenti-
ating the equations with respect to the dots, we obtain two compatibility
conditions:

—_
[\
(98]

B+t =s', 2 3 (15)
t3671§+112:s2.
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This system does not have compatibility conditions. We have just built the
Janet sequence of the operator 9, : y — z defined by (13). We have

0—0—E2F 2R 2 0,

where O is the kernel of &, and the operators &) : z — t and &, : t — s are
defined by (14) and (15).

. Ifa#0, b+#0 (for example a = b = 1), then M, is 2-acyclic and R(Z1> = R».

Hence, the system is formally integrable. In this case, we can compute the
compatibility conditions of

_ .1
Yz —ayy =z,

Y23 :227
Y —byy :233 (16)
V13 =z*
Y12 2257

by computing Rg) = R;. We find only five homogeneous first-order compat-

ibility conditions, defined by

21 5 _
25 — 2y —azy =0,

3_ 2 4 _
73 — 25 + bz5 = 0,

5.2

z3 —z7 =0,

bzg‘—azz5 —bzl1 —ﬁ—azf =0,
4_ 2 _

zy —z7 = 0.

. Finally, if max(|a|,|b|) # 0 and min(]«|, |b|) =0, then M, is not 2-acyclic

and we have to prolong the system and see whether or not Rgl) = Rj3, as we
already know that M3 = 0 is a trivial involutive symbol. We let the reader
check that it is the case and Rj is an involutive system. We suppose that
a # 0 and b = 0. Computing the compatibility conditions by differentiating
with respect to the dots of M3 and projecting on R3, we find six homoge-
neous first- and second-order compatibility conditions:

2y —zfy —azfy =0,
zglez:O,
225—2%207

3 -22=0,
zg—zzl—azlszo,
22—z =0.

Notice that R, is formally integrable (%#,.,., is a fibred manifold and
Roirrs — Royr 18 surjective for all r, s > 0) even if the Spencer—Goldschmidt
criterion is not satisfied (see Example 1).

Notice that a simple change of the parameters ¢ and b has totally changed the
compatibility conditions of the system R, (the number and the orders). Moreover,
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in that example, the 2-acyclicity of M, is a generic property. Obviously, we can
find examples combining the three kinds of inequations. Such examples are
extremely rare.

3. Applications to Control Theory

3.1. Controllability

Let 2 : E — F be a linear differential operator, where E and F are two vector
bundles over X of fibre dimensions m and /. The differential operator & is called
injective if 9n = 0 = 5 = 0 and surjective if the equations 5 = 0 are linearly dif-
ferential independent [19], [30], or, equivalently, if 9y = { has no compatibility
conditions, i.e. there is no nontrivial operator &; such that Zn == 2,{ =0

[14], [24], [33]. The sequence E 2, Fy 2, F is formally exact if 9, generates all
the compatibility conditions of Z. In this case, & is said to be parametrizable by
2 and the arbitrary functions ¢ such that 2¢ =y = 215 = 0 are called potentials.

Let K be a differential field with » commuting derivations 01, ..., 0,, i.e. 0;0; =
0;0;, and containing Q. We denote by D = K|d, ..., d,] the ring of scalar differ-
ential operators with coefficients in K, satisfying

d,(bd,) = bd,d/ + ((’),b)d,, VbeK.

In general, the ring D is a noncommutative integral domain, but if K is a field of
constants, i.e. Yae K, 0;a=0,Vi=1,...,n, then D is commutative. Moreover, D
possesses the left (resp. right) Ore property, namely, VP, Q € D, there exists
R,S e D\O (resp. U, V) such that RP = SQ (resp. PU = QV) [27]. Let n =
{n',...,n™} and we form the free left D-module Dn'! + --- + Dy™, denoted by
Dy~ D™. Every element of Dy has the form »5,_, o ardn®, where
w=(uy,-..,41,) is a multi-index.

A fundamental idea is to associate to any differential operator & : E — F the
left D-module

|<o0,k=1,...,

M = Dn/D(Zn),

and we say that & determines the left D-module M.

We recall that an element z of M is called a torsion element of M if there exists
a nonzero element P of D such that Pz = 0. We denote by /(M) the D-submodule
formed by all the torsion elements of M which is called the torsion submodule of
M. We say that a D-module M is torsion-free if t(M) = 0 [31]. Therefore, the D-
module M /t(M) is always torsion-free.

Controllability is one of the key concepts of control theory which goes back to
Kalman’s work [17]. We recall certain recent improvements in this direction. We
call observable any function of the system variables (inputs and outputs) and their
derivatives. Only two possibilities may happen for an observable: it may or may
not verify a PDE by itself. An observable which does not satisfy any PDE is
called free or unconstrained [24]. On the contrary, an observable which satisfies at
least a PDE is called autonomous or constrained [24], [34]. In [24] we can find the
following definition.
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Definition 4. A control system is said to be controllable if every observable of the
system is free.

A characterization of controllability is given in [24] in terms of differential clo-
sure. In [20], the same definition has been found independently for linear multi-
dimensional control systems into the differential modules framework. See also [9],
[10], and [34]. Accordingly, a linear multidimensional control system is control-
lable if it determines a torsion-free D-module M.

Hence, we need an algorithm which allows us to check effectively if a D-module
M determined by a differential operator & : E — F is torsion-free or not. For
this, we defined the formal duality of differential operators. We denote the dual
bundle of E by E* and its adjoint bundle by E = /\” T"QE*.IfZ2:E—Fisa
linear differential operator, then its formal adjoint & : F — E is defined by the
following formal rules:

¢ The adjoint of a matrix (zero-order operator) is the transposed matrix.
e The adjoint of ¢; is —0;. o o
¢ For two linear PD operators P, Q that can be composed: Po Q = Qo P.

We can easily check that the following identity (2) = 2, and one can prove that

o, DEY =D, &y + d(-),

where d is the exterior derivative. We can directly compute the adjoint of an op-
erator by multiplying it by a row vector of test functions and integrating the result
by parts.

Example 4. Let the differential operator & : & — 5 defined by 053¢ - x20¢ -
0,E% = 5. Multiplying the system by the row function 4 and integrating the result
by parts, we find that the adjoint operator & : u — v of Z is defined by

{ O3t — X200 = vy,
622/1 = V7.

We let the reader check by himself that the compatibility condition of  is formed
by two equations of order 3 and 6 [24]. This operator & is a famous example of
Janet [15].

We have the following theorem. See [24] and [27] for proof and examples (see
[31] for a definition of the ext functor). See also [18] and [21] for more general
results.

Theorem 4. The following assertions are equivalent:

o A control system, defined by an operator 9, is controllable.
o The operator 9 determines a torsion-free D-module M.

o The operator 9 is parametrizable by an operator 9.

o exth(N,D) =0, where N is the left D-module defined by %, .
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Hence, we have the following test to check whether an operator 2, determines
or not a torsion-free D-module M:

1. Start with &;. ~

2. Construct its adjoint ;. .

3. Find the compatibility conditions of %;4 = u and denote this operator by
9. N

4. Construct its adjoint Zy = (Zy).

5. Find the compatibility conditions of %¢& =7 and denote this operator by

We are led to two different cases:

o If &, generates all the compatibility conditions of &, then the system 2,
determines a torsion-free D-module M and % is a parametrization of Z;.

¢ Otherwise, the operator &; does not describe all the compatibility conditions
of Zy. The torsion elements of M are formed by all the new single compati-
bility conditions in 2| modulo the equations Z;5 = 0.

See [24], [26], and [28] for a proof of this test. We can represent the test by
the following differential sequences where the number indicates the different
stages:

1/ 5
Dy Z

4 F — F — F 1

- G0 o~ G o~
3 FE & Fy <~ F 2

Corollary 2. The controllability of a linear multidimensional control system with
variable coefficients depends at most on two trees of integrability conditions (the
first one in computing 9 and the other in determining 7).

Notice that linear multidimensional control systems with variable coefficients
naturally appear when we linearize nonlinear control systems with respect to
generic solutions. One can easily prove that the controllability of the (generi-
cally) linearized system implies the controllability of the nonlinear one. Thus,
this gives a sufficient condition of controllability for nonlinear multidimensional
systems.

Example 5. We consider the finite transformation y = f(x) satisfying the Pfaf-
fian system:

dy* —a(y*) dy"' = p(x)(dx’ — a(x?) dx").
Linearizing such a transformation around the identity by setting y = x+

t&(x) +--- and making ¢ — 0, after eliminating p(x), we discover that infin-
itesimal transformations are defined, through the use of a correct geometric
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object, by the kernel of the differential system 2, = 7 as follows:

—a(x) 1" + 018 +1a(x?) (018" + 028 + 0:87) — Edra(x?) =1,
—a(x?)62¢" + 0,87 = 2,
—a(x?)03¢" + 038 —L(01E" + 0,87 + 0:8%) = .
See p. 237 of [24] for more details. From the theory of Lie pseudogroups [24], we
can prove that the PD system %¢¢ =0 is formally integrable if and only if

dra(x?) = ¢ = cst, the “classical case” of contact transformations corresponding to
a(x?) = x* (= ¢ = 1). It follows that the only compatibility condition &5 = 0 is

—a(x*) (02 — d3n?) + 01n* — 6an' + dra(x?)n® =0,
and the operator & is surjective. The adjoint operator @1 is then defined by

52/1 = My,
—a(x?)034 — 014 = u,
a(x?)02) + 2¢h = us.

As p3 — a(x?)u; = 2c/, the operator 2, is injective if and only if ¢ # 0. In that
case, the two independent compatibility conditions can be written by

{ dapts — a(x?)Orpty — 3cpy = 2v,
—a(x?)d3 (s — a(x*)uy) — 01 (s — a(x*)py) — 2cy = =2(vi + a(x?*)v3),

after introducting the adjoint Z, of Z as follows:

Ya(x?) 01y + 3013 + a(x?) sy + a(x?)dapy + Ora(x?)py = v,
—%a(xz)azyl +%‘32ﬂ3 - %520(3“2)/11 = V2,
—0iy — %a(xz)éwl — 0oty — %63% =3

Now, we start with the operator &, depending on the arbitrary function a(x?)
and we ask about the algebraic property of M = (Du)/D(Zou). According to the
test, we must construct the adjoint of %, which is %, and look for its compati-
bility conditions &1, a result bringing out the condition d,a(x?) = ¢, where c is an
arbitary constant. When ¢ = 0, we should find the zero-order compatibility con-
dition x5 — a(x?)u; = 0 which is not a consequence of %, and thus the D-module
M has torsion elements. Indeed, we can easy verify that the nonzero element
2=y —a(x*)u; € M satisfies 0,z = 0. When ¢ # 0, the adjoint &; admits the
compatibility condition expressed by Z, because we have in that case

a(x2)53vz — 0yvy + 01vy — a(x2)62V3 —2¢v3 =0,

which gives cvs =1 ((01 + a(x?)d3)v> — d2(vi + a(x?)v3)) and M is a torsion-free
D-module. Such an example with two trees of integrability conditions is very rare
and was first obtained in [25].

We recall that a D-module M is free if there exists a basis of M, i.e. a set
of elements which forms a generative and a D-independent family of M. The
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following proposition is just a rephrasing of the definition of free modules in the
differential operators context.

Proposition 1. An operator 9, determines a free D-module M iff there exists gn
zn]ectwe parametrization 9y of 91, ie. a formally exact sequence 0 —s E —
Fy N F.

Recall that a module M is a projective if there exist a module N and a free
module F such that F = M @ N [31]. Notice that N is in his turn a projective
module. We have the following proposition. We refer to [26] for a proof of the
equivalences, a generalization of this theorem to nonsurjective operators and for
applications of projective modules to control theory.

Theorem 5. The following assertions are equivalent:

o A surjective operator 9, : Fy — F| determines a projective D-module M.

e The adjoint operator 7 is injective.

o There exists an operator Py : Fi — Fy such that 21 o | = idf,, where idp, is
the identity operator of Fj.

In particular, projectiveness depends at least on a single tree of integrability con-
ditions.

We let the reader check by himself that every free module is projective and
every projective module is torsion-free, which can be summed up by the following
inclusions:

free < projective < torsion-free.

For a principal ideal domain (for example, D = K|[d/dt]), every torsion-free
module is a free module. In 1976 Quillen and Suslin independently showed the
1950 Serre conjecture, claiming that every projective module over a polynomial
ring k[, ..., x,) (k a field) is free. See [31] and [36] for more details. In particular,
this result is true for the ring D = kldy, ..., d,] if k is a field of constants. Thus, a
surjective differential operator &, : Fy — F; with constant coefficients determines
a free D-module M iff &, is injective. We notice that it is quite often supposed
that the inputs of a control system are linearly differentially independent [19], [30],
a fact that leads to the surjectivity of the corresponding operator. Then we have
the following useful corollary:

Corollary 3. The following assertions are equivalent:

* An OD control system, defined by a surjective operator 91, is controllable.
o The adjoint operator 2 is injective.
o The D-module M determined by 9, is free.

In particular, the controllability of a linear OD control system depends on a single
tree of integrability conditions.
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Example 6. We study the controllability of the system defined by

1 1 2

+y =y +oau=0,

{sz y2 yl (17)
V +y -y —u=0,

where o is a real parameter. Dualizing the surjective operator Z;, we obtain that
the operator &, is defined by

%1 + A=A =y,

I+ lo— A = W, (18)

—lo + ok = .
We put ¢, = 1, = ¢35 = 0 and bring (18) to formal integrability to obtain the new
zero-order equation:

(04 1)(e—1)2; = 0.

Thus %, is injective and the system (17) is controllable iff o # —1 and o # 1. For
example, if o = —1, then we get a torsion element z = y! — > which satisfies
(d?/dr* + 2)z = 0. A tree with more branches of integrability conditions has been

exhibited in [25] for an ordinary time-varying control system. See [27] for the link
between torsion elements and first integrals of motion.

We give an example showing that the algebraic properties of a D-module,
determined by a linear PD system with variable or unknown coefficients, depends
on integrability conditions.

Example 7. Let &, : 7 — { be the operator defined by
o' —adin' — om” +a(x)n* =, (19)

where « is a real parameter. We determine how the algebraic properties of the D-
module M, determined by &, depend on the coefficients o and a(x). Dualizing
91, we obtain the operator &, : 1 — u defined by

{ — 0 4+ a1 A = My,
62}« + Cl(.x))~ = ﬂz,

which can be rearranged under the following form:

{ O2h + a(x)A = s,
0014 + a(xX)A = u; + 1.

We put 1 = u, = 0 and call R the corresponding system:

022+ a(x)A =0,
w014 + a(x)A = 0.
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We study the formal integrability of the system R;. First, M| is an involutive
symbol for any «, but its dimension depends on whether o = 0 or not.

1. If « =0, then dim M; =2 — 1 =1 and M, is involutive. The dimension of
R| depends on whether or not @ = 0.
(a) If @ =0, then dim R; =1 and R; is formally integrable and we easily
find that M has the torsion element z = 5! — > which satisfies 0,z = 0
(b) If a # 0, then ), is an injective operator. Thus &, determines a projec-
tive D-module and we have 2 : u — A defined by (u; + py)/a(x) = .
Dualizing, we obtain that the right-inverse 2, : { — 5 of Z; is defined

by
{C/a(X) =
{/a(x) =
We let the reader check that a parametrization %, : & — 5 of % is
defined by

{ —a(x)0s¢ + (a(x)* — 202a(x))E = ',
—a(x)02¢ — 202a(x)E = n?.

We easily see that Z is injective with & = (' — 52)/a(x)?, and thus
M = D¢.
2. If o #0, then dim M; =2 -2 =0 and M; =0 is a trivial involutive sym-
bol. Therefore, we just have to study the projection #7 : Ry — Ry, i.e.

Ja+a(x)A =0,
Ril) ol +a(x)A =0,
(02a(x) — adra(x))A = 0.

The dimension of R ) depends on whether 0ra(x) — adja(x) = 0 or not.

(@) If dra(x) — aala( ) =0, then 2; does not determine a projective D-
module M. However, we easily find a parametrization & : & — 5 defined
by

{aZé_a( )é ’7 9
028 — 001 = 1.

Thus &, determines a torsion-free but not a projective D-module M.

(b) If dra(x) — adja(x) # 0, then & is an injective operator and Z; deter-
mines a projective D-module M. We let the reader check that A=
(Oaty + Oapty — 00145 + a(x)pyy) /(02a(x) — adra(x)). We denote ¢ =
{/(02a(x) — ad1a(x)), then the right-inverse 2 : { — n of &, is defined by

{—5z¢+a( x)p=n',
020 + 0010 = n>.
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We can sum up the previous study by the following tree of integrability con-
ditions:

a=20 o#0

/N /N

a=0 a#0 Ora—0dia=0 0ra—oadia#0
M not torsion-free M free M torsion-free M projective
D-module D-module D-module D-module
Each of the previously defined properties of modules is obtained and illustrated in
the above tree. Such an example has never been provided before.

3.2. Observability

Another key concept in control theory is observability [16]. It has recently been
reformulated into the differential operators and the D-module frameworks in [5],
[20], and [24] as follows.

Definition 5. Let a control system be defined by a differential operator
2, :n— (and let n = (y',n"). Then the system is called observable with respect
to n' if every component of #” can be expressed as a linear combination of the
components of #’ and their derivatives.

Proposition 2. Let 9, : Fy — F| be a differential operator and let M be the D-
module determined by %,. We denote by F; (resp. F;') the subbundle with sections
(1',0) (resp. (0,#")) and by &1 : Fj — Fy and &7 : Fj' — F\ the induced operators.
Hence, we have 211 = 21n' + 2{n". The control system defined by %, is observ-
able with respect to n' iff we have one of the following equivalent assertions:

e The operator 27 :F] — F\ is injective. In this case we have n" =
—(2] 0o 2\)y', where 27 : {" — (0,n") is a right-inverse of 7.

e M = (Dn'+Dn")/D(Zn) = (Dy')/D((Z5 o Z\)y’), where 25 denotes all
the compatibility conditions of 91 .

From the above proposition, we only have to study the formal integrability of a
single system of PDEs and thus we have the following corollary:

Corollary 4. The observability of a control system with variable or unknown co-
efficients depends at most on a single tree of integrability conditions.

Example 8. We consider the following control system:

axt—x2—ul =0,
P4xr—x—u? =0,

— 2 1
y=Xx" —oax,
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where x = (x!,x?) is the state, u = (u',u?) is the input, y is the output and o € R.
This system is observable with respect to (y,u) if x' and x? are linear combina-
tions of y and u and their derivatives, i.e. iff the operator Z{ : x — ( defined by

Apxl o2 =gt
R2yxtoxl=¢2

—x24oax! =0,

is injective. We recognize that this operator is the dual of the operator Z; in
Example 6 and thus the system is observable iff & # —1 and o # 1. If « # —1 and
o # 1, we have

! 1

X :m(j}+(a+l)y+u2—o¢ul),
xzzm(j}—k(oc—&-l)y—i—uz—aul)—y.

Many others properties of control systems have been reformulated into the D-
modules framework. For example:

¢ Computation of the differential transcendence degree: we bring the system to
involutiveness and compute the last character o = computation of output
rank = invertibility [5].

e State elimination: we bring the system in (z,y,u) to formal integrability
in z only to obtain the input—output behaviour of the system (see Example
2).

e Structure at infinity: we bring the system in (y,u) to formal integrability in u
[24].

Thus, these properties depend on trees of integrability conditions if the system has
variable coefficients or parameters. We also refer the reader to [5] for other prop-
erties of control systems which depend on trees of integrability conditions.

4. Conclusion

In this article we have developed a theory of differential elimination based on for-
mal integrability theory and we have applied it to control theory. We hope that
we have convinced the reader that this approach seems to be natural for many
control problems and in particular for studying the structural properties of linear
multidimensional control systems with variable coefficients. As we have already
noticed, the effective character always competes with the intrinsic character, and
thus we think that this approach of the theory of elimination will give more
intrinsic results than the purely differential algebraic methods developed in [32].
We also think that an interesting problem should be to revisit Douglas’s classi-
fication of the inverse problem of the calculus of variations [7] in this modern
framework.
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