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Introduction



Unstable plants

• Finite-dimensional system:

ẋ(t) = x(t)+u(t), x(0) = 0⇒ x̂(s) =
1

s− 1
û(s).

• Delay system:
ẋ(t) = x(t) + u(t), x(0) = 0,

y(t) =

{
0, 0 ≤ t ≤ 1,
x(t− 1), t ≥ 1,

⇒ ŷ(s) =
e−s

s− 1
û(s).

• System of partial differential equations:

∂2z
∂t2

(x, t)− ∂2z
∂x2(x, t) = 0,

∂z
∂x(0, t) = 0, ∂z

∂x(1, t) = u(t),

y(t) = ∂z
∂t(1, t),

⇒ ŷ(s) =
1 + e−2 s

1− e−2 s
û(s).

• The poles of the transfer functions (1,1, k π i, k ∈ Z)

h1(s) = 1
s−1, h2(s) = e−s

s−1, h3(s) = 1+e−2 s

1−e−2 s

belong to C+ = {s ∈ C | Re(s) ≥ 0} ⇒ unstability.



Stabilization by feedback

• C+ = {s ∈ C |Re s > 0},

H∞(C+) = {holomorphic functions f in C+ |
‖ f ‖∞= sups∈C+

|f(s)| < +∞},

H2 = {holomorphic functions f in C+ |
‖ f ‖2= supx∈R+

(
∫+∞
−∞ |f(x + iy)|2dy)1/2 < +∞}.

= L(L2(R+)), L(·) Laplace transform.

• The transfer functions hi do not belong to H∞(C+):

h1(s) = 1
s−1, h2(s) = e−s

s−1, h3(s) = 1+e−2 s

1−e−2 s

⇒ we have the linear unbounded operator

Thi
: H2 −→ H2,

û −→ ŷ = hi û,

⇒ dom(Thi
) = {û ∈ H2 | ŷ = hi û ∈ H2} ( H2

⇒ ∃ û ∈ H2 : ŷ = hi û /∈ H2.

• Is it possible to find a (robust/optimal) controller C

such that the closed-loop is stable ∀ ûi ∈ H
ni
2 ?

u1 + e1
C

P

+

y2

y1

+

e2 u2+





Importance of coprime factorizations

• Let P the transfer matrix of an unstable plant .

• The problem of finding all the internal stabiliz-
ing controllers C of P , i.e. all the transfer matrices
C such that

(I − P C)−1,

(I − P C)−1 P,

C (I − P C)−1,

I + C (I − P C)−1 P,

are stable,

is a non-linear problem .

• If P admits a doubly coprime factorization

P = D−1 N = Ñ D̃−1,

(
D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= I,

then, all the stabilizing controllers of P are parametrized
by the affine Youla-Ku čera parametrization :

C(Q) = (Ỹ −Q N)−1 (Ỹ −Q D) = (Y −D̃ Q) (X−Ñ Q)−1.

• The problems of finding the stabilizing optimal
controllers (e.g. infC ‖ W1 (I − P C)−1 W2 ‖∞)
are no more a non-linear problem but an affine
one (e.g. infQ ‖W1 (X − Ñ Q)D W2 ‖∞).



Open questions

• For finite-dimensional systems (ODE), robust
control solved completely the following problems :

1. Internal/simultaneous/strong/robust stabilization,

2. Parametrization of all the stabilizing controllers,

3. Computations of the stabilizing H2/H∞-controllers
. . .

• For infinite-dimensional systems (PDE, delay
systems), the same problems are generally open.

•We are interesting here in the following questions:

1. Does it exist necessary and sufficient conditions
to internal stabilization?

2. What are the links between internal stabilization
and the existence of coprime factorizations?

3. Does it exist necessary and sufficient conditions
to the existence of the Youla-Kučera parametrization
of the stabilizing controllers?



The fractional representation approach
to synthesis problems
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The Fractional Representation of Plants

• (Zames) The set of transfer functions of SISO
systems has the structure of an algebra (parallel
+, serie ◦, proportional feedback . by scalar in R).

• (Vidyasagar) Let A be an algebra of transfer
functions of SISO stable systems with a structure
of an intregral domain (a b = 0, a 6= 0 ⇒ b = 0)
and its the field of fractions :

K = Q(A) =
{
p =

n

d
| 0 6= d, n ∈ A

}
.

K represents the class of (unstable) systems

⇒ Any unstable plant is defined by a transfer matrix
T ∈ Kp×q with entries in K = Q(A).

• (Zames) The algebra A of SISO stable systems
has to be a normed algebra in order to take into ac-
count the errors in the modelization & approximation
of the real plant by a mathematical model.

• We usually ask the normed algebra A of SISO
stable systems to be complete (robustness prob-
lems), i.e. A is a Banach algebra .



Examples of stable algebras A of SISO systems

1. RH∞ =
{

n(s)
d(s) ∈ R(s) | degn(s) ≤ deg d(s),

d(s) = 0⇒ Re(s) < 0 }

• h1(s) = 1
s−1 =

(
1

s+1

)
(

s−1
s+1

), 1
s+1, s−1

s+1 ∈ RH∞

⇒ h1 ∈ Q(RH∞) = R(s).

2. A = {f(t) +
∑+∞

i=0 ai δt−ti | f ∈ L1(R+),
(ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 ≤ t2...}

,

and Â = {ĝ | g ∈ A}, the Wiener algebras .

• h2(s) = e−s

s−1 =

(
e−s

s+1

)
(

s−1
s+1

), e−s

s+1, s−1
s+1 ∈ Â.

⇒ h2 ∈ Q(Â).

3. C+ = {s ∈ C | Re s > 0}. The Hardy algebra

H∞(C+) = { holomorphic functions f in C+ |
‖ f ‖∞= sups∈C+

| f(s) |< +∞}.

• h3(s) = (1+e−2 s)
(1−e−2 s)

,1+e−2 s,1−e−2 s ∈ H∞(C+)

⇒ h3 ∈ Q(H∞(C+)).



A module approach of synthesis problems

• Methodology:

1. An integral domain A of SISO stable systems is
chosen (e.g. A = RH∞, H∞(C+) . . .).

2. The plant is defined by a transfer matrix :

P ∈ Kq×(p−q), K = Q(A) =
{

n

d
| 0 6= d, n ∈ A

}
.

3. We write P as:

P = D−1 N = Ñ D̃−1,

{
(D : −N) ∈ Aq×p,

(ÑT : D̃T )T ∈ Ap×(p−q).

(e.g. D = d Iq, N = d P , D̃ = d Ip−q, Ñ = d P ).

3. We have y = P u ⇔


(D : −N)

(
y
u

)
= 0,(

y
u

)
=

(
Ñ
D̃

)
z.

(?)

4. Analysis & synthesis problems are reformu-
lated in terms of the properties of (?).

• Linear algebra over rings is the module theory

⇒ a module approach to analysis & synthesis
problems of linear infinite dimensional systems.



Example

• Let us consider the following transfer matrix:

P =

 e−s

s−1
e−s

(s−1)2

 .

• Let us consider A = H∞(C+) and K = Q(A).

•We have:
y1 = e−s

(s−1) u,

y2 = e−s

(s−1)2
u
⇒


(s−1)
(s+1) y1 − e−s

(s+1) u = 0,(
s−1
s+1

)2
y2 − e−s

(s+1)2
u = 0,

⇒ R

(
y
u

)
= 0,

with R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 ∈ A2×3.

︸ ︷︷ ︸ ︸ ︷︷ ︸
D −N

•We have:

P = D−1 N ∈ K2.

• Properties of P can be studied by means of the
matrix R with entries in the Banach algebra A

⇒ by means of an A-module associated with R.



Module theory



Finitely presented modules

• Let A be a commutative integral domain, R ∈ Aq×p.

The vectors of Ap and Aq are row vectors .

Let .R be the A-morphism defined by:

Aq .R−→ Ap

µ 7−→ µ R = (µ1 . . . µq)

 R11 . . . R1p
. . . . . . . . .
Rq1 . . . Rqp



• im .R = Aq R is the module of the A-linear
combinations of the rows of R:

∀λ ∈ Aq R, ∃ µ ∈ Aq : λ = µ R.

• In algebraic analysis , we use the A-module:

M = coker .R = Ap/im .R = Ap/Aq R.

We can prove that:

M is defined by the A-linear combinations of
the equations R z = 0,

where zi corresponds to the class in M = Ap/Aq R

of ei = (0 . . .1 . . .0) ∈ Ap (canonical basis of Ap).



Example

• Let A = H∞(C+) and R be the following matrix:

R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 ∈ A2×3.

• Let us consider the A-morphism .R:

A2 .R−→ A3

(a1 : a2) −→
(
a1

(s−1)
(s+1) : a2

(s−1)2

(s+1)2

−a1
e−s

(s+1) − a2
e−s

(s+1)2

)
.

•


y1 = π(e1), y2 = π(e2),

u = π(e3).
π : A3 → A3/A2 R.

•M = A3/A2 R is defined by the equations :
(s−1)
(s+1) y1 − e−s

(s+1) u = 0,

(s−1)2

(s+1)2
y2 − e−s

(s+1)2
u = 0,

and their A-linear combinations.



Classification of Modules

•Definition: Let M be a finitely generated A-module.

a) M is free if ∃ r ∈ Z+ : M ∼= Ar.

b) M is stably-free if ∃ r, s ∈ Z+: M ⊕As ∼= Ar.

c) M is projective if ∃ r ∈ Z+ and an A-module P :

M ⊕ P ∼= Ar.

d) M is reflexive if

ε : M −→ homA(homA(M, A), A),
m −→ ε(m), ε(m)(f) = f(m),

is an isomorphism.

e) M is torsion-free if:

t(M) = {m ∈M | ∃ 0 6= a ∈ A : a m = 0} = 0.

m ∈ t(M) is called a torsion element of M .

f) M is torsion if M = t(M).



Definitions & Results

• Theorem:

free ⇒ stably-free ⇒ projective
⇒ reflexive ⇒ torsion-free .

• Definition: 1. A ring is projective-free if every
finitely generated projective A-module is free.

2. A ring is Hermite if ∀n ∈ Z+,

∀ a ∈ Un(A) = {a ∈ An | ∃ b ∈ An : a bt = 1},

∃ V ∈ GLn(A) : a = (1 : 0 : . . . : 0)V.

3. A is a Bézout domain if every finitely generated
ideal I =

∑n
i=1 A ai of A is principal , i.e. I = A a

for a certain a ∈ A.

• Theorem:

1. A is a Hermite ring iff every finitely generated
stably-free A-module is free .

2. A is a Bézout domain iff every finitely generated
torsion-free A-module is free .

3. Bézout domain ⇒ projective-free ⇒ Hermite.



Doubly weakly coprime factorizations



Unstable poles/zeros cancelations

• Let us consider the system Σ1 defined by:{
z̈(t) + 4 ż(t) + 4 z(t) = u̇(t)− u(t),
z̈(0) = ż(0) = u̇(0) = 0.

u(t) −→ Σ1 −→ z(t)

• By Laplace transform, we obtain ẑ = (s−1)
(s+2)2

û.

• Let us consider the system Σ2 defined by:{
ẏ(t)− ẏ(t) = ż(t) + 2 z(t),
ẏ(0) = 0.

z(t) −→ Σ2 −→ y(t)

• By Laplace transform, we obtain ŷ = (s+2)
(s−1) ẑ.

• Let us consider the interconnection of Σ1&Σ2:

u(t) −→ Σ1 −→ z(t) −→ Σ2 −→ y(t)

• The transfer function of Σ1&Σ2 is given by:

ŷ =
(s + 2)

(s− 1)

(s− 1)

(s + 2)2
û =

1

(s + 2)
û.



• In the transfer function, we have cancelled the com-
mon factor s−1 which has an unstable zero 1 ∈ C+.

⇒ Engineering experience : loss of stability in Σ1&Σ2.

• Explanation : Σ1&Σ2 is defined by:
z̈(t) + 4 ż(t) + 4 z(t) = u̇(t)− u(t),
ẏ(t)− ẏ(t) = ż(t) + 2 z(t),
z̈(0) = ż(0) = u̇(0) = ẏ(0) = 0.

Eliminating z in the equations, we obtain:

ÿ(t) + ẏ(t)− 2 y(t) = u̇(t)− u(t)

⇔
{

x(t) = ẏ(t) + 2 y(t)− u(t),
ẋ(t) = x(t),

⇒ x(t) = (2 y(0)− u(0)) et.

We have:

lim
t→+∞

x(t) =

{
+∞ if 2 y(0) 6= u(0),
0 if 2 y(0) = u(0).

⇒ Σ1&Σ2 is generically unstable : there is an
unobservable variable x which is not exponentially
stable⇒ concept of a stabilizable Kalman system .

• Problem : Does it exist a framework allowing to
predict and to take into account only the unstable
pole/zero cancelations in the transfer matrices?



Examples of torsion (torsion-free) (sub)-modules

• RH∞ =
{

n(s)
d(s) ∈ R(s) | degn(s) ≤ deg d(s),

d(s) = 0⇒ Re(s) < 0 }

• Let us consider the following system:(
s+1
s+2

)
y − (s+1)

(s+2)2
u = 0

⇐⇒
(

s+1
s+2

) (
y − 1

s+2 u
)
= 0.

(
s+1
s+2

)−1
∈ RH∞ ⇒

(
s+1
s+2

)
y − (s+1)

(s+2)2
u = 0

m

y − 1
(s+2) u = 0.

• If we note:

R =
(

s+1
s+2 : − s+1

(s+2)2

)
, M = A2/A R,

R′ =
(
1 : − 1

s+2

)
, N = A2/A R′,

then, in terms of RH∞-modules , we have M = N .

• In terms of transfer matrices , we have:

h(s) =

(s+1)
(s+2)2

(s+1)
(s+2)

=
1

(s + 2)
.



• Let us consider the following system:(
s−1
s+2

)
y − (s−1)

(s+2)2
u = 0

⇐⇒
(

s−1
s+2

) (
y − 1

s+2 u
)
= 0.

(
s−1
s+2

)−1
/∈ RH∞ ⇒

 z = y − 1
s+2 u,(

s−1
s+2

)
z = 0.

• In terms of RH∞-modules , we have:

R =
(

s−1
s+2 : − s−1

(s+2)2

)
, M = A2/A R,

t(M) = {z = y − 1
(s+2) u |

(
s−1
s+2

)
z = 0} 6= 0.

h(s) =

(s−1)
(s+2)2

(s−1)
(s+2)

= 1
(s+2)

⇓ ⇓(
s−1
s+2

)
y − s−1

(s+2)2
u = 0 6= y − 1

s+2 u = 0

m m

M 6= M/t(M).

•Conclusion: The use of RH∞-modules is a frame-
work which only allows the cancelations by com-
mon proper & stable factors in a transfer matrix.



Weak primeness

• Definition: A matrix R ∈ Aq×p is weakly left-
prime if

Kq R ∩ Ap = Ap R,

where K = { p = n
d | 0 6= d, n ∈ A}, i.e.:

∀µ ∈ Kq : µ R ∈ Ap ⇒ ∃ ν ∈ Aq : µ R = ν R.

• Dually for weakly right-prime :

R is weakly right-prime⇔ RT is weakly left-prime.

• Definition: A matrix R ∈ Aq×p is full row rank if
its rows are A-linearly independent.

• If R ∈ Aq×p is a full row rank matrix , then R is
weakly left-prime iff:

∀µ ∈ Kq : µ R ∈ Ap ⇒ µ ∈ Ap.

• Let us consider the matrix (A = H∞(C+)):

R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 ∈ A2×3.

R is not weakly left-coprime because we have:(
1

s−1
: −s+1

s−1

)
R =

(
1

s+1
: − s−1

s+1
: 0
)
∈ A3 ;

(
1

s−1
: −s+1

s−1

)
∈ A2.



A-closure & Torsion-freeness

• Definition: If X is a submodule of Ap, then

X = {λ ∈ Ap | ∃ 0 6= a ∈ A : a λ ∈ X}

is called the A-closure of X in Ap.

• Proposition: Let R ∈ Aq×p and the A-modules
Aq R ⊆ Ap and M = Ap/Aq R. Then, we have:

1. Aq R = Kq R ∩Ap.

2. t(M) = (Kq R ∩Ap)/Aq R = Aq R/Aq R.

3. M/t(M) = Ap/(Kq R ∩Ap) = Ap/Aq R.

• Corollary: We have the following equivalences:

1. R ∈ Aq×p is weakly left-prime ,

2. Aq R = Aq R,

3. M = Ap/Aq R is torsion-free .



Example

• Let us consider A = H∞(C+) and:

R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 ∈ A2×3.

• R is not weakly left prime because:(
1

s−1
: −s+1

s−1

)
R =

(
1

s+1
: − s−1

s+1
: 0
)
∈ A3 ;

(
1

s−1
: −s+1

s−1

)
∈ A2.

• The A-module M = A3/A2 R is defined by
s−1
s+1 y1 − e−s

s+1 u = 0, (1)(
s−1
s+1

)2
y2 − e−s

(s+1)2
u = 0, (2)

and their A-linear combinations.

• 1
(s+1) (1)−(2)⇒ (s−1)

(s+1)2
y1−

(
s−1
s+1

)2
y2 = 0 (3).

(3)⇔ (s−1)
(s+1)

(
1

(s + 1)
y1 −

(s− 1)

(s + 1)
y2

)
︸ ︷︷ ︸ = 0,

z

⇒


z = 1

(s+1) y1 − (s−1)
(s+1) y2,

(s−1)
(s+1) z = 0,

is a torsion element of M , i.e. z ∈ t(M).



Transfer matrices

• Theorem: Let P = D−1
1 N1 = D−1

2 N2 with:{
R1 = (D1 : −N1) ∈ Aq×p,
R2 = (D2 : −N2) ∈ Aq×p.

Then, we have

Aq R1 = Aq R2 ⊂ Ap,

i.e. Aq Ri only depends on P .

• Similarly for P = Ñ1 D̃1
−1 = Ñ2 D̃2

−1.

• Theorem: Let P = D−1
1 N1 = D−1

2 N2 with:{
R1 = (D1 : −N1) ∈ Aq×p,
R2 = (D2 : −N2) ∈ Aq×p.

Then, we have

Ap RT
1
∼= Ap RT

2 ,

i.e. Ap RT
i only depend on P up to an isomorphism.

• Similarly for P = Ñ1 D̃1
−1 = Ñ2 D̃2

−1.

•Corollary: The structural properties of P = D−1 N ,
R = (D : −N) ∈ Aq×p, only depend on Aq R
and on Ap RT up to an isomorphism .



Doubly weakly coprime factorizations

•


P = D−1 N = Ñ D̃−1 ∈ Kq×(p−q),
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×(p−q).

• Definition: P admits a weakly left coprime fac-
torization if there exists a weakly left prime matrix
R′ = (D′ : N ′) ∈ Aq×p such that:

P = D′−1 N ′.

• Definition: P admits a weakly right coprime fac-
torization if there exists a weakly right prime ma-
trix R′ = (D′T : N ′T )T ∈ Ap×p−q such that:

P = Ñ ′ D̃′
−1

.

• Definition: P admits a doubly weakly coprime
factorization if P has weakly left and right co-
prime factorizations :

P = D′−1 N ′ = Ñ ′ D̃′
−1

.

• Theorem: P admits a weakly left coprime factor-
ization iff the A-module Aq R is free of rank q.

• Corollary: P admits a doubly weakly coprime

factorization iff the A-modules Aq R and Ap−q R̃T

are free of rank respectively q and p− q.



Noetherian Banach algebras

•Definition: A ring A is noetherian if any ideal I of
A is finitely generated , i.e. there exist a1, ..., an ∈ A:

I =
n∑

i=1

A ai.

• Examples: RH∞, k[s], k[χ1, . . . , χn] (k = R, C).

• Definition: An A-module M is noetherian if any
A-submodule N of M is finitely generated , i.e.
there exists a finite family {ni}1≤i≤k of N such that:

∀n ∈ N, ∃ ai ∈ A : n =
k∑

i=1

ai ni.

• Proposition: If A is a noetherian ring, then an A-
module M is noetherian iff M is finitely generated.

• Proposition: The class of the finitely generated
A-modules over a noetherian ring A is stable by :

+, ⊕, /, ∩, ker ·, im·, ⊗A, homA(·, ·)...
• Theorem (Sinclair-Tullo 74): Noetherian Banach
algebras are finite-dimensional ones .

⇒ The Banach algebras H∞(C+), L∞(R), A, Â,
l1(Z+), L1(R+)... are not noetherian domains.

• Conclusion: Algebra & module theory seem to
be useless to study infinite-dimensional systems.



Coherent Rings & Modules

• Definition: A ring is coherent if for any finitely
generated ideal I = (a1, ..., an) of A, the module

S(I) = {(r1 : . . . : rn) ∈ An |
n∑

i=1

ri ai = 0}

is finitely generated , i.e.:

∃m ∈ Z+, ∃R ∈ Am×n : S(I) = Am R.

• Examples: Noetherian or Bézout domains, R[χi]i∈N.

• Definition: An A-module M is coherent if:
−M is a finitely generated A-module,
− for any A-morphism φ : An →M , the A-module

ker φ = {(r1 : . . . : rn) ∈ An |
n∑

i=1

ri φ(ei) = 0}

is finitely generated ({ei}1≤i≤n: canonical basis of An).

• Proposition: If A is a coherent ring, then an A-
module M is coherent iff there exists a finite matrix
R ∈ Aq×p such that M = Ap/Aq R.

• Proposition: The class of coherent A-modules
over a coherent ring A is stable by:

+, ⊕, ∩, /, ⊗A, homA(·, ·), annA(·), ker ·, im ·...



Examples of Coherent Rings

• Theorem (McVoy-Rubel 76, Rosay 77): The rings
H∞(C+), L∞(R) are coherent .

• Theorem (Helmer 40): If k is a subfield of C, then
the ring E(k) of entire functions in C

E(k) = {f(s) =
∑+∞

i=0 ai si | ai ∈ k,

limi→+∞ | ai |1/i= 0}
is a Bézout domain, and thus, a coherent domain .

• Theorem (Loiseau 96, Glüsing-Lüerßen 97):
E = E(R) ∩ R(s)[e−θ] is a Bézout domain, and
thus, a coherent domain.

• Theorem (Morse 76): RH∞ is a principal ideal
domain, and thus, a coherent domain.

• Are A, Â and L1(R+) + R δ coherent domains?

• Proposition: Let A be a coherent domain and its
quotient field K = {ab | 0 6= b, a ∈ A}. Then, any
transfer matrix T = D−1 N ∈ Kq×(p−q) defines a
coherent A-module M = Ap/Aq(D : −N).

• Conclusion: The classes of infinite dimensional
systems over coherent rings are the ones which
can be studied by means of module theory.



Examples of Coherent Rings

• Definition: 1. A topological space X is completely
regular if X is Hausdorff and ∀ U closed set and
∀x ∈ X\U , ∃ f ∈ C(X): f(x) = 1, f(U) = 0.

2. A completely regular space X is basically dis-
connected if ∀ f ∈ C(X) :

supp(f) = {x ∈ X | f(x) 6= 0} is open.

• Theorem (Neville 90): X completely regular space:

1. X is basically disconnected⇔

2. C(X) is a semi-hereditary ring , i.e. every finitely
generated ideal of A is projective,⇔

3. C(X) is a coherent ring⇔

4. C(X) is a PP ring , i.e. every principal ideal is
projective.

• Theorem (Gillman & Jerison 60): If X is basically
disconnected, then X is an F -space , i.e. every
finitely generated ideal of C(X) is principal .

⇒A = L∞(T) or L∞(R) are semi-hereditary rings
and every finitely generated ideal of A is principal.



(Counter-) Examples of Coherent Rings

• Definition: 1. The Nevanlinna class is the algebra
N of holomorphic functions f : D→ C satisfying

sup
0<r<1

∫ 2π

0
log+ | f(r eiθ) | dθ < +∞,

where log+x = max(0, logx).

2. A ring A satisfying H∞(D) ⊆ A ⊆ N is of
Nevanlinna-Smirnov type if:

∀ f ∈ A, ∃ g, h ∈ H∞(D), h−1 ∈ A : f = g/h.

• Example of rings of Nevanlinna-Smirnov type: N ,

N+ = {f : D→ C holomorphic | ∃ g, h ∈ H∞(D) :
f = g/h},

Np = {f : D→ C holomorphic |
sup0<r<1

∫ 2π
0 log+ | f(r eiθ) |p dθ < +∞}.

• Theorem (Mortini 89): Every ring of Nevanlinna
type is coherent.

• Theorem (McVoy & Rubel 76, Mortini & von Renteln 89):

The disc algebra A(D) and the Wiener algebra

W+ = {f(z) =
+∞∑
i=0

an zn |
+∞∑
i=0

| an |< +∞}

are not coherent.



Algorithm

• Input: A coherent integral domain A and R ∈ Aq×p.

• Output: R′ ∈ Ar×p such that Aq R = Ar R′.

1. Start with R ∈ Aq×p.

2. Transpose R to obtain RT ∈ Ap×q.

3. Find a family of generators of:

ker .RT = {λ ∈ Ap |λ RT = 0}.
If {λ1, . . . , λm} is such a family, then note:

RT
−1 =

 λ1
...

λm

 ∈ Am×p.

4. Tranpose RT
−1 to obtain R−1 ∈ Ap×m.

5. Find a family of generators of:

ker .R−1 = {η ∈ Ap | η R−1 = 0}.
If {η1, . . . , ηr} is such a family, then note:

R′ =

 η1
...

ηr

 ∈ Ar×p.

We have Aq R = Ar R′.

• This algorithm is obtained from homological algebra .



Coherent Sylvester domains

• Definition : A is a coherent Sylvester domain if,
for every p ∈ Z+ and row column R ∈ Ap, then

ker R. = {λ ∈ Ap | R λ = 0} is free A-module.

• Example: k[s, z] (k field), every Bézout domain
(e.g. E), every principal ideal domain (e.g. RH∞).

• Theorem: H∞(C+) is a coherent Sylvester domain .

•Definition: A is a greatest common divisor domain
if every a, b ∈ A have a greatest common divisor.

• Theorem (Dicks 83): A coherent Sylvester domain
is a projective-free greatest common divisor domain.

⇒ H∞(C+) is a greatest common divisor do-
main (Renteln 77, Smith 89).

• Theorem: We have the equivalences:

1. Every matrix P with entries in K = Q(A) has a
doubly weakly coprime factorization ,

2. A is a coherent Sylvester domain .

(generalization of a result of M. C. Smith for H∞(C+)).



Example

• Let us consider the transfer matrix (A = H∞(C+)):

P =

 e−s

s−1
e−s

(s−1)2

 ∈ K2, K = Q(A).

• Chasing the unstable denominators of P , we

obtain P = D−1 N with R = (D : −N):

R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 ∈ A2×3.

• A = H∞(C+) is a coherent Sylvester domain .

• There exist a weakly left matrix R′ ∈ A2×3 and
a non-singular matrix R′′ ∈ A2×2 such that:

R = R′′R′ ⇒ (D : −N) = (R′′D′ : −R′′N ′)

⇒ P = D−1 N = (R′′D′)−1 R′′N ′ = D′−1 N ′.

• Algorithm ⇒


R′′ =

(
0 1
− s−1

s+1
1

s+1

)
∈ A2×2

R′ =

(
1

s+1
− s−1

s+1
0

s−1
s+1

0 − e−s

s+1

)
∈ A2×3

⇒ P =

 1
s+1 −

s−1
s+1

s−1
s+1 0

−1 (
0

e−s

s+1

)
is a weakly left-coprime factorization of P .



Doubly coprime factorizations



Left & Right-coprime factorizations

•


P = D−1 N = Ñ D̃−1 ∈ Kq×(p−q),
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×(p−q).

• Definition: P ∈ Kq×(p−q) admits a left-coprime
factorization if there exist two matrices{

R′ = (D′ : −N ′) ∈ Aq×p,

S = (XT : Y T )T ∈ Ap×q,
such that :

{
P = D′−1 N ′,
R′ S = D′X −N ′ Y = Iq.

• Definition: P ∈ Kq×(p−q) admits a right-coprime
factorization if there exist two matrices{

R̃′ = (Ñ ′
T

: D̃′
T
)T ∈ Ap×(p−q),

S̃ = (−Ỹ : X̃) ∈ A(p−q)×p,
such that :

{
P = Ñ ′ D̃′

−1
,

S̃ R̃′ = −Ỹ Ñ ′+ X̃ D̃′ = Ip−q.

• Theorem: P ∈ Kq×(p−q) admits a left-coprime
factorization iff the A-module Ap/Ap−q R̃T is free
of rank q.

• Theorem: P ∈ Kq×(p−q) admits a right-coprime
factorization iff the A-module Ap/Aq R is free of
rank p− q.



Doubly coprime factorizations

•


P = D−1 N = Ñ D̃−1 ∈ Kq×(p−q),
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×(p−q).

• Definition: P has a doubly coprime factorization
if there exist

R′ = (D′ : −N ′) ∈ Aq×p,

R̃′ = (Ñ ′
T

: D̃′
T
)T ∈ Ap×(p−q),

S = (XT : Y T )T ∈ Ap×q,

S̃ = (−Ỹ : X̃) ∈ A(p−q)×p,

such that:

1.
(

S R̃′
) ( R′

S̃

)
= Ip,

2.

(
R′

S̃

) (
S R̃′

)
=

(
Iq 0
0 Ip−q

)
= Ip.

• Theorem: We have the following equivalences:

1. P has a doubly coprime factorization .

2. The A-modules Ap/Ap−q R̃T and Ap/Aq R are
free of rank respectively q and p− q.

3. (Sule 94) The A-modules Ap RT and Ap R̃ are
free of rank respectively q and p− q.



We cannot comb the hair of a coconut!

• Let R2 = R[t0, t1, t2]/(t
2
0 + t21 + t22 − 1) be the

ring of the polynomials in ti on the unit sphere S2.

• Let xi be the class of ti in R2 and let us consider
the “unstable plant”

P =

(
−

x1

x0
: −

x2

x0

)

and the matrix R = (x0 : x1 : x2) ∈ R1×3
2 .

• The R2-module M = R3
2/R2 R is stably-free :

R RT = x2
0 + x2

1 + x2
2 = 1.

⇒ P has a normalized left-coprime factorization
⇒ P is internally stabilizable by C = PT .

• Let us prove that P has no doubly coprime fac-
torizations, i.e. M is not a free R2-module .

1. If M were free, then R could be completed into a
unimodular matrix

U =

 x0 x1 x2
a b c
e f g

 , a, b, c, d, e, f, g ∈ R2.



2. Let us consider the continuous vector field :

X : S2 −→ R3

x = (x0, x1, x2) −→ X(x) = (a(x), b(x), c(x))T .

3. U is a unimodular matrix, i.e. its determinant

e(x1 c− x2 b)− f (x0 c− x2 a) + g (x0 b− x1 a)

is a unit of R2. Hence, the system
x1 c(x) = x2 b(x),
x0 c(x) = x2 a(x),
x0 b(x) = x1 a(x)

has no solution, i.e. X is never colinear with x.

4. Let us consider the continuous vector

Y : x ∈ S2 → πx(X(x)) ∈ R3,

where πx is the orthogonal projection of X(x) onto
the tangent plane of S2 at x.

⇒ Y is a nowhere vanishing continuous vector
field of S2.

5. It is not possible because “the hair of a coconut
cannot be combed” (topological arguments)
⇒M is not a free R2-module
⇒ P has no doubly coprime factorizations as
well as no Youla parametrization for its controllers.



Plants admitting doubly coprime factorizations

• Corollary: p = n
d ∈ K = Q(A) admits a coprime

factorization iff the A-module

I = (d, n) = A2 (d : −n)T

is free, i.e. I is a principal ideal of A.

• Theorem: (Vidyasagar 85) We have 1⇔ 2⇔ 3:

1. A is a B ézout domain,

2. Every MIMO plant − defined by a transfer ma-
trix with entries in K = Q(A) − admits doubly
coprime factorizations,

3. Every SISO plant − defined by a transfer ma-
trix with entries in K = Q(A) − admits doubly
coprime factorizations.

• Example: Principal ideal domains (e.g. k[s], k

field, RH∞), E(k) (k subfield of C),

E = E(R) ∩ R(s)[e−s] . . .



Internal stabilization



Internal stabilization

• Let A be an integral domain of SISO stable plants .

•K = {nd |0 6= d, n ∈ A} the field of fractions of A.

• P ∈ Kq×r a plant .

• C ∈ Kr×q a controller .

• The closed-loop system is defined by:

u1 + e1
C

P

+

y2

y1

+

e2 u2+

u1, u2: external inputs, e1, e2: internal inputs, y1, y2: outputs.(
u1
u2

)
=

(
I −P
−C I

)(
e1
e2

)
,

{
y1 = e2 − u2,
y2 = e1 − u1.

• Definition: C internally stabilizes P if the transfer

matrix T =

(
I −P
−C I

)−1

exists and satisfies :

T =
(

(I − P C)−1 (I − P C)−1 P
C(I − P C)−1 I + C (I − P C)−1 P

)
∈ A(q+r)×(q+r).

• Internal stability ⇔

 L2 − L2 stability if A = H∞(C+),

L∞ − L∞ stability if A = Â.



Examples

• Example: A = RH∞, K = R(s).
p = s

s−1,

c = −(s−1)
(s+1),

⇒


e1 = (s+1)

(2s+1) u1 + s(s+1)
(2s+1)(s−1) u2,

e2 = (−s+1)
(2s+1) u1 + (s+1)

(2s+1) u2.

⇒ c does not internally stabilize p because:

s(s+1)
(2s+1)(s−1) /∈ RH∞ (pole in 1 ∈ C+).

u2 /∈
(

s−1
s+1

)
H2 ,

{
(s−1)
(s+1) z | z ∈ H2

}
⇒ e1 /∈ H2.

(e.g. u2 = 1
s+1 i.e. L−1(u2) = e−t Y (t)).

The pole/zero cancellation between p and c

leads to an unstability .

• Example: A = RH∞, K = R(s).


p = s

s−1,

c = 2,

⇒


e1 = −(s−1)

(s+1) u1 − s
(s+1) u2,

e2 = −2 (s−1)
(s+1) u1 − (s−1)

(s+1) u2.

⇒ c internally stabilizes the plant p.



Internal stabilization: results for MIMO plants

•


P = D−1 N = Ñ D̃−1 ∈ Kq×(p−q),
R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ A(p−q)×p.

• Theorem: P is internally stabilizable iff the A-
module Ap/Aq R (or Ap/Ap−q R̃T ) is projective .

• Corollary: P = D−1 N is internally stabilizable
iff ∃ S = (XT : Y T )T ∈ Kp×q such that:

1. S R =

(
X D −X N
Y D −Y N

)
∈ Ap×p,

2. R S = D X −N Y = Iq.

The controller C = Y X−1 internally stabilizes P .

• Corollary: P ∈ Kq×(p−q) is internally stabiliz-
able iff ∃ S = (UT : V T )T ∈ Ap×q such that:

1. S P = (U P : V P ) ∈ Ap×(p−q),

2. (Iq : −P )S = U − P V = Iq.

The controller C = U V −1 internally stabilizes P .



Example

• Let us consider the transfer matrix (A = H∞(C+)):

P =

 e−s

s−1
e−s

(s−1)2

 ∈ K2, K = Q(A).

• Chasing the unstable denominators of P , we
obtain P = D−1 N with R = (D : −N) ∈ A2×3:

R =

 s−1
s+1 0 − e−s

s+1

0
(

s−1
s+1

)2
− e−s

(s+1)2

 .

• The matrix S = (XT : Y T )T ∈ K3×2 defined by

S =


b
(

s−1
s+1

)2
+ 2

s−1 2 (b− 1) (s−1)
(s+1)

b (s−1)
(s+1)2

− 1
s−1

2 b
s+1 + s+1

s−1

−a (s−1)
(s+1)2

− 2 a
s+1

 ,

with


a = 4 e (5 s−3)

(s+1) ∈ A,

b = (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2
∈ A,

satisfies: {
S R ∈ A3×3,
R S = D X −N Y = I2,

⇒ P is internally stabilized by C = Y X−1.



The stabilizing controller C = Y X−1 is defined by:

C =
(
−a (s−1)

(s+1)2
: − 2 a

(s+1)

)
 b

(
s−1
s+1

)2
+ 2

s−1 2 (b− 1) (s−1)
(s+1)

b (s−1)
(s+1)2

− 1
s−1

2 b
s+1 + s+1

s−1


−1

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).



Example

• Let us reconsider the transfer matrix (A = H∞(C+)):

P =

 e−s

s−1
e−s

(s−1)2

 ∈ K2, K = Q(A).

• The matrix S = (UT : V T )T ∈ A3×2 defined by

S =


2

s+1 + b
(

s−1
s+1

)3
2 b

(
s−1
s+1

)3
− 2 (s−1)

(s+1)

b (s−1)2

(s+1)3
− 1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3

−a (s−1)2

(s+1)3
−2 a (s−1)2

(s+1)3



with


a = 4 e (5 s−3)

(s+1) ∈ A,

b = (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2
∈ A,

satisfies{
S (I2 : −P ) ∈ A3×3,
(I2 : −P )S = U − P V = I2,

⇒ P is internally stabilized by the controller:

C = V U−1

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).



Projective modules

• Definition: If M = Ap/Aq R with R ∈ Aq×p, then
the ith Fitting ideal Fitti(M) of M the ideal de-
fined by the minors of size p− i of R.

• Theorem: The A-module M = Ap/Aq R is pro-
jective of rank r iff:{

Fittr(M) = A,
Fittr−1(M) = 0.

• Theorem: If R ∈ Aq×p (q ≤ p) is a full row
rank matrix , then M = Ap/Aq R is a projective
A-module if there exists S ∈ Ap×q such that:

R S = Iq (⇔ T (M) = Aq/Ap RT = 0).

• Theorem: If A is a semi-simple Banach algebra ,
X(A) its maximal ideal space and R ∈ Aq×p is a
full row rank matrix, then M = Ap/Aq R is a pro-
jective A-module iff

inf
χ∈X(A)

∑
i∈I

| R̂i(χ) |≥ δ > 0,

where (R̂i)i∈I is the minors of size q and ·̂ is the
Gelfand transform .



Example

• Let A = H∞(C+) and the matrix R defined by:

R =

 1 0 − e−s

s+1 −
s−1
s+1

0 s−1
s+1 0 − 1

s+1

 .

• Let us define the A-module M = A4/A2R.

Fitt2(M) =
(

s− 1

s + 1
,

1

s + 1
, . . .

)
.

⇒ Fitt2(M) = A⇒M is a projective A-module ,
and thus, free because H∞(C+) is a Hermite ring .

•We have the generalized B ézout identities :

1 0 − e−s

s+1 −
s−1
s+1

0 s−1
s+1 0 − 1

s+1
.. .. .. ..
0 0 1 0
0 2 0 1


1 −2 (s−1

s+1) : e−s

s+1 (s−1
s+1)

2

0 1 : 0 1
s+1

0 0 : 1 0
0 −2 : 0 s−1

s+1

 = I4.



Algorithm

• Input: A coherent domain A, R = (D : −N) ∈ Aq×p.

• Ouput: Stabilizability or not of P = D−1 N ∈ K(p−q)×q.

1. Compute Aq R:

Find r ∈ Z+ and R′ ∈ Ar×p such that
Aq R = Ar R′.

2. For increasing i, check whether or not:

1 ∈ Fitti(A
p/Ar R′).

If ∃ i such that 1 ∈ Fitti(A
p/Ar R′) ⇒ P is inter-

nally stabilizable, else not.

• Remark : In order to be able to check effectively
internal stabilizability, we need to:

a. compute the kernel of matrices whose entries be-
long to A.

b. test whether or not 1 belongs to a finitely gener-
ated ideal of A.

• There exists a general algorithm which com-
putes stabilizing controllers .



Example

• Let us consider the plant (A = H∞(C+)):

p = e−s

s−1 =

(
e−s

s+1

)
(

s−1
s+1

) ⇒ (
s−1
s+1

)
y −

(
e−s

s+1

)
u = 0.

• Let R =
(

s−1
s+1 : − e−s

s+1

)
∈ A2 and the A-module

M = A2/A R = M/t(M)⇒ Fitt1(M) =
(

s−1
s+1, e−s

s+1

)
.

•M is projective iff Fitt1(M) = A, i.e. ∃ a, b ∈ A:(
s−1
s+1

)
a +

(
− e−s

s+1

)
b = 1. (1)

• By the Gelfand transform & Corona theorem :

(1)⇐⇒ inf{s∈C |Re s>0}

(∣∣∣s−1
s+1

∣∣∣+ ∣∣∣∣− e−s

s+1

∣∣∣∣) > 0.

Moreover, we have:(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+ 2 e

(
e−s

s+1

)
= 1,

⇒M is a projective A-module (i.e. a free A-module)

⇒ p is internally stabilizable and

c = −
2 e

1 + 2
(

1−e−(s−1)

s−1

) = −
2 e (s− 1)

s + 1− 2 e−(s−1)

is a stabilizing controller of p.



Example

• Let A = H∞(C+), R =
(
e−s : 1

s+1

)
∈ A2 and

the A-module M = A2/A R = M/t(M).

⇒ Fitt1(M) =
(

1
s+1, e−s

)
.

•M is projective iff Fitt1(M) = A, i.e. iff ∃ a, b ∈ A:

1
(s+1) a + e−s b = 1.

• By the Corona Theorem, we have

infRe s>0

(
|e−s|+

∣∣∣ 1
s+1

∣∣∣) = 0

because if (xn)n∈N is a sequence of positive reals
such that limn→+∞ xn = +∞, then:

limn→+∞
(
|e−xn|+

∣∣∣ 1
xn+1

∣∣∣) = 0,

⇒ 1 /∈ Fitt1(M)

⇒M is not a projective A-module.



A generalization of a result of M. C. Smith

• Corollary: If P admits a doubly weakly coprime
factorization , then P is internally stabilizable iff P

admits a doubly coprime factorization .

If P = D−1 N = Ñ D̃−1 is a doubly coprime fac-
torization of P ,(

D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= Ip,

then, the controller

C = Y X−1 = X̃−1 Ỹ

internally stabilizes the plant P .

•Corollary: If A is coherent Sylvester domain (e.g.
H∞(C+), k[s, z] (k field), Z[s], E, RH∞), then:

internal stabilizability
⇔

existence of doubly coprime factorization.

(generalization of results of Smith, Vidyasagar . . . ).



Example

• Let us consider the transfer matrix (A = H∞(C+)):

P =

 e−s

s−1
e−s

(s−1)2

 ∈ K2, K = Q(A).

• P has a weakly left-coprime factorization :

P =

 1
s+1 −

s−1
s+1

s−1
s+1 0

−1 (
0

e−s

s+1

)

⇒ P is internally stabilizable iff

R′ =

 1
s+1 −

s−1
s+1 0

s−1
s+1 0 − e−s

s+1

 ∈ A2×3

has a right-inverse S, i.e. T (M ′) = A2/A3 R′T = 0.
1

(s+1) λ1 + (s−1)
(s+1) λ2 = µ1,

−(s−1)
(s+1) λ1 = µ2,

− e−s

(s+1) λ2 = µ3,

⇔

 λ1 = 2(−b
(

s−1
s+1

)2
+ 1)µ1 − (2 b (s−1)

(s+1)2 + 1)µ2 + 2 a (s−1)
(s+1)2 µ3,

λ2 = b (s−1)
(s+1)

µ1 + b
(s+1)

µ2 − a
(s+1)

µ3,

with


a = 4 e (5 s−3)

(s+1) ∈ A,

b = (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2
∈ A.



• A right-inverse S of R′ is defined by:

S =


−2 b

(
s−1
s+1

)2
+ 2 b (s−1)

(s+1)

−2 b (s−1)
(s+1)2

− 1 b
(s+1)

2 a (s−1)
(s+1)2

− a
(s+1)

 ∈ A3×2.

• Then, a stabilizing controller C of

P =

 e−s

s−1
e−s

(s−1)2


is defined by:

C =
(
2 a (s−1)

(s+1)2
: − a

(s+1)

)
 −2 b

(
s−1
s+1

)2
+ 2 b (s−1)

(s+1)

−2 b (s−1)
(s+1)2

− 1 b
(s+1)


−1

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).



Internal stabilization: results for SISO plants

• Theorem: We have 1⇔ 2⇔ 3:

1. The plant p = n
d is internally stabilizable ,

2. The ideal I = (n, d) is invertible , i.e. we have

I (A : I) , {
n∑

i=1

ai bi, | ai ∈ I, bi ∈ (A : I)} = A,

where the fractional ideal A : I is defined by:

A : I = { c ∈ K = Q(A) | c n ∈ A, c d ∈ A},
3. There exist x, y ∈ K = Q(A) satisfying :

d x− n y = 1,

x n, x d, y n, y d ∈ A.

Then, c = y/x internally stabilizes p = n/d and
A : I = (x, y) is the inverse of I = (n, d).

• Corollary: The plant p ∈ K = Q(A) is internally
stabilizable iff the fractional ideal J = (1, p) is
invertible , i.e. J (A : J) = A, where

A : J = {a ∈ A | a p ∈ A},
i.e. iff ∃ a, b ∈ A such that:{

a− b p = 1,
a p ∈ A.

Then, the controller c = b/a internally stabilizes p.



Example

• Let us consider the transfer function (A = H∞(C+)):

p = e−s

(s−1) ∈ K = Q(A), K = Q(A).

• Let us define the fractional ideal J = (1, p) of A

⇒ A : J = {k ∈ A | k p ∈ A} =
(

s−1
s+1

)
⇒ J (A : J) =

(
s−1
s+1, e−s

s+1

)
.

•We have the following Bézout identity(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+
(

e−s

s+1

)
2 e = 1

(2)
⇒ J (A : J) = A, i.e. p is internally stabilizable .

• Moreover, we have:

(2)⇔
(

s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+
(
2 e
(

s−1
s+1

))
p = 1,

⇒

 a =
(

s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
∈ A : J,

b = −2 e
(

s−1
s+1

)
∈ A : J.

Then, a stabilizing controller c of p is given by:

c = b
a = − 2 e (s−1)

(s−1)+2(1−e−(s−1))
.



Tangent bundle of S1

• Let R1 = R[t0, t1]/(t
2
0 + t21 − 1) be the ring of

the polynomials in t0 and t1 on the unit circle S1.

• Let xi be the class of ti in R1, and the plant:

p =
b− x1

x0 − a
∈ K = Q(R1), a2 + b2 = 1.

• R = (x0 − a : x1 − b) is not weak left-prime :(
x0+a
x1−b

)
R = (b−x1 : x0+a) ∈ R1×2

1 ,
(

x0+a
x1−b

)
/∈ R1

⇒ R1-module M = R2
1/R1 R is not torsion-free

⇒M is not a free R1-module, i.e. @ u, v ∈ R1:

u (x0 − a) + v (x1 − b) = 1

⇒ p has no doubly coprime factorizations .

• Let I = (x0−a, x1−b), then A : I =
(
1, x0+a

b−x1

)
(x0 − a)

(
−

1

2a

)
+ (b− x1)

(
x0 + a

2a(b− x1)

)
= 1

⇒ I. (A : I) = A, i.e. I is invertible .

⇒ c = x0+a
b−x1

stabilizes p = b−x1
x0−a and we have:(

1 −p
−c 1

)−1

=

 a−x0
2a

x1−b
2a

−x1+b
2a

a−x0
2a

 ∈ R2×2
1 .



Anantharam counter-example (85)

• Let A = Z[i
√

5] and the plant p = 1+i
√

5
2 .

• R = (1 + i
√

5 : −2) is not weak left-prime
⇒ M = A2/A R is not torsion-free ⇒ not free
⇒ @ a, b ∈ A such that (1 + i

√
5) a + 2 b = 1

⇒ p has no doubly coprime factorizations .

• The plant p is internally stabilizable because the
ideal I = (1 + i

√
5,2) is invertible :

A : I = {c ∈ Q(i
√

5) | c I ⊂ A)} =
(
1, 1−i

√
5

2

)

(1+i
√

5)
(

1−i
√

5
2

)
−2×1 = 1 ∈ I (A : I) = A.

⇒ c = 1−i
√

5
2 is a stabilizing controller of p and:(

1 −p
−c 1

)−1

=

(
2 1 + i

√
5

1− i
√

5 2

)
∈ A2×2.

• Or, p = 3
1−i
√

5
= −(1+i

√
5)

−2 with 3-2=1 ⇒ p is

internally stabilized by c = −1−i
√

5
−2 = 1−i

√
5

2 .

• Any MIMO defined by a transfer matrix with entries
in K = Q(i

√
5) is internally stabilizable because

A is a Dedekind (i.e. a Prüfer) domain.



Classes of internal stabilizable plants

• Definition: A domain A is a Prüfer domain if it
satisfies one of the equivalent assertions:

1. Every finitely generated torsion-free A-module
is projective ,

2. Every finitely generated ideal is projective ,

3. ∀0 6= d, n ∈ A, I = (d, n) is invertible , i.e.:

∃ x, y ∈ K = Q(A) :


d x− n y = 1,

x n, x d, y n, y d ∈ A.

• Examples: − Bézout or Dedekind domains,

− the affine coordinates ring of a non-singular alge-
braic surface (e.g. R[x, y]/(x2 + y2 − 1)),

− the integral closure of Z into a finite extension of Q
(e.g. Z[i

√
5], Z[i

√
23]),

− the domain of Z-valued polynomials in Q[x]...

• Theorem: 1. A is a Prüfer domain ⇔

2. Every MIMO plant − defined by a transfer matrix
with entries in K = Q(A) − is stabilizable ⇔

3. Every SISO plant − defined by a transfer func-
tion with entries in K = Q(A) − is stabilizable .



Youla-Ku čera parametrization

• Theorem: If R ∈ Aq×p is a full row rank matrix ,
then the A-module M = Ap/Aq R is free iff there
exist R−1, S, S−1 such that:

1.
(

S R−1

) ( R
S−1

)
= Ip,

2.

(
R

S−1

) (
S R−1

)
=

(
Iq 0
0 Ip−q

)
.

• Proposition: If R ∈ Aq×p is a full row rank matrix
and the A-module M = Ap/Aq R is free , then:

1.
(

S′(Q) R−1

) ( R
S′−1(Q)

)
= Ip,

2.

(
R

S′−1(Q)

) (
S′(Q) R−1

)
=

(
Iq 0
0 Ip−q

)
,

with


S′−1(Q) = S−1 + Q R,

S′(Q) = S −R−1 Q,
∀ Q ∈ A(p−q)×q.

⇒ We call Q ∈ A(p−q)×q −→ S′−1(Q) the Youla
parametrization of the complements of R in GLp(A).



Example

• Let us consider p = e−s

(s−1) and the system:

(s−1)
(s+1) y − e−s

(s+1) u = 0.

If A = H∞(C+) and R =
(

s−1
s+1 : − e−s

s+1

)
, then

the A-module M = A2/A R is free .

⇒ p is internally stabilizable and has doubly co-
prime factorizations .

• A few computations give the Bézout identity :
s−1
s+1 − e−s

s+1

2 e + (s−1)
(s+1) q 1 + 2

(
1−e−(s−1)

s−1

)
− e−s

(s+1) q




1 + 2
(

1−e−(s−1)

s−1

)
− e−s

(s+1) q e−s

s+1

−2 e− (s−1)
(s+1) q s−1

s+1

 = I2, q ∈ A.

All the stabilizing controllers are parametrized by :

c = −
2 e + (s−1)

(s+1) q

1 + 2
(

1−e−(s−1)

s−1

)
− e−s

(s+1) q
, q ∈ A.

The degree of freedom q can be used to optimize
the closed-loop performances (H2 or H∞ control).



K-Theory and Class groups

• Corollary If A is a Prüfer domain which is not a
Bézout domain, then there exist stabilizable plants
which have no doubly coprime factorizations .

⇒ We cannot parametrize their stabilizing con-
trollers by means of the Youla parametrization .

− A plant p = n/d is stabilizable iff I = (n, d) is a
projective A-module, i.e. invertible .

− A plant p = n/d has doubly coprime factoriza-
tions iff I = (n, d) is a free A-module, i.e. principal .

⇒ K0(A) and K̃0(A) (or the class group C(A))
study the difference between projective and free
A-modules (or invertible and principal ideals ).

• Theorem: If A is a projective-free domain, then
a plant is internally stabilizable iff it has doubly
coprime factorizations.

• Example : K0(H∞(C+)) = Z, K0(E) = Z,
K0(RH∞) = Z, K0(Â) =?.



What is next?

• Parametrization of all the stabilizing controllers
of a stabilizable plant which does not admit co-
prime factorizations (⇒ generalization of the Youla-
Kučera parametrizaton) (SCL).

• Strong stabilization (existence of a stable con-
troller) and simultaneous stabilization (existence
of a controller stabilizing a family of plants) (SIAM).

•Duality between module and operator approaches
(domains, graphs, unbounded operators . . . ) (SCL).

• Nyquist’s theorem for ∞-dimensional systems.

• Robustness topology : graph topology and met-
ric, gap metric, ν-gap metric . . .

• H2 and H∞-optimal stabilizing controllers .

• Development of algorithms and packages (e.g.
for certain classes of delay systems as e.g. E).



Appendix



Homological Algebra

• Definition: A free (resp. projective, flat ) resolu-
tion of an A-module M is an exact sequence

· · · d3−→ F2
d2−→ F1

d1−→ F0 −→M −→ 0 (3)

where the Fi are free (resp. projective, flat ).

• Definition: The minimum length pdA(M) (resp.
fd(A)) of the projective (resp. flat ) resolutions of
M is called projective (resp. flat ) dimension .

• Definition: The global dimension of a ring A is:

gl.dim(A) = min{pdA(M) | ∀ A−module M}.
The weak global dimension of a ring A is:

w.gl.dim(A) = min{fdA(M) | ∀ A−module M}.

• Definition: If M is an A-module with (3) for a pro-
jective resolution , then the defects of exactness of

· · ·
d?
4←− F ?

3
d?
3←− F ?

2
d?
2←− F ?

1
d?
1←− F ?

0 ←− 0,

where F ?
i = homA(Fi, A), are defined by

1. ext0A(M, A) = ker d?
0 = homA(M, A),

2. exti
A(M, A) = ker d?

i+1/im d?
i , i ≥ 1,

only depend on M and not on (3).



Homological Algebra

• Proposition: If A is a coherent domain, then every
A-module of the form M = Ap/Aq R has a finite
free resolution , i.e. Fi

∼= Ari with ri ∈ Z+.

• Proposition: If A is a coherent domain , then, for
every A-module of the form M = Ap/Aq R:

pdA(M) = fdA(M).

• Theorem: If A is a coherent domain with a weak
global dimension w.gl.dim(A) = n, then, for any
A-module of the form M = Ap/Aq R, we have:

0. t(M) ∼= ext1A(T (M), A),

1. M is torsion-free⇔ ext1A(T (M), A) = 0,

2. M is reflexive⇔ exti
A(T (M), A) = 0, i = 1,2,

. . .

n. M is projective⇔ exti
A(T (M), A) = 0,1 ≤ i ≤ n,

where T (M) = Aq/Aq RT is the transposed A-
module of M .



Coherent Sylvester Domains

• Definition: A projective-free coherent domain with
w.gl.dim(A) ≤ 2 is a coherent Sylvester domain .

• Example: k[χ1, χ2] (k field), every Bézout domain
(e.g. E), every principal ideal domain (e.g. RH∞).

• Theorem (Dicks & Sontag 78): A is a coherent
Sylvester domain iff for every row column R ∈ Ap,
the A-module

ker R. = {λ ∈ Ap | R λ = 0}

is free .

• Theorem: H∞(C+) is a coherent Sylvester domain .

•Definition: A is a greatest common divisor domain
if every a, b ∈ A have a greatest common divisor.

• Theorem (Dicks 83): A coherent Sylvester domain
is a greatest common divisor domain.

⇒ (Renteln 77, Smith 89) H∞(C+) is a greatest
common divisor domain .
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Introduction

• Theorem: (Morse, Vidyasagar) Every transfer ma-
trix P ∈ R(s)q×r admits a doubly coprime factor-
ization over RH∞, i.e.:

P = D−1 N = Ñ D̃−1,(
D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= I,

where D, N, Ñ, Ñ , X, Y, X̃, Ỹ ∈M(RH∞).

• Theorem: (Youla, Kučera, Desoer) All the stabi-
lizing controllers of P ∈ R(s)q×r have the form:

C(Q) = (X̃−Q N)−1 (Ỹ −Q D) = (Y +D̃ Q) (X+Ñ Q)−1

for every Q ∈ RH
r×q
∞ such that:

det(Ỹ −Q N) 6= 0, det(X − Ñ Q) 6= 0.

• Interest: Find the controllers C ∈ R(s)r×q s.t.:

inf
C∈Stab(P )

‖W1 (I − P C)−1 W2 ‖∞,

Stab(P ) = { C ∈ R(s)r×q | (I − P C)−1, (I − P C)−1 P,

C (I − P C)−1, C (I − P C)−1 P ∈M(RH∞)}

This non-linear problem becomes the convex one:

inf
Q∈RH

r×q
∞
‖W1 (X + Ñ Q)D W2 ‖∞ .



Closed-loop

u1 + e1
C

P

+

y2

y1

+

e2 u2+



Extension to other classes of systems

“ The foregoing results about rational functions
are so elegant that one can hardly resist the

temptation to try to generalize them to
non-rational functions .

But to what class of functions?

Much attention has been devoted in the
engineering literature to the identification of a

class that is wide enough to encompass all the
functions of physical interest and yet enjoys the
structural properties that allow analysis of the

robust stabilisation problem ”,

N. Young.

(“Some function-theoretic issues in feedback stabilization”, in
Holomorphy Spaces, MSRI Publications 33, 1998, 337-349.)



Fractional representation approach

• Let A be an integral domain and K its quotient
field Q(A) = {n/d |0 6= d, n ∈ A}.

• Definition: P ∈ M(K) has a doubly coprime
factorization over A if there exist

∃ D, N, D̃, Ñ , X, Y, X̃, Ỹ ∈M(A) such that:

P = D−1 N = Ñ D̃−1,(
D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= I.

• Definition: P ∈ Kq×r is A-internally stabilizable
if ∃C ∈ Kr×q such that:(

Iq −P
−C Ir

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P

(Ir − C P )−1 C (Ir − C P )−1

)
∈M(A).

• existence of a doubly coprime factorization
over A⇒ A-internal stabilizability.

⇒ P ∈M(R(s)) is RH∞-internally stabilizable .

• Theorem: (Smith) If A = H∞(C+), then:

H∞(C+)-internal stabilizability
⇔

existence of doubly coprime factorizations

⇒ ∃ Youla-Ku čera parametrization.



Open questions

• Does A-internal stabilizability imply the exis-
tence of doubly coprime factorizations over :

A = Â = {L(f)(s) +
∑+∞

i=0 ai e−ti s | f ∈ L1(R+)

(ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 ≤ t2 ≤ . . .},
(ring of BIBO-stable time-invariant systems)

A = W+ =
{∑∞

i=0 ai zi |
∑+∞

i=0 |ai| < +∞
}

,

(ring of BIBO-stable causal digital filters)

A = MDn = {r/s |0 6= s, r ∈ R[x1, . . . , xn],
s(x) = 0⇒ x /∈ Dn}

(ring of nD systems with structural stability) . . . ?

• If it is not the case:

Is it possible to parametrize all stabilizing
controllers of a stabilizable plant which does

not admit doubly coprime factorizations?

• In this talk, we shall solve the last question.



SISO systems



Theory of fractional ideals

• Let A and K = Q(A) = {n/d |0 6= d, n ∈ A}.

• Definition: A fractional ideal J of A is an A-
submodule of K such that ∃0 6= d ∈ A satisfying:

(d) J , {a d | a ∈ J} ⊆ A.

J of A is integral if J ⊆ A and principal if ∃ k ∈ K :

J = (k) , A k = {a k | a ∈ A}.

• Proposition: Let F(A) be the set of non-zero frac-
tional ideals of A and I, J ∈ F(A). Then: I J = {

∑
finite ai bi | ai ∈ I, bi ∈ J} ∈ F(A),

I : J = {k ∈ K = Q(A) | (k) J ⊆ I} ∈ F(A).

• Example: Let A = RH∞, H∞(C+), Â, W+ . . .
and p ∈ K = Q(A) be a transfer function . Then,

J = A + A p = {λ + µ p |λ, µ ∈ A} ∈ F(A)

(p = n/d, d, n ∈ A⇒ (d) J = A n + A d ⊆ A).

• Definition: J ∈ F(A) is invertible if ∃ I ∈ F(A):

I J = A.

⇒ I = J−1 = A : J = {k ∈ K | (k) J ⊆ A}.



Stabilization problems

• Theorem: Let p ∈ K = Q(A) and:

J , (1, p) = A + A p ∈ F(A).

1. p has a weakly coprime factorization p = n/d

(0 6= d, n ∈ A, ∀ k ∈ K : k n, k d ∈ A⇒ k ∈ A)

⇔ A : J , {a ∈ A | a p ∈ A} = A d.

2. p is internally stabilizable ⇔ J is invertible , i.e.

∃ a, b ∈ A :

{
a− b p = 1,

a p ∈ A.

Then, c = b/a internally stabilizes p, J−1 = (a, b).

3. c ∈ K internally stabilizes p

⇔ (1, p) (1, c) = (1− p c).

4. p admits a coprime factorization p = n/d

(0 6= d, n ∈ A, ∃x, y ∈ A : d x− n y = 1)

⇔ J = (1/d) .

5. p is strongly stabilizable

⇔ ∃ c ∈ A : J = (1− p c).



Example

• Let us consider A = H∞(C+) and:

p = e−s

(s−1) =
e−s

(s+1)
(s−1)
(s+1)

∈ K = Q(A).

• Let us define the fractional ideal J = (1, p) of A

⇒ A : J = {d ∈ A | d p ∈ A} =
(

s−1
s+1

)
,

because A is a GCDD and gcd
(

e−s

s+1, s−1
s+1

)
= 1.

• p is internally stabilizable iff ∃ a, b ∈ A : J s.t.:

a− b p = 1⇔ ∃x, y ∈ A :


a = (s−1)

(s+1) x,

b = (s−1)
(s+1) y,

a− b p = 1.

b = (a−1)
p =

(
s−1
s+1

) (
(s−1)x−(s+1)

e−s

)
⇔ y = (s−1)x−(s+1)

e−s

⇔ x = (s+1)+e−s y
s−1

⇒ ((s + 1) + e−s y(s))(1) = 0⇒ y(1) = −2 e.

• Taking y(s) = y(1) = −2 e ∈ A, then:

x = (s+1)−2 e−(s−1)

s−1 = 1 + 2
(

1−e−(s−1)

s−1

)
∈ A.



• Therefore, we have:
a =

(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
∈ A : J,

b = −2 e
(

s−1
s+1

)
∈ A : J,

a− b p = 1, (?)

⇒ a stabilizing controller c of p is defined by:

c = b
a = − 2 e (s−1)

(s−1)+2(1−e−(s−1))
= − 2 e (s−1)

s+1−2 e−(s−1).

• J = (1, p) is invertible , J−1 = A : J =
(

s−1
s+1

)
⇒ J = (J−1)−1 =

(
s+1
s−1

)
is principal

⇒ p =
e−s

(s+1)
(s−1)
(s+1)

is a coprime factorization :

(?) ⇔
(

s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+
(
2 e
(

s−1
s+1

))
p = 1,

⇔
(

s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
−
(

e−s

s+1

)
(−2 e) = 1,

⇒


x = 1 + 2

(
1−e−(s−1)

s−1

)
∈ A,

y = −2 e ∈ A,

d x− n y = 1.



Robust stabilization

• c ∈ K = Q(A) internally stabilizes p ∈ K iff:

(1, p) (1, c) = (1− p c).

• Let δ ∈ A. c internally stabilizes p and p + δ

iff


(1, p) (1, c) = (1− p c),

(1, p + δ) (1, c) = (1− (p + δ) c).

⇔


(1, p) (1, c) = (1− p c),

(1, p) (1, c) = (1− (p + δ) c).

⇔


(1, p) (1, c) = (1− p c),

(
1−(p+δ) c

1−p c

)
=
(
1− δ c

1−p c

)
= A,

⇔ c stabilizes p and (1− δ c)/(1− p c) ∈ U(A).

• If A is a Banach algebra , then (small gain thm):

‖ 1− a ‖A< 1⇒ a ∈ U(A).

⇒ a sufficient condition of robust stabilization :

‖ δ ‖A < (‖ c/(1− p c) ‖A)−1



Example

• Let A be the ring of BIBO-stable causal filters :

A = W+ = {f(z) =
+∞∑
i=0

ai zi |
+∞∑
i=0

|ai| < +∞}.

• Let us consider the transfer function p = e
−
(

1+z
1−z

)
:

n = (1− z)3 e
−
(

1+z
1−z

)
∈ A,

d = (1− z)3 ∈ A,

⇒ p = n/d ∈ Q(A).

• Let us consider the fractional ideal J = (1, p) of A.

A : J = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}.

• The ideal A : J is not finitely generated

(R. Mortini & M. Von Renteln, Ideals in Wiener algebra , J.

Austral. Math. Soc., 46 (1989), 220-228),

i.e. @ finite family {d1, . . . , dr}, di ∈ A, such that:

∀ d ∈ A : J, ∃ ai ∈ A : d =
r∑

i=1

ai di.

⇒ p has not weakly coprime factorizations

⇒ p does not admit coprime factorizations
& p is not internally stabilizable



Parametrizations

• Theorem: Let p ∈ K = Q(A) be a stabilizable
plant and J = (1, p). Then, all the stabilizing
controllers of p have the form

c(q1, q2) =
b + r1 q1 + r2 q2

a + r1 p q1 + r2 p q2
, (?)

where c = b/a is a stabilizing controller of p, i.e.

a− b p = 1, a p ∈ A,

J−2 = (r1, r2) (e.g. r1 = a2, r2 = b2)
and ∀ q1, q2 ∈ A : a + r1 p q1 + r2 p q2 6= 0.

1. (?) has only one free parameter

⇔ p2 admits a coprime factorization p2 = s/r

(?)⇔ c(q) =
b + r q

a + r p q
, q ∈ A : a + r p q 6= 0.

2. If p admits a coprime factorization p = n/d,

0 6= d, n ∈ A, d x− n y = 1, then:

(?)⇔ c(q) =
y + d q

x + n q
, ∀ q ∈ A : x + n q 6= 0.

(a = d x, b = d y, r = d2)

Youla-Ku čera parametrization



Example

• Let us consider the ring A = R[x2, x3] of dis-
crete time delay systems without the unit delay .

•A has been used for high-speed circuits, computer
memory devices. . . (K. Mori).

• Let us consider p = (1− x3)/(1− x2) ∈ Q(A).

• Let us consider the fractional ideal J = (1, p).

• Using the relation in A

(1− x3) (1 + x3) = (1− x2) (1 + x2 + x4),

we have:

p =
(1− x3)

(1− x2)
=

(1 + x2 + x4)

(1 + x3)
.

⇒ A : J = (1 − x2, 1 + x3) is not principal
because x + 1 /∈ A.

⇒ p does not admit a weakly coprime
factorization.

⇒ p does not admit a coprime factorization

⇒ we cannot parametrize all the stabilizing
controllers of p by means of the Youla-Ku čera

parametrization.



Example

• J (A : J) = (1−x2, 1+x3, 1−x3, 1+x2+x4)

⇒ (1 + x3)/2 + (1− x3)/2 = 1 ∈ J (A : J)

⇒ p is internally stabilizable and J−1 = A : J .

• (1 + x3)/2 + (1− x3)/2 = 1 ∈ J (A : J)

⇔
(1 + x3)/2 + ((1− x2)/2) p = 1

⇒

 a = (1 + x3)/2 ∈ J−1,

b = −(1− x2)/2 ∈ J−1,

⇒ c = b/a = −(1− x2)/(1 + x3)

internally stabilizes p.

• J−2 = ((1 − x2)2, (1 + x3)2) is not principal
ideal of A (x + 1 /∈ A).

• All the stabilizing controllers of p have the form

c(q1, q2) =

−(1−x2)+(1−x2)2 q1+(1+x3)2 q2
(1+x3)+(1−x2) (1−x3) q1+(1+x3) (1+x2+x4) q2

for all q1, q2 ∈ A such that the denominator exists.



Example

• Let us consider A = Z[i
√

5], K = Q(i
√

5) and:

p = (1 + i
√

5)/2 ∈ K

“On stabilization and existence of coprime factorizations”,
V. Anantharam, , IEEE TAC 30 (1985), 1030-1031.

• Let us define the fractional ideal J = (1, p).

• Using the relation in A

2× 3 = (1 + i
√

5) (1− i
√

5) = 6,

⇒ p = (1 + i
√

5)/2 = 3/(1− i
√

5).

⇒ A : J = (2, 1− i
√

5) is not a principal ideal .

⇒ p does not admit a (weakly) coprime
factorization.

⇒ @ Youla-Ku čera parametrization.

• J (A : J) = (2, 1 + i
√

5, 1− i
√

5, 3) = A:

−2 + 3 = −2− (−1 + i
√

5) p = 1

⇒ c = (1− i
√

5)/2 internally stabilizes p.

• J−2 = (A : J)2 = (2, 1− i
√

5)2 = (2)

⇒ c(q) = 1−i
√

5−2 q
2−(1+i

√
5) q

, ∀ q ∈ A.



Picard group

• Definition: Let P(A) be the group of non-zero
principal fractional ideals of A:

P(A) = {(k) , A k | 0 6= k ∈ K}.

Let I(A) be the group of non-zero invertible frac-
tional ideals of A:

I(A) = {J ∈ F(A) | ∃ I ∈ F(A) : I J = A}.

The Picard group of A is the defined by:

C(A) = I(A)/P(A)

• Proposition: If C(A) ∼= Z/2Z, then every stabi-
lizable plant p ∈ Q(A) has a parametrization of
all its stabilizing controllers with only one free
parameter.

If C(A) ∼= 1, then every stabilizable plant p ∈ Q(A)

has a Youla-Ku čera parametrization (e.g. H∞(C+),
RH∞, Bézout domains).



Sensitivity minimization

• Let A be a Banach algebra (H∞(C+), Â, W+,. . . )

• Let p ∈ K = Q(A) be a stabilizable plant , then

infc∈Stab(p) ‖
w

1−p c ‖A
=

infq1, q2∈A ‖ w (a + a2 p q1 + b2 p q2) ‖A (?)

(convex problem )

where a, b ∈ A satisfy a− b p = 1, a p ∈ A,
and c? = b/a is a stabilizing controller of p.

• 1. If p = n/d is a coprime factorization of p

d x− n y = 1, x, y ∈ A,

⇒ a = d x, b = d y,

⇒ a+a2 p q1+ b2 p q2 = d (x+ q n),

q = x2 q1 + y2 q2.

2. ∀ ∈ A, ∃ q1, q2 ∈ A : q = x2 q1 + y2 q2,

with q1 = d2 (1− 2n y) q, q2 = n2 (1 + 2 d x) q,[
(d2 (1− 2n y))x2 + (n2 (1 + 2 d x)) y2 = 1

]
.

(?)⇔ infq∈A ‖ w d (x + n q) ‖A .



MIMO systems



Lattices

• Let V be a finite-dimensional K-vector space.

• Definition: An A-submodule M of V is a lattice of
V if ∃ L1, L2 two free A-submodules of V s.t.:{

L1 ⊆M ⊆ L2,

rkA(L1) = dimK(V ).

• Example: The lattices of V = K are just the non-
zero fractional ideals of A.

• Proposition: An A-submodule M of V is a lattice
of V iff{

K M , {k m | k ∈ K, m ∈M} = V,

M ⊆ P,

where P is a finitely generated A-submodule of V .

• Example: Let P ∈ Kq×r, then the A-module

(Iq : −P )Aq+r

is a lattice of the K-vector space Kq.

• Example: Let P ∈ Kq×r, then the A-module

A1×(q+r)
(

P
Ir

)
is a lattice of the K-vector space K1×r.



Lattices

• Let V and W be finite-dimensional K-vector spaces.

• Let M (resp. N ) be a lattice of V (resp. W ).

• Definition: N : M is the A-submodule of

homK(V, W ) = {f : V →W | f is a K−linear map}
formed by the K-linear maps f : V → W which
satisfy f(M) ⊆ N.

• Proposition: 1. N : M is a lattice of homK(V, W ).

2. The map

N : M → homA(M, N) = {f : M → N |
f is a A− linear map},

f 7→ f|M ,

is bijective.

• Example: Let P ∈ Kq×r and M = (Iq : −P )Aq+r.
Then, we have:

A : M = {f : Kq → K | f(M) ⊆ A}

= {λ ∈ K1×q |λ (Iq : −P )Aq+r ⊆ A}
= {λ ∈ K1×q |λ ∈ A1×q, λ P ∈ A1×r}
= {λ ∈ A1×q |λ P ∈ A1×r}.



Weakly coprime factorizations

•Definition: P ∈ Kq×r admits a weakly left-coprime
factorization if ∃ R = (D : −N) ∈ Aq×(q+r) s.t.:

P = D−1 N,

∀ λ ∈ K1×q : λ R ∈ A1×(q+r) ⇒ λ ∈ A1×q.

• Definition: P ∈ Kq×r admits a weakly right-
coprime factorization if ∃ R̃ = (ÑT : D̃T )T ∈
A(q+r)×r such that:

P = Ñ D̃−1,

∀ λ ∈ Kr : R̃ λ ∈ Ap ⇒ λ ∈ Ar.

• Proposition: P ∈ Kq×r admits a weakly left-
coprime factorization iff ∃ D ∈ Aq×q such that

A : ((Iq : −P )Aq+r) = {λ ∈ A1×q |λ P ∈ A1×r}
= A1×q D,

i.e. is a free lattice of K1×q.

• Proposition: P ∈ Kq×r admits a weakly right-
coprime factorization iff ∃ D̃ ∈ Ar×r such that

A :

(
A1×(q+r)

(
P

Ip−q

))
= {λ ∈ Ar |P λ ∈ Aq}

= D̃ Ar,

i.e. is free lattice of Kr.



Coprime factorizations

• Let A be an integral domain and K = Q(A).

• Proposition: P ∈ Kq×r admits the left-coprime
factorization

P = D−1 N, D X −N Y = Iq,

iff ∃ D ∈ Aq×q such that

(Iq : −P )Aq+r , {λ1 − P λ2 | λ1 ∈ Aq, λ2 ∈ Ar}
= D−1 Aq,

i.e. iff (Iq : −P )Ap is a free lattice of Kq.

• Proposition: If P ∈ Kq×r admits a right-coprime
factorization

P = Ñ D̃−1, −Ỹ X + X̃ D̃ = Ir,

iff ∃ D̃ ∈ Ar×r such that

A1×(q+r)

(
P
Ir

)
, {λ1 P + λ2 |

(λ1 : λ2) ∈ A1×(q+r)}

= A1×(q+r) D̃−1,

i.e. iff A1×(q+r) (PT : Ir)T is a free lattice of
K1×r.



Stabilizability

• Theorem: P ∈ Kq×r is internally stabilizable iff
one of the following conditions is satisfied:

1. (Iq : −P )Aq+r is a projective lattice of Kq,
namely ∃ A-module M such that:

(Iq : −P )Aq+r ⊕M ∼= Aq+r.

2. A1×(q+r)

(
P
Ir

)
is a projective lattice of K1×r,

namely ∃ A-module N such that:

A1×(q+r)

(
P
Ir

)
⊕N ∼= A1×(q+r).

• Let R = (Iq : −P ), Q =

(
P
Ir

)
, p = q + r,

then we have the following split exact sequences :

0←− (Iq : −P )Ap R.←− Ap Q.←− A :

(
A1×p

(
P
Ir

))
←− 0,

S.−→ T.−→

0 −→ A : ((Iq : −P )Ap)
.R−→ A1×p .Q−→ A1×p

(
P
Ir

)
−→ 0.

.S←− .T←−

⇒ Π1 = S R, Π2 = Q T are projectors of Ap×p.



Stabilizability

• Theorem: P ∈ Kq×r is internally stabilizable iff
one of the following conditions is satisfied:

C1. ∃ S = (UT : V T )T ∈ A(q+r)×q such that:

S P =

(
U P
V P

)
∈ A(q+r)×r,

(Iq : −P )S = U − P V = Iq.

Then, C = V U−1 is a stabilizing controller of P .

C2. ∃ T = (−X : Y ) ∈ Ar×(q+r) such that:

P T = (P X : P Y ) ∈ Aq×(q+r),

T

(
P
Ir

)
= −X P + Y = Ir.

Then, C′ = Y −1 X is a stabilizing controller of P .

• Proposition: If P is internally stabilizable , then
∃ S ∈ A(q+r)×q, T ∈ Ar×(q+r) satisfying C1, C2,

T S = −X U + Y V = 0,

i.e. ∃ a stabilizing controller of P of the form:

C = V U−1 = Y −1 X.



Example

• Let us consider the transfer matrix (A = H∞(C+)):

P =

 e−s

s−1
e−s

(s−1)2

 ∈ K2, K = Q(A).

• The matrix S = (UT : V T )T ∈ A3×2 defined by

S =


2

s+1 + b
(

s−1
s+1

)3
2 b

(
s−1
s+1

)3
− 2 (s−1)

(s+1)

b (s−1)2

(s+1)3
− 1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3

−a (s−1)2

(s+1)3
−2 a (s−1)2

(s+1)3



with


a = 4 e (5 s−3)

(s+1) ∈ A,

b = (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2
∈ A,

satisfies{
SP ∈ A3×1,

(I2 : −P )S = U − P V = I2,

⇒ P is internally stabilized by the controller:

C = V U−1

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 : 2).



Stabilizability

• Corollary: P ∈ Kq×r is internally stabilized by
the controller C ∈ Kr×q iff one of the following
conditions is satisfied:

1. The matrix

Π1 =

(
(Iq − P C)−1 −(Iq − P C)−1 P

C (Iq − P C)−1 −C (Iq − P C)−1 P

)

is a projector of A(q+r)×(q+r), i.e.:

Π2
1 = Π1 ∈ A(q+r)×(q+r).

2. The matrix

Π2 =

(
−P (Ip−q − C P )−1 C P (Ip−q − C P )−1

−(Ip−q − C P )−1 C (Ip−q − C P )−1

)

is a projector of A(q+r)×(q+r), i.e.:

Π2
2 = Π2 ∈ A(q+r)×(q+r).

Then, we have Π1 + Π2 = Iq+r.

•Remark: This result was known for A = H∞(C+).
The robustness radius is defined by (loop-shaping):

bP,C , ‖ Π1 ‖−1
∞ = ‖ Π2 ‖−1

∞ .



Stabilizability

• Fact 1: P admits a doubly coprime factorization

⇔ (Iq : −P )Aq+r & A1×(q+r)
(

P
Ir

)
are free A-modules.

• Fact 2: P is internally stabilizable

⇔ (Iq : −P )Aq+r & A1×(q+r)
(

P
Ir

)
are projective A-modules.

• Fact 3: A free A-module is projective.

• Corollary:

If P ∈ Kq×r admits a left-coprime factorization

P = D−1 N, D X −N Y = Iq,

then S = ((X D)T : (Y D)T )T satisfies C1

⇒ C = (Y D) (X D)−1 = Y X−1 ∈ Stab(P ).

If P ∈ Kq×r admits a right-coprime factorization

P = Ñ D̃−1, −Ỹ X + X̃ D̃ = Ir,

then T = (−D̃ Ỹ : D̃ X̃) satisfies C2

⇒ C = (D̃ X̃)−1 (D̃ Ỹ ) = X̃−1 Ỹ ∈ Stab(P ).



Parametrization

• Theorem: Let P ∈ Kq×r be a stabilizable plant .
All the stabilizing controllers of P have the form

C(Q) = (V + Q) (U + P Q)−1

= (Y + Q P )−1 (X + Q),

where C = V U−1 = Y −1 X is a particular stabi-
lizing controller of P , i.e.

U − P V = Iq,

Y −X P = Ir,(
U P
V P

)
∈ A(q+r)×r,

(−P X : P Y ) ∈ Aq×(q+r),

and Q is every matrix which belongs to

Ω = {L ∈ Ar×q | L P ∈ Ar×r, P L ∈ Aq×q,
P L P ∈ Aq×r}

such that det(U+P Q) 6= 0 and det(Y +Q P ) 6= 0.

(Ω is a projective A-module of rank q × r).



Study of the A-module Ω

• Open question: Find a family of generators of
the projective A-module of rank q × r

Ω = {L ∈ Ar×q | L P ∈ Ar×r, P L ∈ Aq×q,
P L P ∈ Aq×r},

i.e. a finite family {Li}1≤i≤s such that:

∀L ∈ Ω, ∃ L =
∑s

i=1 λi Li, λi ∈ A.

• Proposition: If P ∈ Q(A)q×r admits a left-coprime
factorization P = D−1 N ,

D X −N Y = Iq,

where D, N, X, Y ∈M(A), then:

Ω = {L ∈ Ar×q | P L ∈ Aq×q}D.

• Proposition: If P ∈ Q(A)q×r admits a right-coprime
factorization P = Ñ D̃−1,

−Ỹ X + X̃ D̃ = Ir,

where D̃, Ñ , X̃, Ỹ ∈M(A), then:

Ω = D̃ {L ∈ Ar×q | L P ∈ Ar×r}.



Youla-Ku čera parametrization

• Corollary: Let P ∈ Q(A)q×r be a plant which ad-
mits a doubly coprime factorization :

P = D−1 N = Ñ D̃−1,(
D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= Iq+r.

Then, the A-module

Ω = {L ∈ Ar×q | L P ∈ Ar×r, P L ∈ Aq×q,
P L P ∈ Aq×r}

is the free A-module defined by:

Ω = D̃ Ar×q D

= {L ∈ Ar×q |L = D̃ R D, ∀R ∈ Ar×q}.

⇒ All stabilizing controllers of P have the form

C(Q) = (Y + D̃ Q) (X + Ñ Q)−1 = (X̃ +Q N)−1 (Ỹ +Q D),

where Q ∈ Ar×q is every matrix such that:

det(X + Ñ Q) 6= 0, det(X̃ + Q N) 6= 0.



Sensitivity minimization

• Let A be a Banach algebra (H∞(C+), Â, W+,. . . )

• Let P ∈ Q(A)q×r be a stabilizable plant , then

infC∈Stab(P ) ‖W1 (Iq − P C)−1 W2 ‖A
=

infQ∈Ω ‖W1 (U + P Q)W2 ‖A (?)

(convex problem )

where (UT : V T )T ∈ A(q+r)×q satisfy

U − P V = Iq,

(
U P
V P

)
∈ Ap×r,

and C? = V U−1 is a stabilizing controller of P .

• If P admits a doubly coprime factorization
P = D−1 N = Ñ D̃−1,(

D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= Iq+r.

⇒


Q ∈ Ω = D̃ Ar×q D,

U + P Q = X D + Ñ D̃−1 (D̃ R D),

= (X + Ñ R)D,

(?)⇔ infR∈Ar×q ‖W1 (X + Ñ R)D W2 ‖A .



Conclusion

I. Summary:

• We generalized the Youla-Ku čera parametriza-
tion for MIMO stabilizable plants .

• This parametrization does not assume the exis-
tence of doubly coprime factorizations.

II. General comments:

When does a stabilizable plant admit a
doubly coprime factorization?

•We proved that this problem is equivalent to:

When is a projective A-module free?

• This is a difficult problem studied for years in:

− algebra : algebraic K-theory (Serre’s conjecture (55)
A = k[x1, . . . , xn], solved by Quillen-Suslin (76)),

− number theory : number fields,

− algebraic analysis : function fields,

− topology : triviality of vector bundles,

− operator theory : topological K-theory (C?-algebra).

this problem could be difficult for Â, W+, MDn. . .



Conclusion

• Complete results for SISO systems:

“On a generalization of the Youla-Kučera parametrization.
Part I: The fractional ideal approach to SISO systems”,

A.Q.

Systems & Control Letters, vol. 50 (2003), n. 2, 135-148.

• Complete results for MIMO systems:

“On a generalization of the Youla-Kučera parametrization.
Part II: The lattice approach to MIMO systems”,

A.Q.

Proceedings of TDS03, IFAC Workshop, 08-10/09/03,
INRIA Rocquencourt (France),

submitted to Mathematics of Control, Signal and Systems.

• The dual approach to these results generalizes
the operator-theoretic approach to stabilizability
(unbounded operators, domains, graphs. . . )

“An algebraic interpretation to the operator-theoretic
approach to stabilizability. Part I: SISO systems”,

A. Q.

submitted to Acta Applicandæ Mathematicæ.
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Stable range of a commutative ring

• Definition : a = (a1 : . . . : an) ∈ An is unimod-
ular if there exists b = (b1 : . . . : bn)T ∈ An:

< a, b >=
n∑

i=1

ai bi = 1.

We denote Un(A) = {unimodular vectors of An}.

• Definition : (a1 : . . . : an) ∈ Un(A) is stable if
there exists (b1 : . . . : bn−1) ∈ A(n−1) such that:

(a1 + b1 an : . . . : an−1 + bn−1 an) ∈ Un−1(A).

• Definition : We call stable range of A the smallest
number sr(A) ∈ {1,2, . . . ,+∞} such that every
vector a ∈ Usr(A)+1(A) is stable .

• sr(A) = 2⇔ ∀ (a1 : a2 : a3) ∈ U3(A), ∃ b1, b2 ∈ A :

(a1 + b1 a3 : a2 + b2 a3) ∈ U2(A).

∃ (a1 : a2) ∈ U2(A) : a1 + b a2 /∈ U1(A), ∀ b ∈ A.

• sr(A) = 1⇔ ∀ (a1 : a2) ∈ U2(A), ∃ b ∈ A :

a1 + b a2 ∈ U1(A)⇔ (a1 + b a2)
−1 ∈ A.



Examples

• Example : Let us consider A = RH∞ and the
vector

a =
(

(s−1)2

(s+1)2
: s

(s+1)2

)
∈ A2×1.

The vector a is unimodular because we have:

(
(s−1)2

(s+1)2
: s

(s+1)2

)  s2+3 s+1
(s+1)2

3 s2+1 s+3
(s+1)2

 = 1

Moreover, a is a stable vector because we have:

(s−1)2

(s+1)2
+ 4 s

(s+1)2
= 1 ∈ U1(A).

• Example : Let us consider A = H∞(C+) and

a =
(
1− e−2 s : 1 + e−2 s

)
∈ A2×1.

The vector a is unimodular because we have:

(
1− e−2 s : 1 + e−2 s

)  3+2 e−2 s

2
−1+2 e−2 s

2

 = 1

Moreover, a is a stable vector because we have:

(1− e−2 s) + (1 + e−2 s) = 2 ∈ U1(A).



Examples of stable ranges

• Theorem : (Bass 64, Vasershtein 71, Jensen 85).

• If A is a Bézout domain, then sr(A) ≤ 2.

• sr(R[χ1, . . . , χn]) = n + 1,

• sr(E(k)) =

{
1, k = C,
2, k = R.

• sr(C∞(Rn)) = n + 1.

• sr(W+) = 1, where W+ is the Wiener algebra:

W+ = {
∑+∞

n=0 an zn |
∑+∞

n=0 | an |< +∞}.

• Proposition : (Youla, Vidyasagar) sr(RH∞) = 2.

• Theorem : (Treil 92) sr(H∞(C+)) = 1.



k-stability of a matrix

• Definition : A matrix R ∈ Aq×p is unimodular if
there exists a matrix S ∈ Ap×q such that:

R S = Iq.

(⇒ 0 < q ≤ p and the rows of R are A-linearly
independent).

• Definition : A unimodular matrix R ∈ Aq×p is
k−stable if there exists Tk ∈ Ak×(p−k) such that

Rk , col(R1 : . . . : Rp−k)+col(Rp−k+1 : . . . : Rp)Tk

is a unimodular matrix .

• Example : Let us consider A = RH∞ and the
matrix:

R =

 s−1
s+1 0 − 1

s+1
1

s+1 −
s

s+1 0

 ∈ A2×3.

The following matrix

R1 ,

 s−1
s+1 0

1
s+1 −

s
s+1

+

 − 1
s+1

0

 (
−3 −1

)
︸ ︷︷ ︸

T1

=

 s+2
s+1

1
s+1

1
s+1 −

s
s+1


is invertible (detR1 = −1) ⇒ R1 is unimodular
⇒ R is 1-stable .



Strong & Simultaneous stabilizations

• Definition :

• P ∈ Kq×(p−q) is strongly stabilizable if there
exists a stable controller C ∈ A(p−q)×q which
internally stabilizes P .

• P ∈ Kq×(p−q) is bistably stabilizable if there
exists a controller C ∈ U1(A)(p−q)×q which in-
ternally stabilizes P .

• P1, P2 ∈ Kq×(p−q) are simultaneously stabi-
lizable if there exists a controller C ∈ K(p−q)×q

which internally stabilizes P1 and P2.

• Theorem : A plant P ∈ Kq×(p−q) is strongly sta-
bilizable iff P admits a doubly coprime factoriza-
tion P = D−1 N = Ñ D̃−1 such that the matrices{

(D : −N) ∈ Aq×p,

(D̃T : ÑT ) ∈ A(p−q)×p

are respectively (p− q) and q-stable .



General structure of the stabilizing controllers

• Theorem : Let P be a transfer matrix which admits
a left-coprime factorization P = D−1 N such that
R = (D : −N) ∈ Aq×(p−q) is k-stable where
r = p− q − k ≥ 0. Then, there exist{

T1 ∈ Ak×q,

T2 ∈ Ak×r,

such that the controller C, defined by

C =

(
U V −1

T1 + T2 (U V −1)

)
l r = p− q − k
l k

,

internally stabilizes P = D−1 N .

Moreover, Cr = V U−1 ∈ Kr×q is a controller
which internally stabilizes the plant

Pr = (D − ΛT1)
−1 (Nr + ΛT2) ∈ Kq×r,

where:
Nr , −col(Rq+1 : . . . : Rp−k) ∈ Aq×r,

Λ ,= −col(Rp−k+1 : . . . : Rp) ∈ Aq×k,

N = (Nr : Λ) ∈ Aq×(p−q),
R = (D : −N) = −col(R1 : . . . : Rp) ∈ Aq×p.



Example

• Let us consider A = RH∞ and the transfer matrix:

P =

 1
s−1
1

s (s−1)

 ∈ R(s)2×1.

• P admits the left coprime factorization :

P =

 s−1
s+1 0

1
s+1 −

s
s+1

−1  1
s+1

0

 .

• The matrix R = (D : −N) defined by

R =

 s−1
s+1 0 − 1

s+1
1

s+1 −
s

s+1 0

 ∈ A2×3

is 1-stable because

R1 ,

 s−1
s+1 0

1
s+1 −

s
s+1

+

 − 1
s+1

0

 (
−3 −1

)
︸ ︷︷ ︸

T1

=

 s+2
s+1

1
s+1

1
s+1 −

s
s+1


is an invertible matrix, i.e. unimodular
⇒ r = 3−2−1 = 0⇒ P is strongly stabilizable .

We have the following stable stabilizing controller :

C = −(3 : 1) ∈ A1×2.



Definition of srk(q, p, A)

• Definition : Let p, q ∈ Z+ such that 1 ≤ q ≤ p.
We say that A satisfies srk(q, p, A) if every matrix
of the form R ∈ Aq×p is k-stable .

• Theorem : (Vasershtein 71, Hong 95) We have:

• sr1(1, n, A)⇔ sr1(1, m, A), ∀ m ≥ n,

• sr1(1, n, A)⇔ srk(1, n + k − 1, A), ∀ k ≥ 1,

• srk(1, n, A)⇔ srk(m, n+m−1, A), ∀m ≥ 1.

• Corollary: Let A be a ring such that sr(A) < +∞.
∀ p, q ∈ Z+ satisfying p− q ≥ sr(A), A satisfies :

srp−q−sr(A)+1(q, p, A).

In particular, for every unimodular matrix of the
form R = col(R1 : . . . : Rp) ∈ Aq×p, there exists

Tsr(A) ∈ A(p−q−sr(A)+1)×(q+sr(A)−1)

such that

Rsr(A) , col(R1 : . . . : Rq+sr(A)−1)
+col(Rq+sr(A) : . . . : Rp)Tsr(A)

is a unimodular matrix .



Main results

•
{

P = D−1 N = Ñ D̃−1 ∈ Kq×(p−q),
R = (D : −N) ∈ Aq×p.

• Theorem : Let P = D−1 N be a transfer matrix
which admits a left-coprime factorization, then there
exists a stabilizing controller of the form :

C =

(
U V −1

T1 + T2 (U V −1)

)
l sr(A)− 1
l p− q − sr(A) + 1{

T1 ∈ A(p−q−sr(A)+1)×q,

T2 ∈ A(p−q−sr(A)+1)×sr(A)−1 (i.e. stable ).

• Corollary : If sr(A) = 1, then:

• Every plant P which admits a left-coprime fac-
torization is internally stabilized by a stable con-
troller (strong stabilization ).

• If P1 and P2 admit doubly coprime factoriza-
tions, then there exists a controller C which si-
multaneously stabilizes P1 and P2 (simultane-
ous stabilization ).



H∞(C+)

• Corollary : A = H∞(C+). Every stabilizable
plant , defined by a transfer matrix P with entries in
K = Q(A), is stabilized by a stable controller .

• Corollary : A = H∞(C+). Every couple of sta-
bilizable plants , defined by the transfer matrices P1

et P2 with entries in K = Q(A), is stabilized by a
same controller .

• Wanted : An algorithm which computes the previ-
ous controllers.

• Corollary : Every plant P ∈ R(s)q×(p−q) is sta-
bilized by a controller of the form

C =

(
U V −1

T1 + T2 (U V −1)

)
l 1
l p− q − 1

with A = RH∞ and:{
T1 ∈ A(p−q−1)×q,

T2 ∈ A(p−q−1)×1.



Topological stable range

• Definition : Let A be a Banach algebra . We call
topological stable rank tsr(A) of A the smallest
n ∈ N ∪ {+∞} such that Un(A) is dense in An for
the product topology.

• Proposition : Let A be a Banach algebra such
that tsr(A) = 2, then every system − defined by
a transfer function p = n/d (0 6= d, n ∈ A) − is as
close as we want to a plant admitting a coprime
factorization , i.e.:

∀ ε > 0, ∃ (dε : nε) ∈ U2(A) :

{
‖ d− dε ‖A≤ ε,

‖ n− nε ‖A≤ ε.

• Theorem : (Suárez 96) tsr(H∞(C+)) = 2.

• Corollary : Every SISO system − defined by a
transfer function p = n/d (0 6= d, n ∈ H∞(C+)) −
is such that ∀ ε > 0, ∃ (dε : nε) ∈ U2(H∞(C+)):{

‖ d− dε ‖∞≤ ε,

‖ n− nε ‖∞≤ ε.
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