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Abstract: In this paper, we study linear control systems over Ore algebras.
Within this mathematical framework, we can simultaneously deal with different
classes of linear control systems such as time-varying ordinary differential systems,
differential time-delay systems, partial differential equations, multidimensional
discrete systems, etc. We give effective algorithms which check whether or not
a linear system over some Ore algebra is controllable, parametrizable or flat.
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1. INTRODUCTION

Over the last thirty years, for practical and the-
oretical reasons, different new classes of linear
control systems have been introduced such as
differential time-delay systems, multidimensional
systems, partial differential equations, hybrid sys-
tems. . . All these classes of systems are character-
ized by the fact that they are governed by new
types of mathematical equations and need new
techniques in order to analyze their structural
properties and to synthesize new control laws.
With this growth of new types of control systems,
we are led to generalize some previously known
results and techniques so that they can be used
for more general classes of systems. Hence, we
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get similar concepts, techniques and algorithms
for studying different classes of systems.

In this paper, we study linear control systems
over Ore algebras. An Ore algebra is an algebra
of non-commutative polynomials in functional op-
erators which satisfy certain commutation rules.
For instance, differential/time-delay/discrete shift
operators are examples of elements of some Ore
algebras. Within this mathematical framework,
we can simultaneously deal with different classes
of linear control systems such as time-varying
ordinary differential systems (ODEs), differential
time-delay systems (TDSs), partial differential
equations (PDEs), multidimensional discrete sys-
tems. . .Moreover, the recent extension of Gröbner
bases to some non-commutative polynomial rings
allows us to work effectively in some Ore algebras
(Chyzak and Salvy, 1998).



The purpose of this paper is to give effective
algorithms which check whether or not a linear
control system over some Ore algebras is control-
lable, parametrizable or flat. These problems have
been largely studied in (Fliess and Mounier, 1998)
for linear differential time-delay systems and, in
(Pommaret and Quadrat, 1999a; Pommaret and
Quadrat, 1999b; Wood, 2000), for linear multidi-
mensional systems. The main novelty of this paper
is to present some algorithms which work for both
classes of systems as well as for new ones. In
particular, this approach allows us to effectively
obtain some parametrizations of a controllable
plant and the flat outputs of a flat system. Let
us notice that such algorithms were missing for
linear differential time-delay systems and they
could play important roles for the study of motion
planning. See (Fliess and Mounier, 1998) and the
references therein for more details.

All the presented algorithms have been imple-
mented in the package Oremodules of Maple based
on the library Mgfun (Chyzak, 1998). For a lack
of space, we were not able to present the Maple-
worksheets in the final version of this paper. We
refer the reader to (Chyzak et al., 2003) for more
results, algorithms and illustrating examples ob-
tained using Oremodules.

2. ORE ALGEBRAS

2.1 Definitions and examples

Matrices over Ore algebras provide a unified
framework for different classes of linear systems
(e.g. ODEs, PDEs, TDSs, multidimensional sys-
tems).

Definition 1. (1) (McConnell and Robson, 2000)
Let A be an integral domain (i.e. a b =
0, a 6= 0 ⇒ b = 0). The skew polynomial
ring A[∂;σ, δ] is the non-commutative ring
consisting of all polynomials in ∂ with coef-
ficients in A obeying the commutation rule

∂ a = σ(a) ∂ + δ(a), a ∈ A, (1)

where σ : A → A is a k-algebra endomor-
phism of A, namely σ(1) = 1,

σ(a+ b) = σ(a) + σ(b), a, b ∈ A,
σ(a b) = σ(a)σ(b), a, b ∈ A,

and δ : A→ A is a σ-derivation of A, namely{
δ(a+ b) = δ(a) + δ(b), a, b ∈ A,
δ(a b) = σ(a) δ(b) + δ(a) b, a, b ∈ A.

(2) (Chyzak and Salvy, 1998) LetA = k[x1, . . . , xn]
be a commutative polynomial ring over a field
k. The skew polynomial ring

D = A[∂1;σ1, δ1] . . . [∂m;σm, δm]

is called Ore algebra if the σi’s and δj ’s
commute for 1 ≤ i, j ≤ m and satisfy:

σi(∂j) = ∂j , δi(∂j) = 0, j < i.

If D = A[∂;σ, δ] is a skew polynomial ring, then
every element P of D has a unique normal form
P =

∑n
i=1 ai ∂

i for suitable ai ∈ A and n ∈ N.
For every Ore algebra, we get a similar normal
form of its elements by moving ∂1, . . . , ∂m on the
right in each summand.

Example 2. The Weyl algebra A1 = k[t][∂;σ, δ],
where σ = idk[t], δ = d

dt , is a skew polynomial
ring. We interpret (1) as a rule of differentiation:

∂ a = a ∂ +
da

dt
, a ∈ k[t].

Similar to polynomial rings in 2n indeterminates,
we can define the Weyl algebra

An = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn],

where σi and δi on k[x1, . . . , xn] are the maps

σi = idk[x1,...,xn], δi =
∂

∂ xi
, i = 1, . . . , n,

and every other commutation rule is prescribed
by Def. 1. In particular, we have:

∂i xj = xj ∂i + δij , 1 ≤ i, j ≤ n,

where δij = 1 if i = j and 0 else.

Example 3. The algebra of shift operators with
polynomial coefficients Sh = k[t][δh;σh, δ], defined
by σh(a)(t) = a(t − h), δ(a) = 0, a ∈ k[t]
and h ∈ R, is a skew polynomial ring. Hence,
the commutation rule δh t = (t − h) δh actually
represents the action of the shift operator on
polynomials. ∂h is a time-delay operator if h > 0
and an advance operator if h < 0.

Example 4. In order to treat differential time-
delay systems, we mix the constructions of the two
preceding examples. We define the Ore algebra

Dh = k[t][∂;σ1, δ1][δh;σ2, δ2],

σ1 = idk[t], δ1 =
d

dt
, σ2(a)(t) = a(t− h), a ∈ k[t],

with δ2 = 0, h ∈ R+. If the system also involves
the advance operator, then we may work with

Hh = k[t][∂;σ1, δ1][δh;σ2, δ2][τh;σ3, δ3],

where σi, δi, i = 1, 2, are as above and:

σ3(a)(t) = a(t+ h), δ3 = 0, a ∈ k[t].

Ore algebras with other functional operators can
also be defined (e.g. divided differences, q-shift,
Eulerian operators). We refer to (Chyzak and
Salvy, 1998; McConnell and Robson, 2000).



2.2 Properties & Gröbner bases

We summarize the most important properties of
Ore algebras that will enable us to computation-
ally deal with modules over Ore algebras.

Proposition 5. (Chyzak and Salvy, 1998) If A
has the left Ore property, namely, for each pair
(a1, a2) ∈ A2, there is a pair (0, 0) 6= (b1, b2) ∈ A2

such that b1 a1 = b2 a2, then so is A[∂;σ, δ].

Proposition 6. (McConnell and Robson, 2000) If
A is an integral domain and σ is injective, then
the skew polynomial ring A[∂, σ, δ] is an integral
domain.

Proposition 7. (McConnell and Robson, 2000) If
A is a left Noetherian ring and σ is an auto-
morphism (e.g. An, Sh, Dh, Hh), then the skew
polynomial ring A[∂;σ, δ] is a left Noetherian ring.

In order to study effectively systems over (non-
commutative) polynomial rings, we need to intro-
duce some algorithmic methods based on Gröbner
bases. We first need term orders in order to com-
pare (non-commutative) polynomials.

Definition 8. Let D be an Ore algebra. A term
order < on D is an order on the set of monomials
of Mon(D) which is compatible with the multipli-
cation in D, i.e. ∀m1,m2, n ∈ Mon(D), we have:

m1 < m2 ⇒ nm1 < nm2.

The leading monomial lm(P ) of 0 6= P ∈ D is the
largest (w.r.t. <) monomial in P with non-zero
coefficient.

Definition 9. (Adams and Loustaunau, 1994) Let
A be a polynomial ring and I be an ideal of A.
A set of non-zero polynomials G = {g1, . . . , gt} is
called a Gröbner basis for I if for all 0 6= f ∈ I,
there exists 1 ≤ i ≤ t such that lm(gi) divides
lm(f).

A consequence of this definition is that every
polynomial in I is reduced to 0 modulo G, i.e., by
iterative division of the leading monomial of f by
suitable gi ∈ G, one obtains the zero polynomial.

For the case of commutative polynomial rings,
Buchberger’s algorithm ((Adams and Loustau-
nau, 1994), (Becker and Weispfenning, 1993))
computes Gröbner bases of polynomial ideals and
modules. The next theorem states that this al-
gorithm can be applied for certain Ore algebras.
Every Ore algebra within our scope is of this kind.

Theorem 10. (Chyzak and Salvy, 1998; Kredel,
1993) Let A = k[x1, . . . , xn] be the polyno-
mial ring with coefficients in the field k and

A[∂1;σ1, δ1] . . . [∂m;σm, δm] an Ore algebra satis-
fying, ∀ i = 1 . . .m, ∀ j = 1 . . . n,

σi(xj) = aijxj + bij , δi(xj) = cij , (2)

for certain aij ∈ k \ {0} bij ∈ k and cij ∈ A is of
total degree at most 1 in the xi’s. Then, a non-
commutative version of Buchberger’s algorithm
terminates for every term order on x1, . . . , xn,
∂1, . . . , ∂m, and the result of this algorithm is a
Gröbner basis w.r.t. the given term order.

An important technique that uses Gröbner bases
is elimination of variables. By means of an elim-
ination order < (Adams and Loustaunau, 1994)
one can force Buchberger’s algorithm to give a
Gröbner basis whose elements are preferably poly-
nomials in the “small” (w.r.t. <) variables. Thus,
the largest variables w.r.t. < are eliminated (as
far as possible). 2

3. MODULE THEORY

Let us consider a system of equations
p∑
j=1

Rij yj = 0, 1 ≤ i ≤ q, (3)

where Rij ∈ D, p, q ∈ N. By collecting the
coefficients Rij , we obtain a matrix R ∈ Dq×p

which, multiplied by y = (y1 : . . . : yp)T , yields
system (3) again.

We set up the convention that Dr is always
considered as the D-module of row vectors of
length r (r ∈ N). Let us consider the following
left D-morphism (D-linear map):

Dq .R−→ Dp,
(P1 : . . . : Pq) 7−→ (P1 : . . . : Pq)R.

Then, im.R = Dq R is the left D-module gener-
ated by the left D-linear combinations of the rows
of R.

Let us show that system (3) corresponds to the left
D-module M = Dp/Dq R. Let {ei}1≤i≤p (resp.
{fj}1≤j≤q) be the canonical basis of Dp (resp.
Dq). We denote by π : Dp → M = Dp/Dq R
the left D-morphism which maps every element
of Dp to its residue class in M . For i = 1, . . . , q,
we have

fj R = (Rj1 : . . . : Rjp) =
p∑
i=1

Rji ei ∈ Dq R

⇒ π(fj R) = π

(
p∑
i=1

Rji ei

)
=

p∑
i=1

Rji π(ei) = 0,

2 In our implementation, we use the common order lexdeg

of the Maple package Groebner.



and thus, if we denote by yi = π(ei) the residue
class of ei in M , then M is defined by

p∑
i=1

Rji yi = 0, 1 ≤ j ≤ q, ⇔ Ry = 0,

as well as by the left D-linear combinations of
its equations. The left D-module M is finitely
generated because every element m ∈ M can be
written as m =

∑p
i=1 Pi yi, where Pi ∈ D.

Definition 11. The finitely generated leftD-module
M = Dp/Dq R is associated with (3).

Example 12. Let us reconsider the Ore algebra
Dh = R(a, k, ζ, ω)[∂;σ1, δ1][δh;σ2, δ2] defined in
Ex. 4 and the following wind tunnel model defined
in (Manitius, 1984)

ẋ1(t) = −a x1(t) + k a x2(t− h),
ẋ2(t) = x3(t),
ẋ3(t) = −ω2 x2(t)− 2 ζ ω x3(t) + ω2 u(t),

(4)

where a, k, ζ and ω are real constants. System (4)
gives rise to the following matrix

R =

 ∂ + a −k a δh 0 0
0 ∂ −1 0
0 ω2 ∂ + 2 ζ ω −ω2

 ∈ D3×4
h (5)

and thus, system (4) corresponds to the left Dh-
module M = D4

h/D
3
hR.

Definition 13. (Rotman, 1979) A family (Mi)i∈Z
of D-modules together with a family (di)i∈Z of D-
module morphisms di : Mi → Mi−1 is a complex,
if di ◦ di+1 = 0 for all i ∈ Z. We write:

. . .
di+2−→Mi+1

di+1−→Mi
di−→Mi−1

di−1−→ . . . (6)

Complex (6) is called exact at position i if the
defect of exactness of (6) at position i,

H(Mi) = ker di/im di+1,

is equal to 0 or, equivalently, if kerdi = imdi+1.
Complex (6) is called exact if it is exact at every
position. Finally, the exact sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0,

i.e. f is injective, g is surjective and ker g = imf ,
is called a short exact sequence.

We recall some properties of D-modules that will
be important in the course of the paper.

Definition 14. (Rotman, 1979) Let D be a (left)
Ore algebra and M a finitely generated (left) D-
module.

(1) The D-module M is free if it is isomorphic to
Dr for a certain r ∈ Z≥0.

(2) M is a projective D-module if there exist a
free D-module F and a D-module N such
that F ∼= M ⊕N .

(3) The submodule of M

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0}

is called the torsion submodule of M . An
element of t(M) is a torsion element of M .

(4) M is called torsion-free if t(M) = 0.

Proposition 15. (Rotman, 1979) We have the fol-
lowing implications:

free⇒ projective⇒ torsion-free.

Theorem 16. • (McConnell and Robson, 2000;
Rotman, 1979) If D is a Dedekind domain
(e.g. D = A1), then a finitely generated
torsion-free D-module is projective. If D is a
principal ideal domain (e.g. the commutative
polynomial ring D = k[x] with coefficients in
a field k), then a finitely generated torsion-
free D-module is free.

• (Rotman, 1979) Every projective module
over a commutative polynomial ring with
coefficients in a field is free.

In the following sections, we shall develop effective
algorithms which check whether or not a left D-
module M is torsion-free, projective or free.

4. SYSTEM INTERPRETATIONS

Let us give some system interpretations of the
properties of modules (Fliess and Mounier, 1998;
Pommaret and Quadrat, 1999a; Pommaret and
Quadrat, 1999b; Wood, 2000).

Definition 17. • An observable of a linear sys-
tem Ry = 0 is a scalar D-linear combination
of the components of y (i.e. inputs, states,
outputs. . . ). An observable φ(y) is called au-
tonomous if it satisfies some equations of the
form P1 φ(y) = 0, . . . , Pr φ(y) = 0, where
Pi ∈ D. An observable is said to be free if
it is not autonomous.

• A linear system is said to be controllable if
every observable is free.

• A linear system Ry = 0 is parametrizable if
there exist a matrix R−1 with entries in D
and arbitrary functions z such that the com-
patibility conditions of the inhomogeneous
system y = R−1 z is exactly generated by
Ry = 0, i.e. if there exists R−1 ∈ Dp×m

such that M = Dp/Dq R ∼= DpR−1. Then,
R−1 is called a parametrization of the system
Ry = 0 and z is the potential of the system.
• A linear system is flat (or free) if it is

parametrizable and every component zi of



the potential z is an observable of the sys-
tem, i.e. if there exists a parametrization
R−1 ∈ Dp×m which admits a left-inverse
S−1 ∈ Dm×p, namely S−1R−1 = Im. Then,
z is called a flat output.

Proposition 18. Let D be an Ore algebra, R ∈
Dq×p and M = Dp/Dq R be the left D-module
associated with the system Ry = 0 (see Def. 11).

(1) An observable of the system Ry = 0 is an
element of the left D-module M .

(2) The autonomous elements of the system are
in one-to-one correspondence with the tor-
sion elements of M .

(3) The system is controllable iff M is a torsion-
free left D-module.

(4) The system is parametrizable iff M is a
torsion-free left D-module.

(5) The system is flat iff M is a free left D-
module. Then, a basis of M is a flat output.

Definition 19. Let R ∈ Dq×p be a full row rank
matrix with entries in a commutative polynomial
D = R[x1, . . . , xn] (i.e. the q rows of R are D-
linearly independent). Then,

• R is minor left-prime if the greatest common
factor of all the q by q minors of R is 1.
• R is zero left-prime if all the q by q minors

of R does not vanish simultaneously in Cn.

Theorem 20. Let R ∈ Dq×p be a full row rank
matrix with entries in ring D = R[x1, . . . , xn].

(1) R is minor left-prime iff M = Dp/Dq R is a
torsion-free D-module.

(2) R is zero left-prime iff M = Dp/Dq R is a
free D-module.

Hence, the concepts of torsion-freeness and pro-
jectiveness generalize to non-commutative polyno-
mial rings the well-known concepts of primenesses
(Pommaret and Quadrat, 1999a).

5. SYZYGY MODULES

Let M be a finitely generated left module over a
left noetherian ring D, i.e. there exists a surjective
D-morphism ϕ : Dp → M which maps the ith
canonical basis vector ei ofDp to some yi. We have
the exact sequence Dp ϕ−→M −→ 0. Then, ϕ may
fail to be injective since there may be relations
among the {yi}1≤i≤p:

kerϕ = { P = (P1 : . . . : Pp) ∈ Dp | (7)

φ(P ) =
p∑
i=1

Pi φ(ei) =
p∑
i=1

Pi yi = 0}.

The D-linear relations among the y1, . . . , yp form
the left D-module S(M) defined by (7) and is
called a syzygy module of M .

SinceD is a left noetherian ring, S(M) is a finitely
generated left D-module. Thus, we can again find
a suitable free D-module Dq and a map ψ sending
the canonical basis vectors of Dq to the generators
of S(M). We have the exact sequence:

Dq ψ−→ Dp ϕ−→M −→ 0.

This exact sequence is a finite presentation of
the left D-module M and M is finitely presented.
Finally, iterating the preceding construction, we
get a free resolution of M (Rotman, 1979) .

Definition 21. (1) The exact sequence

. . .
d3−→ F2

d2−→ F1
d1−→ F0

d0−→M −→ 0 (8)

is called a free resolution of M if the D-
modules Fi are left free D-modules.

(2) If the D-modules Fi in (8) are projective,
then (8) is a projective resolution of M .

(3) Let us consider a projective resolution of M :

0 −→ Fn
dn−→ . . .

d2−→ F1
d1−→ F0

d0−→M −→ 0.

The length of this resolution is n.
(4) The minimal length of the left projective

resolutions of the left D-module M is called
the projective dimension pdD(M) of M . The
projective dimension may be infinite.

(5) The left global dimension of D is defined by:

lgldD = sup{pdD(M) |M a left D-module}.

We describe the computational tools for the con-
struction of free resolutions. The techniques to
compute syzygy modules use Gröbner bases and
elimination technique (see section 6.1 of (Becker
and Weispfenning, 1993)). Let D be an Ore alge-
bra which satisfies (2) and L a finitely generated
left D-module which is a submodule of a free D-
module Dp, p ∈ N. Thus, a set of generators of L
consists of row vectors in Dp.

Algorithm 1. Input: Generating set {R1, . . . , Rq}
of the D-module L, Ri = (Ri1 : . . . : Rip) ∈ Dp.
Output: S ∈ Dr×q such thatDr S is a generating
set of the syzygy module S(L), i.e. S(L) = Dr S.
Syzygies (R1, . . . , Rq)
P ← {

∑p
j=1Rij λj − µi | i = 1, . . . , q}.

G← Gröbner basis of P in⊕pi=1 Dλi ⊕
q
i=1 Dµi

w.r.t. a term order that eliminates the λi’s
S = (Sij) ∈ Dr×q ← G ∩ ⊕qi=1Dµi =
{
∑q
j=1 Sij µj | i = 1, . . . , r}.

Remark 22. Let us consider R ∈ Dq×p and the
leftD-moduleM = Dp/Dq R. Then, we can apply
the preceding algorithm to the set formed by



Ri = (Ri1 : . . . : Rip) ∈ L = Dq R ⊆ Dp,

i = 1, . . . , q, in order to obtain S = (Sij) ∈ Dr×q

such that S2(M) = ker .R = Dr S and we obtain
the exact sequence:

Dr .S−→ Dq .R−→ Dp π−→M −→ 0.

Iterating the process, we obtain a free resolution
of the left D-module M .

Example 23. Let us reconsider Ex. 12 and define
the Dh-module L = D4

hR
T generated by the rows

of the matrix:

RT =


∂ + a 0 0
−k a δh ∂ ω2

0 −1 ∂ + 2 ζ ω
0 0 −ω2

 ∈ D4×3
h .

The Gröbner basis of

{(∂ + a)λ1 − µ1,−k a δh λ1 + ∂ λ2 + ω2 λ3 − µ2,

−λ2 + (∂ + 2 ζ ω)λ3 − µ3,−ω2 λ3 − µ4}

w.r.t. the elimination ordering induced by the
degree reverse lexicographical orderings on λ1 >
λ2 and µ1 > µ2 > δh > ∂ resp. is:

G = {(∂ + a) λ1 − µ1, ω2 λ2 + ∂ µ4 + ω2 µ3 + 2 ζ ω µ4,

ω2 k a δh λ1 + ω2 µ2 + ω2 ∂ µ3 + (∂2 + 2 ζ ω ∂ + ω2) µ4,

ω2 k a δh µ1 + (ω2 ∂ + ω2 a) µ2 + (ω2 ∂2 + ω2 a ∂) µ3

+(∂3 + 2 ζ ω ∂2 + a ∂2 + ω2 ∂ + 2 a ζ ω ∂ + a ω2) µ4}.

Intersecting G with ⊕3
i=1Dh µi we get

S = {ω2 k a δh µ1 + (ω2 ∂ − ω2 a)µ2

+(ω2 ∂2 + ω2 a ∂)µ3 + (∂3 + 2 ζ ω ∂2 + a ∂2

+ω2 ∂ + 2 a ζ ω ∂ + aω2)µ4}.
If we denote by RT−1 the row vector

RT−1 = (ω2 k a δh : ω2 ∂ + ω2 a : ω2 ∂2 + ω2 a ∂ :
∂3 + 2 ζ ω ∂2 + a ∂2 + ω2 ∂ + 2 a ζ ω ∂ + aω2),

then we obtain the following free resolution of the
Dh-module N = D3

h/D
4
hR

T :

0 −→ Dh

.RT
−1−→ D4

h
.RT

−→ D3
h

π−→ N −→ 0. (9)

Proposition 24. (McConnell and Robson, 2000)
Let A be an integral domain with lgldA < +∞
and σ an automorphism. The left global dimen-
sion of A[∂;σ, δ] satisfies:

lgldA ≤ lgldA[∂;σ, δ] ≤ lgldA+ 1.

Moreover, if Q ⊆ k is a field, then we have
lgld k[x1, . . . , xn] = n and lgldAn = n.

6. INVOLUTIONS

Definition 25. Let k be a field and D a (non-
commutative) k-algebra. An involution θ of D is
a k-linear map θ : D → D satisfying ∀ a1, a2 ∈ D:{

θ(a1 · a2) = θ(a2) · θ(a1),
θ ◦ θ = idD.

(10)

Proposition 26. Let D be a k-algebra, M a right
D-module and θ an involution of D, then we can
define the left D-module M̃ , which is equal to M
as a set and is endowed with the same addition as
M , but with the following left action of D:

am = mθ(a), m ∈ M̃, a ∈ D.

Example 27. (1) Let D = k[x1, . . . , xn] be a
commutative polynomial ring. Then, θ = idD
is an involution of D.

(2) LetAn = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn]
be the Weyl algebra (see Ex. 2). An involu-
tion θ of An can be defined by:

xi 7→ xi, ∂i 7→ −∂i, 1 ≤ i ≤ n.

(3) Let Sh = k[t][δh;σh, δ] be as in Ex. 3. An
involution θ of Sh can be defined by:

t 7→ −t, δh 7→ δh.

(4) Let Hh = k[t][∂;σ1, δ1][δh;σ2, δ2][τh;σ3, δ3]
be as in Ex. 4. An involution θ of Hh can be
defined by:

t 7→ t, ∂ 7→ −∂, δh 7→ τh, τh 7→ δh.

Definition 28. Let D be an Ore algebra with an
involution θ, R ∈ Dq×p and M = Dp/Dq R a left
module. Then, the transposed module of M is the
left D-module defined by:

N = Dq/Dp θ(R). (11)

The left D-module N = Dq/Dp θ(R) corresponds
to the system θ(R) z = 0, with z = (z1 : . . . : zq)T .

Example 29. (1) If D is a commutative ring (e.g.
Dh = R(a, k, ζ, ω)[∂;σ1, δ1][δh;σ2, δ2] de-
fined in Ex. 12), then the involution θ is just
the transposition of matrices, i.e. we have
θ(R) = RT , and the transposed D-module
is defined by N = Dq/DpRT .

(2) Let us consider the Ore algebra Hh =
k[t][∂;σ1, δ1][δh;σ2, δ2][τh;σ3, δ3] defined in
Ex. 4 and R = [t ∂ : −t2 δh] ∈ H1×2

h . Then,
using 4 of Ex. 27, we obtain:

θ(R) =
(
−∂ t
−τh t2

)
=
(
−(t ∂ + 1)
−(t+ h)2 τh

)
.

7. EXTENSION FUNCTOR

Definition 30. (Rotman, 1979) LetM be a finitely
generated left D-module, S a left D-module and a
free resolution . . .

d2−→ F1
d1−→ F0

d0−→ M −→ 0 of
M . Then, the defects of exactness of the complex

. . .
d∗2←− homD(F1, S)

d∗1←− homD(F0, S)←− 0,



where, for f ∈ homD(Fi−1, S), i ≥ 1, d∗i is defined
by d∗i (f) = f ◦ di, are given by:{

ext0D(M,S) = kerd∗1 = homD(M,S),

extiD(M,S) = kerd∗i+1/imd
∗
i , i ≥ 1.

In the following, we shall only take S = D.

Proposition 31. (Rotman, 1979) The right D-
module extiD(M,D) only depends on M , i.e. one
can choose any free resolution of M to compute
extiD(M,D), i ∈ Z≥0.

The next algorithm gives a description of a left
D-module ˜ext1D(M,D), which corresponds to the
right D-module ext1D(M,D) (see Prop. 26).

Algorithm 2. Input: Ore algebra D satisfying (2)
with an involution θ and R ∈ Dq×p.
Output: A list L = [L1, L2] of matrices:
L1 ∈ Dm×q is such that˜ext1D(M,D) = Dm L1/D

p θ(R),

where M = Dp/Dq R,
L2 ∈ Dq×r is such that L1 = Syzygies (L2).
Pre-Ext1 (R)
R2 ← Syzygies (R),
L2 ← θ(R2),
L1 ← Syzygies (L2),
L← [L1, L2].

Example 32. Let us compute the extiDh
(N,Dh) of

the Dh-module N = D3
h/D

4
hR

T defined in Ex. 23.
In Ex. 23, we have already computed the free reso-
lution (9) of N . Thus, we have ker .RT = DhR

T
−1,

where RT−1 is defined in Ex. 23. Then, using the
fact that Dh = R(a, k, ζ, ω)[∂;σ1, δ1][δh;σ2, δ2]
is a commutative polynomial ring, we obtain that
θ(RT−1) = R−1 (see 1 of Ex. 27). Hence, we have
the complex of Dh-modules

0←− Dh
.R−1←− D4

h
.R←− D3

h ←− 0

and its defects of exactness are defined by:

ext1Dh
(N,Dh) = ker .R−1/D

3
hR, (12)

ext2Dh
(N,Dh) =Dh/D

4
hR−1. (13)

Following Alg. 2, we need to compute the syzygy
of D4

hR−1. Doing similarly as in Ex. 23, we obtain
that the syzygy module of D4

hR−1 is defined by

L =


0 ω2 ∂ + 2 ζ ω −ω2

0 ∂ −1 0
−∂ − a k a δh 0 0
∂2 + a ∂ 0 −k a δh 0

 , (14)

and thus, we obtain ext1Dh
(N,Dh) = D4

h L/D
3
hR.

Finally, using (13), ext2Dh
(N,Dh) corresponds

to the system R−1 z = 0. Let us notice that
R−1 z = 0⇒ z 6= 0 (this can be easily checked by
inspecting the Gröbner basis used to compute the
syzygy of D4

hR−1), and thus, ext2Dh
(N,Dh) 6= 0.

˜ext1D(M,D) = Dm L1/D
p θ(R) can be computed

using elimination techniques similar to Alg. 1.

Algorithm 3. Input: A matrix R ∈ Dq×p and
L1 = (LT1 : . . . : LTm)T ∈ Dm×q computed by
Pre-Ext1(R).
Output: A set S of generating equations satisfied
by the residue class zi of LTi in the left D-module
Dm L1/D

p θ(R).
Quotient (L1, R)

Compute θ(R).
for i = 1, . . . ,m, do
L← {

∑q
j=1 Lij λj − µi} ∪ {

∑q
j=1 θ(R)kj λj
| k = 1, . . . , p}

in D[λ1, . . . , λr, µi], compute the Gröbner
basis Gi of L w.r.t. an elimination order
(eliminating the λj ’s).

endfor
S ←

⋃m
i=1(Gi ∩D[µi]).

Example 33. Let us reconsider the Dh-module
N = D3

h/D
4
hR

T defined in Ex. 23. In Ex. 32, we
proved that ext1Dh

(N,Dh) = D4
h L/D

3
hR, where

R (resp. L) is defined by (5) (resp. (14)). If we
denote {

R = (RT1 : RT2 : RT3 )T ,
L = (LT1 : LT2 : LT3 : LT4 )T ,

then we check that we have Gi∩D[µi] = {µi}, for
i = 1 . . . 4, because L1 = R3, L2 = R2, L3 = −R1

and L4 = ∂ R1 + k a δhR2. Thus, D4
h L = D3

hR,
which shows that we have ext1Dh

(N,Dh) = 0.

The next theorem gives some effective algorithms
checking the module properties, and thus, the
structural properties of the corresponding linear
control system (see Section 4). This theorem is an
extension for Ore algebras of results obtained in
(Pommaret and Quadrat, 1999a; Pommaret and
Quadrat, 1999b).

Theorem 34. Let M = Dp/Dq R be a left D-
module and N = Dq/Dp θ(R) the transposed
module of M . Then, we have:

(1) t(M) ∼= ext1D(N,D).
(2) M is a torsion-free left D-module if and only

if ext1D(N,D) = 0.
(3) The system Ry = 0 is parametrizable if and

only if t(M) ∼= ext1D(N,D) = 0. Then, the
matrix L2 in Pre-Ext1(R) is a parametriza-
tion of the system Ry = 0.

(4) M is a projective left D-module if and only
if extiD(N,D) = 0 for 1 ≤ i ≤ lgldD.



(5) If R has a full row rank, namely S(Dq R) = 0,
then M is a projective left D-module iff N =˜ext1D(M,D) = 0⇔ ∃ S ∈ Dp×q : RS = Iq.

Example 35. Let us check whether or not the
differential time-delay system (4) is controllable,
and thus, parametrizable. By 3 of Prop. 18, we
know that (4) is controllable iff the Dh-module
M = D4

h/D
2
hR is torsion-free, where R is defined

by (5). By 2 of Thm. 34, this is equivalent to
check ext1Dh

(N,Dh) = 0, where N = D3
h/D

4
hR

T

(see 1 of Ex. 29). Therefore, system (4) is control-
lable and, using 3 of Thm. 34, we deduce that a
parametrization of (4) is given by the matrix R−1

defined in Ex. 23, i.e. we have:
(ω2 k a δh) z(t) = x1(t),
(ω2 ∂ + ω2 a) z(t) = x2(t),
(ω2 ∂2 + ω2 a ∂) z(t) = x3(t),
(∂3 + (2 ζ ω + a) ∂2+
(ω2 + 2 a ζ ω) ∂ + aω2) z(t) = u(t).

(15)

Finally, the fact that ext2Dh
(N,Dh) 6= 0 implies

that M = D4
h/D

3
hR is not a projective, and thus,

not a free Dh-module (see 2 of Thm. 16). Hence,
by 5 of Prop. 18, (4) is not a flat differential time-
delay system and z is not a flat output.

If R is a full row rank matrix, then 6 of Thm. 34
gives an economic way to check projectiveness.

Algorithm 4. Input: Ore algebra D satisfying (2)
and a matrix R ∈ Dq×p.
Output: A matrix S ∈ Dp×q satisfying SR = Ip
if it exists and [ ] otherwise.
Left-Inverse (R)
P ← {

∑p
j=1Rij λj − µi | i = 1, . . . , q},

G← Gröbner basis of P in⊕pi=1 Dλi ⊕
q
i=1 Dµi

by eliminating the λi’s
L,M ← matrices such that the rows in

L (λ1 : . . . : λp)T and
M (µ1 : . . . : µq)T are equations in G.

If L is invertible and L−1M ∈ Dp×q,
then return S = L−1M , else return [ ].

We can also compute a right-inverse S ∈ Dq×p of
R ∈ Dq×p (RS = Iq) by doing:

Right-Inverse(R) = θ(Left-Inverse(θ(R))).

Therefore, if R ∈ Dq×p has a full row rank, by 6
of Thm. 34, the left D-module M = Dp/Dq R is
projective iff Right-Inverse(R) 6= [ ].

Example 36. Let us reconsider system (4). Apply-
ing Alg. 4 to θ(R) = RT , where R is defined by
(5), we are led to the Gröbner basis G defined in
Ex. 23. We easily check that G does not contain
any relation of the form λi −

∑4
j=1 Sij µj , where

Sij ∈ Dh, for i = 1, 2. Therefore, M = D4
h/D

3
hR

is not a projective Dh-module, and thus, (4) is not
a flat system (see also Ex. 35).

8. CONCLUSION

We hope to have convinced the reader that
the simultaneous use of module theory, homo-
logical algebra and effective algebra allows us
to study effectively the structural properties
of linear non-commutative multidimensional sys-
tems. Particularly, in this mathematical frame-
work, we presented effective algorithms check-
ing controllability or flatness and computing the
parametrizations/autonomous elements/flat out-
puts. . . Certain of these problems were open for
linear differential time-delay systems (Fliess and
Mounier, 1998).
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