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Abstract

We show how homological algebra and algebraic anal-
ysis allow to give various notions of equivalence for
linear control systems which do not depend on their
presentations and therefore preserve their structural
properties.
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1 Introduction

Many notions of equivalence have been developed for
linear control systems after the work of Rosenbrock [8].
See for example [1] as well as the different references
inside. One fondamental idea of equivalence theory is
to know which informations on the system are preserved
when passing from one form to another (e.g. Kalman
form, polynomial forms, transfer matrices...).

It is well known that we can associate an A-module
M to any matrix R with entries in an integral domain
A. The interest of using M rather than R is that the
algebraic properties of M do only depend on the module
itself and not on its presentation matrix R. Indeed, a
module M can be defined by plenty of equivalent presen-
tations, i.e. by totally different matrices having some-
times quite different sizes. For example, a second order
ordinary differential (OD) equation is equivalent to two
first order OD equations when A is a polynomial ring in
one indeterminate.

For studying systems, we shall propose techniques of
homological algebra which only depend on M and not
on the choice of a presentation of the system, i.e. on the
choice of the resolution of the corresponding A-module
M . In particular, one can associate an A-module M
to any linear control system and introduce a new A-
module N . A major idea of this paper, first noted in
[2], is to study M by means of homological properties of
N that only depend on M and to achieve by this way
a complete solution of the conjecture recently proposed

on the various types of primeness [11].
This new approach, using modules, is very close to

the behavioural approach of Willems [10] and has never
been used for applications, up to our knowledge, as one
must notice that a concept like projective equivalence
that will be used in this paper, does not admit any clas-
sical/operator counterpart.

2 Homotopic equivalence

We shall denote by A an integral domain which is sup-
posed to be either a commutative ring or a left Ore do-
main, i.e. a domain such that:

∀ (a, b) ∈ A2, ∃ (u, v) ∈ (A\0)2 : u a = v b.

Definition 1. [9] Let M be a finitely generated left
A-module. Then,

• M is free if M ∼= Ar for a certain r ∈ N,

• M is projective if there exist an A-module N and
r ∈ N such that M ⊕N ∼= Ar

• M is reflexive if the A-morphism

ε : M → homA(homA(M,A), A),

defined by ε(m)(f) = f(m), ∀ f ∈ homA(M,A), is
an isomorphism,

• t(M) = {m ∈ M | ∃ 0 6= a ∈ A, am = 0} is the
torsion submodule of M . M is a torsion-free A-
module if t(M) = 0 and M is a torsion A-module
if t(M) = M .

Let us recall the following definition of complexes and
exact sequences [9].

Definition 2. • A complex P = (Pi, di) is a se-
quence of left A-modules Pi and of A-morphisms
di : Pi → Pi−1 such that:

di ◦ di+1 = 0⇔ im di+1 ⊆ ker di.
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• We call the rth module of homology of a complex
P = (Pi, di), the left A-module

Hr(P ) = ker dr/im dr+1.

• A complex P = (Pi, di) is said to be exact at Fr if
im dr+1 = ker dr ⇔ Hr(P ) = 0, and P = (Pi, di) is
exact if it is exact at any Fr.

Example 1. If P = (Pi, di) is any complex, then we

have the following exact sequence 0 −→ im di+1
ji−→

ker di
πi−→ Hi(P ) −→ 0 for any i, where ji denotes

the inclusion A-morphism and πi the A-morphism which
maps any element of ker di into its class in Hi(P ).

We have the following proposition. See [9] for a proof.

Proposition 1. Any A-module M has a projective res-
olution, that is to say, there exists an exact sequence of
the form

. . .
di−→ Pi−1

di−1−→ . . .
d2−→ P1

d1−→ P0
π−→M −→ 0, (1)

where Pi is a projective A-module for any i ≥ 0. If Pi is
a free A-module for any i ≥ 0, then (1) is called a free
resolution of M .

Example 2. Let us consider the matrix R1 =
(

d1

d2

)
with entries in the ring D = R[d1, d2] of differential op-
erators with real coefficients and

D2 .R1−→ D
π−→ M −→ 0

(a1 a2) −→ (a1 a2)R1

the beginning of a free resolution of the D-module M
defined by the system of partial differential equations
(PDE) {

d1 y = 0,
d2 y = 0,

where y = π(1) is the class in M of 1 ∈ D. The kernel of
the D-morphism .R1 is defined by the couple (a1 a2) ∈
D2 satisfying:

a1 d1 + a2 d2 = 0. (2)

D is a polynomial ring and d1 (resp. d2) does not divide
d2 (resp. d1). Thus, using the Gauss lemma [3, 9], all
the solutions of (2) have the form:{

a1 = b d2, b ∈ D,
a2 = −b d1,

Finally, if we note R2 = (d2 − d1), we obtain the fol-
lowing free resolution of M :

0 −→ D
.R2−→ D2 .R1−→ D

π−→M −→ 0.

Definition 3. • Let . . . −→ Pi
di−→ Pi−1 −→ . . .

and . . . −→ P ′
i

d′i−→ P ′
i−1 −→ . . . be two complexes

of A-modules. We call morphism of complexes f :
(Pi, di) → (P ′

i , d
′
i) a set of A-morphisms fi : Pi →

P ′
i such that d′i ◦ fi = fi−1 ◦ di for any i, i.e. such

that we have the following commutative diagram:

. . . −→ P ′
i+1

d′i+1−→ P ′
i

d′i−→P ′
i−1 −→ . . .

↑ fi+1 ↑ fi ↑ fi−1

. . . −→ Pi+1
di+1−→ Pi

di−→Pi−1 −→ . . .

• A morphism of complexes f : (Pi, di) → (P ′
i , d

′
i) is

homotopic to zero if there exist A-morphisms si :
Pi → P ′

i+1 such that fi = d′i+1 ◦ si + si−1 ◦ di for
any i, i.e. such that we have the following diagram:

. . . −→ P ′
i+1

d′i+1−→ P ′
i

d′i−→ P ′
i−1 −→ . . .

↖ si+1 ↑ fi+1 ↖ si ↑ fi ↖ si−1 ↑ fi−1

. . . −→ Pi+1
di+1−→ Pi

di−→ Pi−1 −→ . . .

By extension, we shall say that two morphisms of
complexes f, f ′ : (Pi, di) → (P ′

i , d
′
i) are homotopic

if f − f ′ is homotopic to zero.

• A morphism of complexes f : (Pi, di) → (P ′
i , d

′
i) is

an homotopism if there exists f ′ : (P ′
i , d

′
i)→ (Pi, di)

such that f ◦f ′−idP ′ and f ′◦f−idP are homotopic
to zero, and the complexes P = (Pi, di) and P ′ =
(P ′

i , d
′
i) are said to be homotopy equivalent.

Proposition 2. If (Pi, di) (resp. (P ′
i , d

′
i) ) is a projec-

tive resolution of an A-module M (resp. A-module M ′),
then any A-morphism f : M →M ′ induces a morphism
of complexes f : (Pi, di) → (P ′

i , d
′
i) uniquely defined up

to an homotopy.

Proof. We have the following diagram

P ′
0

π′−→ M ′ −→ 0,
f0 ↖ ↑ f ◦ π

P0

where f0 exists and satisfies π′ ◦f0 = f ◦π because P0 is
a projective A-module [9]. Then, we have π′ ◦ f0 ◦ d1 =
f ◦ π ◦ d1 = 0⇒ im (f0 ◦ d1) ⊆ ker π′ = im d′1. Thus, we
have the following diagram

P ′
1

d′1−→ im d′1 −→ 0,
f1 ↖ ↑ f0 ◦ d1

P1

where f1 exists and satisfies d′1◦f1 = f0◦d1 because P1 is
a projective A-module... Hence, there exists a morphism
of complexes fi satisfying d′i ◦ fi = fi−1 ◦ di, ∀ i ≥ 0,
and f−1 = f .

Let us suppose that there exists an other A-morphism
gi : Pi → P ′

i satisfying d′i ◦ gi = gi−1 ◦ di, i ≥ 0, with
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g−1 = f . Then, we have π′ ◦ (f0 − g0) = (f − f) ◦ π =
0 ⇒ im (f0 − g0) ⊆ ker π′ = im d′1 and we obtain the
following diagram

P ′
1

d′1−→ im d′1 −→ 0,
s0 ↖ ↑ f0 − g0

P0

where s0 exists and satisfies f0−g0 = d′1 ◦s0 because P0

is a projective A-module. If we note s−1 = 0 : M → P ′
0,

then we have f0 − g0 = d′1 ◦ s0 + s−1 ◦ π. Moreover, we
have d′1◦(f1−g1−s0◦d1) = d′1◦f1−d′1◦g1−d′1◦s0◦d1 =
f0 ◦d1−g0 ◦d1−d′1 ◦s0 ◦d1 = (f0−g0−d′1 ◦s0)◦d1 = 0
because f0−g0−d′1 ◦s0 = s−1 ◦π and thus im (f1−g1−
s0 ◦ d1) ⊆ ker d′1 = im d′2. Thus, we have the following
diagram

P ′
2

d′2−→ im d′2 −→ 0,
s1 ↖ ↑ f1 − g1 − s0 ◦ d1

P1

where s1 exists and satisfies f1 − g1 = d′2 ◦ s1 + s0 ◦ d1

because P1 is a projective A-module... Hence, f and g
are homotopic.

Theorem 1. Let (Pi, di) and (P ′
i , d

′
i) be two projective

resolutions of an A-module M , then there exists an ho-
motopism between (Pi, di) and (P ′

i , d
′
i).

Proof. Let idM : M → M be the identity A-morphism,
then from proposition 2, there exist fi : Pi → P ′

i

satisfying fi−1 ◦ di = d′i ◦ fi, i ≥ 0, with f−1 =
idM . Similarly, there exist gi : P ′

i → Pi satisfying
gi−1 ◦ d′i = di ◦ gi, i ≥ 0, with g−1 = idM . Thus,
(gi−1 ◦ fi−1) ◦ di = gi−1 ◦ d′i ◦ fi = di ◦ (gi ◦ fi), and
id : (Pi, di) → (P ′

i , d
′
i) and h : (Pi, di) → (Pi, di),

defined by hi = gi ◦ fi, are homotopic by proposi-
tion 2. Then, there exist si : Pi → Pi+1 such that
idPi
− gi ◦ fi = di+1 ◦ si + si−1 ◦ di, i ≥ 0. Moreover, we

have d′i◦(fi◦gi) = (fi−1◦di)◦gi = fi−1◦gi−1◦d′i, which
implies that the morphisms of complexes idP ′ : P ′ → P ′

and k : P ′ → P ′, defined by ki = fi ◦ gi, are homo-
topic and thus there exist s′i : P ′

i → P ′
i+1 such that

idPi−fi ◦gi = di+1 ◦s′i +s′i−1 ◦di, i ≥ 0. Hence, the two
projective resolutions (Pi, di) and (P ′

i , d
′
i) are homotopy

equivalent.

If (Pi, di) and (P ′
i , d

′
i) are two free resolutions of

the left A-module M , then, using canonical basis of
Pi
∼= Ali , we can represent di by a matrix Ri. Thus,

if (Ali , Ri) and (Al′i , R′
i) are two free resolutions of M ,

then there exist matrices Ti ∈ Ali×l′i , T ′
i ∈ Al′i×li and

Si ∈ Ali×l′i+1 , S′i ∈ Al′i×li+1 such that:
Ti R′

i = Ri Ti−1,
R′

i T ′
i−1 = T ′

i Ri,
Ti T ′

i = Ili + Si Ri+1 + Si−1 Ri,
T ′

i Ti = Il′i
+ S′i R′

i+1 + S′i−1 R′
i,

(3)

where Ili is the li × li identity matrix. See [7] for more
details and examples.

Example 3. Let us consider the system ÿ − 2 ẏ − u̇ +
u = 0, A = R[ d

dt ], and the A-module M defined by

the free resolution 0 −→ A
.R−→ A2 π−→ M −→ 0 with

R = ( d2

dt2 − 2 d
dt −

d
dt + 1), π(f1) = y, π(f2) = u, where

{f1, f2} is the canonical basis of A2. Moreover, let us
consider a second system{

ẋ1 = x2 + v,
ẋ2 = 2x2 + v,

and the A-module M ′ defined by

0 −→ A2 . R′

−→ A3 π′−→M −→ 0,

with

R′ =
(

d
dt −1 −1
0 d

dt − 2 −1

)
,

π′(e1) = x1, π′(e2) = x2, π′(e3) = v, where {e1, e2, e3}
is the canonical basis of A3.

Let us define the A-morphisms f : M → M ′ and
g : M ′ →M by:{

f(y) = x1,
f(u) = v,

 g(x1) = y,
g(x2) = ẏ − u,
g(v) = u.

We easily verify that g ◦ f = idM , f ◦ g = idM ′ ⇒M ∼=
M ′. Let us show that the two different free resolutions of
M are homotopy equivalent. We have the commutative
exact diagram

A2 π−→ M −→ 0,
g0 ↖ ↑ g ◦ π′

A3

where g ◦ π′ : A3 →M is defined in the canonical basis
by: 

(g ◦ π′)(e1) = y = π(f1),
(g ◦ π′)(e2) = ẏ − u = π(ḟ1 − f2),
(g ◦ π′)(e3) = u = π(f2).

Therefore, we can define the morphism g0 : A3 → A2

by:
g0(e1) = f1,

g0(e2) = ḟ1 − f2,
g0(e3) = f2,

⇔ g0((a1 a2 a3)) = (a1 a2 a3) V0,

where

V0 =

 1 0
d
dt −1
0 1


and ai ∈ A. Then, we have the following commutative
diagram

A
.R−→ im (.R) −→ 0,

f1 ↖ ↑ (.R′) ◦ (.V0) = .(R′ V0)
A2
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with

R′ V0 =
(

0 0
d2

dt2 − 2 d
dt − d

dt + 1

)
,

and we easily verify that f1((a1 a2)) = (a1 a2) V1 where
V1 = (0 1)′ and ai ∈ A. We let the reader check by him-
self that, doing similarly with f , we obtain the following
commutative exact diagram

0 −→ A
. R−→ A2 π−→ M −→ 0

.V1 ↑↓ .U1 .V0 ↑↓ .U0 g ↑↓ f

0 −→ A2 . R′

−→ A3 π′−→ M ′ −→ 0,

where U0 =
(

1 0 0
0 0 1

)
, U1 = ( d

dt − 2 1),

R U0 = U1 R′, V1 R = R′ V0.

Therefore, we have the following commutative exact
diagram

0 −→ A2 . R′

−→ A3 π′−→ M ′ −→ 0
↑ .(V1 U1) ↑ .(V0 U0) ↑ g ◦ f = idM ′

0 −→ A2 . R′

−→ A3 π′−→ M ′ −→ 0,

which implies from proposition 2 that the morphisms of
complexes f ◦ g and idM ′ are homotopic. Thus, from
theorem 1, there exists a 3 × 2 matrix S such that we
have the following commutative diagram

0 −→ A2 .R′

−→ R′A2 −→ 0,

.S′ ↖ ↑ .(I3 − V0U0) = .

 0 0 0
− d

dt 1 1
0 0 0


A3

i.e. I3 − V0 U0 = S′ R′, and a trivial computation gives:

S′ =

 0 0
−1 0
0 0

 .

Moreover, we finally find that I2−V1 U1 = R′ S′. Doing
similarly for g ◦ f and idM , we let the reader check by
himself that we obtain S = 0, U0 V0 = I2 and U1 V1 = 1.

3 Projective equivalence

Definition 4. Two A-modules M and M ′ are said to
be projective equivalent if there exist two projective A-
modules P and P ′ such that N ⊕ P ∼= N ′ ⊕ P ′.

We have the following Schanuel’s lemma [9].

Lemma 1. If 0 −→ L −→ P −→ M −→ 0 and 0 −→
L′ −→ P ′ −→ M −→ 0 are two exact sequences with P
and P ′ two projective A-modules, then L⊕P ′ ∼= L′⊕P.

The main result of the paper is to prove the following
delicate theorem which does not seem to appear in the
literature and is essential for applications [5, 6].

Theorem 2. [7] If M is a left A-module defined by the
projective resolution P1

d1−→ P0
π−→ M −→ 0 and N is

the right A-module defined by 0 ←− N ←− P ?
0

d?
1←− P ?

1 ,
where P ?

i = homA(Pi, A) and d?
i (f) = f ◦ di, then N is

defined up to a projective equivalence.

To prove this theorem, we need the following lemma
which is proved in [3].

Lemma 2. Let P1
d1−→ P0

π−→ M −→ 0 and P ′
1

d′1−→
P ′

0
π′−→ M ′ −→ 0 be projective resolutions of two A-

modules M and M ′ and φ : M → M ′ an isomorphism.
Then, there exist an isomorphism α : P0⊕P ′

0 → P0⊕P ′
0

and an isomorphism β : P1⊕P ′
1⊕P0⊕P ′

0 → P1⊕P ′
1⊕

P0 ⊕ P ′
0 such that we have the following commutative

diagram:

P1 ⊕ P ′
0 ⊕ P0 ⊕ P ′

1

(d1⊕idP’0 ,0)
−−−−−−−−→ P0 ⊕ P ′

0yβ

yα

P1 ⊕ P ′
0 ⊕ P0 ⊕ P ′

1

(0,idP0⊕d’1)−−−−−−−−→ P0 ⊕ P ′
0.

Moreover, we have:

coker(d1 ⊕ idP ′
0
, 0)? ∼= coker(0, idP0 ⊕ d′1)

?.

Proof. Now, we can prove theorem 2. If P = (Pi, di)
and P ′ = (P ′

i , d
′
i) are two projective resolutions of an

A-module M , then we have the commutative exact dia-
gram given by the figure 1.

Let Q′ be the kernel of the morphism ker (d1 ⊕
idP ′

0
, 0) → ker d1 induced by P1 ⊕ P ′

1 ⊕ P0 ⊕ P ′
1 → P1.

Then, a chase in the diagram of the figure 1 gives the
following exact sequence [9]:

0 −−−−→ Q′ −−−−→ P ′
1 ⊕ P0 ⊕ P ′

0

(0,idP’0 )
−−−−−→ P ′

0 −−−−→ 0.

Thus, Q′ ∼= ker (0, idP ′
0
) = P ′

1 ⊕ P0 is a projec-
tive A-module. Applying the functor homA(·, A) [9] to
the diagram defined in the figure 1, we obtain the ex-
act commutative diagram given by the figure 2 where
N ′′ = coker (d1 ⊕ idP ′

0
, 0)?, N = coker d1 and the two

central vertical and the upper horizontal sequences are
exact because they are dual of exact sequences com-
posed only with projective modules [9]. A chase in
the diagram of the figure 2 gives the exact sequence
0 −→ N −→ N ′′ −→ Q

′? −→ 0 which splits because
Q

′? is a projective A-module [9]. Therefore, we have
N ′′ ∼= N ⊕Q

′?.

Doing similarly with the resolution P ′
1

d′1−→ P ′
0 −→

M −→ 0 and substituting the medium horizontal se-
quence of the figure 1 by the exact sequence given by the
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0 0y y
P ′

0 ⊕ P0 ⊕ P ′
1 P ′

0y y
0 −−−−→ ker (d1 ⊕ idP ′

0
, 0) −−−−→ P1 ⊕ P ′

0 ⊕ P0 ⊕ P ′
1

(d1⊕idP’0 ,0)
−−−−−−−−→ P0 ⊕ P ′

0 −−−−→ M −−−−→ 0y y ∥∥∥
0 −−−−→ ker d1 −−−−→ P1

d1−−−−→ P0 −−−−→ M −−−−→ 0y y
0 0

Figure 1: commutative exact diagram

0 0x x
0 ←−−−− Q

′? ←−−−− (P ′
0 ⊕ P0 ⊕ P ′

1)
? ←−−−− P

′?
0 ←−−−− 0x x x

0 ←−−−− N ′′ ←−−−− (P1 ⊕ P ′
0 ⊕ P0 ⊕ P ′

1)
?

(d1⊕idP’0 ,0)?

←−−−−−−−−− (P0 ⊕ P ′
0)

? ←−−−− M? ←−−−− 0x x ∥∥∥
0 ←−−−− N ←−−−− P ?

1

d?
1←−−−− P ?

0 ←−−−− M? ←−−−− 0x x x
0 0 0

Figure 2: dual of the previous commutative exact diagram

0 −−−−→ ker (0, idP0 ⊕ d′1) −−−−→ P1 ⊕ P ′
0 ⊕ P0 ⊕ P ′

1

(0,idP0⊕d’1)−−−−−−−−→ P0 ⊕ P ′
0 −−−−→ M −−−−→ 0

Figure 3: horizontal sequence
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figure 3, we obtain N ′′′ ∼= N ′⊕Q?, where N ′ = cokerd
′?
1

and N ′′′ = coker(0, idP0 ⊕ d′1)
?.

But, from lemma 2, we know that N ′′ ∼= N ′′′ and thus
N ⊕Q

′? ∼= N ′ ⊕Q?, that is to say:

N ⊕ P ?
0 ⊕ P

′?
1
∼= N ′ ⊕ P

′?
0 ⊕ P ?

1 . (4)

Theorem 3. [3] If a left A-module M is defined by two
projective resolutions 0 −→ P1

d1−→ P0
π−→M −→ 0 and

0 −→ P ′
1

d′1−→ P ′
0

π′−→M −→ 0, then we have:

N = cokerd?
1
∼= N ′ = cokerd

′?
1 .

Example 4. Let us consider the following equivalent
systems ÿ − u̇ = 0 and:{

ẋ1 = 0,
ẋ2 = x1 + v.

We easily check that we have the following commutative
exact diagram

0 −→ A
. R−→ A2 π−→ M −→ 0

.V1 ↑↓ .U1 .V0 ↑↓ .U0 g ↑↓ f

0 −→ A2 . R′

−→ A3 π′−→ M ′ −→ 0,

(5)

with R = ( d2

dt2 −
d
dt ), R′ =

(
d
dt 0 0
−1 d

dt −1

)
,

{
f(y) = x2,
f(u) = v,

 g(x1) = ẏ − u,
g(x2) = y,
g(v) = u,

V1 =
(

1
0

)
,

V0 =

 d
dt −1
1 0
0 1

 , U1 =
(

1
d
dt

)′

, U0 =
(

0 1 0
0 0 1

)
.

Moreover, we easily check that g ◦ f = idM and f ◦ g =
idM ′ and thus M ∼= M ′.

Hence, we have the following commutative exact dia-
gram:

0←− N
p←− A

R.←− A2

V1. ↓↑ U1.

0←− N ′ p′←− A2 R′.←− A3.

(6)

The A-module N is defined by the equation

z (
d2

dt2
− d

dt
) = 0,

where z = p(1), whereas the A-module N ′ is defined by z1
d
dt − z2 = 0,

z2
d
dt = 0,

z2 = 0,

where, z1 = p′(f1), z2 = p′(f2) and {f1, f2} is the canon-
ical basis of A2. The matrices V1 and U1 induce the mor-
phisms h : N → N ′ and k : N ′ → N respectively defined
by h(n) = p′(V1 a) with p(a) = n and k(n′) = p(U1 l)
with p′(l) = n′. Then, we obtain h(z) = p′(V1) = z1

and {
k(z1) = p(U1 f1) = z,
k(z2) = p(U1 f2) = z d

dt .

We check that we have k ◦h = idN and h◦k = idN ′ , i.e.
N ∼= N ′.

Hence, even if the A-modules N and N ′ are defined by
totally different numbers of unknowns and equations, we
have N ∼= N ′. See [7] for more details, examples of mul-
tidimensional control systems and applications to the
theory of linear elasticity. See also [6] for applications
in control theory.

We let the reader check by himself that the A-modules
M and M ′ defined in example 3 satisfy N = A/R A2 =
0, N ′ = A2/A3 R′ = 0 and thus N = N ′.

4 Applications of equivalences

Proposition 3. [9] If (Pi, di) and (P ′
i , d

′
i) are two ho-

motopy equivalent complexes, then we have:

Hi(P ) ∼= Hi(P ′), ∀ i.

If . . .
d2−→ F1

d1−→ F0
π−→ M −→ 0 is a free resolution

of the left A-module M and S a left A-module, then the
abelian groups of cohomology of the complex

. . .
d?
2←− homA(F1, S)

d?
1←− homA(F0, S)←− 0, (7)

where d?
i (f) = f ◦ di, ∀ f ∈ homA(Fi−1, S), do not

depend on the free resolution of M and are called
exti

A(M,S) (see [9] for more details). Hence, we have:{
ext0A(M,S) = homA(M,S),
exti

A(M,S) = ker d?
i+1/im d?

i , ∀ i ≥ 1.

The fact that the abelian groups of cohomology of the
complex (7) do not depend on the projective resolution
of M comes from the fact that two different projective
resolutions of M are homotopy equivalent by theorem 1.
Then, the dual sequences (7) of the two projective res-
olutions are homotopy equivalent, a fact which implies,
by proposition 3, that the abelian groups of cohomology
of the two corresponding complexes (7) are isomorphic.

Example 5. Let us consider again example 4. We let
the reader check by himself that ext1A(M,A) = N and
ext1A(M ′, A) = N ′. Hence, using theorem 3, we have
N ∼= N ′ ⇒ ext1A(M,A) ∼= ext1A(M ′, A).

Let K be a differential field containing Q and D =
K[d1, ..., dn] the ring of scalar differential linear opera-
tors with coefficients in K [5]. Let M be the left D-
module defined by Dl .R−→ Dm π−→M −→ 0, and N the
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right D-module by:

0←− N ←− Dl R.←− Dm ←− homD(M,D)←− 0.

We have seen that theorem 1 and proposition 3 imply
that the right D-modules exti

D(N,D), i ≥ 1, do not
depend on the resolution of N . Moreover, by theorem
2, exti

D(N,D), i ≥ 1, do only depend on M [7] be-
cause N is defined up to a projective equivalence and
exti

D(P,D) = 0, ∀ i ≥ 1, for any projective module P
(see [9] for more details).

We are now able to give applications of these two
notions of equivalence. For that, let us recall a few well
known definitions of primeness [4, 11].

Definition 5. Let R be a l ×m (1 ≤ l ≤ m) full rank
matrix with entries in D = C[d1, ..., dn] ∼= C[χ1, ..., χn].
Then, we say that:

• R is minor left-prime if there is no common factor
in the l × l minors of R,

• R is weakly zero left-prime if all the l × l minors of
R vanish all together on a finite set of points of Cn,

• R is zero left-prime if all the l× l minors of R never
vanish all together.

We have the following inclusions [4, 11]:

zero left-prime ⊆ weakly zero left-prime
weakly zero left-prime ⊆ minor left-prime.

In 1998, Wood, Rogers and Owens have conjectured
in [11] that these three above definitions and inclusions
were in fact elements of a chain of n successive defini-
tions. We have the following results where the homo-
topic and projective equivalences are essential to prove
that the algebraic properties of M do not depend on
the presentation (i.e. on the matrix R) and where
d(M) = dim (D/ann(M)) is the krull dimension of
D/ann(M) [3], ann(M) = {a ∈ A | am = 0, ∀m ∈ M}
while ext1D(N,D) ∼= ker ε and ext2D(N,D) ∼= coker ε [2].

Module M exti
D(N,D) [2, 5] d(N) [2, 5] Primeness [4, 5, 11]

ext0D(N,D) 6= 0 n
with torsion ext1D(N,D) ∼= t(M) 6= 0 n− 1 ∅
torsion-free ext1D(N,D) = 0 n− 2 minor left prime
reflexive exti

D(N,D) = 0, 1 ≤ i ≤ 2 n− 3
. . . .
. . . .

exti
D(N,D) = 0, 1 ≤ i ≤ n− 1 0 weakly zero left prime

projective exti
D(N,D) = 0, 1 ≤ i ≤ n -1 zero left prime

In conclusion, we hope that these new techniques will
open new perspectives for application of algebraic anal-
ysis to linear control theory.
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