Equivalences of Linear Control Systems

J.F. Pommaret \& A. Quadrat CERMICS
Ecole Nationale des Ponts et Chaussées 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 02, France
e-mail: \{pommaret, quadrat\}@cermics.enpc.fr

Abstract

We show how homological algebra and algebraic analysis allow to give various notions of equivalence for linear control systems which do not depend on their presentations and therefore preserve their structural properties.

Keywords: System equivalence, homotopic equivalence, projective equivalence, primeness of multidimensional systems, extension and torsion functors.

1 Introduction

Many notions of equivalence have been developed for linear control systems after the work of Rosenbrock [8]. See for example [1] as well as the different references inside. One fondamental idea of equivalence theory is to know which informations on the system are preserved when passing from one form to another (e.g. Kalman form, polynomial forms, transfer matrices...).

It is well known that we can associate an A-module M to any matrix R with entries in an integral domain A. The interest of using M rather than R is that the algebraic properties of M do only depend on the module itself and not on its presentation matrix R. Indeed, a module M can be defined by plenty of equivalent presentations, i.e. by totally different matrices having sometimes quite different sizes. For example, a second order ordinary differential (OD) equation is equivalent to two first order OD equations when A is a polynomial ring in one indeterminate.

For studying systems, we shall propose techniques of homological algebra which only depend on M and not on the choice of a presentation of the system, i.e. on the choice of the resolution of the corresponding A-module M. In particular, one can associate an A-module M to any linear control system and introduce a new A module N. A major idea of this paper, first noted in [2], is to study M by means of homological properties of N that only depend on M and to achieve by this way a complete solution of the conjecture recently proposed
on the various types of primeness [11].
This new approach, using modules, is very close to the behavioural approach of Willems [10] and has never been used for applications, up to our knowledge, as one must notice that a concept like projective equivalence that will be used in this paper, does not admit any classical/operator counterpart.

2 Homotopic equivalence

We shall denote by A an integral domain which is supposed to be either a commutative ring or a left Ore domain, i.e. a domain such that:

$$
\forall(a, b) \in A^{2}, \exists(u, v) \in(A \backslash 0)^{2}: u a=v b .
$$

Definition 1. [9] Let M be a finitely generated left A-module. Then,

- M is free if $M \cong A^{r}$ for a certain $r \in \mathbb{N}$,
- M is projective if there exist an A-module N and $r \in \mathbb{N}$ such that $M \oplus N \cong A^{r}$
- M is reflexive if the A-morphism

$$
\epsilon: M \rightarrow \operatorname{hom}_{A}\left(\operatorname{hom}_{A}(M, A), A\right)
$$

defined by $\epsilon(m)(f)=f(m), \forall f \in \operatorname{hom}_{A}(M, A)$, is an isomorphism,

- $t(M)=\{m \in M \mid \exists 0 \neq a \in A, a m=0\}$ is the torsion submodule of $M . M$ is a torsion-free A module if $t(M)=0$ and M is a torsion A-module if $t(M)=M$.

Let us recall the following definition of complexes and exact sequences [9].

Definition 2. - A complex $P=\left(P_{i}, d_{i}\right)$ is a sequence of left A-modules P_{i} and of A-morphisms $d_{i}: P_{i} \rightarrow P_{i-1}$ such that:

$$
d_{i} \circ d_{i+1}=0 \Leftrightarrow \operatorname{im} d_{i+1} \subseteq \operatorname{ker} d_{i} .
$$

- We call the $r^{\text {th }}$ module of homology of a complex $P=\left(P_{i}, d_{i}\right)$, the left A-module

$$
H_{r}(P)=\operatorname{ker} d_{r} / \operatorname{im~}_{\mathrm{r}+1} .
$$

- A complex $P=\left(P_{i}, d_{i}\right)$ is said to be exact at F_{r} if $\operatorname{im} d_{r+1}=\operatorname{ker} d_{r} \Leftrightarrow H_{r}(P)=0$, and $P=\left(P_{i}, d_{i}\right)$ is exact if it is exact at any F_{r}.

Example 1. If $P=\left(P_{i}, d_{i}\right)$ is any complex, then we have the following exact sequence $0 \longrightarrow \operatorname{im} d_{i+1} \xrightarrow{j_{i}}$ ker $d_{i} \xrightarrow{\pi_{i}} H_{i}(P) \longrightarrow 0$ for any i, where j_{i} denotes the inclusion A-morphism and π_{i} the A-morphism which maps any element of ker d_{i} into its class in $H_{i}(P)$.

We have the following proposition. See [9] for a proof.
Proposition 1. Any A-module M has a projective resolution, that is to say, there exists an exact sequence of the form

$$
\begin{equation*}
\ldots \xrightarrow{d_{i}} P_{i-1} \xrightarrow{d_{i-1}} \ldots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \longrightarrow 0, \tag{1}
\end{equation*}
$$

where P_{i} is a projective A-module for any $i \geq 0$. If P_{i} is a free A-module for any $i \geq 0$, then (1) is called a free resolution of M.

Example 2. Let us consider the matrix $R_{1}=\binom{d_{1}}{d_{2}}$ with entries in the ring $D=\mathbb{R}\left[d_{1}, d_{2}\right]$ of differential operators with real coefficients and
the beginning of a free resolution of the D-module M defined by the system of partial differential equations (PDE)

$$
\left\{\begin{array}{l}
d_{1} y=0 \\
d_{2} y=0
\end{array}\right.
$$

where $y=\pi(1)$ is the class in M of $1 \in D$. The kernel of the D-morphism.R_{1} is defined by the couple $\left(a_{1} a_{2}\right) \in$ D^{2} satisfying:

$$
\begin{equation*}
a_{1} d_{1}+a_{2} d_{2}=0 \tag{2}
\end{equation*}
$$

D is a polynomial ring and d_{1} (resp. d_{2}) does not divide d_{2} (resp. d_{1}). Thus, using the Gauss lemma [3, 9], all the solutions of (2) have the form:

$$
\left\{\begin{array}{l}
a_{1}=b d_{2}, \quad b \in D \\
a_{2}=-b d_{1}
\end{array}\right.
$$

Finally, if we note $R_{2}=\left(d_{2}-d_{1}\right)$, we obtain the following free resolution of M :

$$
0 \longrightarrow D \xrightarrow{R_{2}} D^{2} \xrightarrow{R_{1}} D \xrightarrow{\pi} M \longrightarrow 0
$$

Definition 3. - Let $\ldots \longrightarrow P_{i} \xrightarrow{d_{i}} P_{i-1} \longrightarrow \ldots$ and $\ldots \longrightarrow P_{i}^{\prime} \xrightarrow{d_{i}^{\prime}} P_{i-1}^{\prime} \longrightarrow \ldots$ be two complexes of A-modules. We call morphism of complexes f : $\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ a set of A-morphisms $f_{i}: P_{i} \rightarrow$ P_{i}^{\prime} such that $d_{i}^{\prime} \circ f_{i}=f_{i-1} \circ d_{i}$ for any i, i.e. such that we have the following commutative diagram:

- A morphism of complexes $f:\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ is homotopic to zero if there exist A-morphisms s_{i} : $P_{i} \rightarrow P_{i+1}^{\prime}$ such that $f_{i}=d_{i+1}^{\prime} \circ s_{i}+s_{i-1} \circ d_{i}$ for any i, i.e. such that we have the following diagram:

$$
\begin{array}{lllllll}
\ldots \longrightarrow & P_{i+1}^{\prime} & \xrightarrow{d_{i+1}^{\prime}} & P_{i}^{\prime} & \xrightarrow{d_{i}^{\prime}} & P_{i-1}^{\prime} & \longrightarrow \\
\nwarrow s_{i+1} & \uparrow f_{i+1} \\
\nwarrow s_{i} & \uparrow f_{i} & \nwarrow s_{i-1} \uparrow f_{i-1} \\
\ldots \longrightarrow & P_{i+1} & \xrightarrow{d_{i+1}} & P_{i} & \xrightarrow{d_{i}} & P_{i-1} & \longrightarrow
\end{array}
$$

By extension, we shall say that two morphisms of complexes $f, f^{\prime}:\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ are homotopic if $f-f^{\prime}$ is homotopic to zero.

- A morphism of complexes $f:\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ is an homotopism if there exists $f^{\prime}:\left(P_{i}^{\prime}, d_{i}^{\prime}\right) \rightarrow\left(P_{i}, d_{i}\right)$ such that $f \circ f^{\prime}-\operatorname{id}_{P^{\prime}}$ and $f^{\prime} \circ f-\operatorname{id}_{P}$ are homotopic to zero, and the complexes $P=\left(P_{i}, d_{i}\right)$ and $P^{\prime}=$ ($P_{i}^{\prime}, d_{i}^{\prime}$) are said to be homotopy equivalent.

Proposition 2. If $\left(P_{i}, d_{i}\right)$ (resp. $\left.\left(P_{i}^{\prime}, d_{i}^{\prime}\right)\right)$ is a projective resolution of an A-module M (resp. A-module M^{\prime}), then any A-morphism $f: M \rightarrow M^{\prime}$ induces a morphism of complexes $f:\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ uniquely defined up to an homotopy.

Proof. We have the following diagram

$$
\begin{array}{cl}
P_{0}^{\prime} \xrightarrow{\pi^{\prime}} & M^{\prime} \longrightarrow 0, \\
f_{0} \nwarrow & \uparrow f \circ \pi \\
P_{0}
\end{array}
$$

where f_{0} exists and satisfies $\pi^{\prime} \circ f_{0}=f \circ \pi$ because P_{0} is a projective A-module [9]. Then, we have $\pi^{\prime} \circ f_{0} \circ d_{1}=$ $f \circ \pi \circ d_{1}=0 \Rightarrow \operatorname{im}\left(f_{0} \circ d_{1}\right) \subseteq \operatorname{ker} \pi^{\prime}=\operatorname{im} d_{1}^{\prime}$. Thus, we have the following diagram

$$
\begin{array}{cl}
P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}} & \operatorname{im} d_{1}^{\prime} \longrightarrow 0 \\
f_{1} \nwarrow & \uparrow f_{0} \circ d_{1} \\
P_{1}
\end{array}
$$

where f_{1} exists and satisfies $d_{1}^{\prime} \circ f_{1}=f_{0} \circ d_{1}$ because P_{1} is a projective A-module... Hence, there exists a morphism of complexes f_{i} satisfying $d_{i}^{\prime} \circ f_{i}=f_{i-1} \circ d_{i}, \forall i \geq 0$, and $f_{-1}=f$.

Let us suppose that there exists an other A-morphism $g_{i}: P_{i} \rightarrow P_{i}^{\prime}$ satisfying $d_{i}^{\prime} \circ g_{i}=g_{i-1} \circ d_{i}, i \geq 0$, with
$g_{-1}=f$. Then, we have $\pi^{\prime} \circ\left(f_{0}-g_{0}\right)=(f-f) \circ \pi=$ $0 \Rightarrow \operatorname{im}\left(f_{0}-g_{0}\right) \subseteq \operatorname{ker} \pi^{\prime}=\operatorname{im} d_{1}^{\prime}$ and we obtain the following diagram
where s_{0} exists and satisfies $f_{0}-g_{0}=d_{1}^{\prime} \circ s_{0}$ because P_{0} is a projective A-module. If we note $s_{-1}=0: M \rightarrow P_{0}^{\prime}$, then we have $f_{0}-g_{0}=d_{1}^{\prime} \circ s_{0}+s_{-1} \circ \pi$. Moreover, we have $d_{1}^{\prime} \circ\left(f_{1}-g_{1}-s_{0} \circ d_{1}\right)=d_{1}^{\prime} \circ f_{1}-d_{1}^{\prime} \circ g_{1}-d_{1}^{\prime} \circ s_{0} \circ d_{1}=$ $f_{0} \circ d_{1}-g_{0} \circ d_{1}-d_{1}^{\prime} \circ s_{0} \circ d_{1}=\left(f_{0}-g_{0}-d_{1}^{\prime} \circ s_{0}\right) \circ d_{1}=0$ because $f_{0}-g_{0}-d_{1}^{\prime} \circ s_{0}=s_{-1} \circ \pi$ and thus $\operatorname{im}\left(f_{1}-g_{1}-\right.$ $\left.s_{0} \circ d_{1}\right) \subseteq \operatorname{ker} d_{1}^{\prime}=\operatorname{im} d_{2}^{\prime}$. Thus, we have the following diagram

$$
\begin{aligned}
P_{2}^{\prime} \xrightarrow{d_{2}^{\prime}} \xrightarrow{s_{1}} & \operatorname{im} d_{2}^{\prime} \longrightarrow 0, \\
& \uparrow f_{1}-g_{1}-s_{0} \circ d_{1} \\
& P_{1}
\end{aligned}
$$

where s_{1} exists and satisfies $f_{1}-g_{1}=d_{2}^{\prime} \circ s_{1}+s_{0} \circ d_{1}$ because P_{1} is a projective A-module... Hence, f and g are homotopic.

Theorem 1. Let $\left(P_{i}, d_{i}\right)$ and $\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ be two projective resolutions of an A-module M, then there exists an homotopism between $\left(P_{i}, d_{i}\right)$ and $\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$.

Proof. Let $\mathrm{id}_{M}: M \rightarrow M$ be the identity A-morphism, then from proposition 2 , there exist $f_{i}: P_{i} \rightarrow P_{i}^{\prime}$ satisfying $f_{i-1} \circ d_{i}=d_{i}^{\prime} \circ f_{i}, \quad i \geq 0$, with $f_{-1}=$ id_{M}. Similarly, there exist $g_{i}: P_{i}^{\prime} \rightarrow P_{i}$ satisfying $g_{i-1} \circ d_{i}^{\prime}=d_{i} \circ g_{i}, \quad i \geq 0$, with $g_{-1}=\operatorname{id}_{M}$. Thus, $\left(g_{i-1} \circ f_{i-1}\right) \circ d_{i}=g_{i-1} \circ d_{i}^{\prime} \circ f_{i}=d_{i} \circ\left(g_{i} \circ f_{i}\right)$, and id : $\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ and $h:\left(P_{i}, d_{i}\right) \rightarrow\left(P_{i}, d_{i}\right)$, defined by $h_{i}=g_{i} \circ f_{i}$, are homotopic by proposition 2. Then, there exist $s_{i}: P_{i} \rightarrow P_{i+1}$ such that $\operatorname{id}_{P_{i}}-g_{i} \circ f_{i}=d_{i+1} \circ s_{i}+s_{i-1} \circ d_{i}, i \geq 0$. Moreover, we have $d_{i}^{\prime} \circ\left(f_{i} \circ g_{i}\right)=\left(f_{i-1} \circ d_{i}\right) \circ g_{i}=f_{i-1} \circ g_{i-1} \circ d_{i}^{\prime}$, which implies that the morphisms of complexes id $P_{P^{\prime}}: P^{\prime} \rightarrow P^{\prime}$ and $k: P^{\prime} \rightarrow P^{\prime}$, defined by $k_{i}=f_{i} \circ g_{i}$, are homotopic and thus there exist $s_{i}^{\prime}: P_{i}^{\prime} \rightarrow P_{i+1}^{\prime}$ such that $\operatorname{id}_{P_{i}}-f_{i} \circ g_{i}=d_{i+1} \circ s_{i}^{\prime}+s_{i-1}^{\prime} \circ d_{i}, i \geq 0$. Hence, the two projective resolutions $\left(P_{i}, d_{i}\right)$ and ($P_{i}^{\prime}, d_{i}^{\prime}$) are homotopy equivalent.

If $\left(P_{i}, d_{i}\right)$ and $\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ are two free resolutions of the left A-module M, then, using canonical basis of $P_{i} \cong A^{l_{i}}$, we can represent d_{i} by a matrix R_{i}. Thus, if $\left(A^{l_{i}}, R_{i}\right)$ and $\left(A^{l_{i}^{\prime}}, R_{i}^{\prime}\right)$ are two free resolutions of M, then there exist matrices $T_{i} \in A^{l_{i} \times l_{i}^{\prime}}, T_{i}^{\prime} \in A^{l_{i}^{\prime} \times l_{i}}$ and $S_{i} \in A^{l_{i} \times l_{i+1}^{\prime}}, S_{i}^{\prime} \in A^{l_{i}^{\prime} \times l_{i+1}}$ such that:

$$
\left\{\begin{array}{l}
T_{i} R_{i}^{\prime}=R_{i} T_{i-1}, \tag{3}\\
R_{i}^{\prime} T_{i-1}^{\prime}=T_{i}^{\prime} R_{i}, \\
T_{i} T_{i}^{\prime}=I_{l_{i}}+S_{i} R_{i+1}+S_{i-1} R_{i} \\
T_{i}^{\prime} T_{i}=I_{l_{i}^{\prime}}+S_{i}^{\prime} R_{i+1}^{\prime}+S_{i-1}^{\prime} R_{i}^{\prime}
\end{array}\right.
$$

where $I_{l_{i}}$ is the $l_{i} \times l_{i}$ identity matrix. See [7] for more details and examples.
Example 3. Let us consider the system $\ddot{y}-2 \dot{y}-\dot{u}+$ $u=0, A=\mathbb{R}\left[\frac{d}{d t}\right]$, and the A-module M defined by the free resolution $0 \longrightarrow A \xrightarrow{. R} A^{2} \xrightarrow{\pi} M \longrightarrow 0$ with $R=\left(\frac{d^{2}}{d t^{2}}-2 \frac{d}{d t}-\frac{d}{d t}+1\right), \pi\left(f_{1}\right)=y, \pi\left(f_{2}\right)=u$, where $\left\{f_{1}, f_{2}\right\}$ is the canonical basis of A^{2}. Moreover, let us consider a second system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}+v \\
\dot{x}_{2}=2 x_{2}+v,
\end{array}\right.
$$

and the A-module M^{\prime} defined by

$$
0 \longrightarrow A^{2} \xrightarrow{R^{\prime}} A^{3} \xrightarrow{\pi^{\prime}} M \longrightarrow 0
$$

with

$$
R^{\prime}=\left(\begin{array}{lll}
\frac{d}{d t} & -1 & -1 \\
0 & \frac{d}{d t}-2 & -1
\end{array}\right)
$$

$\pi^{\prime}\left(e_{1}\right)=x_{1}, \pi^{\prime}\left(e_{2}\right)=x_{2}, \pi^{\prime}\left(e_{3}\right)=v$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis of A^{3}.

Let us define the A-morphisms $f: M \rightarrow M^{\prime}$ and $g: M^{\prime} \rightarrow M$ by:

$$
\left\{\begin{array} { l }
{ f (y) = x _ { 1 } , } \\
{ f (u) = v , }
\end{array} \quad \left\{\begin{array}{l}
g\left(x_{1}\right)=y \\
g\left(x_{2}\right)=\dot{y}-u \\
g(v)=u
\end{array}\right.\right.
$$

We easily verify that $g \circ f=\operatorname{id}_{M}, f \circ g=\operatorname{id}_{M^{\prime}} \Rightarrow M \cong$ M^{\prime}. Let us show that the two different free resolutions of M are homotopy equivalent. We have the commutative exact diagram

$$
\begin{array}{cc}
A^{2} \xrightarrow{\pi} & M \longrightarrow 0 \\
g_{0} \nwarrow & \uparrow g \circ \pi^{\prime} \\
A^{3}
\end{array}
$$

where $g \circ \pi^{\prime}: A^{3} \rightarrow M$ is defined in the canonical basis by:

$$
\left\{\begin{array}{l}
\left(g \circ \pi^{\prime}\right)\left(e_{1}\right)=y=\pi\left(f_{1}\right) \\
\left(g \circ \pi^{\prime}\right)\left(e_{2}\right)=\dot{y}-u=\pi\left(\dot{f}_{1}-f_{2}\right), \\
\left(g \circ \pi^{\prime}\right)\left(e_{3}\right)=u=\pi\left(f_{2}\right)
\end{array}\right.
$$

Therefore, we can define the morphism $g_{0}: A^{3} \rightarrow A^{2}$ by:

$$
\left\{\begin{array}{l}
g_{0}\left(e_{1}\right)=f_{1}, \\
g_{0}\left(e_{2}\right)=\dot{f}_{1}-f_{2}, \quad \Leftrightarrow g_{0}\left(\left(a_{1} a_{2} a_{3}\right)\right)=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3}
\end{array}\right) V_{0} \\
g_{0}\left(e_{3}\right)=f_{2}
\end{array}\right.
$$

where

$$
V_{0}=\left(\begin{array}{cc}
1 & 0 \\
\frac{d}{d t} & -1 \\
0 & 1
\end{array}\right)
$$

and $a_{i} \in A$. Then, we have the following commutative diagram

$$
\begin{aligned}
A \xrightarrow{. R} & \operatorname{im}(. R) \longrightarrow 0, \\
f_{1} \nwarrow & \uparrow\left(. R^{\prime}\right) \circ\left(. V_{0}\right)=.\left(R^{\prime} V_{0}\right) \\
& A^{2}
\end{aligned}
$$

with

$$
R^{\prime} V_{0}=\left(\begin{array}{cc}
0 & 0 \\
\frac{d^{2}}{d t^{2}}-2 \frac{d}{d t} & -\frac{d}{d t}+1
\end{array}\right)
$$

and we easily verify that $f_{1}\left(\left(a_{1} a_{2}\right)\right)=\left(a_{1} a_{2}\right) V_{1}$ where $V_{1}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{\prime}$ and $a_{i} \in A$. We let the reader check by himself that, doing similarly with f, we obtain the following commutative exact diagram

$$
\begin{aligned}
& \begin{array}{cccc}
0 \longrightarrow & A & \xrightarrow{. R} A^{2} & \xrightarrow{\pi} M \longrightarrow 0 \\
._{1} \uparrow \downarrow \cdot U_{1} & \begin{array}{r}
V_{0} \uparrow \downarrow \cdot U_{0} \\
0 \longrightarrow
\end{array} A^{2} & \xrightarrow{. R^{\prime}} \quad A^{3} & \xrightarrow{\pi^{\prime}} \quad M^{\prime} \longrightarrow 0,
\end{array} \\
& \text { where } \quad U_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad U_{1}=\left(\begin{array}{ll}
\frac{d}{d t}-2 & 1
\end{array}\right), \\
& R U_{0}=U_{1} R^{\prime}, \quad V_{1} R=R^{\prime} V_{0} .
\end{aligned}
$$

Therefore, we have the following commutative exact diagram

which implies from proposition 2 that the morphisms of complexes $f \circ g$ and $\operatorname{id}_{M^{\prime}}$ are homotopic. Thus, from theorem 1, there exists a 3×2 matrix S such that we have the following commutative diagram

$$
\begin{array}{rll}
0 \longrightarrow & A^{2} \xrightarrow{. R^{\prime}} & R^{\prime} A^{2} \longrightarrow 0, \\
& . S^{\prime} \nwarrow & \uparrow .\left(I_{3}-V_{0} U_{0}\right)=\cdot\left(\begin{array}{ccc}
0 & 0 & 0 \\
-\frac{d}{d t} & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& A^{3}
\end{array}
$$

i.e. $I_{3}-V_{0} U_{0}=S^{\prime} R^{\prime}$, and a trivial computation gives:

$$
S^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & 0
\end{array}\right)
$$

Moreover, we finally find that $I_{2}-V_{1} U_{1}=R^{\prime} S^{\prime}$. Doing similarly for $g \circ f$ and id_{M}, we let the reader check by himself that we obtain $S=0, U_{0} V_{0}=I_{2}$ and $U_{1} V_{1}=1$.

3 Projective equivalence

Definition 4. Two A-modules M and M^{\prime} are said to be projective equivalent if there exist two projective A modules P and P^{\prime} such that $N \oplus P \cong N^{\prime} \oplus P^{\prime}$.

We have the following Schanuel's lemma [9].
Lemma 1. If $0 \longrightarrow L \longrightarrow P \longrightarrow M \longrightarrow 0$ and $0 \longrightarrow$ $L^{\prime} \longrightarrow P^{\prime} \longrightarrow M \longrightarrow 0$ are two exact sequences with P and P^{\prime} two projective A-modules, then $L \oplus P^{\prime} \cong L^{\prime} \oplus P$.

The main result of the paper is to prove the following delicate theorem which does not seem to appear in the literature and is essential for applications [5, 6].

Theorem 2. [7] If M is a left A-module defined by the projective resolution $P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \longrightarrow 0$ and N is the right A-module defined by $0 \longleftarrow N \longleftarrow P_{0}^{\star} \stackrel{d_{1}^{\star}}{\longleftarrow} P_{1}^{\star}$, where $P_{i}^{\star}=\operatorname{hom}_{A}\left(P_{i}, A\right)$ and $d_{i}^{\star}(f)=f \circ d_{i}$, then N is defined up to a projective equivalence.

To prove this theorem, we need the following lemma which is proved in [3].

Lemma 2. Let $P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \longrightarrow 0$ and $P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}}$ $P_{0}^{\prime} \xrightarrow{\pi^{\prime}} M^{\prime} \longrightarrow 0$ be projective resolutions of two A modules M and M^{\prime} and $\phi: M \rightarrow M^{\prime}$ an isomorphism. Then, there exist an isomorphism $\alpha: P_{0} \oplus P_{0}^{\prime} \rightarrow P_{0} \oplus P_{0}^{\prime}$ and an isomorphism $\beta: P_{1} \oplus P_{1}^{\prime} \oplus P_{0} \oplus P_{0}^{\prime} \rightarrow P_{1} \oplus P_{1}^{\prime} \oplus$ $P_{0} \oplus P_{0}^{\prime}$ such that we have the following commutative diagram:

$$
\begin{array}{ccc}
P_{1} \oplus P_{0}^{\prime} \oplus P_{0} \oplus P_{1}^{\prime} \xrightarrow{\left(\mathrm{d}_{1} \oplus \mathrm{id}_{\mathrm{P}^{\prime},}, 0\right)} & P_{0} \oplus P_{0}^{\prime} \\
\stackrel{\downarrow}{ } & & \downarrow \alpha \\
P_{1} \oplus P_{0}^{\prime} \oplus P_{0} \oplus P_{1}^{\prime} \xrightarrow{\left(0, \mathrm{id}_{\mathrm{P}_{0}} \oplus \mathrm{~d}^{\prime}{ }^{\prime}\right)} \\
& P_{0} \oplus P_{0}^{\prime} .
\end{array}
$$

Moreover, we have:

$$
\operatorname{coker}\left(d_{1} \oplus \operatorname{id}_{P_{0}^{\prime}}, 0\right)^{\star} \cong \operatorname{coker}\left(0, \operatorname{id}_{P_{0}} \oplus d_{1}^{\prime}\right)^{\star}
$$

Proof. Now, we can prove theorem 2. If $P=\left(P_{i}, d_{i}\right)$ and $P^{\prime}=\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ are two projective resolutions of an A-module M, then we have the commutative exact diagram given by the figure 1.

Let Q^{\prime} be the kernel of the morphism $\operatorname{ker}\left(d_{1} \oplus\right.$ $\left.\operatorname{id}_{P_{0}^{\prime}}, 0\right) \rightarrow \operatorname{ker} d_{1}$ induced by $P_{1} \oplus P_{1}^{\prime} \oplus P_{0} \oplus P_{1}^{\prime} \rightarrow P_{1}$. Then, a chase in the diagram of the figure 1 gives the following exact sequence [9]:
$0 \longrightarrow Q^{\prime} \longrightarrow P_{1}^{\prime} \oplus P_{0} \oplus P_{0}^{\prime} \xrightarrow{\left(0, \mathrm{id}_{\left.\mathrm{P},{ }_{0}\right)}\right.} P_{0}^{\prime} \longrightarrow 0$.
Thus, $Q^{\prime} \cong \operatorname{ker}\left(0, \operatorname{id}_{P_{0}^{\prime}}\right)=P_{1}^{\prime} \oplus P_{0}$ is a projective A-module. Applying the functor $\operatorname{hom}_{A}(\cdot, A)[9]$ to the diagram defined in the figure 1, we obtain the exact commutative diagram given by the figure 2 where $N^{\prime \prime}=\operatorname{coker}\left(d_{1} \oplus \operatorname{id}_{P_{0}^{\prime}}, 0\right)^{\star}, N=\operatorname{coker} d_{1}$ and the two central vertical and the upper horizontal sequences are exact because they are dual of exact sequences composed only with projective modules [9]. A chase in the diagram of the figure 2 gives the exact sequence $0 \longrightarrow N \longrightarrow N^{\prime \prime} \longrightarrow Q^{\star} \longrightarrow 0$ which splits because $Q^{\prime \star}$ is a projective A-module [9]. Therefore, we have $N^{\prime \prime} \cong N \oplus Q^{\prime \star}$.

Doing similarly with the resolution $P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}} P_{0}^{\prime} \longrightarrow$ $M \longrightarrow 0$ and substituting the medium horizontal sequence of the figure 1 by the exact sequence given by the

Figure 1: commutative exact diagram

Figure 2: dual of the previous commutative exact diagram

$P_{1} \oplus P_{0}^{\prime} \oplus P_{0} \oplus P_{1}^{\prime} \xrightarrow{\left(0, \mathrm{id}_{\mathrm{P}_{0}} \oplus \mathrm{~d}^{\prime}{ }_{1}\right)} P_{0} \oplus P_{0}^{\prime}$ \qquad

Figure 3: horizontal sequence
figure 3, we obtain $N^{\prime \prime \prime} \cong N^{\prime} \oplus Q^{\star}$, where $N^{\prime}=\operatorname{coker} d_{1}^{\prime \star}$ and $N^{\prime \prime \prime}=\operatorname{coker}\left(0, \operatorname{id}_{P_{0}} \oplus d_{1}^{\prime}\right)^{\star}$.

But, from lemma 2, we know that $N^{\prime \prime} \cong N^{\prime \prime \prime}$ and thus $N \oplus Q^{\prime \star} \cong N^{\prime} \oplus Q^{\star}$, that is to say:

$$
\begin{equation*}
N \oplus P_{0}^{\star} \oplus P_{1}^{\prime \star} \cong N^{\prime} \oplus P_{0}^{\prime \star} \oplus P_{1}^{\star} \tag{4}
\end{equation*}
$$

Theorem 3. [3] If a left A-module M is defined by two projective resolutions $0 \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \longrightarrow 0$ and $0 \longrightarrow P_{1}^{\prime} \xrightarrow{d_{1}^{\prime}} P_{0}^{\prime} \xrightarrow{\pi^{\prime}} M \longrightarrow 0$, then we have:

$$
N=\operatorname{coker} d_{1}^{\star} \cong N^{\prime}=\operatorname{coker} d_{1}^{\prime \star}
$$

Example 4. Let us consider the following equivalent systems $\ddot{y}-\dot{u}=0$ and:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=0 \\
\dot{x}_{2}=x_{1}+v .
\end{array}\right.
$$

We easily check that we have the following commutative exact diagram

$$
\begin{array}{cccl}
0 \longrightarrow & A & \xrightarrow{. R} A^{2} & \xrightarrow{\pi} M \longrightarrow 0 \tag{5}\\
. V_{1} \uparrow \downarrow \cdot U_{1} & V_{0} \uparrow \downarrow . U_{0} & g \uparrow \downarrow f \\
0 \longrightarrow & A^{2} & \xrightarrow{R^{\prime}} A^{3} & \xrightarrow{\pi^{\prime}} M^{\prime} \longrightarrow 0 .
\end{array}
$$

with

$$
R=\left(\frac{d^{2}}{d t^{2}}-\frac{d}{d t}\right), \quad R^{\prime}=\left(\begin{array}{ccc}
\frac{d}{d t} & 0 & 0 \\
-1 & \frac{d}{d t} & -1
\end{array}\right)
$$

$$
\left\{\begin{array} { l }
{ f (y) = x _ { 2 } , } \\
{ f (u) = v , }
\end{array} \quad \left\{\begin{array}{l}
g\left(x_{1}\right)=\dot{y}-u, \\
g\left(x_{2}\right)=y, \\
g(v)=u
\end{array} \quad V_{1}=\binom{1}{0}\right.\right.
$$

$V_{0}=\left(\begin{array}{ll}\frac{d}{d t} & -1 \\ 1 & 0 \\ 0 & 1\end{array}\right), U_{1}=\binom{1}{\frac{d}{d t}}^{\prime}, U_{0}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Moreover, we easily check that $g \circ f=\operatorname{id}_{M}$ and $f \circ g=$ $\mathrm{id}_{M^{\prime}}$ and thus $M \cong M^{\prime}$.

Hence, we have the following commutative exact diagram:

$$
\begin{equation*}
 \tag{6}
\end{equation*}
$$

The A-module N is defined by the equation

$$
z\left(\frac{d^{2}}{d t^{2}}-\frac{d}{d t}\right)=0
$$

where $z=p(1)$, whereas the A-module N^{\prime} is defined by

$$
\left\{\begin{array}{l}
z_{1} \frac{d}{d t}-z_{2}=0 \\
z_{2} \frac{d}{d t}=0 \\
z_{2}=0
\end{array}\right.
$$

where, $z_{1}=p^{\prime}\left(f_{1}\right), z_{2}=p^{\prime}\left(f_{2}\right)$ and $\left\{f_{1}, f_{2}\right\}$ is the canonical basis of A^{2}. The matrices V_{1} and U_{1} induce the morphisms $h: N \rightarrow N^{\prime}$ and $k: N^{\prime} \rightarrow N$ respectively defined by $h(n)=p^{\prime}\left(V_{1} a\right)$ with $p(a)=n$ and $k\left(n^{\prime}\right)=p\left(U_{1} l\right)$ with $p^{\prime}(l)=n^{\prime}$. Then, we obtain $h(z)=p^{\prime}\left(V_{1}\right)=z_{1}$ and

$$
\left\{\begin{array}{l}
k\left(z_{1}\right)=p\left(U_{1} f_{1}\right)=z \\
k\left(z_{2}\right)=p\left(U_{1} f_{2}\right)=z \frac{d}{d t}
\end{array}\right.
$$

We check that we have $k \circ h=\operatorname{id}_{N}$ and $h \circ k=\mathrm{id}_{N^{\prime}}$, i.e. $N \cong N^{\prime}$.

Hence, even if the A-modules N and N^{\prime} are defined by totally different numbers of unknowns and equations, we have $N \cong N^{\prime}$. See [7] for more details, examples of multidimensional control systems and applications to the theory of linear elasticity. See also [6] for applications in control theory.

We let the reader check by himself that the A-modules M and M^{\prime} defined in example 3 satisfy $N=A / R A^{2}=$ $0, N^{\prime}=A^{2} / A^{3} R^{\prime}=0$ and thus $N=N^{\prime}$.

4 Applications of equivalences

Proposition 3. [9] If $\left(P_{i}, d_{i}\right)$ and $\left(P_{i}^{\prime}, d_{i}^{\prime}\right)$ are two homotopy equivalent complexes, then we have:

$$
H_{i}(P) \cong H_{i}\left(P^{\prime}\right), \forall i
$$

If $\ldots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{\pi} M \longrightarrow 0$ is a free resolution of the left A-module M and S a left A-module, then the abelian groups of cohomology of the complex

$$
\begin{equation*}
\ldots \stackrel{d_{2}^{\star}}{\leftrightarrows} \operatorname{hom}_{A}\left(F_{1}, S\right) \stackrel{d_{1}^{\star}}{\leftrightarrows} \operatorname{hom}_{A}\left(F_{0}, S\right) \longleftarrow 0 \tag{7}
\end{equation*}
$$

where $d_{i}^{\star}(f)=f \circ d_{i}, \forall f \in \operatorname{hom}_{A}\left(F_{i-1}, S\right)$, do not depend on the free resolution of M and are called $\operatorname{ext}_{A}^{i}(M, S)$ (see [9] for more details). Hence, we have:

$$
\left\{\begin{array}{l}
\operatorname{ext}_{A}^{0}(M, S)=\operatorname{hom}_{A}(M, S) \\
\operatorname{ext}_{A}^{i}(M, S)=\operatorname{ker} d_{i+1}^{\star} / \operatorname{im} d_{i}^{\star}, \forall i \geq 1
\end{array}\right.
$$

The fact that the abelian groups of cohomology of the complex (7) do not depend on the projective resolution of M comes from the fact that two different projective resolutions of M are homotopy equivalent by theorem 1 . Then, the dual sequences (7) of the two projective resolutions are homotopy equivalent, a fact which implies, by proposition 3 , that the abelian groups of cohomology of the two corresponding complexes (7) are isomorphic.
Example 5. Let us consider again example 4. We let the reader check by himself that $\operatorname{ext}_{A}^{1}(M, A)=N$ and $\operatorname{ext}_{A}^{1}\left(M^{\prime}, A\right)=N^{\prime}$. Hence, using theorem 3, we have $N \cong N^{\prime} \Rightarrow \operatorname{ext}_{A}^{1}(M, A) \cong \operatorname{ext}_{A}^{1}\left(M^{\prime}, A\right)$.

Let K be a differential field containing \mathbb{Q} and $D=$ $K\left[d_{1}, \ldots, d_{n}\right]$ the ring of scalar differential linear operators with coefficients in K [5]. Let M be the left D module defined by $D^{l} \xrightarrow{. R} D^{m} \xrightarrow{\pi} M \longrightarrow 0$, and N the
right D-module by:

$$
0 \longleftarrow N \longleftarrow D^{l} \stackrel{R .}{\longleftarrow} D^{m} \longleftarrow \operatorname{hom}_{D}(M, D) \longleftarrow 0
$$

We have seen that theorem 1 and proposition 3 imply that the right D-modules $\operatorname{ext}_{D}^{i}(N, D), i \geq 1$, do not depend on the resolution of N. Moreover, by theorem 2 , $\operatorname{ext}_{D}^{i}(N, D), i \geq 1$, do only depend on M [7] because N is defined up to a projective equivalence and $\operatorname{ext}_{D}^{i}(P, D)=0, \forall i \geq 1$, for any projective module P (see [9] for more details).
We are now able to give applications of these two notions of equivalence. For that, let us recall a few well known definitions of primeness $[4,11]$.

Definition 5. Let R be a $l \times m(1 \leq l \leq m)$ full rank matrix with entries in $D=\mathbb{C}\left[d_{1}, \ldots, d_{n}\right] \cong \mathbb{C}\left[\chi_{1}, \ldots, \chi_{n}\right]$. Then, we say that:

- R is minor left-prime if there is no common factor in the $l \times l$ minors of R,
- R is weakly zero left-prime if all the $l \times l$ minors of R vanish all together on a finite set of points of \mathbb{C}^{n},
- R is zero left-prime if all the $l \times l$ minors of R never vanish all together.

We have the following inclusions [4, 11]:

zero left-prime	\subseteq weakly zero left-prime
weakly zero left-prime	\subseteq minor left-prime.

In 1998, Wood, Rogers and Owens have conjectured in [11] that these three above definitions and inclusions were in fact elements of a chain of n successive definitions. We have the following results where the homotopic and projective equivalences are essential to prove that the algebraic properties of M do not depend on the presentation (i.e. on the matrix R) and where $d(M)=\operatorname{dim}(D / \operatorname{ann}(M))$ is the krull dimension of $D / \operatorname{ann}(M)[3], \operatorname{ann}(M)=\{a \in A \mid a m=0, \forall m \in M\}$ while $\operatorname{ext}_{D}^{1}(N, D) \cong \operatorname{ker} \epsilon$ and $\operatorname{ext}_{D}^{2}(N, D) \cong \operatorname{coker} \epsilon[2]$.

References

[1] Kailath, T. (1980). Linear Systems, Prentice-Hall.
[2] Kashiwara, M. (1970). Algebraic Study of Systems of Partial Differential Equations, Mémoires de la Société Mathématiques de France, n ${ }^{\circ} 63$ (1995).
[3] Kunz, E. (1985). Introduction to Commutative Algebra and Algebraic Geometry, Birkhaüser.
[4] Oberst, U. (1990). "Multidimensional Constant Linear Systems", Acta Appl. Math., vol. 20, pp. 1-175.
[5] Pommaret, J. F. and Quadrat, A. (1999). "Algebraic analysis of linear multidimensional control systems", IMA J. Control and Inform., vol. 16. pp. 275-297.
[6] Pommaret, J. F. and Quadrat, A. (2000). "A functorial approach to the behaviour of multidimensional control systems", to appear in the proceedings of the Second International Workshop on Multidimensional Systems (NDS 2000).
[7] Quadrat, A. (1999). Analyse algébrique des systèmes de contrôle linéaires multidimensionnels, PhD thesis, Ecole Nationale des Ponts et Chaussées, France, soon available on //www.cermics.enpc.fr.
[8] Rosenbrock, H. H. (1970). State-Space and Multivariable Theory, Wiley.
[9] Rotman, J. J. (1979). An Introduction to Homological Algebra, Academic Press.
[10] Willems, J. C. (1991). "Paradigms and puzzles in theory of dynamical systems", IEEE Trans. Automatic Control, vol. 36, pp. 259-294.
[11] Wood, J., Rogers, E. and Owens, D. (1998). "Formal theory of matrix primeness", Mathematics of Control, Signals, and Systems, vol. 11, pp. 40-78.

Module M	$\operatorname{ext}_{D}^{i}(N, D)[2,5]$	$\boldsymbol{d}(\mathbf{N})[2,5]$	Primeness [4, 5, 11]
	$\operatorname{ext}_{D}^{0}(N, D) \neq 0$	n	
with torsion	$\operatorname{ext}_{D}^{1}(N, D) \cong t(M) \neq 0$	$n-1$	\emptyset
torsion-free	$\operatorname{ext}_{D}^{1}(N, D)=0$	$n-2$	minor left prime
reflexive	$\operatorname{ext}_{D}^{i}(N, D)=0,1 \leq i \leq 2$	$n-3$	
\cdot	\cdot	\cdot	.
\cdot	\cdot	\cdot	.
	$\cdot \operatorname{ext}_{D}^{i}(N, D)=0,1 \leq i \leq n-1$	0	weakly zero left prime
projective	$\operatorname{ext}_{D}^{i}(N, D)=0,1 \leq i \leq n$	-1	zero left prime

In conclusion, we hope that these new techniques will open new perspectives for application of algebraic analysis to linear control theory.

