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An introduction to internal stabilization
of infinite-dimensional linear systems

A. Quadrat

Abstract— In these notes, we give a short introduction to
the fractional representation approach to analysis and synthesis
problems [12], [14], [17], [28], [29], [50], [71], [77], [78]. In
particular, using algebraic analysis(commutative algebra, module
theory, homological algebra, Banach algebras), we shall give
necessary and sufficient conditions for a plant to be internally
stabilizable or to admit (weakly) left/right/doubly coprime factor-
izations. Moreover, we shall explicitely characterize all the rings
A of SISO stable plants such that every plant− defined by means
of a transfer matrix with entries in the quotient field K = Q(A)
of A − satisfies one of the previous properties (e.g. internal
stabilization, (weakly) doubly coprime factorizations). Using the
previous results, we shall show how to parametrize all stabilizing
controllers of an internally stabilizable plants which does not
necessarily admits a doubly coprime factorization. Finally, we
shall give some necessary and sufficient conditions so that a plant
is strongly stabilizable (i.e. stabilizable by a stable controller)
and prove that every internally stabilizable MIMO plant over
A = H∞(C+) is strongly stabilizable.

Index Terms— Fractional representation approach to anal-
ysis and synthesis problems, internal stabilization, (weak)
left/right/doubly coprime factorizations, parametrization of all
stabilizing controllers, strong/simultaneous/robust stabilization,
algebraic analysis, module theory, theory of fractional ideals,
homological algebra, Banach algebras, stable range,H∞(C+).

I. A BRIEF INTRODUCTION

For the twentieth anniversary of the paper “Alge-
braic and topological aspects of feedback stabilization” by
M. Vidyasagar, M. Schneider and H. Francis, published in
IEEE Transactions on Automatic Control (August 1982) [77],
we want to present in these notes certain of its main ideas as
well as to give a personal overview of their recent progress.

The impacts of this paper, as well as the book [78], are
difficult to evaluate in the present research [79], [83]. However,
we can easily say that certain ideas of [77], [78] (frac-
tional representation of systems, internal stabilization, Youla-
Kučera parametrization of the stabilizing controllers, strong
and simultaneous stabilizations, graph approach to plants,
graph topology, margins of robustness. . . ) have been at the
core of the successful development ofH∞-control for finite-
dimensional linear systems [20], [25], [29] in the nineties. We
refer to [2], [41] for nice surveys about stabilization problems
for finite-dimensional systems.

The question of the possibility to extend certain of the pre-
vious results to infinite-dimensional linear systems (e.g. delay
systems, partial differential equations, convolution systems)
was naturally asked in [17], [77] (see also the last chapter
of [78]). However, the larger the class of systems becomes,
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the more difficult it is to give a general answer concerning
these problems (internal stabilization, existence of doubly
coprime factorizations, parametrization of the stabilizing con-
trollers. . . ). Hence, certain parts of the program developed in
[17], [77] for infinite-dimensional linear systems are still in
progress nowadays (see e.g. [14], [28], [44], [47], [56], [57],
[58], [60], [69], [71], [73] and the references therein).

In these notes, we shall mainly focus on the following
general questions [77], [78]:

1) Does it exist necessary and sufficient conditions to
internal stabilization?

2) When can we parametrize all stabilizing controllers
of a plant by means of the well-known Youla-Kučera
parametrization?

3) Can we characterize all the ringsA of single input single
output (SISO) stable plants so that every transfer matrix
− defined by a matrix with entries in the quotient field
K = Q(A) of A − is internally stabilizable?

For lack of space, we shall not have the possibility to
develop certain results such as equivalences of external and
internal closed-loop stability [14], [44], graph approach to
plants (see [28], [83] and the references therein), graph topol-
ogy, margins of robustness [14],H2 orH∞-optimal controllers
[14], [29], [50]. Moreover, we shall only use an input-output
approach to systems via transfer matrices as it is developed
in [11], [12], [17], [50], [77], [78]. We refer to [14], [44] for
the link between the frequency-domain approach and the state-
space one (e.g. stabilizable and detectable state-space systems,
Pritchard-Salamon class of systems). More generally, we refer
the reader to the following nice references [14], [44], [50],
[79], [83] for complementary information and bibliographies.

Throughout this paper, we shall denote byA a commutative
integral domain [31], [66] (namely a ring with an identity
which satisfies∀ a, b ∈ A, a b = b a anda b = 0, b 6= 0 ⇒
a = 0), the group of the unitsof A by

U(A) = {a ∈ A | ∃ b ∈ A : a b = 1}

and thequotient fieldof A by:

K = Q(A) = {a/b | 0 6= b, a ∈ A}.

By convention, every vector ofAn is a row vector. Moreover,
Aq×p will denote the set of theq× p matrices with entries in
A and

GLp(A) = {U ∈ Ap×p | ∃ V ∈ Ap×p : U V = V U = Ip}

the group of invertiblep × p matrices ofAp×p and Ip its
identity. If R ∈ Ap×p, thenRT will denote the transposed
matrix and (a1, . . . , an) the idealAa1 + . . . + Aan of A.
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Finally, p, q and r will always be three positive integers
satisfyingp = q + r and, will mean ‘by definition’.

II. T HE FRACTIONAL REPRESENTATION APPROACH TO

SYSTEMS

“. . . As soon as I read this, my immediate reaction
was ‘What is so difficult about handling that case?
All one has to do is to write the unstable part as
a ratio of two stable rational functions!’ Without
exaggeration, I can say that the idea occured to me
within no more than 10 min. So there it is− the best
idea I have had in my entire research career, and it
took less than 10 min. All the thousands of hours I
have spent thinking about problems in control theory
since have not resulted in any ideas as good as this
one. I don’t think I know what the ‘moral of this
story’ really is !”, M. Vidyasagar [79].

The fractional representation approach to systemsis an
input-output theory based on the idea that the algebraic struc-
ture of a class of single input single output (SISO) plants needs
to be a ring if we want to put two systems in connection
(×) and in parallel (+) [84]. Moreover, in the seventies,
M. Vidyasagar [76], C. Desoer and coauthors [15] introduced
the idea to consider anintegral domainA of SISO stable plants
in order to represent an unstable plant as a ratio of two stable
plants, i.e. as an element of thequotient fieldof A, namely

K = Q(A) = {n/d | 0 6= d, n ∈ A}

(see [79] for a historical survey). Examples of integral domains
of SISO stable plants, usually encountered in the literature, are
the following ones.

Example 2.1: • The ring of proper stable real rational
functions[41], [78]

RH∞ = {n/d | 0 6= d, n ∈ R[s], deg n ≤ deg d,

d(s?) = 0⇒ Re (s?) < 0}.
(1)

A transfer functionp belongs toRH∞ iff p is the transfer
function of an exponentially stable time-invariant finite-
dimensional SISO linear system.

• TheHardy algebraof bounded holomorphic functions on
the open right half planeC+ = {s ∈ C | Re s > 0}, i.e.

H∞(C+) = {f ∈ H(C+) | sup
s∈C+

|f(s)| < +∞}, (2)

whereH(C+) denotes the ring of holomorphic functions
in C+ [14], [84]. A transfer functionp belongs to
H∞(C+) iff

‖ p ‖∞= sup
0 6=u∈H2(C+)

‖ p u ‖2
‖ u ‖2

< +∞,

whereH2(C+) is the Hilbert space of the holomorphic
functions inC+ which are bounded w.r.t. the norm:

‖ f ‖22= sup
Re x>0

∫ +∞

−∞
|f(x+ i y)|2 dy.

Let us recall thatH2(C+) = L(L2(R+), whereL(·)
denotes the Laplace transform. Hence,p belongs to

H∞(C+) iff p is the transfer function of aL2(R+)-stable
time-invariant infinite-dimensional SISO system [14].

• The Wiener algebradefined by

A = {h(t) = f(t) +
∑+∞

i=0 ai δt−ti
| f ∈ L1(R+),

(ai)i≥0 ∈ l1(Z+), 0 = t0 < t1 < t2 < . . . , ti ∈ R+}
(3)

whereh is bounded w.r.t. the norm:

‖ h ‖A = ‖ f ‖L1(R+) + ‖ (ai)i≥0 ‖l1(Z+)

=
∫ +∞
0
|f(t)| dt+

∑+∞
i=0 |ai|.

Then,h belongs toA iff h is the impulse response of a
L∞(R+)-stable time-invariant infinite-dimensional SISO
linear system (BIBO stability) [11], [14]. Let us also
consider the integral domain̂A = {L(f) | f ∈ A} of
transfer functions of BIBO stable time-invariant infinite-
dimensional SISO linear systems [11], [14] .

• Let W+ be the commutative integral domain of holomor-
phic functions on the unit discD = {z ∈ C | |z| ≤ 1}
whose Taylor series converge absolutely:

W+ = {(ai)i≥0, ai ∈ k = R, C |
+∞∑
i=0

|ai| < +∞}.

(4)
Then, p ∈ W+ iff p is the unit-pulse response of a
BIBO-stable causal digital filter, i.e.W+ is thealgebra of
the bounded input bounded output (BIBO) causal digital
filters [78]:

• LetMDn be thering of structural stable multidimensional
linear systems, namely

MDn = {n/d | 0 6= d, n ∈ R[z1, . . . , zn],

d(z) = 0⇒ z ∈ Cn\Dn},
(5)

where Dn
= {z ∈ Cn | |zi| ≤ 1, i = 1, . . . , n} is the

closed unit polydisc ofCn. See [43] and the references
therein.

See [8], [9], [30], [34], [45], [82] for other examples of
rings used in stabilization problems.

Example 2.2:Let us considerA = RH∞ and the transfer
function p = 1/(s − 1). We easily check thatp /∈ A because
p has a pole in1 ∈ C+ (unstable pole). However, we have
p ∈ K = Q(A) = R(s) becausep = n/d, where:{

n = 1/(s+ 1) ∈ A,
d = (s− 1)/(s+ 1) ∈ A.

Testing the stability of a transfer functionp ∈ K = Q(A)
becomes a membership problem: testing whether or notp ∈ A.
By extension, a multi input multi output (MIMO) system is
defined by means of a transfer matrixP whose entries belong
to the quotient fieldK = Q(A) of a certain integral domain
A of SISO stable plants. Hence, if we haveP ∈ Kq×r, then
we can always writeP as

P = D−1N = Ñ D̃−1,

where: {
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r.
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For instance, we can always takeD = d Iq and D̃ = d Ir,
whered is the product of the denominators of all the entries
of P .

Example 2.3:Let us considerA = H∞(C+), K = Q(A)
and the following transfer matrix with entries inK:

P =

(
e−s

s−1

e−s

(s−1)2

)
. (6)

We easily see that we haveP = D−1N = Ñ D̃−1, where
R = (D : −N) ∈ A2×3 and R̃ = (ÑT : D̃T )T ∈ A3×1 are
for instance defined by:

R =

 (s−1)2

(s+1)2 0 − (s−1) e−s

(s+1)2

0 (s−1)2

(s+1)2 − e−s

(s+1)2

 ,

R̃ =


(s−1) e−s

(s+1)2

e−s

(s+1)2

(s−1)2

(s+1)2

 .

(7)

In the fractional representation approach, instead of the
transfer matrixy = P u, we usually prefer to study the system
Dy − N u = 0, i.e. Rz = 0, whereP = D−1N ∈ Kq×r,
R = (D : −N) ∈ Aq×p and z = (yT : uT )T . The idea
to only consider the input and output variables together, i.e.
without any separation between the inputs and the outputs, is
similar to the module theory and the behavioural approaches
to linear multidimensional systems (see [13], [22], [52], [53]
and references therein). Hence, the structural properties of
the plant, defined byP , can be studied by means of the
linear systemRz = 0 whose coefficients belong to a ring
A. This can be achieved usinglinear algebra over the ring
A (e.g. testing the existence of a right/left/doubly coprime
factorization, invariant factors, equivalences. . . ). However, lin-
ear algebra over a ring is a part of themodule theory[5],
[6], [7], [31], [66]. Therefore, it seems to be quite natural
to introduce module theory into the study of linear systems.
This idea is quite old and R. E. Kalman seems to be the first
person who has used module theory in linear control theory
during the sixties (see [38] and the references therein). Since
this pioneering work, module theory has been more and more
used in linear control theory (see [13], [22], [23], [24], [53]
and the references therein). But, as surprising as it might
be, module theory has only recently been introduced into
fractional representation approach to analysis and synthesis
problems in the pioneering work of V. R. Sule [73] (see also
[69]) and, up to our knowledge, has only been developed since
then in [47], [54], [55], [56], [58], [59], [61]. Let us recall
the definition of anA-module (see [5], [31], [66] for more
informations).

Definition 2.1: An A-moduleM over a ringA is a setM
with two operations, namely an addition+ : M ×M −→M ,
defined by

(m1, m2) 7−→ m1 +m2,

and a scalar multiplicationA×M −→M , defined by

(a, m) 7−→ am,

which satisfy
1) m1 +m2 = m2 +m1,
2) (m1 +m2) +m3 = m1 + (m2 +m3),
3) ∃ 0 ∈M, ∀ m ∈M : m+ 0 = m,
4) ∀ m ∈M, ∃ (−m) ∈M : m+ (−m) = 0,
5) a (m1 +m2) = am1 + am2,
6) (a+ b)m = am+ bm,
7) (a b)m = a (bm),
8) 1m = m,

for all m, m1, m2, m3 ∈M anda, b ∈ A.
A submoduleN of an A-moduleM is a subsetN of M

which also satisfies 1, 2, 3, 4 and:

∀ a ∈ A : aN = {an | n ∈ N} ⊆ N.

Hence, anA-module shares the same definition as ak-vector
space with the only distinction that the scalars belong to a ring
A in the case of a module whereas they belong to afield k
(i.e. a commutative ring such that every non-zero element has
an inverse for the product) in the case of a vector space. This
small difference implies huge ones in the respective theories
(module theory and linear algebra over a field) that can be
easily understood if we notice that anA-module has generally
no basis. Indeed, if we want to obtain a basis of ak-vector
space defined by a non minimal family of generators, we need
to invert certain coefficients ofk to obtain an independent
subfamily of generators, i.e. a basis. But, if the scalars belong
to a ringA instead of a fieldk, they generally do not admit
inverses inA, and thus, we cannot generally obtain a basis
from a family of generators.

Example 2.4: 1) If A is a commutative ring, then, for
all n ∈ Z+, An is anA-module:

∀ λ1, λ2 ∈ An, ∀ a1, a2 ∈ A : a1 λ1 + a2 λ2 ∈ An.

Let ei be the vector ofAn defined by 1 in theith

component and 0 for all the others. Then,{e1, . . . , en}
is a basis ofAn because everyλ = (λ1 : . . . : λn) ∈ An

can be uniquely written asλ =
∑n

i=1 λi ei. This basis
is called thecanonical basisof An.

2) If f : M −→ N is anA-morphism, namely anA-linear
application from theA-moduleM to theA-moduleN ,
i.e. ∀ λ1, λ2 ∈M, ∀ a1, a2 ∈ A:

f(a1 λ1 + a2 λ2) = a1 f(λ1) + a2 f(λ2),

then
ker f = {m ∈M | f(m) = 0},
im f = {n ∈ N | ∃ m ∈M : n = f(m)},
coker f = N/im f,

− whereN/im f is thequotientA-moduleobtained by
identifying two elementsn1 andn2 of N if there exists
m ∈ M such thatn1 − n2 = f(m) − are threeA-
modules [5], [31], [66].

3) Let H2(C+) be theHardy spaceof holomorphic func-
tions in the open right half planeC+ which are bounded
with respect to the norm:

‖ f ‖2 , sup
x∈R+

(
∫ +∞

−∞
|f(x+ i y)|2 dy)1/2.
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It is well known thatH2(C+) is a Hilbert space[14]
and, by a theorem of Paley-Wiener, every function of
H2(C+) is the Laplace transform of a unique function
of L2(R+) [14]. Finally,H2(C+) has a natural structure
of anH∞(C+)-module defined by:

∀ f, g ∈ H2, ∀ h, k ∈ H∞ : h f + k g ∈ H2.

Exercise 2.1: 1) Prove 2 of Example 2.4 (Hints for the
structure ofA-module of coker f : if n1 and n2 are
identified in N/im f , i.e. there existsm ∈ M such
that n1 − n2 = f(m), we say thatn1 and n2 belong
to the sameequivalence classand we denote this class
by π(n1) = π(n2) ∈ N/im f . Then, we have anA-
morphismπ : N −→ N/im f , defined by mapping any
elementn ∈ N into its equivalence classπ(n), called
thequotient map. The structure ofA-module ofcoker f
is defined by:

∀ a ∈ A, ∀ n ∈ N : a π(n) , π(an).

Check thata π(n) does not depend on the choice ofn,
i.e. if π(n1) = π(n2) = π(n), thena π(n1) = a π(n2)).

2) Prove thatLp(R+) is anA-module for1 ≤ p ≤ +∞,
H2(C+) is an Â-module (see (3) for the definitions of
A and Â) andH2 is anRH∞-module (see (1) for the
definition of RH∞) (Hints: show that iff ∈ A, g ∈
Lp(R+), k ∈ Â, l ∈ RH∞ and h ∈ H2(C+), then
f ? g ∈ Lp(R+), k h ∈ H2(C+) andl h ∈ H2(C+). See
[16] for informations and details).

III. W EAKLY DOUBLY COPRIME FACTORIZATIONS

A. Definitions

A useful tool for time-invariant finite-dimensional linear
systems (A = RH∞ or k[s], k = R, C) is the concept of
coprime factorization. The coprime factorization of a rational
matrix goes back to the work of H. H. Rosenbrock [65]
and has played since then a major role in analysis and syn-
thesis problems (controllability, observability, stabilizability,
detectability, Youla-Kǔcera parametrization of all stabilizing
controllers, graph topology, equivalences. . . ). This technique
has been popularized by the book of M. Vidyasagar [78].
However, contrary to finite-dimensional systems, the transfer
matrix of more general systems (delays systems, systems of
partial differential equations, convolution equations. . . ) gener-
ally does not admit a coprime factorization [12], [14], [17],
[44], [77], [78], [82]. Intuitively, this comes from the fact
that the algebraic properties of the ringsH∞(C+), A and
Â. . . are more complex than the ones ofRH∞. For finite-
dimensional systems (A = RH∞ or k[s], k = R, C), one
can prove that there exists only one concept of primeness,
but, for more sophisticated rings asH∞(C+) or Â, this fact
is no longer true. We are going to introduce the concept of
weak primenesswhich plays a major role in these notes. This
concept generalizes the one introduced by M. C. Smith for
H∞(C+) in the important contribution [71].

Definition 3.1: • [56] A matrixR ∈ Aq×p is weakly left-
prime if we have

Kq R ∩ Ap , {λ ∈ Ap | ∃ µ ∈ Kq : λ = µR}
=

Aq R , {λ ∈ Ap | ∃ ν ∈ Aq : λ = ν R},

i.e. if a row vectorµ ∈ Kq is such thatµR ∈ Ap, then
there existsν ∈ Aq satisfying:

µR = ν R. (8)

• R is weakly right-primeif RT is weakly left-prime.
Exercise 3.1:Show that, ifR has afull row rank, namely

the q rows ofR areA-linear independent, thenR is weakly
left-prime iff, if there existsµ ∈ Kq such thatµR ∈ Aq, then
µ ∈ Aq (Hints: factorize (8) byR and use the fact thatR has
full row rank to obtainµ = ν ∈ Aq).

Example 3.1:Let us consider the matrixR defined by (7).
The matrixR is not weakly left-prime because we have(

s+1
s−1 : 0

) ( (s−1)2

(s+1)2 0 − (s−1) e−s

(s+1)2

0 (s−1)2

(s+1)2 − e−s

(s+1)2

)

=
(

s−1
s+1 : 0 : − e−s

s+1

)
∈ A3

and the vector( s+1
s−1 : 0) belongs toK2 but not toA2.

Definition 3.2: • A couple (a, b) of elements ofA has
a common divisorc ∈ A if there exista′, b′ ∈ A such
that: {

a = a′ c,

b = b′ c.

If there exists a common divisorc of a and b which
satisfies that, for every other divisorc′ of a and b, there
exists d ∈ A such thatc = d c′, then c is called the
greatest common divisorof a and b and is denoted by
[a, b]. A greatest common divisor is defined up to an
invertible element, i.e. up to an element ofU(A).

• A ring A is a greatest common divisor domain(gcdd)
if every couple(a, b) of elements ofA has a greatest
common divisor[a, b].

Proposition 3.1: [71] If A is a greatest common divisor
domain, then a full row rank matrixR ∈ Aq×p (⇒ 0 < q ≤ p)
is weakly left-prime iff 1 is a greatest common divisor of all
the q × q minors ofR.

Exercise 3.2: 1) We shall see in Theorem 3.4 that
H∞(C+) is a greatest common divisor domain. Prove
that the matrixR defined by (7) is not weakly left-prime
because(s−1)2

(s+1)2 is a common divisor of the2×2 minors
of R.

2) Check that 1 is a greatest common divisor of1s+1 and
e−s ∈ H∞(C+). Similar problem fors−1

s+1 ande−s.

3) Find a common divisor of the two elements1−e−s

s+1 and
s

s+1 of A = H∞(C+) (Hint: 1
s+1 is not a common

divisor of the two elements becauses /∈ A but use the
fact that 1−e−s

s ∈ A).
Definition 3.3: • A transfer matrixP ∈ Kq×r admits a

weakly left-coprime factorizationif there exists a weakly
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left-prime matrixR = (D : −N) ∈ Aq×r such that
D ∈ Aq×q has full rank (i.e.detD 6= 0) and:

P = D−1N.

• Dually, P ∈ Kq×r admits aweakly right-coprime factor-
ization if there exists a weakly right-prime matrix̃R =
(ÑT : D̃T )T ∈ Ap×r such that the matrix̃D ∈ Ar×r

has full rank (i.e.det D̃ 6= 0) and:

P = Ñ D̃−1.

• P ∈ Kq×r admits aweakly doubly coprime factorization
if P has a weakly left-coprime factorization as well as a
weakly right-coprime factorization.

Let us note that the matrixR defined by (7) was obtained by
removing all the denominators ofP . In Example 3.1, we saw
thatR was not weakly left-prime. Hence, the procedure which
consists in writing all the entries of a transfer matrix over a
common denominator generally leads to matrices which are
not weakly left/right-prime. Moreover, we shall show that this
concept of weak primeness is the weakest existing concept
of primeness, and thus, ifP = D−1N = Ñ D̃−1 is not
a weakly doubly coprime factorization, then it is also not a
doubly coprime factorization. Hence, if we want to compute
effectively a doubly coprime factorization of a transfer matrix
(when it exists), then we first need to have an algorithm which
computes a weakly doubly coprime factorization of a transfer
matrix (if such a factorization also exists).

B. Transfer matrices & Torsion-freeness

In order to understand when a transfer matrixP ∈ Kq×r

admits a weakly doubly coprime factorization, we need to
introduce the concepts of atorsion elementof an A-module
and of a torsion/torsion-freeA-module. All theA-modules
which will be considered in the rest of this paper arefinitely
generated, namely are defined by means of a finite family of
generators [7], [31], [66].

Definition 3.4: • An A-moduleM is free if it admits a
basis, or equivalently, ifM ∼= Ar with r ∈ Z+. Then,r
is called therank of theA-moduleM .

• The torsion submodulet(M) of an A-module M is
defined:

t(M) = {m ∈M | ∃ 0 6= a ∈ A, am = 0}.

An element oft(M) is called atorsion element. An A-
moduleM is torsion-freeif t(M) = 0, or equivalently,
M/t(M) = M andM is a torsionmodule ift(M) = M .

• If N is a submodule of anA-moduleM , then we call
theA-closureof N in M theA-module defined by:

N = {m ∈M | ∃ 0 6= a ∈ A, am ∈ N}.

Remark 3.1:Let us notice that the concept of a torsion
element of ak-vector space (k is a field) is trivial: if m is a
torsion element ofk-vector space, then there exists0 6= a ∈ k
such thatam = 0. But, using the fact that0 6= a ∈ k andk
is a field, thena−1 ∈ k, and thus:

am = 0⇒ a−1 (am) = m = 0.

Hence, everyk-vector space is torsion-free, i.e. this concept is
only interesting forA-modules. More generally, everyk-vector
space is a freek-module.

If R ∈ Aq×p, then we define theA-morphism.R (see 2 of
Example 2.4) by:

Aq .R−→ Ap

(λ1 : . . . : λq) 7−→ (λ1 : . . . : λq)R.

From 2 of Example 2.4, we know thatim .R = Aq R and
coker .R = Ap/Aq R are two A-modules. These twoA-
modules will be of very common use in all these notes. The
A-moduleAq R , {λ ∈ Ap | ∃ ν ∈ Aq : λ = ν R} is defined
by theA-linear combination of the rows ofR. Let us give an
interpretation of theA-moduleAp/Aq R. From Example 2.4,
we know thatAq (resp.Ap) is a freeA-module having a
canonical basis denoted by{e1, . . . , eq} (resp.{f1, . . . , fp}).
Let us denote byzi = π(fi) the equivalence class offi in
Ap/Aq R (see 1 of Exercise 2.1). Fori = 1, . . . , q, we have:

eiR = (Ri1 : . . . : Rip) =
p∑

j=1

Rij fj ∈ Aq R⇒ π(eiR) = 0.

Using the structure ofA-module ofM = Ap/Aq R and the
A-morphismπ : Ap −→ M (see 1 of Exercise 2.1), then, in
Ap/Aq R, for i = 1, . . . , q, we have:

π(eiR) = π(
p∑

j=1

Rij fj) =
p∑

j=1

Rij π(fj) =
p∑

j=1

Rij zj = 0.

(9)
Thus,M is defined by the systemRz = 0 and all theA-linear
combinations of its equations, wherez = (z1 : . . . : zp) is a
vector offormal variableswhich correspond to the generators
of M (they do not belong to any “functional space”).

Example 3.2:Let us reconsider the matrixR ∈ A2×3

defined by (7) (A = H∞(C+)). Let us cally1 (resp.y2) the
class off1 (resp.f2) andu the class off3 in M = A3/A2R.
We find that theA-moduleM is defined by the system

(s−1)2

(s+1)2 y1 −
(s−1) e−s

(s+1)2 u = 0,
(s−1)2

(s+1)2 y2 −
e−s

(s+1)2 u = 0,

as well as theA-linear combinations of these two equations.
We can check that the elementz = (s−1)

(s+1) y1 −
e−s

(s+1) u of M

(i.e. class of
(

(s−1)
(s+1) : 0 : − e−s

(s+1)

)
∈ A3 in M ) satisfies the

equation(s−1)
(s+1) z = 0, i.e.m is a torsion element ofM .

Lemma 3.1: [56] Let us considerR ∈ Aq×p and theA-
moduleM = Ap/Aq R. Then, we have:

1) TheA-closure of theA-moduleAq R in Ap is:

Aq R = Kq R ∩ Ap.

2) t(M) = (Kq R ∩ Ap)/ApR = Aq R/Aq R.
3) M/t(M) = Ap/(Kq R ∩ Ap) = Ap/Aq R.
4) M = Ap/Aq R is a torsion-freeA-module (t(M) = 0)

iff R is weakly left-prime.
Exercise 3.3:Prove Lemma 3.1. See [56] for the answers.
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A transfer matrixP ∈ Kq×r has lots of different fractional
representations of the formP = D−1N = Ñ D̃−1, where:{

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r.

In the next proposition, we show that the concepts ofA-
closure and torsion submodule allow us to capture the intrinsic
informations of these different representations.

Proposition 3.2: [56] If a transfer matrixP ∈ Kq×r can
be written as

P = D−1
1 N1 = D−1

2 N2, P = Ñ1 D̃
−1
1 = Ñ2 D̃

−1
2 ,

with {
Ri = (Di : −Ni) ∈ Aq×p,

R̃i = (ÑT
i : D̃T

i )T ∈ Ap×r,
i = 1, 2,

then we have:
1) Aq R1 = Aq R2,
2) Ar R̃T

1 = Ar R̃T
2 ,

3) ApRT
1
∼= ApRT

2
∼= Ñi/t(Ñi) = Ap/Ar R̃T

i

4) Ap R̃1
∼= Ap R̃2

∼= Mi/t(Mi) = Ap/Ar R̃T
i ,

with the notations:{
Mi = Ap/Aq Ri,

Ñi = Ap/Ar R̃T
i ,

i = 1, 2.

Example 3.3:Let us considerA = Â and:

p = e−s/(s− 1) ∈ K = Q(A).

There are different ways to obtain a fractional representation
of p: for instance, we havep = n1/d1 = n2/d2 with:

n1 = e−s/(s+ 1) ∈ A,
d1 = (s− 1)/(s+ 1) ∈ A,
n2 = (e−s (s− 1))/(s+ 1)2 ∈ A,
d2 = (s− 1)2/(s+ 1)2 ∈ A.

If we denote by{
R1 = (d1 : n1) ∈ A1×2,

R2 = (d2 : n2) ∈ A1×2,

then we have:
I1 = A2RT

1 = (d1, n1),
I2 = A2RT

2 = (d2, n2)

= ([d2, n2] d1, [d2, n2]n1) =
(

s−1
s+1

)
I1.

If we define the followingA-morphisms
φ : I1 −→ I2, φ(a) = (s−1)

(s+1) a, ∀ a ∈ I1,

ψ : I2 −→ I1 ψ(b) = (s+1)
(s−1) b = c1 d1 + c2 n1,

∀ b = (s−1)
(s+1) (c1 d1 + c2 n1) ∈ I2,

and we easily check thatφ◦ψ = idI2 andψ ◦φ = idI1 , which
proves thatI1 ∼= I2.

Corollary 3.1: [56] The structural (intrinsic) properties of
a transfer matrix

P = D−1N = Ñ D̃−1 ∈ Kq×r,

where {
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r,

only depend on theA-modulesAq R and Ar R̃T and, up to
an isomorphism, on theA-modulesApRT andAp R̃.

C. Algorithm

The next theorem gives necessary and sufficient conditions
for a transfer matrix to admit a weakly left/right-coprime
factorization.

Theorem 3.1: [56]P = D−1N = Ñ D̃−1 ∈ Kq×r, where{
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r,

admits a weakly left (resp. right) coprime factorization iff
Aq R (resp. Ar R̃T ) is a free A-module of rankq (resp.
r), or equivalently, iff there exists a full row rank matrix
R′ ∈ Aq×p (resp. a full column rank matrixR̃′ ∈ Ap×r)
such thatAq R = Aq R′ (resp.Ar R̃T = Ar R̃′

T
).

Exercise 3.4: 1) [58], [59] Prove thatP ∈ Kq×r admits
a weakly left-coprime factorization iff there exists a non-
singular matrixD ∈ Aq×q such that:

{λ ∈ Aq |λP ∈ Ar} = Aq D.

Deduce thatP = D−1N is a weakly left-coprime ofP .
2) [58], [59] Prove thatP ∈ Kq×r admits a weakly

right-coprime factorization iff there exists a non-singular
matrix D̃ ∈ Ar×r such that:

{λ ∈ Ar |λPT ∈ Aq} = Ar D̃T .

Prove thatP = Ñ D̃−1 is a weakly right-coprime ofP .
Corollary 3.2: [56] P = D−1N = Ñ D̃−1 ∈ Kq×r,

where {
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r,

admits a weakly doubly coprime factorization iff theAq R and
Ar R̃T are two freeA-modules of rankq andr.

We give an algorithm which computes theA-closureAq R
of anA-module of the formAq R if a certain hypothesis on
the ringA is satisfied, namelyA is a coherent ring(see next
section). This hypothesis allows us to certify that, for every
matrix R ∈ Aq×p, theA-modulesker .RT andker .R−1 that
we need to compute are finitely generated.

Algorithm 1: Input: A a coherent ring andR ∈ Aq×p.
Output:R′ ∈ Aq′×p such thatAq R = Aq′ R′.

1) Start withR ∈ Aq×p.
2) TransposeR to obtainRT ∈ Ap×q.
3) Find a family of generators of:

ker .RT = {λ ∈ Ap | λRT = 0}.

If {λ1, . . . , λm} is a family of generators ofker .RT ,
then denote byRT

−1 ∈ Am×p the matrix whoseith row
is λi.
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4) TranposeRT
−1 in order to obtainR−1 ∈ Ap×m.

5) Find a family of generators of

ker .R−1 = {η ∈ Ap | η R−1 = 0}.

If {η1, . . . , ηq′} is a family of generators ofker .R−1,
then denote byR′ ∈ Aq′×p the matrix whoseith row is
ηi. Then, we have:

Aq R = Aq′ R′.

Remark 3.2:Let us notice that the previous algorithm was
obtained using a concept of homological algebra calledexten-
sion functor[7], [31], [66]. More precisely, in [56], we proved
that we havet(M) ∼= ext1A(Aq/ApRT , A) and gave a proof
of the previous algorithm. This result generalizes to a more
general situation certain results obtained in [13], [53].

Example 3.4:In Example 3.1, we saw that the matrixR
defined by (7) is not weakly left-prime, and thus, that the
following fractional representation

P =

 (s−1)2

(s+1)2 0

0 (s−1)2

(s+1)2

−1 (s−1) e−s

(s+1)2

e−s

(s+1)2


is not a weakly coprime factorization of the transfer matrix
P defined by (6). Let us check whether or notP admits a
weakly left-coprime factorization using the previous algorithm
(in Theorem 3.3, we shall see thatA = H∞(C+) is a coherent
ring).

1) We first start withR ∈ A2×3 defined by (7).
2) We computeRT ∈ A3×2.
3) Let us compute

ker .RT = {λ = (λ1 : λ2 : λ3) ∈ A3 | λRT = 0}.

Let λ ∈ ker .RT , i.e.:
(s−1)2

(s+1)2 λ1 − (s−1) e−s

(s+1)2 λ3 = 0,
(s−1)2

(s+1)2 λ2 − e−s

(s+1)2 λ3 = 0.
(10)

From the first equation, we obtain

(s−1)
(s+1)

(
(s−1)
(s+1) λ1 − e−s

(s+1) λ3

)
= 0

⇔ (s−1)
(s+1) λ1 − e−s

(s+1) λ3 = 0,

becauseA is an integral domain andλi ∈ A. Using the
fact

[
s−1
s+1 ,

e−s

s+1

]
= 1, we obtain:

λ1 = e−s

s+1 µ,

λ3 = s−1
s+1 µ,

µ ∈ A.

Substituting λ3 in the second equation of (10), we
obtain:

(s−1)
(s+1)

(
(s−1)
(s+1) λ2 − e−s

(s+1)2 µ
)

= 0

⇔ (s−1)
(s+1) λ2 − e−s

(s+1)2 µ = 0.

Finally, using the fact that
[

s−1
s+1 ,

e−s

(s+1)2

]
= 1, we obtain

λ2 = e−s

(s+1)2 µ
′,

µ = (s−1)
(s+1) µ

′,

µ′ ∈ A

⇒


λ1 = (s−1) e−s

(s+1)2 µ′,

λ2 = e−s

(s+1)2 µ
′,

λ3 = (s−1)2

(s+1)2 µ
′.

Therefore, we haveλ = µ′RT
−1, where:

RT
−1 =

(
(s−1) e−s

(s+1)2 : e−s

(s+1)2 : (s−1)2

(s+1)2

)
∈ A1×3.

4) We transposeRT
−1 in order to obtainR−1 ∈ A3×1.

5) Let us compute

ker .R−1 = {η = (η1 : η2 : η3) ∈ A3 | η R−1 = 0}.

Let us considerη = (η1 : η2 : η3) ∈ ker .R−1, i.e.:

(s−1) e−s

(s+1)2 η1 + e−s

(s+1)2 η2 + (s−1)2

(s+1)2 η3 = 0

⇔ (s−1)
(s+1)

(
e−s

s+1 η1 + (s−1)
(s+1) η3

)
= − e−s

(s+1)2 η2.

Using the fact that
[

s−1
s+1 ,

e−s

(s+1)2

]
= 1, we obtain:

e−s

(s+1) η1 + (s−1)
(s+1) η3 = e−s

(s+1)2 ζ1,

η2 = − (s−1)
(s+1) ζ1,

ζ1 ∈ A.

(11)

From the first equation of (11), we deduce that

e−s

(s+1)

(
η1 − 1

(s+1) ζ1

)
= − (s−1)

(s+1) η3,

and using the fact that
[

e−s

s+1 ,
s−1
s+1

]
= 1, we obtain

η1 = 1
(s+1) ζ1 + (s−1)

(s+1) ζ2,

η2 = − (s−1)
(s+1) ζ1,

η3 = − e−s

s+1 ζ2,

ζ1, ζ2 ∈ A,

⇔ η = (ζ1 : ζ2)R′,

where:

R′ =

 1
(s+1) − (s−1)

(s+1) 0
(s−1)
(s+1) 0 − e−s

s+1

 ∈ A2×3. (12)

6) We haveA2R = A2R′ andR′ is a full row rank matrix.
Thus,A2R′, i.e. A2R, is a freeA-module of rank 2.
Hence, by Theorem 3.1, we know that the following
fractional representation ofP

P =

 1
(s+1) − (s−1)

(s+1)

(s−1)
(s+1) 0

−1 (
0

e−s

s+1

)
(13)

is a weakly left-coprime factorization ofP (check that
there is no common factor to all the2×2 minors of the
matrix R′).

Finally, by Lemma 3.1, we know that:
A2R = A2R′ = K2R ∩ A2,

t(M) = A2R/A2R = A2R′/A2R,

M/t(M) = A2/A2R′.
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Let us compute a family of generators of the torsion elements
of M . We know that the torsion submodule ofM is defined
by t(M) = A2R′/A2R, and thus, the class of the first row
of R′ in t(M) corresponds to the element

z1 = 1
(s+1) y1 −

(s−1)
(s+1) y2

whereas
z2 = (s−1)

(s+1) y1 −
e−s

(s+1) u

corresponds to the class of the second row ofR′ in t(M). We
easily check that we have(s−1)2

(s+1)2 z1 = 0 and (s−1)
(s+1) z2 = 0 in

t(M), and thus,z1 andz2 constitute a family of generators of
t(M). Finally, M/t(M) = A2/A2R′ is defined by

1
(s+1) y1 −

(s−1)
(s+1) y2 = 0,

(s−1)
(s+1) y1 −

e−s

(s+1) u = 0,

as well as all theA-linear combinations of these two equations
(see (9) for more details).

Exercise 3.5:Let A = H∞(C+), K = Q(A) and let us
consider the following transfer matrix:

P =

(
e−s

s+1
s−1
s+1

0 1
s−1

)
∈ K2×2.

1) Show that we haveP = D−1N , where:

D =
( s−1

s+1 0
0 s−1

s+1

)
∈ A2×2,

N =

(
(s−1) e−s

(s+1)2
(s−1)2

(s+1)2

0 1
s+1

)
∈ A2×2.

2) Check thatP = D−1N is not a weakly left-coprime
factorization ofP . Can you exhibit a torsion element of
theA-moduleM = A4/A2R,R = (D : −N) ∈ A2×4?

3) Doing similarly as Example 3.4, show that we have the
following weakly left-coprime factorization ofP :

P =
(

1 0
0 s−1

s+1

)−1
(

e−s

s+1
s−1
s+1

0 1
s+1

)
.

4) Give a family of generators oft(M) of M and the
equations which generateM/t(M).

5) Dually, find a weakly right-coprime factorization ofP .

We can check your computations looking at [56].

D. Sylvester coherent domains

Recall that anidealI of A is just anA-submodule ofA [31],
[66], i.e.∀ a1, a2 ∈ I, ∀ b1, b2 ∈ A, we haveb1 a1+b2 a2 ∈ I.

Definition 3.5: A ring is noetherian if every ideal I of
A is finitely generated, namely there exists a finite family
{a1, . . . , an} of elements ofA such that:

I = (a1, . . . , an) ,

{
n∑

i=1

bi ai | bi ∈ A

}
.

Example 3.5:The ring A = RH∞ of proper stable real
rational functions is aprincipal ideal domain[78], namely
every ideal ofA is generated by means of a single element of

A. In particular,A is a noetherian ring. Similarly forA = k[s]
with k = R, C.

Definition 3.6: A Banach algebraA is a k-algebra (with
k = R,C) (namely a ringA which has the structure of ak-
module) with anorm ‖ · ‖A (namely an application‖ · ‖A:
A −→ R+ which satisfies
• ‖ a ‖A= 0⇔ a = 0, ∀ a ∈ A,
• ‖ αa ‖A=| α |k ‖ a ‖A, ∀ α ∈ k, ∀ a ∈ A,
• ‖ a+ b ‖A ≤ ‖ a ‖A + ‖ b ‖A, ∀ a, b ∈ A)

which satisfies the following properties:
• ‖ a b ‖A ≤ ‖ a ‖A ‖ b ‖A, ∀ a, b ∈ A,
• ‖ 1 ‖A= 1,
• A is completeas ak-vector space, namely everyCauchy

sequence(an)n≥0 of elements ofA (i.e. a sequence
(an)n≥0 satisfying:

∀ ε > 0,∃ N ∈ Z+,∀n, m > N : ‖ an − am ‖A< ε)

converges (namely,

∃ l ∈ A, ∀ ε > 0,∃ N ∈ Z+,∀n > N : ‖ an− l ‖A< ε).
Example 3.6:The following four examples
• (H∞(C+), ‖ f ‖∞= sups∈C+

|f(s)|),
• (A, ‖ g ‖A=‖ f ‖L1(R+) +

∑+∞
n=0 |an|),

• (Â, ‖ ĝ ‖Â=‖ g ‖A),
• (W+, ‖ (an)n≥0 ‖W+=

∑+∞
n=0 |an|),

are Banach algebras (see [11], [12], [14], [78] for more
details).

Theorem 3.2: [68] A noetherian Banach algebra is finitely
dimensional (as ak-vector space).

Therefore,H∞(C+), A, Â and W+ are not noetherian
rings, and thus, certain of their ideals are not finitely gen-
erated. Hence, it seems that we cannot use the main part of
commutative algebra which was developed for noetherian rings
in order to study the algebraic properties of these rings. In
the fifties, H. Cartan and J. P. Serre developed the concept
of a coherent sheafin order to study analytic and algebraic
geometries. This concept is closely related to the concept of
a coherent ringwhich was introduced in commutative algebra
by S. U. Chase in 1960. This concept plays a crucial role in
these notes.

Definition 3.7: • [5], [7], [26], [66] A ring A is coherent
if the A-module of the relations (syzygyA-module) of
every finitely generated idealI = (a1, . . . , an) of A,
namely

S(I) = {r = (r1 : . . . : rn) ∈ An |
n∑

i=1

ri ai = 0},

is finitely generated, i.e. there existm ∈ Z+ and a matrix
R ∈ Am×n such that,

∀ r ∈ S(I), ∃ b = (b1 : . . . : bm) ∈ Am : r = bR,

or, equivalently,S(I) = AmR.
• [5], [7], [26], [66] A finitely generated idealI of A which

satisfies that theA-module of the relationsS(I) is finitely
generated is called afinitely presentedideal ofA.

The class of modules over a coherent ring enjoys very nice
algebraic properties (e.g. it is closed by respect to (direct)
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sums, intersections, quotients, tensor products, morphisms. . . )
which makes every computation of afinitely presentedmodule
(i.e. anA-module of the formAp/Aq R for a certain matrix
R ∈ Aq×p andp, q ∈ Z+) very tractable (as in the case of a
noetherian ring).

Example 3.7: • Any noetherian ring is coherent [7],
[26], [66]. In particular,RH∞ and k[s] (k = R, C) are
two coherent integral domains.

• A coherent ring is not necessarily a noetherian ring. For
instance, the ringk[xi, i ≥ 1] of polynomials in an infi-
nite number of independent variablesxi with coefficients
in the field k = R, C is not a noetherian ring but a
coherent one [66].

• A Bézout domain, namely an integral domain such that
every finitely generated ideal ofA is generated by a single
element ofA, is a coherent ring. For instance, the ring
of entire functions inC with coefficients ink = R, C,
namely

E(k) = {f(s) =
∑+∞

n=0 an s
n | an ∈ k,
limn→+∞ |an|1/n = 0},

andE = E(R) ∩R(s)[e−s] are two B́ezout domains [30],
[33], [45], and thus, coherent rings.

Exercise 3.6:Show thatk[xi, i ≥ 1], with k = R, C, is
not a noetherian ring (Hint: consider the ideal

∑
i≥1Axi and

prove that this ideal is not finitely generated).
Theorem 3.3: [46]H∞(D), H∞(C+), L∞(T) andL∞(R)

are coherent rings, where:{
D = {s ∈ C | |s| < 1},
T = {s ∈ C | |s| = 1}.

For all these rings, the algorithm given in section III-C
finishes because we can prove that ifA is a coherent ring
and R ∈ Aq×p, then ker .R = {λ ∈ Aq | λR = 0} is a
finitely generatedA-module, i.e. is defined by means a finite
family of generators. Let us introduce another concept which
will play an important role in the rest of these notes.

Definition 3.8: [18] An integral domainA is a coherent
Sylvester domainif, for everyq ∈ Z+ and every column vector
RT ∈ Aq, theA-moduleker .RT = {λ ∈ Aq | λR = 0} is a
freeA-module.

Remark 3.3:The previous definition of a coherent Sylvester
domain is the simplest one that we know. A more useful
but abstract definition (by means of homological algebra)
of a coherent Sylvester domain is aprojective-free coherent
integral domain of weak global dimensionw.gl.dim(A) ≤ 2.
See VII for more details. For instance, the next examples
of coherent Sylvester domains are obtained using this last
definition.

Example 3.8: • A Bézout domain, namely an integral
domain such that every finitely generated idealI of A
has the formI = (a) for a certain element ofA, is a
coherent Sylvester domain. Since,RH∞ and E are two
Bézout domains [30], [45], [78], and thus, they are two
coherent Sylvester domains.

• In [19], it is shown thatA = B[x] is a coherent Sylvester
domain iffB is a B́ezout domain. In particular, ifB is a

principal ideal domain, namely an integral domain such
that every ideal ofB has the formI = (a) for a certain
element ofA (e.g.B = Z, k[s], k = R, C, RH∞),
thenA = B[x] is a coherent Sylvester domain. Therefore,
A = Z[x] andA = k[s][z] = k[s, z] are two examples of
coherent Sylvester domains.

Theorem 3.4: [56]H∞(C+) is a coherent Sylvester do-
main.

Proposition 3.3: [19] Every coherent Sylvester domain is a
greatest common divisor domain.

Corollary 3.3: H∞(C+) is a greatest common divisor do-
main (see [63], [71] for direct proofs).

The next result links the existence of a weakly doubly
coprime factorization of any transfer matrix− with entries
in K = Q(A) − to a coherent Sylvester domainA.

Theorem 3.5: [56] We have the following equivalences:

• Every transfer matrix− with entries inK = Q(A) −
admits a weakly doubly coprime factorization,

• A is a coherent Sylvester domain.
Corollary 3.4: [56] Every transfer matrix with entries in

K = Q(H∞(C+)) admits a weakly doubly coprime factor-
ization (see [71] for a direct proof).

Hence, Theorem 3.5 generalizes a result onH∞(C+) ob-
tained by M. C. Smith [71] to a large class of rings (namely
coherent Sylvester domains).

Exercise 3.7:Let us consider the ringA = C[x1, x2, x3] of
polynomials inx1, x2, x3 whose coefficients belong toC and
the following vectorR = (x1 : x2 : x3)T ∈ A3 (gradient
operator).

1) Prove thatker .R = A3R1, where the matrixR1 is
defined by (curl operator):

R1 =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ A3×3.

2) Prove thatker .R1 = ART .
3) If f : M −→ N is anyA-morphism, then show that

M/ ker f ∼= im f . Deduce that

A3/ ker .R1
∼= A3R1 = ker .R,

and thus,ker .R ∼= A3/ART .
4) Using the fact thatA3/ART is defined by the single

equationx1 z1 + x2 z2 + x3 z3 = 0 (divergent operator)
and itsA-linear combinations, prove thatA3/ART , and
thus,ker .R is not a freeA-module (show thatA3/ART

has no basis). Deduce thatA is not a coherent Sylvester
domain.

5) Deduce that the multidimensional linear system defined

by P =
(

x1
x3

: x2
x3

)T

∈ K2×1 has no weakly left-

coprime factorization (K = C(x1, x2, x3) is the ring
of rational functions inx1, x2 andx3).

IV. L EFT/RIGHT/DOUBLY COPRIME FACTORIZATIONS

Let us recall the well-known concepts of left/right/doubly
coprime factorizations [12], [14], [77], [78].
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Definition 4.1: • A matrix R = (D : −N) ∈ Aq×p is
left-prime if R has aright-inverse, namely a matrix

S = (XT : Y T )T ∈ Ap×q

which satisfiesRS = DX −N Y = Iq.
• A transfer matrix P ∈ Kq×r admits a left-coprime

factorization if there exists a left-prime matrix

R = (D : −N) ∈ Aq×p

such thatD ∈ Aq×q has full rank (i.e.detD 6= 0) and:

P = D−1N.

• A matrix R̃ = (ÑT : D̃T )T ∈ Ap×r is right-prime if R̃
has aleft-inverse, namely a matrix

S̃ = (−Ỹ : X̃) ∈ Ar×p

which satisfiesS̃ R̃ = −Ỹ Ñ + X̃D̃ = Ir.
• A transfer matrixP ∈ Kq×r admits a right-coprime

factorization if there exists a right-prime matrix

R̃ = (ÑT : D̃T )T ∈ Ap×r

such thatD̃ ∈ Ar×r has full rank (i.e.det D̃ 6= 0) and:

P = Ñ D̃−1.

• A transfer matrixP ∈ Kq×r admits adoubly coprime
factorizationif P admits a left and right-coprime factor-
ization.

In order to give necessary and sufficient conditions of the
existence of a left/right/doubly coprime factorization, we need
to introduce the following definitions.

Definition 4.2: [5], [7], [26], [66] If M is a finitely gener-
atedA-module (i.e.M is defined by means of a finite family
of generators), then, we have:
• M is a stably freeA-module if there existr, s ∈ Z+

such thatM ⊕As ∼= Ar (⊕ denotes the direct sum).
• M is a projectiveA-module if there exist anA-module
P andr ∈ Z+ such thatM ⊕P ∼= Ar, i.e.M is a direct
summand of a freeA-module. Let us note that, in this
case,P is also a projectiveA-module.

Proposition 4.1: [7], [66] We have the following implica-
tions ofA-modules:

free ⇒ stably free⇒ projective⇒ torsion-free.

Definition 4.3: [42], [66] We have the following definitions:
• A ring A is a projective-free ringif every finitely gener-

ated projectiveA-module is free.
• A ring A is a Hermite ring if every finitely generated

stably freeA-module is free.
Let us introduce theFitting ideals of a finitely presented

A-module (namely anA-module of the formAp/Aq R, for a
certain matrixR ∈ Aq×p). In the next proposition, this concept
will give a tractable characterization of the finitely presented
projectiveA-moduleM = Ap/Aq R in terms of the minors
of the matrixR.

Definition 4.4: • If R ∈ Aq×p, then we denote byIi(R)
the ideal ofA generated by:

– all the i× i minors ofR, if 1 ≤ i ≤ min {p, q},

– Ii(R) = 0, if i > min {p, q},
– Ii(R) = A, if i ≤ 0.

• [31] If R ∈ Aq×p andM = Ap/Aq R, thenIi(R) only
depends onM and not onR (the same moduleM can
be defined by means of different matrices). Then, we call
the Fitting ideals ofM the ideals defined by:

Fitti(M) = Ip−i(R), ∀ i ∈ Z.

Proposition 4.2: [31] TheA-moduleM = Ap/Aq R is
projective iff there existsr ∈ Z+ such that:{

Fittr(M) = 0,
Fittr+1(M) = A⇔ 1 ∈ Fittr+1(M).

Example 4.1:Let us consider the matrixR′ ∈ A2×3 defined
by (12) and theA-module M ′ = A3/A2R′ where A =
H∞(C+). We haveFitt0(M ′) = 0 and:

Fitt1(M ′) =
(

e−s

s+1 ,
(s−1)2

(s+1)2 ,
(s−1) e−s

(s+1)2

)
⊆ A.

We have the followingBézout identity

e−s

(s+1) a+ (s−1)2

(s+1)2 b = 1⇒ Fitt1(M ′) = A,

where
a = 4 e (5 s−3)

(s+1) ∈ A,

b = (s+25)
(s+1) + 4 (5 s−3)

(s+1)
(2−s−e−(s−1))

(s−1)2 ∈ A,

= (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2 ,

(14)

and thus,M ′ = A3/A2R′ is a projectiveA-module.
Exercise 4.1:Let A = H∞(C+) and let us consider the

matrix R′ ∈ A2×4 defined by

R′ =

(
1 0 − e−s

s+1 − s−1
s+1

0 s−1
s+1 0 − 1

s+1

)
,

which corresponds to the weakly left-coprime factorization of
Exercise 3.5. Prove that the finitely presentedA-moduleM ′ =
A4/A2R′ is a projectiveA-module (Hint: consider the two
elementss−1

s+1 and 1
s+1 of Fitt2(M ′) and prove that 1 is an

A-linear combination of them).
The following theorem gives necessary and sufficient con-

ditions for a transfer matrix to admit left/right/doubly coprime
factorizations.

Theorem 4.1: [56] LetP = D−1N = Ñ D̃−1 be any
fractional representation of the transfer matrixP ∈ Kq×r,
where: {

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r.

Then, we have:

• P admits a left-coprime factorization iff theA-module
Aq R is a freeA-module of rankq and Ap/Aq R is a
stably freeA-module.

• P admits a right-coprime factorization iff theA-module
Ar R̃T is a freeA-module of rankr andAp/Ar R̃T is a
stably freeA-module.

• P admits a doubly coprime factorization iffAq R and
Ar R̃T are two freeA-modules of rank respectivelyq
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and r andAp/Aq R andAp/Ar R̃T are two stably free
A-modules.

Remark 4.1:If a transfer matrixP admits a left (resp.
right or doubly) coprime factorization, thenP also admits a
weakly left (resp. right or doubly) coprime factorization (see
Theorems 3.1 and 4.1). Thus, every left (resp. right or doubly)
coprime factorization is a weakly left (resp. right or doubly)
coprime factorization.

Exercise 4.2: • [58], [59] Prove thatP ∈ Kq×r admits a
right-coprime factorization iff there exists a non-singular
matrix D̃ ∈ Ar×r such that

Ap (PT : Ir)T = {λ1 P + λ2 | λ1 ∈ Aq, λ2 ∈ Ar}

= Ap D̃−1.

Deduce thatP = Ñ D̃−1, whereÑ , P D̃ ∈ Aq×r, is a
right-coprime factorization ofP .

• [58], [59] Prove thatP ∈ Kq×r admits the left-coprime
factorization iff there exists a non-singular matrixD ∈
Aq×q such that

Ap (Iq : −P )T =
{
λ1 − λ2 P

T | λ1 ∈ Aq, λ2 ∈ Ar
}

= Aq (D−1)T .

Deduce thatP = D−1N , whereN , DP ∈ Aq×r, is a
left-coprime factorization.

Proposition 4.3: [56] If R ∈ Aq×p is a full row rank
matrix, then theA-moduleM = Ap/Aq R is stably free iff the
A-moduleN = Aq/ApRT = 0, i.e. iff there existsS ∈ Ap×q

such that:

RS = Iq.

Example 4.2:Let us determine whether or not the transfer
matrixP defined by (6) admits a left-coprime factorization. In
Example 3.4, we proved thatA2R = A2R′, whereR′ ∈ A2×3

is defined by (12). Hence, theA-moduleA2R is a freeA-
module of rank 2. By Proposition 4.3,A3/A2R = A3/A2R′

is a stably freeA-module iff A2/A3R′T = 0. TheA-module
A2/A3R′T is defined by the following equations

1
(s+1) λ1 + (s−1)

(s+1) λ2 = 0,

− (s−1)
(s+1) λ1 = 0,

− e−s

(s+1) λ2 = 0,

(15)

as well as theirA-linear combinations. If we put a second
memberµ = (µ1 : µ2 : µ3)T to the equations (15), combining
the first two equations, we obtain:

(s−1)2

(s+1)2 λ2 = (s−1)
(s+1) µ1 + 1

(s+1) µ2.

Combining this new equation with the last one of (15), we
obtain

λ2 = b (s−1)
(s+1) µ1 + b 1

(s+1) µ2 − a 1
(s+1) µ3, (16)

wherea andb are defined by (14). From the first two equations
of (15), we also obtain:

λ1 + 2 (s−1)
(s+1) λ2 = 2µ1 − µ2

Using this new equation and (16), we obtain:

λ1 = 2 (−b (s−1)2

(s+1)2 + 1)µ1 − (2 b (s−1)
(s+1)2 + 1)µ2

+2 a (s−1)
(s+1)2 µ3,

(17)

Hence, if µ1 = µ2 = µ3 = 0, then, from (16) and (17),
we obtain λ1 = λ2 = 0, i.e. we haveA2/A3R′T = 0,
and thus,A3/A2R = A3/A2R′ is a stably freeA-module.
By Theorem 4.1,P admits a left-coprime factorization. We
have already done all the computations for such a left-coprime
factorization: from (16) and (17), we obtain

(λ1 : λ2) = (µ1 : µ2 : µ3)S,

where

S =


−2 b (s−1)2

(s+1)2 + 2 b (s−1)
(s+1)

−2 b (s−1)
(s+1)2 − 1 b 1

(s+1)

2 a (s−1)
(s+1)2 −a 1

(s+1)

 ∈ A3×2,

and thus,RS = I2. Therefore, (13) is a left-coprime factor-
ization ofP because we have: 1

(s+1) − (s−1)
(s+1)

(s−1)
(s+1) 0

  −2 b (s−1)2

(s+1)2 + 2 b (s−1)
(s+1)

−2 b (s−1)
(s+1)2 − 1 b 1

(s+1)


−

(
0

e−s

(s+1)

) (
2 a (s−1)

(s+1)2 : −a 1
(s+1)

)
= I2.

(18)
Exercise 4.3:Doing as in the previous example, show that

P =

(
1 0
0 s−1

s+1

)−1( e−s

s+1
s−1
s+1

0 1
s+1

)
∈ K2×2

is a left-coprime factorization of the transfer matrixP defined
in Exercise 3.5 (K = Q(H∞(C+))).

Equivalent necessary and sufficient conditions of the exis-
tence of left/right/doubly coprime factorizations can be ob-
tained.

Theorem 4.2: [56] LetP = D−1N = Ñ D̃−1 be any
fractional representation of the transfer matrixP ∈ Kq×r,
where: {

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r.

Then, we have:

• P admits a left-coprime factorization iffAp/Ar R̃T is a
freeA-module of rankq.

• P admits a right-coprime factorization iffAp/Aq R is a
freeA-module of rankr.

• P admits a doubly coprime factorization iffAp/Ar R̃T

andAp/Aq R are two freeA-modules of rank respectively
q and r.

A direct consequence of the last point of Theorem 4.2 is
the following corollary first obtained by V. R. Sule in [73].

Corollary 4.1: Let P = D−1N = Ñ D̃−1 be any frac-
tional representation of the transfer matrixP ∈ Kq×r, where:{

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r.
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Then, P admits a doubly coprime factorization iff theA-
modulesApRT and Ap R̃ are two freeA-modules of rank
respectivelyq and r.

Exercise 4.4:Using the last point of Theorem 4.2 and 3
and 4 of Proposition 3.2, prove Corollary 4.1.

Corollary 4.2: A SISO plant, defined by a transfer function
p = n/d ∈ K = Q(A), where 0 6= d, n ∈ A, admits a
coprime factorization iff the idealI = (d, n) of A is a free
A-module, i.e.I is a principal ideal ofA (namelyI = (d, n)
is defined by a single element ofA).

This result was already proved by M. Vidyasagar in [78].

Exercise 4.5:Let us considerR = (d : −n) ∈ A1×2. Show
that theA-moduleA2RT is the idealI = (d, n) of A defined
by d andn. Then, using Theorem 4.2 and the result that an
idealI of an integral domainA is free iff I is a principal ideal
(prove this result), prove Corollary 4.2.

Corollary 4.3: If A is a Hermite ring, namely a ring such
that every finitely generated stably freeA-module is free (see
Definition 4.3), then a transfer matrixP ∈ Kq×r admits
a doubly coprime factorization iffP admits a left-coprime
factorization or a right-coprime factorization.

This result was firstly proved by M. Vidyasagar in [78].

Exercise 4.6:In this exercise, we prove Corollary 4.3.

1) Suppose that the transfer matrixP admits a left-coprime
factorizationP = D−1N , R = (D : −N) ∈ Aq×p.
Using the first point of Theorem 4.1, deduce that the
A-moduleAq R = Aq R is free of rankq and theA-
moduleAp/Aq R = Ap/Aq R is stably free of rankr.

2) Using the definition of a Hermite ring (see Defini-
tion 4.3), deduce thatAp/Aq R is a freeA-module.

3) Using the second point of Theorem 4.2, deduce that
P admits a right-coprime factorization, i.e.P admits
a doubly coprime factorization.

4) Do the same by admitting thatP admits now a right-
coprime factorization.

Finally, we have the following theorem which characterizes
the class of ringsA of SISO stable plants over which every
transfer matrix admits a doubly coprime factorization.

Theorem 4.3: [78] We have the following equivalences:

1) Every transfer function with entries inK = Q(A)
admits a coprime factorization.

2) Every transfer matrix with entries inK = Q(A) admits
a doubly coprime factorization.

3) A is a B́ezout domain.

Exercise 4.7: 1) Prove that2 ⇒ 1 ⇒ 3 (use Corol-
lary 4.2 for the last implication).

2) Use the following result thatA is a B́ezout domain iff
every finitely generated torsion-freeA-module is free
[26], Theorem 4.2 and Lemma 3.1 to prove3⇒ 2.

Example 4.3:For instance, ifA = RH∞ or A = E (two
Bézout domains), then every transfer matrix whose entries
belong toK = Q(A) admits a doubly coprime factorization.
Recall that in a B́ezout domain, two elementsa, b ∈ A
generate an idealI = (a, b) which satisfiesI = ([a, b]) (a
Bézout domain is a gcdd by Example 3.8 and Proposition 3.3).

Let us recall that we have [14], [16], [78]
∀ a, b ∈ A = H∞(C+), (a, b) = A

⇔ infs∈C+ (|a(s)|+ |b(s)|) > 0,

∀ a, b ∈ A = Â, (a, b) = A

⇔ infs∈C+
(|a(s)|+ |b(s)|) > 0,

(19)
whereC+ = {s ∈ C | Re (s) ≥ 0} is the closed right half
plane. Therefore, if we takeA = H∞(C+) or A = Â, then
[ 1
s+1 , e

−s] = 1 (see Exercise 3.2) but the ideal

I =
(

1
s+1 , e

−s
)

( (1) = A

because we have:

infs∈C+

(∣∣∣ 1
s+1

∣∣∣+ |e−s|
)

= 0.

Indeed, if we take a sequence(xn)n≥0, with xn ∈ R+ and
limn→+∞ xn = +∞, then we have:

limn→+∞

∣∣∣ 1
xn+1

∣∣∣ = limn→+∞ |e−xn | = 0.

Therefore,A = H∞(C+) andA = Â are not B́ezout domains.
Exercise 4.8: 1) Let us consider the plant defined by the

transfer functionp = e−s

s−1 . Show thatp belongs toK =
Q(A), whereA = H∞(C+) or A = Â, because we
have: {

n = e−s

s+1 ∈ A,
d = s−1

s+1 ∈ A.

2) Using (19), show that the two elementsd = s−1
s+1 and

n = e−s

s+1 of A satisfy that the idealI = (d, n) is equal
to A, and thus, thatp admits a coprime factorization.

3) Show thatp = n/d is a coprime factorization ofp with:

(s−1)
(s+1)

(
1 + 2

(
1−e−(s−1)

s−1

))
+
(

e−s

s+1

)
2 e = 1.

The effective computation of a doubly coprime factorization
is generally a difficult task. See [8], [9], [78] for the explicit
forms of coprime factorizations for some classes of SISO
systems.

V. THE FRACTIONAL REPRESENTATION APPROACH TO

SYNTHESIS PROBLEMS

A. Introduction

“The central idea that is used repeatedly in the
book is that “of factoring” the transfer matrix of a
(not necessarily stable) system as the “ratio” of two
stablerational matrices. This idea was first used in a
paper published in 1972 (see [76]), but the emphasis
there was on analyzing the stability of agivensystem
rather than on thesynthesisof control systems as is
the case here. It turns out that this seemingly simple
stratagem leads to conceptually simple and compu-
tationally tractable solutions to many important and
interesting problems. . . ”, M. Vidyasagar [78].

In the eighties, the fractional representation approach to
synthesis problems was created in order to study in a
unique mathematical framework some synthesis problems (e.g.
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u1 + e1
C

P

+

y2

y1

+

e2 u2+

Fig. 1. Closed-loop system

internal/strong/simultaneous/robust stabilization, parametriza-
tion of all stabilizing controllers, robustness,H2/H∞-optimal
controllers) for different classes of time-invariant linear sys-
tems (continuous-time, discrete, finite or infinite-dimensional
systems) [2], [14], [17], [41], [77], [78]. The main idea of
this approach was to give general formulations of different
synthesis problems so that a wide variety of classes of systems
(e.g. lumped or delay systems, systems of partial differential
equations) could be studied using the same concepts and
tools. In this approach, synthesis problems are reformulated
independently to the classes of systems which are considered
so that general conditions on the solvability of a specific
synthesis problem can be obtained. Hence, the verification of
the solvability of a synthesis problem for a particular system
of a certain class is brought back to the verification of an
abstract condition for which the parameters are specified.
This allows to separate as much as possible the problems
coming from the specific synthesis problem to the difficulties
arriving from the class of systems which is considered. It is
not surprising that the fractional representation approach to
synthesis problems is then a ring-theoretic approach: algebra
develops general (universal) concepts which can be used in
very different situations. Therefore, it is not surprising to
use module theory and homological algebra in the studies of
the fractional representation approach to synthesis problems.
Indeed, these two algebraic theories have been developed
to understand general features of algebraic stuctures without
specifying a particular ring. Hence, we could easily say that
the fractional representation approach to synthesis problems is
a homological algebra approach to stabilization problems.

B. Internal stabilization

Let us consider the closed-loop system defined in Figure 1
whereu2 (resp.u1) is the consign (resp. a perturbation),y1
andy2 the outputs ande1 ande2 the internal inputs. We have
the following equations of the closed-loop system:

(
Iq −P
−C Ir

) (
e1
e2

)
=
(
u1,
u2

)
,

y1 = e2 − u2,

y2 = e1 − u1.

The following definition plays a crucial role in all the rest
of the paper.

Definition 5.1: [17], [41], [44], [77], [78] Let A be an
integral domain of SISO stable plants andK = Q(A) its
quotient field. LetP ∈ Kq×r be a transfer matrix of a plant
andC ∈ Kr×q a transfer matrix of a controller. Then,C is

calledan internal stabilizing controller ofP if

H(P, C) =

(
Iq −P
−C Ir

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)
∈ Ap×p,

i.e. all the entries of the transfer matrix from(u1 : u2)T to
(e1 : e2)T areA-stable.

Example 5.1:Let us considerp = 1
(s−1) ∈ K = R(s) given

in [37] andA = RH∞. The controllerc = − (s−1)
(s+1) proposed

in [37] is not a stabilizing controller ofp because we have e1 = (s+1)
(s+2) u1 + (s+1)

(s+2) (s−1)u2,

e2 = − (s−1)
(s+2) u1 + (s+1)

(s+2) u2,

and the transfer function fromu2 to e1 is not stable (unstable
pole at s = 1). Hence, unstable pole-zero cancellations
between the plantp and the controllerc lead to an instability
in the closed-loop, i.e.c is not a stabilizing controller ofp.

Proposition 5.1: We have the following equivalences:

• If A = H∞(C+), then internal stabilizability is equiva-
lent to the fact that the linear operatorTH(P, C), defined
by

H2(C+)p −→ H2(C+)p,

u = (u1 : u2)T 7−→ (e1 : e2)T = H(P, C)u,

is bounded [14], [28], namely:

dom(TH(P, C)) = {u ∈ Hp
2 | H(P, C)u ∈ Hp

2} = Hp
2 .

This means that there is no inputu with a finite energy,
i.e. u ∈ Hp

2 , so that the corresponding internal input
e = (e1 : e2)T has an infinite energy, i.e.e /∈ Hp

2 .
• If A = RH∞(C+) or A = Â, then internal stabilizability

implies that the linear operatorTH(P, C), defined by

H2(C+)p −→ H2(C+)p,

u = (u1 : u2)T 7−→ (e1 : e2)T = H(P, C)u,

is bounded [12], [15], [78], namely:

dom(TH(P, C)) = {u ∈ Hp
2 | H(P, C)u ∈ Hp

2} = Hp
2 .

• If A = A, then internal stabilization implies that the
operatorTH(P, C), defined by

Lq(R+)p −→ Lq(R+)p,

u = (u1 : u2)T 7−→ (e1 : e2)T = H(P, C) ? u,

is bounded for1 ≤ q ≤ +∞, namely

dom(TH(P, C))
= {u ∈ Lq(R+)p | H(P, C)u ∈ Lq(R+)p}
= Lq(R+)p.

Moreover, if the convolution kernelH(P, C) has a
vanishing singular part, then internal stabilization is
equivalent toBIBO stability, i.e. to the fact that the
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previous linear operator is bounded forq = +∞ [12],
[14], [15].

The following theorem characterizes internal stabilization in
terms of module theory.

Theorem 5.1: [54], [56] A plant defined by a transfer
matrix P = D−1N = Ñ D̃−1 ∈ Kq×r, where{

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r,

is internally stabilized by a controller of the formC = Y X−1

(resp. C = X̃−1 Ỹ ) iff Ap/Aq R (resp. Ap/Ar R̃T ) is a
projectiveA-module.

From Theorem 5.1, we obtain the following algorithm:

Algorithm 2: Input: A coherent domainA and a matrix
R = (D : −N) ∈ Aq×p.
Ouput: Stabilizability or not ofP = D−1N ∈ Kq×r.

1) Using Algorithm 1, computeAq R: we obtainq′ ∈ Z+

andR′ ∈ Aq′×p such thatAq R = Aq′ R′.
2) For increasingi, check whether or not:

1 ∈ Fitti(Ap/Aq′ R′).

If there existsi such that1 ∈ Fitti(Ap/Aq′ R′), thenP
is internally stabilizable, else not.

Remark 5.1:In order to be able to check effectively internal
stabilizability, we need to be able to:
• compute the kernel of matrices with entries inA,
• test whether or not 1 belongs to a finitely generated ideal

of A.
Example 5.2:Let us reconsider Example 4.2. We proved

that theA-moduleA3/A2R′ was projective (A = H∞(C+)),
where the matrixR′ ∈ A2×3 is defined by (12). Moreover,
in Example 3.4, we proved thatA2R = A2R′, whereR is
defined by (7). Thus, theA-moduleA3/A2R = A3/A2R′

is projective and, by Theorem 5.1, the plant defined by the
transfer matrixP (6) is internally stabilized by a certain
controller of the formC = Y X−1.

Exercise 5.1:Using Exercises 3.5 and 4.1, prove that the
transfer matrixP defined in Exercise 3.5 is internally stabi-
lizable.

Corollary 5.1: [56] If a transfer matrixP ∈ Kq×r admits
a weakly left (resp. right) coprime factorization of the form
P = D−1N (resp.P = Ñ D̃−1), where

R = (D : −N) ∈ Aq×p

(resp. R̃ = (ÑT : D̃T )T ∈ Ap×r), then P is internally
stabilizable iff P = D−1N (resp. P = Ñ D̃−1) is a left
(resp. right) coprime factorization ofP . Moreover, if we have{

DX −N Y = Iq,

S = (XT : Y T )T ∈ Ap×q,
(20)

(resp. {
Ỹ Ñ − X̃ D̃ = Ir,

S̃ = (Ỹ : X̃) ∈ Ar×p ),
(21)

then, the controllerC = Y X−1 (resp.C = X̃−1 Ỹ ) internally
stabilizesP .

Exercise 5.2: 1) If P admits a left-coprime factorization
(resp. a right-coprime factorization) of the form (20)
(resp. (21)), then prove thatP is internally stabilized by
C = Y X−1 (resp.C = X̃−1 Ỹ ) (Hints: for instance, if
P admits the left-coprime factorization (20), then prove
we haveIq − P C = (XD)−1, and thus,

(Iq − P C)−1 = XD ∈ Aq×q,

(Iq − P C)−1 P = X N ∈ Aq×r,

C (Iq − P C)−1 = Y D ∈ Ar×q,

C (Iq − P C)−1 P = Y N ∈ Ar×r,

i.e. C internally stabilizesP . See [60] for the explicit
computations).

2) Prove the converse of Corollary 5.1 using the following
result “if P admits a weakly left-coprime factorization
P = D−1N , with R = (D : −N) ∈ Aq×p, then
Ap/Aq R is a projectiveA-module iff Ap/Aq R is a
stably freeA-module” (see [56] for a proof of this
result).

Example 5.3:In Example 4.2, we gave a left-coprime fac-
torization (18) of the transfer matrixP defined by (6). Thus,
by Corollary 5.1, the controller defined by

C = Y X−1

=
(
2 a (s−1)

(s+1)2 : −a 1
(s+1)

) −2 b (s−1)2

(s+1)2 + 2 b (s−1)
(s+1)

−2 b (s−1)
(s+1)2 − 1 b 1

(s+1)

−1

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2),

internally stabilizesP .
Example 5.4:Let us consider the following transfer func-

tion p = e−
√

s/(s − 1) arising in the theory of transmission
lines [9]. LetA = H∞(C+) and let us denote by:{

n = e−
√

s/(s+ 1) ∈ A,
d = (s− 1)/(s+ 1) ∈ A.

Then, we havep = n/d and [d, n] = 1 which shows that
p = n/d is a weakly coprime factorization ofp. Hence,p is
internally stabilizable iffp admits a coprime factorization, i.e.
there existsx, y ∈ A such thatd x − n y = 1. Hence, the
existence of a coprime factorization forp is equivalent to the
existence ofy ∈ A such that:

x =
1 + y e−

√
s/(s+ 1)

(s− 1)/(s+ 1)
=

(s+ 1) + y e−
√

s

(s− 1)
∈ A.

Therefore, we must try to remove the unstable pole 1 by
choosing an appropriatey, i.e. y ∈ A such that:

((s+ 1) + y e−
√

s)(1) = 2 + y(1) e−1 = 0.

If we choosey = y(1) = −2 e ∈ A, then we have:

x =
(s+ 1)− 2 e1−

√
s

(s− 1)
∈ A.

Therefore,c = y/x is a stabilizing controller ofp.
We refer the reader to [8], [9] for explict coprime factor-

izations for some classes of infinite-dimensional linear SISO
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systems (e.g differential time-delay or fractional differential
systems).

Corollary 5.2: [56] If A is a projective-free integral do-
main, then every plant, defined by a transfer matrix with
entries inK = Q(A), is internally stabilizable iff it admits a
doubly coprime factorization.

In particular, Corollary 5.2 is true for coherent Sylvester
domains (e.g.H∞(C+) [71], RH∞ [78]).

Corollary 5.3: The integral domainMDn , defined in (5), is
projective-free [10], [39], and thus, every internally stabiliz-
able admits a doubly coprime factorization [59].

Corollary 5.3 answers to a conjecture of Z. Lin. See [43]
and the references therein. See [59] for more details.

Proposition 5.2: [56] We have the following equivalences:
• TheA-moduleAp/Aq R is projective (R ∈ Aq×p).
• TheA-moduleApRT is projective.
Hence, we have the following corollary of Theorem 5.1 and

Proposition 5.2 which was firstly proved by V. R. Sule in [73].
Corollary 5.4: P = D−1N = Ñ D̃−1 ∈ Kq×r, where{

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×r,

is internally stabilizable by a controllerC = Y X−1 (resp.
C = X̃−1 Ỹ ) iff ApRT (resp.Ap R̃) is a projectiveA-module.

In [47], K. Mori developed an algorithm in order to check
whether or not anA-module of the formApRT is projective.
Alternatively, using the approach developed in these notes, we
can first compute theA-closureAq R of theA-moduleAq R
(see Algorithm 1 of section III-C) and use Proposition 4.2 to
check whether or notAp/Aq R is a projectiveA-module, i.e.
whether or notP is internally stabilizable (see Algorithm 2).
In the next corollary, we give two characterizations of internal
stabilizability only using matrices.

Corollary 5.5: 1) [55], [56] P = D−1N ∈ Kq×r,
whereR = (D : −N) ∈ Aq×p, is internally stabilizable
iff there existsS = (XT : Y T )T ∈ Kp×q, with
detX 6= 0, such that:

• S R =
(
XD −X N
Y D −Y N

)
∈ Ap×p,

• RS = DX −N Y = Iq.
Then, the controllerC = Y X−1 internally stabilizesP .

2) [55], [56] P = Ñ D̃−1, where R̃ = (ÑT : D̃T )T ∈
Ap×r, is internally stabilizable iff there exists a matrix
T = (−Ỹ : X̃) ∈ Kr×p, with det X̃ 6= 0, such that:

• S R =
(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)
∈ Ap×p,

• T R = −Ỹ Ñ + X̃ D̃ = Ir.
Then, the controllerC = X̃−1 Ỹ internally stabilizesP .

Exercise 5.3:Give the proofs of 1 and 2 of Corollary 5.5
using only matrices. Compare your proofs with [58], [59].

Exercise 5.4:Check thatS = (XT : Y T )T ∈ K3×2

defined by

S =


b (s−1)

(s+1) + 2 (s+1)
(s−1)2 2 b (s−1)

(s+1) − 2 (s−1)
s+1

b
(s+1) −

(s+1)
(s−1)2

2 b
(s+1) + (s+1)

(s−1)

− a
(s+1) − 2 a

(s+1)

 ,

wherea andb are defined by (14), satisfies:{
S R ∈ A3×3,

R S = DX −N Y = I2.

Deduce thatP is internally stabilized by the controller:

C = Y X−1 =
(
− a

(s+1) : − 2 a
(s+1)

)
 b (s−1)

(s+1) + 2 (s+1)
(s−1)2 2 b (s−1)

(s+1) − 2 (s−1)
s+1

b
(s+1) −

(s+1)
(s−1)2

2 b
(s+1) + (s+1)

(s−1)

−1

,

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).

Corollary 5.6: A SISO plant, defined by a transfer function
p = n/d ∈ K = Q(A), where0 6= d, n ∈ A, is internally
stabilizable iff the idealI = (d, n) of A is a projectiveA-
module, i.e. there existx, y ∈ K such that:{

d x− n y = 1,
d x, d y, n x ∈ A.

(22)

If x 6= 0 (resp.x = 0), then the controllerc = y/x ∈ K (resp.
c = 1− d y ∈ A) internally stabilizesp.

Exercise 5.5:The main purpose of the exercise is to prove
Corollary 5.6. See [57] for the proofs.

1) Let us consider the matrixR = (d : −n) ∈ A1×2. Show
that A2RT is the idealI = (d, n) of A defined byd
andn.

2) Using Theorem 5.1 and Corollary 5.4, prove that the
plant p = n/d is internally stabilizable iff the ideal
I = (d, n) of A is a projectiveA-module.

3) Using Corollary 5.5, prove thatp = n/d is internally
stabilizable iff (22) is satisfied for a certain couple
(x, y) ∈ K2.

4) If x 6= 0 (resp.x = 0), prove directly thatc = y/x
(resp.c = 1 − d y), wherex, y ∈ K satisfy (22), is a
stabilizing controller ofp by showing that we have:

H(p, c) =

(
1 −p
−c 1

)−1

=

(
1

1−p c
p

1−p c
c

1−p c
1

1−p c

)
∈ A2×2.

(23)

5) One can show thatI = (d, n) is a projectiveA-module
iff I is aninvertible idealof A, namelyI is such that the
productI (A : I) , {

∑n
i=1 ai bi | ai ∈ I, bi ∈ A : I}

of I by A : I = {k ∈ K = Q(A) | k d, k n ∈ A}
equalsA [54], [56]. Recover point 3 using the fact that
p = n/d is internally stabilizable iffI = (d, n) is an
invertible ideal ofA.

6) Prove thatc = s/r internally stabilizesp = n/d iff we
have the following equality of ideals ofA:

(d, n) (r, s) = (d r − n s).

7) Prove that:

I (A : I) = {a ∈ A | an ∈ (d)}+ {a ∈ A | a d ∈ (n)}.
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Deduce thatp is internally stabilizable iff we have

{a ∈ A | an ∈ (d)}+ {a ∈ A | a d ∈ (n)} = A

(see [54], [56] for a proof). This last result was firstly
proved by S. Shankar and V. R. Sule in [69].

8) Prove thatp = n/d admits a weakly coprime factoriza-
tion iff A : I is a principalfractional ideal of A (see
Exercise 5.8 for the definition of fractional ideals).

9) Provep = n/d admits a coprime factorization iffI is a
principal ideal ofA.

10) Prove thatp = n/d is is strongly (resp. bistably)
stabilizable, namelyp is internally stabilizable by means
of a stable controllerc ∈ A (resp. by a stable controller
c whose inverse is stable [4], [20], [78], i.e.c ∈ U(A))
iff there existsc ∈ A (resp.c ∈ U(A)) such that:

I = (d− n c).

Exercise 5.6:[57] Let us consider the wave equation:

∂2z
∂t2 (x, t)− ∂2z

∂x2 (x, t) = 0,
∂z
∂x (0, t) = 0,
∂z
∂x (1, t) = u(t),

y(t) = ∂z
∂t (1, t),

(24)

1) Prove that the transfer function of (24) is given by:

p = (es + e−s)/(es − e−s).

2) Prove thatp ∈ K = Q(H∞(C+)).
3) Using the fact thatA = H∞(C+) is a gcdd (see

Corollary 3.3), compute a weakly coprime factorization
of p.

4) Prove thatp is internally stabilizable and compute a
stabilizing controller ofp.

5) Determine a coprime factorization ofp.
6) Prove thatp is bistably stabilizable.
The next theorem gives some explicit characterizations of

internal stabilizability only using the transfer matrixP of the
system, i.e. without using any fractional representation ofP .

Theorem 5.2:[58], [59] P ∈ Kq×r is internally stabilizable
iff one of the following conditions is satisfied:

1) There existsS = (UT : V T )T ∈ Ap×q such that: S P =
(
U P
V P

)
∈ Ap×r,

(Iq : −P )S = U − P V = Iq.

Then,C = V U−1 is a stabilizing controller ofP .
2) There existsT = (−X : Y ) ∈ Ar×p such that:

P T = (P X : P Y ) ∈ Aq×p,

T

(
P
Ir

)
= −X P + Y = Ir.

Then,C ′ = Y −1X is a stabilizing controller ofP .

If P is internally stabilizable, then there existS ∈ Ap×q,
T ∈ Ar×p satisfying 1 and 2 and such that

T S = −X U + Y V = 0,

i.e. there exists a stabilizing controller ofP of the form:

C = V U−1 = Y −1X.
Exercise 5.7:Check thatS = (UT : V T )T ∈ A3×2

defined by

S =


2

s+1 + b
(

s−1
s+1

)3

2 b
(

s−1
s+1

)3

− 2 (s−1)
(s+1)

b (s−1)2

(s+1)3 −
1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3

−a (s−1)2

(s+1)3 −2 a (s−1)2

(s+1)3

 ,

wherea andb are defined by (14), satisfies:{
S (I2 : −P ) ∈ A3×3,

(I2 : −P )S = U − P V = I2.

Deduce thatP is internally stabilized by the controller:

C = V U−1 =
(
−a (s−1)2

(s+1)3 : −2 a (s−1)2

(s+1)3

)
 2

s+1 + b
(

s−1
s+1

)3

2 b
(

s−1
s+1

)3

− 2 (s−1)
(s+1)

b (s−1)2

(s+1)3 −
1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3

−1

,

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).

Corollary 5.7: [59] P ∈ Kq×r is internally stabilized by
the controllerC ∈ Kr×q iff one of the following conditions
is satisfied:
• The matrix

Π1 =
(

(Iq − P C)−1 −(Iq − P C)−1 P
C (Iq − P C)−1 −C (Iq − P C)−1 P

)
is a projector ofAp×p, namelyΠ2

1 = Π1 ∈ Ap×p.
• The matrix

Π2 =
(
−P (Ir − C P )−1 C P (Ir − C P )−1

−(Ir − C P )−1 C (Ir − C P )−1

)
is a projector ofAp×p, namelyΠ2

2 = Π2 ∈ Ap×p.

Moreover, we have:

Π1 + Π2 = Ip.

Corollary 5.7 was already proved forH∞(C+) [28].
Remark 5.2:First of all, let us notice that we can prove

that Corollary 5.7 is equivalent to the fact thatP ∈ Kq×r

is internally stabilizable iff one of the following conditions is
satisfied [58], [59]:
• Ap (PT : Ir)T is a projective latticeof Kr, namely a

projectiveA-submodule ofKr of rank r,
• Ap (Iq : −P )T is a projective latticeof Kq, namely a

projectiveA-submodule ofKq of rank q.
Secondly, in theloop-shaping procedure[20], [29], let us

notice that therobustness radiusis defined by [20], [25], [29]:

bP,C , ‖ Π1 ‖−1
∞ = ‖ Π2 ‖−1

∞ .

Corollary 5.8: • If P ∈ Kq×r admits a left-coprime
factorization P = D−1N, DX − N Y = Iq, then
S = ((XD)T : (Y D)T )T satisfies 1 of Theorem 5.2,
and thus,C = (Y D) (XD)−1 = Y X−1 is a stabilizing
controller ofP .
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• Similarly, if P ∈ Kq×r admits a right-coprime fac-
torization P = Ñ D̃−1, −Ỹ X + X̃ D̃ = Ir, then
T = (−D̃ Ỹ : D̃ X̃) satisfies 2 of Theorem 5.2, and thus,
C = (D̃ X̃)−1 (D̃ Ỹ ) = X̃−1 Ỹ is a stabilizing controller
of P .

Exercise 5.8:This exercise is based on certain results ob-
tained in [55], [57], [62]. We refer the reader to these papers
for more details and the solutions.

1) The lattices ofK are called thefractional idealsof A.
A fractional idealJ of A is an A-submodule of the
quotient fieldK = Q(A) which satisfies that there exists
0 6= a ∈ A such thata J ⊆ A. Let p ∈ K be a transfer
function. Prove thatJ = (1, p) , A+Ap is a fractional
ideal ofA.

2) Prove thatp admits a weakly coprime factorization iff
the idealJ = (1, p) satisfies that

A : J , {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}

is a principal integral ideal ofA, namely has the form
A : J = (d), with 0 6= d ∈ A.
A : J is called the ideal of the denominatorsof p
whereas(p) (A : J) is the ideal of the numeratorsof
p.

3) Prove thatp admits a coprime factorization iff the
fractional idealJ = (1, p) is principal.

4) c ∈ K is said to externally stabilizesp ∈ K if the
transfer function(p c)/(1− p c) ∈ A. Prove thatc ∈ K
externally stabilizesp iff we have (1, p c) = (1− p c).

5) Provep is internally stabilizable iff the fractional ideal
J = (1, p) is invertible, namely satisfiesJ (A : J) = A,
where the productJ (A : J) is defined by:

J (A : J) = {a+ b p | a, b ∈ A : a p, b p ∈ A}.

If J is an invertible fractional ideal ofA, thenA : J is
called the inverseof J and is denoted byJ−1. Deduce
that p is internal stabilizable iff there exista, b ∈ A
which satisfy1: {

a− b p = 1,
a p ∈ A. (25)

Then, prove that ifa 6= 0 (resp.a = 0), c = b/a ∈ K
(resp.c = 1 − b ∈ A) is a stabilizing controller ofp
andJ−1 = (a, b). Finally, if a 6= 0, then prove that we
have:{

a = 1/(1− p c) (sensitivity transfer function),

b = c/(1− p c).

6) Prove directly thatc = b/a ∈ K, where0 6= a, b ∈ A
satisfy (25), is an internally stabilizing controller ofp
by showing that we then have (23).

1While we were completing the paper at the beginning of 2004, we have
found that a similar characterization of internal stabilizability was obtained in
the paper “Feedback, minimax sensitivity, and optimal robustness”, G. Zames,
B. A. Francis, IEEE Trans. Autom. Contr., 28 (1983), pp. 585-601, under the
form: p is internally stabilizable iff there exists a stableq such thata = 1−p q
and a p = (1 − p q) p are both stable. This characterization corresponds to
b = −q, up to the sign convention in the closed-loop system (see Figure 1).

7) Prove thatc ∈ K internally stabilizesp ∈ K iff we have
the following equality of fractional ideals ofA:

(1, p) (1, c) = (1− p c). (26)

8) Consider the transfer functionp defined in Example 4.8.
Prove thatp is internally stabilizable andp admits a
coprime factorization.

9) Prove thatc = −(s− 1)/(s+ 1) ∈ A cannot internally
stabilize the plantp = 1/(s−1) (see Example 5.1) using
only (26) and the fact that1− p c ∈ U(A).

10) Prove that ifp admits a weakly coprime factorization
and is internal stabilizable, thenp admits a coprime
factorization.

11) Let c ∈ K be a stabilizing controller ofp. Using 3 and
(26), prove thatc admits a coprime factorization iffp
admits a coprime factorization.

The next theorem gives a general parametrization of all
stabilizing controllers of an internal stabilizable plant which
does not necessarily admit a doubly coprime factorization.

Theorem 5.3:[58], [59] Let P ∈ Kq×r be an internally
stabilizable plant. Then, all stabilizing controllers ofP have
the form

C(Q) = (V +Q) (U + P Q)−1

= (Y −QP )−1 (X −Q),
(27)

where C = V U−1 = Y −1X is a particular stabilizing
controller ofP , i.e. we have

U − P V = Iq,

Y −X P = Ir,(
U P
V P

)
∈ Ap×r,

(−P X : P Y ) ∈ Aq×p,

andQ is any matrix which belongs

Ω = {L ∈ Ar×q | LP ∈ Ar×r, P L ∈ Aq×q,
P LP ∈ Aq×r} (28)

such thatdet(U + P Q) 6= 0 anddet(Y −QP ) 6= 0.
Let us notice that some attempts in order to parametrize all

stabilizing controllers of an internally stabilizable plant which
does not necessarily admit a doubly coprime factorization have
been done in [48], [73]. Unfortunately, these parametrizations
are either not explicit in the free parameters or the set of free
parameters is not characterized.

Remark 5.3:The number of free parameters in the
parametrization (27) is completely characterized by the projec-
tive A-moduleΩ of rank r× q defined by (28). Let us notice
that determining the cardinalµ(Ω) of a minimal generating
system of anA-module is a well-known and difficult problem
in algebra. Some bounds onµ(Ω) have been given in [59] for
different cases of systems but the general case is still open.
However, for SISO systems, a complete answer is given in the
next corollary.

Corollary 5.9: [57] Let p = n/d ∈ K = Q(A) be an
internally stabilizable plant.
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• All stabilizing controllers ofp have the form

c(q1, q2) =
y + q1 d x

2 + q2 d y
2

x+ q1 nx2 + q2 n y2
,

wherec = y/x is a stabilizing controller ofp, namely{
d x− n y = 1,
d x, d y, n x ∈ A.

(29)

(see (22)) andq1, q2 are any element ofA satisfying:

x+ q1 nx
2 + q2 n y

2 6= 0.

• All stabilizing controllers ofp have the form

c(q1, q2) =
b+ q1 a

2 + q2 b
2

a+ q1 a2 p+ q2 b2 p
,

wherec = b/a is a stabilizing controller ofp, namely{
a− b p = 1,
a, b, a p ∈ A, (30)

(see (25)), andq1, q2 are any element ofA satisfying:

a+ q1 a
2 p+ q2 b

2 p 6= 0.

The parametrizations (29) and (30) have only one free
parameter iffp2 admits a coprime factorization. Ifp2 = s/r
is a coprime factorization ofp, then:

• The parametrization (29) becomes the following one

c(q) =
d y + q r

d x+ q r p
,

whereq is any element ofA such thatd x+ q p r 6= 0.
• The parametrization (30) becomes the following one

c(q) =
b+ q r

a+ q r p
,

whereq is any element ofA such thata+ q p r 6= 0.
Exercise 5.9:Let A = R[x2, x3] be the polynomial ring in

x2 andx3. Using the fact that every integern ≥ 2 is of the
form n = 2 i + 3 j, we obtain thatxn = (x2)i (x3)j ∈ A for
n > 1 andx /∈ A, which proves that:

A = {p =
n∑

i=0

ai x
i ∈ R[x] | a1 = 0}.

In [47], the ringA has been used in order to modelize the
set of discrete finite-time delay systems which do not contain
the unit time-delayx. For instance, such a system appears in
high-speed electronic circuits (see [47] for more details).

1) Let us considerp = (1 − x3)/(1 − x2) ∈ K = Q(A).
Using the identity

(1− x3) (1 + x3) = (1− x2) (1 + x2 + x4),

prove thatp does not admit a weakly coprime factoriza-
tion, and thus, does not admit a coprime factorization.

2) Show thatc = (−1 + x2)/(1 + x3) is a stabilizing
controller ofp. Conclude that there is no Youla-Kučera
parametrization of all stabilizing controllers ofp.

3) Compute the parametrization of all stabilizing con-
trollers of p. Prove that this parametrization of all

stabilizing controllers ofp admits two parameters and
there does not exist a parametrization of all stabilizing
controllers ofp with only one free parameter.

Reconsider the exercise withp = (1 + i
√

5)/2 ∈ Q(A) and
A = Z[i

√
5] [1]. For both of them, see [57] for the results.

Corollary 5.10: • [59] If P ∈ Kq×r admits a left-
coprime factorizationP = D−1N , then:

Ω = {L ∈ Ar×q | P L ∈ Aq×q}D.

• [59] If P ∈ Kq×r admits a right-coprime factorization
P = Ñ D̃−1, then:

Ω = D̃ {L ∈ Ar×q | LP ∈ Ar×r}.

Corollary 5.11: [58], [59] Let P ∈ Kq×r be a plant which
admits a doubly coprime factorization:

P = D−1N = Ñ D̃−1,(
D −N
−Ỹ X̃

) (
X Ñ

Y D̃

)
= Ip.

Then, theA-moduleΩ of free parameters defined by (28) is
the freeA-module of rankr × q defined by:

Ω = D̃ Ar×q D

= {L ∈ Ar×q |L = D̃ RD, ∀R ∈ Ar×q}.
Therefore, all stabilizing controllers ofP have the form

C(Q) = (Y +D̃ Q) (X+Ñ Q)−1 = (X̃−QN)−1 (Ỹ −QD),

whereQ ∈ Ar×q is any matrix such that:

det(X + Ñ Q) 6= 0, det(X̃ −QN) 6= 0.

We recover the well-knownYoula-Kǔcera parametrization of
all stabilizing controllers ofP [17], [40], [78], [80], [81].

Example 5.5:Let us consider the transfer function

p = p0 e
−τ s,

where p0 ∈ RH∞ is a proper and stable rational transfer
function andτ ≥ 0. Hence, we havep ∈ A = H∞(C+),
and thus,p admits the coprime factorizationp = n/d with
n = p0 e

−τ s andd = 1. Thus, we have the following Youla-
Kučera parametrization of the stabilizing controllers ofp

c(q) =
q

1 + q p0 e−τ s
,

whereq ∈ A is a free parameter.
Let c0 ∈ RH∞ be a stabilizing controller ofp0 ∈ RH∞

achieving some prescribed performances. Then, we have:

q̃ ,
c0

(1− p0 c0)
∈ RH∞ ⊆ A.

Therefore, we obtain the stabilizing controller ofp [50]

c(q̃) =
c0

1 + p0 c0 (e−τ s − 1)
=

c0
1− c0 (p0 − p)

which is called theSmith predictor[49], [51]. Let us notice
that the complementary sensitivity transfer function has the
following form

p c(q̃)
1− p c(q̃)

=
(

p0 c0
1− p0 c0

)
e−τ s,
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showing that the Smith predictor allows us to reject the time-
delaye−τ s outside the closed-loop formed byp0 andc0. See
[24] for recent results on the Smith predictor.

Exercise 5.10: • Following Example 5.4, prove that the
unstable transfer functionp = e−s/(s − 1) is internally
stabilized by the following controller:

c = − 2 e

1 + 2
(

1−e−(s−1)

s−1

) = − 2 e (s− 1)
s+ 1− 2 e−(s−1)

.

Let us notice that(1−e−(s−1))/(s−1) ∈ A = H∞(C+)
is called adistributed delay. See [8], [49] for more details.

• Compute the Youla-Kǔcera parametrization of all stabi-
lizing controllers ofp.

We refer the reader to [2], [40], [41], [78] for applications
of the Youla-Kǔcera parametrization to synthesis problems.

Corollary 5.12: [59] Let A be a Banach algebra (e.g.̂A,
W+, H∞(C+)), K = Q(A), P ∈ Kq×r a stabilizable plant
andW1, W2 ∈ Aq×q two weighted transfer matrices. Let us
denote byStab(P ) the set of all stabilizing controllers ofP .
Then, we have:

Ξ , infC∈Stab(P ) ‖W1 (Iq − P C)−1W2 ‖A
=

infQ∈Ω ‖W1 (U + P Q)W2 ‖A,
(31)

where(UT : V T )T ∈ Ap×q satisfy
U − P V = Iq,(
U P
V P

)
∈ Ap×r,

andC = V U−1 is a particular stabilizing controller ofP .
Exercise 5.11: 1) [59] Let P ∈ Kq×r be a plant which

admits the doubly coprime factorization:
P = D−1N = Ñ D̃−1,(

D −N
−Ỹ X̃

) (
X Ñ

Y D̃

)
= Ip.

Prove thatU + P Q = (X + Ñ R)D, and thus:

Ξ = inf
R∈Ar×q

‖W1 (X + Ñ R)DW2 ‖A .

2) [61] Let p ∈ K = Q(A) be a stabilizable plant and
w ∈ A a weighted transfer function.

a) Using Corollary 5.9, prove that we have:

inf
c∈Stab(p)

‖ w/(1− p c) ‖A (32)

= inf
q1, q2∈A

‖ w (a+ a2 p q1 + b2 p q2) ‖A (33)

wherea, b ∈ A satisfya − b p = 1, a p ∈ A, and
c = b/a is a stabilizing controller ofp. Conclude
that we have transformed the non-linear problem
(32) into an affine, and thus, convex one (33).

b) If p = n/d is a coprime factorization ofp

d x− n y = 1, x, y ∈ A,

then prove that we havea = 1/(1−p c) = d x and
b = c/(1− p c) = d y. Deduce that we have

a+ a2 p q1 + b2 p q2 = d (x+ q n),

whereq = x2 q1 + y2 q2 ∈ A.
c) Using the following identity

(d2 (1− 2n y))x2 + (n2 (1 + 2 d x)) y2 = 1,

show that, for anyq ∈ A,{
q1 = d2 (1− 2n y) q,
q2 = n2 (1 + 2 d x) q.

are such thatq = x2 q1 + y2 q2.
d) Finally, deduce that we have:

inf
c∈Stab(p)

‖ w/(1− p c) ‖A= inf
q∈A
‖ w d (x+ n q) ‖A .

VI. STRONG AND SIMULTANEOUS STABILIZATIONS

Definition 6.1: We have the following definitions [4], [78]:

• A plant P ∈ Kq×r is strongly stabilizableif there exists
a stable stabilizing controllerC ∈ Ar×q of P .

• Two plantsP1, P2 ∈ Kq×r are simultaneously stabi-
lizable if there exists a controllerC ∈ Kr×q which
internally stabilizesP1 andP2.

The strong and simultaneous stabilization problems have
largely been investiguated in the literature (see [4], [78] and
the references therein). This can be explained by the fact
that strongly stabilizable plants have a good ability to track
reference inputs [78]. Moreover, in practice, engineers are
usually reluctant to use unstable controllers specially when
the plant is stable. Finally, simultaneous stabilization plays
an important role in the study ofreliable stabilization, i.e.
when we want to design a controller which stabilizes a finite
family of plants which describes a given system during normal
operating conditions and various failed modes (e.g. loss of
sensors or actuators, changes in operating points). We refer
the reader to [4], [78] for more details and references.

Let us introduce some definitions [3], [27], [75].
Definition 6.2: • a = (a1 : . . . : an) ∈ An is unimodu-

lar if there exists a vectorb = (b1 : . . . : bn) ∈ An such
that a bT =

∑n
i=1 ai bi = 1. We denote the set of all the

unimodular vectors ofAn by Un(A).
• A matrixR ∈ Aq×p is unimodularif there exists a matrix
S ∈ Ap×q such thatRS = Iq.

• A unimodular matrixR = col(R1, . . . , Rp) ∈ Aq×p is
called k-stable (1 ≤ k ≤ r = p − q) if there exists a
(p− k)-tuple (ci)1≤i≤p−k belonging to theA-module

Rp−k+1A+ . . .+RpA ,

{
k∑

i=1

Rp−k+i bi | bi ∈ A

}
such that the matrix

col(R1 + c1 : R2 + c2 : . . . : Rp−k + cp−k) ∈ Aq×(p−k)

is a unimodular matrix, where

col(R1 : . . . : Rp−k)

denotes the matrix formed by the(p − k) first columns
of R.
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Remark 6.1:A unimodular matrixR ∈ Aq×p is k-stable iff
there exists a matrixTk ∈ Ak×(p−k) such that

Rk = col(R1 : . . . : Rp−k) + col(Rp−k+1 : . . . : Rp)Tk

is a unimodularq × (p− k)-matrix.
Definition 6.3: [3], [27], [75] a = (a1 : . . . : an) ∈ Un(A)

is called stable(or reductible) if there exists a(n − 1)-tuple
b = (b1 : . . . : bn−1) ∈ An−1 such that

(a1 + an b1 : . . . : an−1 + an bn−1) ∈ Un−1(A),

i.e. there exists(c1 : . . . : cn−1) ∈ An−1 such that we have:

n−1∑
i=1

(ai + an bi) ci = 1.

Definition 6.4: [64], [74], [75] The stable rangesr(A) of
A is the smallestn ∈ N ∪ {+∞} such that every vector of
Un+1(A) is stable.

Remark 6.2:Let us notice that the stable rangesr(A) is
also called thestable rankof A in the literature of algebra.

Theorem 6.1: • [74] sr(H∞(C+)) = 1.
• [60], [78] sr(RH∞) = 2.
• [36] sr(A(D)) = 1.
• [67] sr(W+) = 1.
• [35] sr(E(k)) = 1 if k = C, and 2 ifk = R.
• [32] sr(L∞(iR)) = 1.
• [75] sr(R[x1, . . . , xn]) = n+ 1.
Remark 6.3:Let us notice thatsr(H∞(C+)) = 1 does not

contradict the fact thatsr(RH∞) = 2. Indeed, the functions
of H∞(C+) can have some complex coefficients whereas a
function of RH∞ can only have real coefficients. It seems
that the ring{f ∈ H∞(C+) | f(s) = f(s)} has stable range
2 but, up to now, there is no proof of it.

The following proposition explains the link between strong
stabilizability andk-stability.

Proposition 6.1: [60] The transfer matrixP ∈ Kq×r is
strongly stabilizable iffP admits a doubly coprime factoriza-
tionP = D−1N = Ñ D̃−1 such thatR = (D : −N) ∈ Aq×p

and (D̃T : ÑT ) ∈ Ar×p are respectivelyr andq-stable.
Remark 6.4:Let us notice that ifP = D−1

1 N1 = D−1
2 N2

are two left-coprime factorizations ofP , then, we can prove
that there exists a matrixU ∈ GLq(A) such that:

(D2 : −N2) = U (D1 : −N1).

Hence, we can easily show thatR1 is k-stable iffR2 is also
k-stable. Similar results also hold for right-coprime factor-
izations. Therefore, Proposition 6.1 does not depend on a
particular choice of a doubly coprime factorization ofP .

Secondly, let us notice that strong stabilizability implies the
existence of a doubly coprime factorization for the plant.

Theorem 6.2:[60] Let P = D−1N be a left-coprime
factorization ofP with R = (D : −N) ∈ Aq×p. If R is k-
stable ands , r− k ≥ 0, then there exist two stable matrices
T1 ∈ Ak×q andT2 ∈ Ak×s such that the matrix

Rk = (D − ΛT1 : −(Ns + ΛT2)) ∈ Aq×(p−k)

admits a right-inverse with entries inA, with the notations:

R = (D : −N) = ( D : −Ns : −Λ) ∈ Aq×p.
↔
q

↔
r

↔
k

Let us define bySk = (UT : V T )T ∈ A(p−k)×q, U ∈ Aq×q,
V ∈ As×q, any right-inverse ofRk such thatdetU 6= 0. Then,
the controllerC ∈ Kr×q, defined by

C =
(

V U−1

T1 + T2 (V U−1)

)
,
l s = r − k
l k

internally stabilizesP . Moreover, ifdet(D−ΛT1) 6= 0, then
the controllerCs = V U−1 ∈ Ks×q internally stabilizes

Ps = (D − ΛT1)−1 (Nr + ΛT2) ∈ Kq×s.

The unstable part ofC is only contained in the transfer matrix
Cs = V U−1 and its dimension is less or equal tos× q.

Similar results also hold for a transfer matrixP admitting
a right-coprime factorization.

Up to our knowledge, there is no general algorithm checking
whether or not a matrixR is k-stable. However, we can prove
that any matrixR ∈ Aq×p such thatr ≥ sr(A) is r−sr(A)+1-
stable [60]. Therefore, we obtain the following corollary which
only depends onsr(A), i.e. on the integral domainA.

Corollary 6.1: [60] Let P = D−1N be a left-coprime
factorizationP ∈ Kq×r such thatr ≥ sr(A). Then, there
exist two stable matrices{

T1 ∈ A(r−sr(A)+1)×q,
T2 ∈ A(r−sr(A)+1)×(sr(A)−1),

such that the followingq × (q + sr(A)− 1)-matrix

Rr−sr(A)+1 , (D − ΛT1 : −(Nsr(A)−1 + ΛT2))

admits a right-inverse, with the notations:

R = (D : −N) = ( D : −Nsr(A)−1 : −Λ).
←→

q
←→

sr(A)−1
←→

r−sr(A)+1

If Sr−sr(A)+1 = (UT : V T )T ∈ A(q+sr(A)−1)×q is any right-
inverse ofRr−sr(A)+1 such thatdetU 6= 0, then the controller
C defined by

C =
(

V U−1

T1 + T2 (V U−1)

)
l sr(A)− 1
l r − sr(A) + 1

internally stabilizes the plantP = D−1N . Moreover, if
det(D − ΛT1) 6= 0, then the controllerCsr(A)−1 = V U−1

internally stabilizes the plant

Psr(A)−1 = (D − ΛT1)−1 (Nsr(A)−1 + ΛT2).

Finally, the unstable part of the controllerC is only contained
in Csr(A)−1 = V U−1 and its dimension is less or equal to
(sr(A)− 1)× q.

Corollary 6.2: [60] If sr(A) = 1, then every transfer matrix
which admits a left or a right-coprime factorization is strongly
stabilizable (i.e. is internally stabilized by a stable controller).
In particular, this result holds forA = W+ or A(D).

Moreover, every internally stabilizable plant, defined by a
transfer matrixP with entries in the quotient field ofH∞(C+)
is strongly stabilizable.
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Let us notice that Corollary 6.4 solves a question asked by
A. Feintuch in [21] on the generalization of S. Treil’s result
[74] for MIMO systems defined overH∞(C+).

Corollary 6.3: [62] If sr(A) = 1, thenA is a Hermite ring.
In particular, this is the case for the ringsH∞(C+), A(D),
W+, E(C) and L∞(iR). Moreover, ifK = Q(A) and the
transfer matrixP ∈ Kq×r admits a left or a right-coprime
factorization, thenP admits a doubly coprime factorization.

Let us state the link between strong and simultaneous
stabilizabilities.

Proposition 6.2: [78] Let P1, P2 ∈ Kq×r be two transfer
matrices which admit the following doubly coprime factoriza-
tionsPi = D−1

i Ni = Ñi D̃
−1
i and:(

Di −Ni

−Ỹi X̃i

) (
Xi Ñi

Yi D̃i

)
= Ip, i = 1, 2.

Then,P1 andP2 are simultaneously stabilized by a controller
C iff there existsT ∈ A such thatU+V T ∈ GLq(A), where:{

U = D1X0 −N1 Y0,

V = −D1 Ñ0 +N1 D̃0.

Remark 6.5:Let us notice that ifP1 andP2 are two stabiliz-
able plants which do not admit doubly coprime factorizations,
then the simultaneous stabilization problem for two plants
is no more equivalent to a strong stabilization problem. The
relationships between these two problems seem to be highly
open for stabilizable plants which do not admit doubly coprime
factorizations.

Corollary 6.4: [60] If sr(A) = 1, then every couple of
plants, defined by two transfer matricesP0 andP1 with entries
in K = Q(A), having the same dimensions, and admitting
doubly coprime factorizations, is simultaneously stabilized by
a controller (simultaneous stabilization). In particular, this
result holds forA = W+ or A(D).

Moreover, ifA = H∞(C+) andP0, P1 are two internally
stabilizable plants with entries inK = Q(A), thenP0 andP1

are simultaneously stabilized by a controllerC.
We refer to [70] for a promising work on the simultaneous

stabilization problem for multidimensional systems, i.e. for the
ring MDn defined in Example 2.1.

Exercise 6.1:[62] Using Exercise 5.8, prove the results:

1) Prove thatp ∈ K = Q(A) is strongly (resp. bistably)
stabilizable iff there existsc ∈ A (resp.c ∈ U(A)) such
thatJ = (1−p c). Deduce thatp is strongly stabilizable
iff there existsc ∈ A such thatp/(1− p c) ∈ A.

2) Using (26), prove thatc ∈ K internally stabilizes0 iff
c ∈ A.

3) Let p1 = n1/d1, p2 = n2/d2 ∈ K be two coprime
factorizations withd1 x1−n1 y1 = 1. Prove thatp1 and
p2 are simultaneously stabilizable iff

p3 ,
(d1 n2 − n1 d2)
(d2 x1 − n2 y1)

is strongly stabilizable [4], [78].
4) Let p1 = n1/d1, . . . , pk = nk/dk ∈ K be k coprime

factorizations with d1 x1 − n1 y1 = 1. Prove that

p1, . . . , pk are simultaneously stabilizable iff the plants
pk+1, . . . , p2 k−1, defined by

pk+i−1 ,
di n1 − ni d1

di x1 − ni y1
, i = 2, . . . , k,

are simultaneously stabilized by a stable controller [4].
5) Let p1 ∈ A and p2 ∈ K. Using (26), prove that

c simultaneously stabilizesp1 and p2 iff c/(1 − p1 c)
strongly stabilizesp2 − p1.

6) Let p1 ∈ A and p2, . . . , pk ∈ K. Prove thatc simul-
taneously stabilizesp1, . . . , pk iff c/(1 − p1 c) ∈ A
simultaneously stabilizes the plantsp2−p1, . . . , pk−p1.

7) Let p, c ∈ A. Using (26), prove thatc internally
stabilizesp iff 1/(1 − p c) ∈ A. Hence, deduce that
c internally stabilizesp iff c externally stabilizesp.
Let us recall that ifA is a Banach algebra, then:

‖ 1− a ‖A< 1⇒ a ∈ U(A). (34)

Let A be a Banach algebra and:

‖ c ‖A< 1/ ‖ p ‖A .

Prove thatc ∈ A internally stabilizesp. This result is
generally called thesmall gain theorem[14], [84].

8) Using (26), prove that0 6= c ∈ K internally stabilizes
0 6= p ∈ K iff 1/c internally stabilizes1/p.

9) Let δ ∈ A. Using (26), prove thatc internally stabilizes
p ∈ K iff c/(1+δ c) internally stabilizesp+δ. Similarly,
prove thatc internally stabilizesp ∈ K iff c+δ internally
stabilizesp/(1 + δ p).

10) Let δ ∈ A and c be a stabilizing controller ofp ∈ K.
Using (26), prove thatp + δ (resp. p/(1 + δ p)) is
internally stabilized byc iff:

1− (δ c/(1− p c)) ∈ U(A)
(resp.1 + (δ p/(1− p c)) ∈ U(A)).

If A is a Banach algebra, using (34), deduce that

∀ δ ∈ A : ‖ δ ‖A< 1
‖c/(1−p c)‖A

(resp.∀ δ ∈ A : ‖ δ ‖A< 1/(‖ p/(1− p c) ‖A)),

c internally stabilizesp + δ (resp.p/(1 + δ p)). Let us
notice thatp+δ is generally called anadditive pertuba-
tion of p whereasp/(1 + δ p) is called amultiplicative
perturbationof p [20].

To finish, let us introduce the concept oftopological stable
rangeof a Banach algebra.

Definition 6.5: [64] If A is a Banach algebra, then the
topological stable rangetsr(A) of A is the smallestn ∈
N ∪ {+∞} such thatUn(A) is dense inAn for the product
topology.

Remark 6.6:As for the stable range, the topological stable
rangetsr(A) is also called thetopological stable rankof A.

Theorem 6.3:We have the following results:
• [72] tsr(H∞(D)) = 2,
• [64] tsr(A(D)) = 2.
Proposition 6.3: [64] If A is a Banach algebra, then we

havesr(A) ≤ tsr(A).
Let us notice that we can havesr(A) < tsr(A) as we can

easily see it in Theorems 6.1 and 6.3.
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Proposition 6.4: [60] If A is a Banach algebra such that
tsr(A) = 2, then every SISO plant, defined by the transfer
function p = n/d (0 6= d, n ∈ A), satisfies:

∀ ε > 0, ∃ (dε : nε) ∈ U2(A) :

{
‖ n− nε ‖A≤ ε,
‖ d− dε ‖A≤ ε.

If dε 6= 0, then, in the product topology,p is as close as we
want to a transfer functionpε = nε/dε which admits a coprime
factorization. In particular, this result holds forA = H∞(D)
or A(D).

Remark 6.7:From Proposition 6.4, we obtain that ifp is not
internally stabilizable, then there exists a stabilizable plantpε

as close as we want top in the product topology.

VII. C LASSIFICATION OF THE RINGS OFSISOSTABLE

PLANTS

“ . . . The foregoing results about rational functions
are so elegant that one can hardly resist the tempta-
tion to try to generalize them to non-rational func-
tions. But to what class of functions? Much attention
has been devoted in the engineering literature to the
identification of a class that is wide enough to en-
compass all the functions of physical interest and yet
enjoys the structural properties that allow analysis of
the robust stabilisation problem”, N. Young [83].

To finish these notes, we shall give few results of commu-
tative algebra and homological algebra which allow to start
a classification of rings of SISO stable plants by respect to
certain system properties (e.g. existence of (weakly) doubly
coprime factorizations, internal stabilization).

Definition 7.1: [6], [26], [66] A Prüfer domainA is an
integral domain which satisfies one of the following equivalent
assertions:
• Every finitely generated torsion-freeA-module is projec-

tive.
• Every ideal of the formI = (d, n), 0 6= d, n ∈ A, is a

projectiveA-module, i.e. there existx, y ∈ K such that:{
d x− n y = 1,
d x, d y, n x ∈ A.

• For everyp ∈ K = Q(A), the fractional idealJ = (1, p)
of A is invertible (see Exercise 5.8).

Prüfer domains were named after H. Prüfer who initiated
their study in 1923.

Example 7.1:We have the following examples:
• Every integral closure ofZ into a finite extension ofQ is

a Dedekind domain, namely a noetherian Prüfer domain.
For example, the integral closure ofZ into Q(i

√
5) is

the Dedekind domainZ[i
√

5], and thus, a Prüfer domain
[26], [66]. This fact allowed us in [56], [57] to explain
the counter-example given in [1]

• Every non-singular algebraic surface defines a Dedekind
affine domain. For instance, the ringR[t1, t2]/(t21+t22−1)
is a Dedekind domain, and thus, a Prüfer domain [66].

• Every B́ezout domain is a Prüfer domain. Thus, the
ring of entire functionsE(k), with k = R, C, and
E = E(R) ∩ R(s)[e−s] are Pr̈ufer domains [26], [66].

• The ring ofZ-valued polynomials inQ[x], namely

A = {p ∈ Q[x] | p(Z) ⊂ Z},

is a Pr̈ufer domain [26].
The next theorem gives a complete characterization of the

rings A of SISO stable plants over which every plant is
internally stabilizable.

Theorem 7.1: [56] We have the following equivalences:

1) Every SISO plant, defined by a transfer function with
entries inK = Q(A), is internally stabilizable.

2) Every MIMO plant, defined by a transfer matrix with
entries inK = Q(A), is internally stabilizable.

3) A is a Prüfer domain.
Let us notice that Theorem 7.1 has a similar form as

Theorem 4.3.
Exercise 7.1:Using Definition 7.1, Theorem 5.1,

Lemma 3.1 and Exercises 5.5 and 5.8, prove Theorem 7.1.
Remark 7.1:Let us notice the fact that the integral domains

over which

• every transfer matrix admits a weakly doubly coprime
factorization, i.e. coherent Sylvester domains (see Theo-
rem 3.5),

• every plant, defined by a transfer matrix, is internally
stabilizable, i.e. Pr̈ufer domains (see Theorem 7.1),

• every transfer matrix admits a doubly coprime factoriza-
tion, i.e. B́ezout domains (see Theorem 4.3),

are all coherent rings (see Definition 3.7) andintegrally closed
[26] (namely, every elementk of K = Q(A) satisfying a
monic polynomial, i.e.

∑n
i=0 ai k

i = 0, with an = 1 and
ai ∈ A, belongs toA). In terms of homological algebra,
a coherent Sylvester domainA is a projective-free coherent
integral domain (see Definition 4.3) of weak global dimension
w.gl.dim(A) ≤ 2, a Pr̈ufer domain is an integral domain
of weak global dimensionw.gl.dim(A) ≤ 1 and a B́ezout
domain is a projective-free domain of weak global dimension
w.gl.dim(A) ≤ 1 (see [54], [56], [66] for more details).
Roughly speaking, the concept ofweak global dimension[7],
[66] measures the number of different concepts of primeness:
a ring A with w.gl.dim(A) ≤ 1 has only one concept
of primeness (the standard one) whereas a ringA with
w.gl.dim(A) ≤ 2 has two concepts of primeness (the same
standard one as well as the concept of weak primeness). Over
a ring A with w.gl.dim(A) ≥ 3 (see e.g. Exercise 3.7),
not every transfer matrix with entries in the quotient field
K = Q(A) admits a weakly doubly coprime factorization,
and thus, the fractional representation approach seems to fail
to be interesting. Finally, let us notice that the problem to
recognize whether or not a finitely generated projective/stably
freeA-module is free (i.e. whether or not a stabilizing plant
admits coprime factorizations) is an important issue in algebra
and a theory, so calledalgebraic K-theory, was developed
in the seventies in order to study these problems (as well as
others). We refer the interested reader to [60], [57], [58] for
an introduction to basic concepts ofK-theory as well as their
applications to synthesis problems.

For lack of space, in these notes, we were not able to
show how to use the algebraic analysis approach developed in
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this paper in order to recover the operator-theoretic approach
developed in [28] (see [83] for a nice introduction to this
approach). Indeed, a nearly complete characterization of the
functional spaces (e.g.H2, Lp(R+)) so that internal stabiliza-
tion is equivalent to the existence of the bounded inverse of the
linear operator frome to u (see Proposition 5.1) is obtained
in [61]. This result can also be used in order to model rings of
SISO stable plants with prescribed stabilization properties (for
instance, find a ring of SISO stable plants over which internal
stabilization is equivalent to the existence of a bounded inverse
of the linear operator frome to u, wheree andu belong to a
certain functional space [61]).

VIII. C ONCLUSION

We hope to have convinced the reader that the algebraic
analysis (commutative algebra, module theory, homological
algebra, Banach algebras) develops powerful concepts and
tools which allow, on the one hand, to recover different results
of the classical literature on the fractional representation
approach to analysis and synthesis problems and, on the other
hand, to develop new ones. For lack of space, we were not
able to treat in these notes certain other results that can also be
obtained using this mathematical framework. We refer to [54],
[55], [56], [57], [58], [59], [60], [61], [62] for more details.
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sur les oṕerateurs de Mikusiński et commande d’une poutre flexible”,
ESAIM proceedings, 2 (1998), 183-193.

[24] M. Fliess, R. Marquez, H. Mounier, “An extension of predictive control,
PID regulators and Smith predictors to some linear delay systems”,Int.
J. Control, 75(2002), 728-743.

[25] B. A. Francis, A Course inH∞ Control Theory, Lecture Notes in
Control and Information Sciences 88, Springer-Verlag 1987.

[26] L. Fuchs, L. Salce,Modules over non-Noetherian Domains, Mathemat-
ical Survey and Monographs, vol. 84, American Mathematical Society,
2000.

[27] M. R. Gabel, A. V. Geramita, “Stable range for matrices”,J. Pure and
Applied Algebra, 5 (1974) , 97-112, “Erratum”, vol. 7 (1976), 239.

[28] T. T. Georgiou, M. C. Smith, “Graphs, causality, and stabilizabity: linear,
shift-invariant systems onL2[0,∞)”, Mathematics of Control, Signals,
and Systems, vol. 6 (1993), 195-223.

[29] K. Glover, D. McFarlane, “Robust stabilization of normalized coprime
factor plant description withH∞-bounded uncertainty”,IEEE Trans.
Automatic Control, 8 (1989), 821-830.

[30] H. Gluesing-Luerssen,Linear Delay-Differential Systems with Commen-
surate Delays: An Algebraic Approach, Lectures Notes in Mathematics
1770, Springer, 2002.

[31] G.-M. Greul, G. Pfister,A Singular Introduction to Commutative Alge-
bra, Springer 2002.

[32] D. Handelman, “Stable range inAW ?-algebras”,Proc. Amer. Math.
Soc., 76 (1979), 241-249.

[33] O. Helmer, “Divisibility properties of integral functions”,Duke Math.
J., 6 (1940), 345-356.

[34] B. Jacob,Stabilizability and Causality of Discrete-time Systems over the
Signal Spacel2(Z), Habilitation thesis, University of Dortmund, 2001.

[35] C. U. Jensen, “Some curiosities of rings of analytic functions”,J. Pure
and Applied Algebra, 38 (1985), 277-283.

[36] P. Jones, D. Marshall, T. Wolff, “Stable range of the disc algebra”,Proc.
Amer. Math. Soc., 96 (1986), 603-604.

[37] T. Kailath, Linear Systems, Prentice-Hall, 1980.
[38] R. E. Kalman, P. L. Falb, M. A. Arbib,Topics in Mathematical Systems

Theory, Mc. Graw Hill, 1969.
[39] E. Kamen, P. P. Khargonekar, A. Tannenbaum, “Pointwise stability and

feedback control of linear systems with noncommensurate time delays”,
Acta Applicandæ Mathematicæ, 2 (1984), 159-184.
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stabilisants baśee sur le rang stable”,proceedings of CIFA, Nantes
(France), 2002.

[56] A. Quadrat, “The fractional representation approach to synthesis prob-
lems: an algebraic analysis viewpoint. Part I: (weakly) doubly coprime
factorizations. Part II: internal stabilization”,SIAM J. Control& Opti-
mization, 42 (2003), 266-299, 300-320.

[57] A. Quadrat, “On a generalization of the Youla-Kučera parametrization.
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