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Abstract. In this paper, we prove that some stabilizing controllers of a plant, which admits
a left/right-coprime factorization, have a special form where their stable and unstable parts are
separated. The dimension of the unstable part depends on the algebraic concept of stable range of
the ring A of SISO stable plants. Moreover, we prove that, if the stable range of A is equal to 1,
then every plant—defined by a transfer matrix with entries in the quotient field of A and admitting
a left/right-coprime factorization—can be stabilized by a stable controller (strong stabilization).
In particular, using a result of Treil proving that the stable range of H∞(D) is equal to 1, we
show that every stabilizable plant—defined by a transfer matrix with entries in the quotient field
of H∞(D) or H∞(C+)—is strongly stabilizable and, equivalently, every couple of stabilizable plants
can be simultaneously stabilized by a controller (simultaneous stabilization). Finally, using the fact
that the topological stable range of H∞(D) is equal to 2, a result due to Suárez, we show that
every unstabilizable SISO plant—defined by a transfer function with entries in the quotient field of
H∞(D)—is as close as we want to a stabilizable plant in the product topology.
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1. Introduction. The fractional representation approach to analysis and syn-
thesis problems was developed in the eighties in order to express in a unique math-
ematical framework several questions on stabilization problems. In that framework,
we can study internal stabilization (existence of an internally stabilizing controller),
parametrization of all stabilizing controllers, strong stabilization (possibility of stabi-
lizing a plant by means of a stable controller), simultaneous stabilization (possibility
of stabilizing a set of plants by means of a single controller), metrics of robustness
(gap or graph topologies), H∞ or H2-optimal controllers, etc. See [2, 6, 42] for more
details.

Recently, the reformulation of the fractional representation approach to analysis
and synthesis problems within an algebraic analysis approach has allowed us to obtain
new necessary and sufficient conditions for internal stabilizability and for the existence
of (weakly) left/right/doubly coprime factorizations in the general setting [25, 26, 24].
Moreover, all the rings of SISO stable plants (used in this framework) over which one
of the previous properties is satisfied were completely characterized [25, 26, 24]. In
[27, 28], a new parametrization of all stabilizing controllers of a stabilizable plant
was developed. It generalizes the Youla–Kučera parametrization [42] for stabilizable
plants which do not necessarily admit doubly coprime factorizations. All these results
show that a natural mathematical framework for the study of stabilization problems
is the so-called K-theory [22, 32]. See [29] for more details.
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The purpose of this paper is to show that the concept of stable range developed
in K-theory also plays an important role in the study of the strong and simultaneous
stabilization problems [42]. Using the fractional representation approach to synthesis
problems [6, 42], we show that, if the transfer matrix P , with entries in the quotient
field of an integral domain A of SISO stable plants (e.g., A = RH∞, H∞(C+) or
W+), admits a left-coprime factorization P = D−1 N , then there exist some stabi-
lizing controllers of P having separated stable and unstable parts. In particular, we
show that the dimension of the unstable part is related to the concept of k-stability
of the matrix R = (D : −N) with entries in A [17, 41]. Moreover, using some rela-
tions between the k-stability of a matrix with entries in A and the concept of stable
range sr(A) of A [1, 7, 41], we prove that there exist some stabilizing controllers of
P which are such that their unstable parts are defined by sr(A) − 1 unstable rows.
Therefore, if the stable range sr(A) of A is 1, then every transfer matrix which admits
a left-coprime factorization is strongly stabilizable; i.e., it is internally stabilized by a
stable controller. In particular, using the fact that the stable range of H∞(D) is equal
to 1 (see [38]), we prove that every stabilizable plant, defined by means of a transfer
matrix with entries in the quotient field of H∞(D) or H∞(C+), is strongly stabiliz-
able (strong stabilization). Let us notice that this result answers one of the questions
asked in [9]. Moreover, using a result of Vidyasagar [42], we prove that every couple
of plants, defined by transfer matrices with entries in H∞(D) or H∞(C+), is simul-
taneously stabilized by a controller (simultaneous stabilization). Finally, introducing
the concept of topological stable range, we show that every unstabilizable SISO plant,
defined by a transfer function p = n/d, with 0 �= d, n ∈ H∞(D), is as close as we
want to a stabilizable plant in the product topology.

Plan of the paper. In section 2, we give the definition of the stable range of
a ring A and present some examples which will be used in the rest of the paper. In
section 3, we introduce the concept of k-stability of a matrix with entries in a ring A.
We recall the fractional representation approach to analysis and synthesis problems in
section 4. In section 5, we give the first main result of this paper concerning the form
of certain stabilizing controllers (Theorem 5.1) and examples in order to illustrate
this result. Exploiting the relations between k-stability of a matrix with entries in
a ring A and the stable range of A, we give the second main result of the paper
(Corollary 6.4) and its corollaries (Corollaries 6.5 and 6.6). In the last section, we
introduce the definitions of topological stable range, unit 1-stable range, and n-fold
ring, and give some applications of these concepts to some stabilization problems.

Notation. A will denote a commutative ring with a unit [33], Aq×p the set of
q × p matrices with entries in A, Ip the identity matrix of Ap×p, and

GLp(A) = {R ∈ Ap×p | ∃ S ∈ Ap×p : RS = S R = Ip}

the group of invertible elements of Ap×p. If R ∈ Aq×p, then RT ∈ Ap×q is the
transposed matrix. If A is an integral domain (i.e., a b = 0, a �= 0 ⇒ b = 0), then we
shall denote the field of fractions of A by K = Q(A) = {n/d | d �= 0, n ∈ A}. Finally,
p and q will always denote two positive integers satisfying p ≥ q (p− q will denote the
number of input variables for the transfer matrices) and � will mean “by definition.”

2. Stable range of a commutative ring.

2.1. Definition. Let us give some definitions that will be constantly used in this
paper.

Definition 2.1 (see [1, 4, 7, 41]). We have the following definitions and notation:
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• A vector a = (a1 : · · · : an) ∈ A1×n is said to be unimodular if there exists a
vector b = (b1 : · · · : bn) ∈ A1×n such that a bT =

∑n
i=1 ai bi = 1.

• We denote the set of all the unimodular vectors of A1×n by Un(A).
Let us notice that U1(A) is the set of the units U(A) = {a ∈ A | a−1 ∈ A} of A.
Example 2.1. Let us take A = H∞(C+), where H∞(C+) is the algebra of C-

valued holomorphic functions on the open right half plane C+ = {s ∈ C | Re s > 0}
which are bounded w.r.t. the norm ‖ f ‖∞= sups∈C+

|f(s)|. See [5] for more details.

The vector a = ( s−1
s+1 : e−s

s+1 ) ∈ A1×2 is unimodular because we have(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+
(

e−s

s+1

)
2 e = 1, 1 + 2

(
1−e−(s−1)

s−1

)
, 2 e ∈ A.

Definition 2.2 (see [1, 4, 7, 41]). A vector a = (a1 : · · · : an) ∈ Un(A) is called
stable (or reductible) if there exists an (n− 1)-tuple b = (b1 : · · · : bn−1) ∈ A1×(n−1)

such that

(a1 + an b1 : · · · : an−1 + an bn−1) ∈ Un−1(A);

i.e., there exists (c1 : · · · : cn−1) ∈ A1×(n−1) such that
∑n−1

i=1 (ai + an bi) ci = 1.
Example 2.2. We have the following examples:
• Let us consider A = H∞(C+) and a = (1−e−2s : 1+e−2s) ∈ A1×2. We have

1
2 (1 − e−2s) + 1

2 (1 + e−2s) = 1 ⇒ (1 − e−2s) + (1 + e−2s) = 2 ∈ U1(A),

(2.1)

and thus, a is a stable vector of U2(A).
• Let A = RH∞ = R(s) ∩H∞(C+) be the R-algebra of proper and stable real

rational functions [42]. The vector

a =
(

(s−1)(s−2)
(s+1)2 : s

(s+1)2

)
∈ A1×2

is stable because we have

(s−1)(s−2)
(s+1)2 + 6 s

(s+1)2 = (s+2)
(s+1) ∈ U1(A).(2.2)

Remark 2.1. If a vector (a1 : a2) ∈ U2(A) is stable, then, in general, this is not
the case for (a2 : a1) ∈ U2(A). For instance, if A = R[s], then (s2 + 1 : s) ∈ A1×2

is a stable vector because we have (s2 + 1) + s (−s) = 1 ∈ U1(A), whereas the vector
(s : s2 + 1) ∈ U2(A) is not stable because there does not exist b ∈ A such that
r � s + (s2 + 1) b(s) ∈ A is invertible, i.e., is a nonzero real constant (the degree of
the polynomial r is at least 1).

Definition 2.3 (see [31, 34, 38, 41]). We call the stable range sr(A) of A the
smallest n ∈ N ∪ {+∞} such that every vector of Un+1(A) is stable.

Let us notice that the stable range sr(A) is also called the stable rank of A.
Remark 2.2. Let us notice that if sr(A) = n, then, for m ≥ n, every element

of Um(A) is stable [11]. Indeed, if (a1 : · · · : an+2) ∈ Un+2(A), then there exist

b1, . . . , bn+2 ∈ A such that
∑n+2

i=1 ai bi = 1. Hence, the vector

(a1 : · · · : an : an+1 bn+1 + an+2 bn+2) ∈ A1×(n+1)

is unimodular. Using the fact that sr(A) = n, there exist c1, . . . , cn ∈ A such that the
vector

(a1 + c1 (an+1 bn+1 + an+2 bn+2) : · · · : an + cn (an+1 bn+1 + an+2 bn+2)) ∈ A1×n
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is unimodular; i.e., there exist d1, . . . , dn ∈ A such that

n∑
i=1

(ai + ci (an+1 bn+1 + an+2 bn+2)) di = 1

⇒
n∑

i=1

(ai + ci an+2 bn+2) di + an+1

(
n∑

i=1

bn+1 ci di

)
= 1,

which shows that (a1+(c1 bn+2) an+2 : · · · : an+(cn bn+2) an+2 : an+1) is unimodular,
and thus the vector (a1 : · · · : an+2) ∈ Un+2(A) is a stable vector. The result directly
follows by induction on n.

Example 2.3. We have the following interpretations of sr(A) = 2 and sr(A) = 1:
• A ring A has a stable range sr(A) = 2 iff, ∀n ≥ 3, every element of Un(A) is

stable and there exists a vector (a1 : a2) ∈ U2(A) such that, for every b ∈ A,
a1 + a2 b /∈ U1(A), i.e., a1 + a2 b is not invertible.

• A ring A has a stable range sr(A) = 1 iff, for every (a1 : a2) ∈ U2(A), there
exists b ∈ A such that a1 + a2 b ∈ U1(A), i.e., a1 + a2 b is invertible.

2.2. Examples.
Theorem 2.4 (see [38]). If D denotes the open unit disc and H∞(D) the ring

of C-valued holomorphic functions on D which are bounded w.r.t. the norm ‖ f ‖∞=
supz∈D |f(z)|, then we have

sr(H∞(D)) = 1.

Corollary 2.5. With the notation of Example 2.1, we have

sr(H∞(C+)) = 1.

Proof. Let us consider a unimodular matrix a = (a1 : a2) ∈ U2(H∞(C+)). Let
us denote by (b1 : b2)

T ∈ H∞(C+)2×1 a right-inverse of a; i.e., we have

a1(s) b1(s) + a2(s) b2(s) = 1.(2.3)

The fractional linear transformation s = ψ(z) = (1 + z)/(1 − z) bijectively maps the
open unit disc D on the open right half plane C+ and z = ψ−1(s) = (s− 1)/(s + 1).
Moreover, from Lemma A.6.15 of [5], we have f ∈ H∞(C+) ⇔ f ◦ψ ∈ H∞(D). Thus,
from (2.3), we deduce

(a1 ◦ ψ)(z) (b1 ◦ ψ)(z) + (a2 ◦ ψ)(z) (b2 ◦ ψ)(z) = 1 ◦ ψ = 1,(2.4)

i.e., (a1 ◦ ψ : a2 ◦ ψ) ∈ U2(H∞(D)). By Theorem 2.4, we know that sr(H∞(D)) = 1,
and thus there exist c, d ∈ H∞(D) such that

((a1 ◦ ψ)(z) + (a2 ◦ ψ)(z) c(z)) d(z) = 1 ⇔ (a1(s) + a2(s) c(ψ
−1(s))) d(ψ−1(s)) = 1;

i.e., a = (a1 : a2) is 1-stable, and thus sr(H∞(C+)) = 1.
Theorem 2.6 (see [1]). If A is a principal ideal domain, namely, an integral

domain such that every ideal of A can be generated by a single element of A, then
sr(A) ≤ 2.

Corollary 2.7. Let RH∞ be the ring of proper and stable real rational functions.
Then, we have

sr(RH∞) = 2.
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Proof. It is well known that RH∞ is a principal ideal domain [42]. Therefore,
by Theorem 2.6, we obtain that sr(RH∞) ≤ 2. Finally, let (d : n) ∈ U2(RH∞) with
d �= 0 and let us define the transfer function P = n/d ∈ R(s) = Q(RH∞). Let us
notice that P = n/d is a coprime factorization of P because (d : n) ∈ U2(RH∞).
Now, it is also well known that there exists c ∈ RH∞ such that d + c n is a unit of
RH∞ iff P has the parity interlacing property [2, 42], namely, P has an even number
of real poles between every pair of real zeros in {Re s ≥ 0} ∪ {∞}. Hence, there exist
vectors (d : n) ∈ U2(RH∞) which are not stable in the sense of Definition 2.2 (e.g.,
((s− 1)/(s + 1) : s/(s + 1)2) ∈ U2(RH∞) is not stable because the transfer function
P = s/((s+ 1) (s− 1)) does not have the parity interlacing property—see Example 4
of section 3.2 of [42]). Therefore, we have sr(RH∞) = 2.

Let us give more examples of stable ranges of integral domains.
Theorem 2.8. We have the following results:
• [12, 41] sr(R[x1, . . . , xn]) = n + 1.
• [19] The ring of entire functions

E(k) =

{
f(s) =

+∞∑
n=0

an s
n

∣∣∣∣∣ s ∈ C, an ∈ k, lim
n→+∞

|an|1/n = 0

}

satisfies sr(E(k)) = 1 if k = C and 2 if k = R.
• [20] The disc algebra A(D), i.e., the ring of functions which are holomor-

phic in the open unit disc D and continuous on the unit circle T, satisfies
sr(A(D)) = 1.

• [34] If we denote by W+ the Wiener algebra defined by

W+ =

{
+∞∑
n=0

an z
n

∣∣∣∣∣
+∞∑
n=0

| an |< +∞
}
,

then we have sr(W+) = 1.
Let us recall that the polynomial ring R[x1, . . . , xn] is used in the study of mul-

tidimensional systems, W+ represents the sets of l∞-stable (bounded input bounded
output stability) shift-invariant causal digital filters [42], and the disc algebra A(D) is
used for interpolation problems and discrete-time control systems [42]. Finally, E(R)
is used in the study of a certain class of time-delay systems E = E(R)∩R(s)[e−s] [21].

3. k-stability for matrices. Let us extend the definition of k-stability for ma-
trices with entries in A.

Definition 3.1 (see [11, 17, 41]). A matrix R ∈ Aq×p is unimodular if there
exists a matrix S ∈ Ap×q such that RS = Iq, i.e., R has a right-inverse S.

Remark 3.1. First, let us notice that the previous concept of a unimodular matrix
is standard in commutative algebra, whereas, in control theory, a unimodular matrix
usually denotes a square matrix R ∈ Ap×p such that there exists S ∈ Ap×p satisfying
RS = S R = Ip. The reader should be careful not to confuse these two different
definitions (only Definition 3.1 will be used in the course of the paper).

Second, if R ∈ Aq×p is a unimodular matrix, then it is clear that R has full
row rank, namely its rows are A-linearly independent. Moreover, the A-submodule
A1×q R of A1×p generated by the A-linear combinations of the rows of R is isomorphic
to A1×q, and thus we have 1 ≤ q ≤ p.

If Ri ∈ Aq×1 is a column vector, then we shall denote by col(R1, . . . , Rp) the
q× p matrix R whose first column is R1, whose second one is R2, . . . , and whose last
column is Rp.
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Lemma 3.2. R = col(R1 : · · · : Rp) ∈ Aq×p is unimodular iff the A-module

RAp �
p∑

i=1

Ri A =

{
p∑

i=1

Ri ai ∈ Aq | ai ∈ A

}

is equal to Aq.
Proof. ⇒ Let R be unimodular. Then there exists S ∈ Ap×q such that RS = Iq.

Therefore, for every λ ∈ Aq, the vector µ = S λ ∈ Ap is such that λ = Rµ, and thus
λ =

∑p
i=1 Ri µi ∈ RAp, where µ = (µ1 : · · · : µp)

T . Hence, we have RAp = Aq.
⇐ Let us suppose that RAp = Aq. Then, for every λ ∈ Aq, there exists (ai)1≤i≤p,

with ai ∈ A, such that λ =
∑p

i=1 Ri ai. In particular, for j = 1, . . . , q, let us consider
the vector ej of Aq defined by 1 in the jth component and 0 elsewhere. Then,
for j = 1, . . . , q, there exists Sj ∈ Ap such that ej = RSj , and thus, if we define
S = col(S1 : · · · : Sq) ∈ Ap×q, then we have RS = Iq; i.e., R is unimodular.

Let us introduce the concept of k-stability for unimodular matrices.
Definition 3.3 (see [17, 41]). A unimodular matrix R = col(R1, . . . , Rp) ∈ Aq×p

is called k-stable (1 ≤ k ≤ p− q) if there exists a (p− k)-tuple (ci)1≤i≤p−k belonging
to the A-module

Rp−k+1 A + · · · + Rp A �
{

k∑
i=1

Rp−k+i bi | bi ∈ A

}
(3.1)

such that the matrix

col(R1 + c1 : R2 + c2 : · · · : Rp−k + cp−k) ∈ Aq×(p−k)

is unimodular.
Remark 3.2. Let us notice that a vector a ∈ Un(A) is 1-stable iff a is stable in

the sense of Definition 2.2.
Lemma 3.4. A unimodular matrix R ∈ Aq×p is k-stable iff there exists a matrix

Tk ∈ Ak×(p−k) such that the matrix

Rk = col(R1 : · · · : Rp−k) + col(Rp−k+1 : · · · : Rp)Tk ∈ Aq×(p−k)(3.2)

is unimodular.
Proof. ⇒ Let R be a k-stable matrix; then there exists a (p−k)-tuple (ci)1≤i≤p−k

of elements of the A-module (3.1) such that col(R1 + c1 : · · · : Rp−k + ck) ∈ Aq×(p−k)

is a unimodular matrix. By definition of the ci, there exists bij ∈ A such that

ci =

k∑
j=1

Rp−k+j bi(p−k+j).

Therefore, we have

col(R1 + c1 : · · · : Rp−k + ck) = col(R1 : · · · : Rp−k) + col(Rp−k+1 : · · · : Rp)Tk,

where Tk ∈ Ak×(p−k) is defined by

Tk =

⎛
⎜⎝ b1(p−k+1) b2(p−k+1) . . . b(p−k)(p−k+1)

...
...

...
b1p b2p . . . b(p−k)p

⎞
⎟⎠ .
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⇐ All the columns ci of the matrix col(Rp−k+1 : · · · : Rp)Tk belong to the
A-module (3.1). Thus, Rk has the form col(R1 + c1 : · · · : Rp−k + ck); i.e., R is
k-stable.

Example 3.1. Let us consider A = RH∞ and the following matrix:

R =

(
s−1
s+1 0 − 1

s+1
1

s+1 − s
s+1 0

)
∈ A2×3.

The matrix

R1 =

(
s+2
s+1

1
s+1

1
s+1 − s

s+1

)
=

(
s−1
s+1 0

1
s+1 − s

s+1

)
+

(
− 1

s+1

0

)
(−3 : −1)(3.3)

is invertible (detR1 = −1), and thus R is 1-stable.
Proposition 3.5. If R is k-stable, then R is (k − 1)-stable.
Proof. Using the fact that R is k-stable, then there exist

c1, . . . , cp−k ∈ Rp−k+1 A + · · · + Rp A

such that Rk = col(R1 + c1 : · · · : Rp−k + cp−k) is unimodular. Let us decompose
ci as ci = di + ei, where di ∈ Rp−k+1 A and ei ∈ Rp−k+2 A + · · · + Rp A, and let us
define Rk+1 = col(R1 + e1 : · · · : Rp−k + ep−k : Rp−k+1). Then we claim that Rk+1

is unimodular, and thus R is (k − 1)-stable. Indeed, we have

p−k∑
i=1

(Ri + ci)A ⊆
p−k∑
i=1

(Ri + ei)A + Rp−k+1 A ⊆ Aq.

Then, applying Lemma 3.2 to Rk, we obtain that
∑p−k

i=1 (Ri + ci)A = Aq, and

thus
∑p−k

i=1 (Ri + ei)A + Rp−k+1 A = Aq, which proves that Rk+1 is unimodular
by Lemma 3.2.

4. Internal stabilization. Let A be an integral domain and let its field of
fractions be

K = Q(A) = {n/d | n ∈ A, 0 �= d ∈ A}.

In the fractional representation approach to analysis and synthesis problems [5, 6, 42],
we consider a class of plants which are defined by means of transfer matrices whose
entries belong to the quotient field K = Q(A) of an integral domain of stable SISO
plants (see [25, 26, 24, 27] for more details).

Example 4.1. We have the following examples of algebras of SISO stable plants:
• For finite-dimensional systems, we usually consider the integral domain of

proper and stable real rational functions A = RH∞ = R(s) ∩ H∞(C+) and
K = R(s) [42]. Then, A corresponds to the set of proper and stable real
rational transfer functions, whereas an element of K\A represents either an
unstable or an improper transfer function. For instance,

P = s/((s− 1) (s− 2)) ∈ R(s)

belongs to K = Q(A) because we have P = n/d, where n = s/(s + 1)2 ∈ A
by d = ((s− 1) (s− 2))/(s + 1)2 ∈ A.



STRONG STABILIZATION PROBLEM AND STABLE RANGE 2271

+

+

+
+
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e_2
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y_2 u_2

P

C

Fig. 4.1. Closed-loop.

• For infinite-dimensional systems, we can consider A = H∞(C+) [36], which
gives a class of unstable plants defined by transfer matrices with entries in
the quotient field K = Q(H∞(C+)). For instance, the transfer function

P = (1 + e−2 s)/(1 − e−2 s)

of a wave equation (see, e.g., Exercise 4.24 of [5]) satisfies P = n/d, where
n = 1 + e−2 s ∈ A and d = 1 − e−2 s ∈ A, and thus we have P ∈ K.

Let us consider a plant defined by the transfer matrix P ∈ Kq×(p−q), a controller
defined by C ∈ K(p−q)×q, and the closed-loop given by Figure 4.1. We have the
following equations: (

Ip−q −C
−P Iq

) (
e1

e2

)
=

(
u1

u2

)
.

Definition 4.1 (see [5, 6, 42]). A plant defined by the transfer matrix P ∈
Kq×(p−q) is internally stabilizable if there exists a controller C ∈ K(p−q)×q such that
all the entries of the matrix(

Ip−q −C
−P Iq

)−1

=

(
(Ip−q − C P )−1 (Ip−q − C P )−1 C
P (Ip−q − C P )−1 Iq + P (Ip−q − C P )−1 C

)
(4.1)

=

(
Ip−q + C (Iq − P C)−1 P C (Iq − P C)−1

(Iq − P C)−1 P (Iq − P C)−1

)
(4.2)

belong to A. Such a controller, C ∈ K(p−q)×q, is called a stabilizing controller of P .
Example 4.2. The controller C = −(s− 1)/(s + 1) is not a stabilizing controller

of the plant P = s/(s− 1) because we have⎧⎨
⎩ e1 = (s+1)

(2 s+1) u1 + (−s+1)
(2 s+1) u2,

e2 = s (s+1)
(2 s+1)(s−1) u1 + (s+1)

(2 s+1) u2,

and the transfer function between e2 and u1 has the unstable pole 1; i.e., it does not
belong to RH∞.

Definition 4.2. We have the following definitions [5, 6, 42]:
• A transfer matrix P ∈ Kq×(p−q) admits a left-coprime factorization if there

exist R = (D : −N) ∈ Aq×p and S = (XT : Y T )T ∈ Ap×q such that{
P = D−1 N,
RS = DX −N Y = Iq.
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• A transfer matrix P ∈ Kq×(p−q) admits a right-coprime factorization if there
exist R̃ = (ÑT : D̃T )T ∈ Ap×(p−q) and S̃ = (−Ỹ : X̃) ∈ A(p−q)×p such that{

P = Ñ D̃−1,

S̃ R̃ = −Ỹ Ñ − X̃ D̃ = Ip−q.

• A transfer matrix P ∈ Kq×(p−q) admits a doubly coprime factorization if P
admits both a left and right-coprime factorization.

Proposition 4.3 (see [42, Theorem 25, p. 105]). Every transfer matrix P ∈
Kq×(p−q) which admits a left-coprime factorization P = D−1 N , DX − N Y = Iq,
detX �= 0, is internally stabilized by the controller C = Y X−1.

If P = D−1
1 N1 = D−1

2 N2 are two left-coprime factorizations of P and Ri = (Di :
−Ni), for i = 1, 2, then there exists a matrix U ∈ GLq(A) such that R2 = U R1.
Hence, we deduce that Rq is k-stable iff R2 is k-stable. A similar result also holds for
right-coprime factorizations.

Definition 4.4. We have the following definitions [2, 42]:
• A plant P ∈ Kq×(p−q) is strongly stabilizable if there exists a stable controller

C ∈ A(p−q)×q which internally stabilizes P .
• Two plants P1, P2 ∈ Kq×(p−q) are simultaneously stabilizable if there exists

a controller C ∈ K(p−q)×q which internally stabilizes P1 and P2.
The next proposition is a reformulation of Lemma 7 of section 5.3 of [42] (we

thank an anonymous associate editor for pointing out this reference to us).
Proposition 4.5. A transfer matrix P ∈ Kq×(p−q) is strongly stabilizable iff P

admits a doubly coprime factorization P = D−1 N = Ñ D̃−1 such that the matrices
(D : −N) ∈ Aq×p and (D̃T : ÑT ) ∈ A(p−q)×p are, respectively, (p− q) and q-stable.

In particular, P ∈ K(A) is strongly stabilizable iff there exists a coprime factor-
ization P = n/d such that the vector (d : n) ∈ U2(A) is 1-stable.

Proof. Let us suppose that there exists a stable controller C ∈ A(p−q)×q which
internally stabilizes P . Then, all the entries of the matrix (4.1) belong to A and, in
particular, P (Ip−q − C P )−1 = (Iq − P C)−1 P = V ∈ Aq×(p−q).

Then, from the fact that

Ip−q + C V = Ip−q + C (Iq − P C)−1 P = (Ip−q − C P )−1,

we deduce that Ip−q + C V is an invertible matrix, and thus we have

P (Ip−q − C P )−1 = V ⇔ P = V (Ip−q + C V )−1.

Then, P admits the right-coprime factorization P = V (Ip−q + C V )−1 because

(−C : Ip−q)

(
V

Ip−q + C V

)
= Ip−q.

The matrix ((Ip−q +C V )T : V T ) is q-stable because Ip−q +V T CT −V T CT = Ip−q.
Moreover, from the fact that

Iq + V C = Iq + P (Ip−q − C P )−1 C = (Iq − P C)−1,

we deduce that Iq + V C is an invertible matrix, and thus we have

(Iq − P C)−1 P = V ⇔ P = (Iq + V C)−1 V.
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Then, P admits the left-coprime factorization P = (Iq + V C)−1 V , and the matrix
(Iq +V C : −V ) satisfies Iq +V C −V C = Iq; i.e., (Iq +V C : −V ) is (p− q)-stable.

Conversely, if P admits a left-coprime factorization P = D−1 N such that the
matrix R = (D : −N) ∈ Aq×p is (p− q)-stable, then there exists T1 ∈ A(p−q)×q such
that U � D − N T1 ∈ GLq(A). In particular, we have DU−1 − N (T1 U

−1) = Iq,
where U−1 ∈ Aq×q. Thus, by Proposition 4.3, C = (T1 U

−1) (U−1)−1 = T1 is a stable
controller which internally stabilizes P , and thus P is strongly stabilizable.

5. A general structure of the stabilizing controllers. In the next theorem,
we show that there exists a stabilizing controller C of P such that the dimension of
its unstable part depends on the k-stability of the matrix R = (D : −N) ∈ Aq×p,
where P = D−1 N is a left-coprime factorization of P . Moreover, the unstable part
of C is isolated into a single transfer matrix V U−1 ∈ Kr×(p−q), where r = p− q − k.

u_1

D y−N u=0

y=P u

y

C_r

T_1

+

+

u=(u_1: u_2)=C y

u_2

 T_2

Fig. 5.1. Closed-loop y = P u and u = C y.

Theorem 5.1. Let A be an integral domain of SISO stable plants, K = Q(A),
and let P ∈ Kq×(p−q) be a transfer matrix admitting a left-coprime factorization
P = D−1 N with R = (D : −N) ∈ Aq×p. If R is k-stable and r � p− q− k ≥ 0, then
there exist two stable matrices {

T1 ∈ Ak×q,
T2 ∈ Ak×r(5.1)

such that the matrix Rk = (D−ΛT1 : −(Nr+ΛT2)) ∈ Aq×(p−k) admits a right-inverse
with entries in A, with the notation

R = (D : −N) = ( D : −Nr : −Λ) ∈ Aq×p.
↔
q

↔
r

↔
k

(5.2)

Let us define by Sk = (UT : V T )T ∈ A(p−k)×q, U ∈ Aq×q, V ∈ Ar×q any right-inverse
of Rk such that detU �= 0. Then, the controller C ∈ K(p−q)×q defined by

C =

(
V U−1

T1 + T2 (V U−1)

)
,

� r = p− q − k
� k

(5.3)

internally stabilizes P (see Figure 5.1). Moreover, if det(D − ΛT1) �= 0, then the
controller Cr = V U−1 ∈ Kr×q internally stabilizes the plant

Pr = (D − ΛT1)
−1 (Nr + ΛT2) ∈ Kq×r(5.4)
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+

+

u_1

u_2

T_2

T_1

D y−N u=0

y=P u

u=(u_1: u_2) y

u_1

y=P_r u_1

Fig. 5.2. Plant y = Pr u1.

+

+

u_1

u_2

T_2

T_1

D y−N u=0

y=P u

u=(u_1: u_2) y

y
C_r

u_1

y=P_r u_1

Fig. 5.3. Closed-loop y = Pr u1 and u1 = Cr y.

(see Figures 5.2 and 5.3). The unstable part of the controller (5.3) corresponds to
Cr = V U−1, and its dimension is equal to r × q.

Similar results also hold for a transfer matrix P admitting a right-coprime fac-
torization P = Ñ D̃−1 (R̃ = (ÑT : D̃T )T ∈ Ap×(p−q)).

Proof. P admits a left-coprime factorization P = D−1 N , and thus the matrix
R = (D : −N) ∈ Aq×p has a right-inverse S = (XT : Y T )T ∈ Ap×q; i.e., R is
unimodular in the sense of Definition 3.1. Also, by hypothesis, R is k-stable, and
thus, by Lemma 3.4, there exists Tk ∈ Ak×(p−k) such that the matrix Rk ∈ Aq×(p−k)

defined by (3.2) is unimodular. Let us denote by Sk ∈ A(p−k)×q a right-inverse of Rk;
i.e., we have

Rk Sk = Iq.(5.5)

Using expressions (3.2) and (5.5), we obtain that

col(R1 : · · · : Rp)

(
Sk

Tk Sk

)
= Iq ⇔ (D : −N)

(
Sk

Tk Sk

)
= Iq.
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If we write Sk = (UT
k : V T

k )T , with Uk ∈ Aq×q and Vk ∈ Ar×q, then we have

DUk −N

(
Vk

Tk Sk

)
= Iq.

If detU �= 0, then by Proposition 4.3, the controller C defined by

C =

(
Vk

Tk Sk

)
U−1
k =

⎛
⎜⎝ Vk U

−1
k

Tk

(
Uk

Vk

)
U−1
k

⎞
⎟⎠

=

⎛
⎜⎝ Vk U

−1
k

Tk

(
Iq

Vk U
−1
k

)
⎞
⎟⎠ =

(
Vk U

−1
k

Tk1 + Tk2 (Vk U
−1
k )

)

internally stabilizes P = D−1 N , where Tk = (Tk1 : Tk2) ∈ Ak×(q+r) and the dimen-
sions of Tk1 and Tk2 are defined by (5.1). With the notation of (5.2), we have

Rk = col(R1 : · · · : Rp−k) − Λ (Tk1 : Tk2)

= (col(R1 : · · · : Rq) − ΛTk1 : col(Rq+1 : · · · : Rp−k) − ΛTk2)

= (D − ΛTk1 : −(Nr + ΛTk2)).

Using the fact that Rk Sk = Iq, by Proposition 4.3, we obtain that Cr = Vk U
−1
k is a

stabilizing controller of the plant Pr = (D − ΛTk1)
−1 (Nr + ΛTk2).

Example 5.1. Let us consider A = H∞(C+) and the following transfer matrix:

P =

(
e−s

s+1
s−1
s+1

0 1
s−1

)
∈ K2×2,

where K = Q(A). In [25, 26], it is shown that P admits the left-coprime factorization
P = D−1 N , where R = (D : −N) ∈ A2×4 is defined by

R =

(
1 0 − e−s

s+1 − s−1
s+1

0 s−1
s+1 0 − 1

s+1

)
.

The matrix R1, defined by

R1 =

(
1 0 − e−s

s+1

0 s−1
s+1 0

)
+

(
− s−1

s+1

− 1
s+1

) (
0 −2 0

)︸ ︷︷ ︸
T1

=

(
1 2 (s−1)

(s+1) − e−s

s+1

0 1 0

)
,

(5.6)

is unimodular because we have(
1 2 (s−1)

(s+1) − e−s

s+1

0 1 0

) ⎛
⎜⎝ 1 − e−s

s+1 −2 (s−1)
(s+1)

0 1
−1 0

⎞
⎟⎠

︸ ︷︷ ︸
= I2.

S1

(5.7)
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Thus, the matrix R is 1-stable, and we can apply Theorem 5.1 to P with p = 4, q = 2,
k = 1, and r = 1. We know that (ST

1 : (T1 S1)
T )T is a left inverse of R; i.e., we have

(
1 0 − e−s

s+1 − s−1
s+1

0 s−1
s+1 0 − 1

s+1

) ⎛
⎜⎜⎝

1 − e−s

s+1 −2 (s−1)
(s+1)

0 1
−1 0
0 −2

⎞
⎟⎟⎠ = I3.(5.8)

If we define

U1 =

(
1 − e−s

s+1 −2 (s−1)
(s+1)

0 1

)
, V1 = (−1 : 0), T11 = (0 : −2) ∈ A1×2, T12 = 0 ∈ A,

then a stabilizing controller C of P has the form

C =

(
V1 U

−1
1

T11 + T12 (V1 U
−1
1 )

)
=

(
−
(
1 − e−s

s+1

)−1

−2 (s−1)
(s+1)

(
1 − e−s

s+1

)−1

0 −2

)
.

(5.9)

Let us notice that infs∈C+
|1− e−s

s+1 | = 0 (take the sequence (sn = 1/n)n∈N), and thus,

by the Corona theorem [16], we have (1− e−s

s+1 )−1 /∈ A. Therefore, the first row of the
controller C is unstable, whereas its second row is stable. Now, we may wonder if P
is strongly stabilizable. Let us notice that the matrix

R2 =

(
1 2 (s−1)

(s+1)

0 1

)
+

(
− e−s

s+1

0

) (
0 0

)
=

(
1 2 (s−1)

(s+1)

0 1

)

is unimodular because we have(
1 2 (s−1)

(s+1)

0 1

) (
1 −2 (s−1)

(s+1)

0 1

)
= I2.(5.10)

Then, the matrix R1 is 1-stable, and thus R is 2-stable:

R2 =

(
1 0

0 s−1
s+1

)
+

(
− e−s

s+1 − s−1
s+1

0 − 1
s+1

) (
0 0

0 −2

)
=

(
1 2 (s−1)

(s+1)

0 1

)
∈ U2(A).

(5.11)

By Theorem 5.1, we obtain that P is strongly stabilizable (p = 4, q = 2, k = 2, r = 0).
From (5.11), we obtain

(
1 0 − e−s

s+1 − s−1
s+1

0 s−1
s+1 0 − 1

s+1

) ⎛
⎜⎜⎝

1 0
0 1
0 0
0 −2

⎞
⎟⎟⎠

(
1 −2 (s−1)

(s+1)

0 1

)
= I2,

which shows that

S2 = U2 =

(
1 −2 (s−1)

(s+1)

0 1

)
, T2 = T21 =

(
0 0
0 −2

)
∈ A2×2,
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and thus a stable stabilizing controller C ′ of P is defined by

C ′ = T2 =

(
0 0
0 −2

)
∈ A2×2.

To finish, let us show how, using parametrization of all stabilizing controllers of the
plant P1 = (D − Λ1 T11)

−1 (N1 + Λ1 T12), where

Λ1 =

(
s−1
s+1
1

s+1

)
, N1 =

(
e−s

s+1

0

)
,

it was already possible to find C ′. First, let us notice that we have

R1 = (D − Λ1 T11 : −(N1 + Λ1 T12)) ∈ A2×3.

Now, from (5.7), we know that S1 = (UT
1 : V T

1 )T is a right-inverse of R1. Computing
a doubly coprime factorization of P1, we obtain the following parametrization of all
right inverses of R1 (see [25, 26] for more details):

S1 =

(
U1(k1, k2)
V1(k1, k2)

)
=

⎛
⎝ 1 + (k1 − 1) e−s

s+1 −2 (s−1)
(s+1) + e−s

s+1 k2

0 1
k1 − 1 k2

⎞
⎠ ∀ k1, k2 ∈ A.

Therefore, some stabilizing controllers of P are of the form

C =

(
V1 U

−1
1

T11 + T12 (V1 U
−1
1 )

)
=

(
a (k1 − 1) a (2 (k1 − 1) (s−1)

(s+1) + k2)

0 −2

)
,(5.12)

where a = (1+(k1−1) e−s

s+1 )−1. Then, taking k1 = 1 and k2 = 0, we recover the stable
controller C ′ of P .

The first difficulty in computing the controllers of the form (5.3) is to be able to
determine explicitly the k-stability of a given matrix whose entries belong to a ring
A. In section 6, we shall see that it is possible to give a lower bound for it by studying
the stable range of the ring A. The second main difficulty is to compute Tk such that
Rk, defined by (3.2), satisfies (5.5). In the following corollary of Theorem 5.1, we
study the particular case where Tk = 0.

Corollary 5.2. Let P = D−1 N ∈ Kq×(p−q) be a transfer matrix. If there exists
an integer k satisfying 0 ≤ k ≤ p − q such that Pr = D−1 Nr admits a left-coprime
factorization, DX −Nr Y = Iq, with detX �= 0 and

R = (D : −N) = ( D : −Nr : −Λ) ∈ Aq×p,
↔
q

↔
r

↔
k

then the controller

C =

(
Y X−1

0

)
,

� r = p− q − k
� k

(5.13)

internally stabilizes P = D−1 N .
Proof. Let us define Tk = 0. Then, by hypothesis, the matrix

Rk = (D : −Nr) − ΛTk = (D : −Nr)
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has a left-inverse; i.e., it is unimodular. Therefore, the hypothesis that Pr = D−1 Nr

admits a left-coprime factorization implies that R = (D : −N) is k-stable. Then, the
result directly follows from Theorem 5.1 and Tk = (T1 : T2) = 0.

Example 5.2. Let us consider A = RH∞, K = Q(A), and the transfer matrix

P =

( s+1
s−1 0
1

(s−1)2
s+1
s−1

)
∈ K2×2.

P admits a fractional representation P = D−1 N , where R = (D : −N) ∈ A2×4 is
defined by

R =

(
s−1
s+1 0 −1 0

1
(s+1)2 − (s−1)

(s+1) 0 1

)
.

The matrix formed by the first two columns of R is not unimodular, but

R1 =

(
s−1
s+1 0 −1

1
(s+1)2 − (s−1)

(s+1) 0

)

is unimodular because we have

(
s−1
s+1 0 −1

1
(s+1)2 − (s−1)

(s+1) 0

) ⎛
⎜⎜⎝

s−1
s+1 4

1
(s+1)2 − (s+3)

(s+1)

− 4 s
(s+1)2 4 (s−1)

(s+1)

⎞
⎟⎟⎠ = I3.

Thus, we can apply Corollary 5.2 to P with p = 4, q = 2, k = 1, r = 1 to obtain a
stabilizing controller C of P defined by

C =

(
Y X−1

0

)
= −4

(
1

s+1 1

0 0

)
.

Finally, let us notice that P is strongly stabilizable because C is stable.

6. A general structure of the stabilizing controllers based on the stable
range. In the rest of the paper, we shall need the following definition.

Definition 6.1 (see [17, 41]). Let p and q be two positive integers which satisfy
1 ≤ q ≤ p. The ring A is said to satisfy srk(q, p, A) if every unimodular matrix
R ∈ Aq×p is k-stable. If no confusion arises, we shall write srk(q, p) for srk(q, p, A).

In particular, if A satisfies sr(A) = n < +∞, then A satisfies sr1(1, n + 1).
Theorem 6.2 (see [17, 41]). We have the following equivalences:
1. sr1(1, n) ⇔ sr1(1,m) ∀ m ≥ n,
2. sr1(1, n) ⇔ srk(1, n + k − 1) ∀ k ≥ 1,
3. srk(1, n) ⇔ srk(m,n + m− 1) ∀ m ≥ 1.

Corollary 6.3. Let A be a ring satisfying sr(A) < +∞. Then, for every
p, q ∈ Z+ which satisfies p− q ≥ sr(A), we have

srp−q−sr(A)+1(q, p);

namely, for every unimodular matrix R = col(R1 : · · · : Rp) ∈ Aq×p, there exists a
matrix Tsr(A) ∈ A(p−q−sr(A)+1)×(q+sr(A)−1) such that

Rsr(A) = col(R1 : · · · : Rq+sr(A)−1) + col(Rq+sr(A) : · · · : Rp) Tsr(A)(6.1)
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is a unimodular matrix.
Proof. Using the fact that we have sr(A) = n, A satisfies sr1(1, n + 1), and thus,

by 1 of Theorem 6.2, we have sr1(1,m) ∀m ≥ n + 1. Then, by 2 of Theorem 6.2,
A satisfies srk(1,m + k − 1) for k ≥ 1. Finally, by 3 of Theorem 6.2, A satisfies
srk(l, l + m + k − 2) ∀ k, l ≥ 1 and m ≥ n + 1.

Now, let p, q ∈ Z+ such that p−q ≥ sr(A). Let us define k = p−q−sr(A)+1 ≥ 1.
We have p = q + (sr(A) + 1) + (p− q − sr(A) + 1) − 2 and, if we define⎧⎪⎪⎨

⎪⎪⎩
l = q ≥ 1,
n = sr(A),
m = sr(A) + 1,
p = l + m + k − 2,

then A satisfies srk(l, l+m+k−2), i.e., srp−q−sr(A)+1(q, p). Finally, from Lemma 3.4,

there exists Tsr(A) ∈ A(p−q−sr(A)+1)×(p+sr(A)−1) such that the matrix Rsr(A) defined
by (6.1) is unimodular.

Now, we are in position to state the second main result of this paper.
Corollary 6.4. Let P ∈ Kq×(p−q) be a transfer matrix which admits a left-

coprime factorization P = D−1 N , R = (D : −N) ∈ Aq×p and satisfies p−q ≥ sr(A).
Then, there exist two stable matrices{

T1 ∈ A(p−q−sr(A)+1)×q,
T2 ∈ A(p−q−sr(A)+1)×(sr(A)−1)(6.2)

such that the matrix Rp−q−sr(A)+1 = (D−ΛT1 : −(Nsr(A)−1+ΛT2)) ∈ Aq×(q+sr(A)−1)

admits a right-inverse, with the notation

R = (D : −N) = ( D : −Nsr(A)−1 : −Λ) ∈ Aq×p.
←→

q
←→

sr(A)−1
←→

p−q−sr(A)+1

(6.3)

Let us denote by Sp−q−sr(A)+1 = (UT : V T )T ∈ A(q+sr(A)−1)×q any right-inverse of
Rp−q−sr(A)+1 such that detU �= 0. Then, the controller C defined by

C =

(
V U−1

T1 + T2 (V U−1)

)
,

� sr(A) − 1
� p− q − sr(A) + 1

(6.4)

internally stabilizes the plant P = D−1 N . Moreover, if det(D − ΛT1) �= 0, then the
controller Csr(A)−1 = V U−1 internally stabilizes the plant

Psr(A)−1 = (D − ΛT1)
−1 (Nsr(A)−1 + ΛT2).

Finally, the unstable part of the controller (6.4) is Csr(A)−1 = V U−1 and its dimension
is equal to (sr(A) − 1) × q.

Proof. By Corollary 6.3, every matrix of Aq×p is k = (p − q − sr(A) + 1)-stable.
Then, the result directly follows from Theorem 5.1.

Corollary 6.5. Let us consider A = RH∞ and K = Q(A) = R(s). Then, every
transfer matrix P ∈ R(s)q×(p−q) admits a stabilizing controller of the form

C =

(
V U−1

T1 + T2 (V U−1)

)
,

� 1
� p− q − 1

,
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where {
T1 ∈ A(p−q−1)×q,
T2 ∈ A(p−q−1)×1,

P = D−1 N is a left-coprime factorization of P , Sp−q−1 = (UT : V T )T ∈ A(q+1)×q

is any right-inverse of Rp−q−1 = (D − ΛT1 : −(N1 + ΛT2)) ∈ Aq×(q+1) such that
detU �= 0, and

R = (D : −N) = ( D : −N1 : −Λ) ∈ Aq×p.
←→

q
←→

1
←→
p−q−1

Proof. Every MIMO transfer matrix P with entries in K = R(s) admits a doubly
coprime factorization P = D−1 N = Ñ D̃−1 over A,(

D −N

−Ỹ + QD X̃ −QN

) (
X − Ñ Q Ñ

Y − D̃ Q D̃

)
= I,

where Q is an arbitrary matrix. See [42] for more details. Then, applying Lemma 17 on
page 112 of [42], we obtain that there exists Q� such that the matrix det(X−Ñ Q�) �=
0. Using the facts that sr(RH∞) = 2 (see Corollary 2.7) and

(UT : V T )T = ((X − Ñ Q�)T : (Y − D̃ Q�)T )T ,

the result follows from Corollary 6.4.
We have the following straightforward consequence of Corollary 6.4.
Corollary 6.6. If sr(A) = 1, then every transfer matrix which admits a left-

coprime factorization is strongly stabilizable (i.e., it is internally stabilized by a stable
controller). In particular, this result holds for A = W+ or A(D).

Moreover, every internally stabilizable plant, defined by a transfer matrix P with
entries in the quotient field of A = H∞(D) or H∞(C+), is strongly stabilizable.

Proof. The first part of the corollary directly follows from Corollary 6.4 and the
fact that sr(A) = 1. Moreover, by Theorem 2.8, we know that sr(W+) = 1 and
sr(A(D)) = 1. Finally, if A = H∞(C+) or H∞(D), then it is well known that P is
internally stabilizable iff P admits a doubly coprime factorization [25, 26, 36]. The last
result directly follows from this fact, Corollary 6.4, Theorem 2.4, and Corollary 2.5.

Let us notice that the second part of Corollary 6.6 extends Treil’s result [38] to
MIMO systems. The question of the possibility of having the matrix analogous to
Treil’s result was asked in [9]. However, the issue consisting in computing effectively
the stable stabilizing controllers of a stabilizable plant, defined by a transfer matrix
with entries in K = Q(H∞(D)) or K = Q(H∞(C+)), is still open.

Corollary 6.7. If sr(A) = 1, then every pair of plants, defined by two transfer
matrices P0 and P1 with entries in K = Q(A), having the same dimensions, and
admitting doubly coprime factorizations, is simultaneously stabilized by a controller
(simultaneous stabilization). In particular, this result holds for A = W+ or A(D).

Moreover, if A = H∞(D) or H∞(C+) and P0, P1 are two stabilizable plants with
entries in K = Q(A), then P0 and P1 are simultaneously stabilized by a controller.

Proof. Following the proof of Theorem 14 of section 8.3 of [42], there exists a
stabilizing controller of P0 and P1 iff there exists a matrix T with entries in A such
that U + V T is a square unimodular matrix, where{

U = D1 X0 −N1 Y0,

V = −D1 Ñ0 + N1 D̃0,
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and Pi = D−1
i Ni = Ñi D̃i

−1
is a doubly coprime factorization of Pi, i = 0, 1; i.e.,(

Di −Ni

−Ỹi X̃i

) (
Xi Ñi

Yi D̃i

)
= I,

(
Xi Ñi

Yi D̃i

) (
Di −Ni

−Ỹ1 X̃i

)
= I.

The matrix (U : V ) is unimodular because we have U X − V Y = I, where{
X = D0 X1 −N0 Y1,

Y = Ỹ0 X1 + X̃0 Y1.

Using the fact that sr(A) = 1, by Corollary 6.3, we obtain that there exists T with
entries in A such that U + V T is a square unimodular matrix, and thus every couple
of plants is simultaneously stabilized by a controller. Finally, by Theorem 2.8, we
know that sr(W+) = 1 and sr(A(D)) = 1.

Let P1 and P2 be two stabilizable transfer matrices with entries in A = H∞(D)
or H∞(C+). Then, from [25, 26, 36], we know that P1 and P2 admit doubly coprime
factorizations. The results directly follow from Theorem 2.4, Corollary 2.5, and the
previous point.

7. Some more results based on stable range.

7.1. Topological stable range. Let us recall the definition of a Banach algebra.
Definition 7.1 (see [13]). A k-algebra A (k = R, C) is a Banach algebra if A

is a Banach k-vector space w.r.t. the norm ‖ · ‖A and satisfies
1. ‖ 1 ‖A= 1,
2. ‖ a b ‖A ≤ ‖ a ‖A ‖ b ‖A(continuity of the product in each factor).

Example 7.1. The Hardy space H∞(C+) of the holomorphic functions in C+

bounded w.r.t. the norm ‖ f ‖∞= sups∈C+
|f(s)| is a Banach algebra [5]. Moreover,

the disc algebra A(D) (resp., the Wiener algebra W+), defined in Theorem 2.8, with
the norm ‖ f ‖A(D)= sups∈D

|f(s)| (resp., ‖ f ‖W+
=

∑+∞
n=0 |an|), are two Banach

algebras [13, 42].
Definition 7.2. If A is a Banach algebra, then the topological stable range

tsr(A) of A is the smallest n ∈ N ∪ {+∞} such that Un(A) is dense in An for the
product topology.

As for the stable range, the topological stable range tsr(A) is sometimes called
the topological stable rank of A.

Theorem 7.3. We have the following results:
• [37] tsr(H∞(D)) = 2,
• [31] tsr(A(D)) = 2.

Proposition 7.4. If A is a Banach algebra such that tsr(A) = 2, then every
SISO plant, defined by the transfer function P = n/d (0 �= d, n ∈ A), satisfies

∀ ε > 0, ∃ (dε : nε) ∈ U2(A) :

{
‖ n− nε ‖A ≤ ε,
‖ d− dε ‖A ≤ ε.

If dε �= 0, then, in the product topology, P is as close as we want to a transfer function
Pε = nε/dε which admits a coprime factorization. In particular, this result holds for
A = H∞(D) or A(D).

Proof. Let us consider the vector (d : −n) ∈ A1×2. Using the fact that tsr(A) = 2,
we obtain

∀ ε > 0, ∃ (dε : −nε) ∈ U2(A) :

{
‖ d− dε ‖A≤ ε,
‖ n− nε ‖A≤ ε.
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Finally, using the fact that (dε : −nε) ∈ U2(A), there exist xε, yε ∈ A such that we
have dε xε − nε yε = 1, and thus pε = nε/dε admits a coprime factorization.

In particular, if P is not internally stabilizable, then there exists a stabilizable
plant Pε as close as we want to P in the product topology.

7.2. Unit 1-stable range and n-fold. Let us introduce a few definitions.
Definition 7.5. We have the following definitions [4, 14, 40]:
• [14] A ring A satisfies unit 1-stable range if, for every a = (a1 : a2) ∈ U2(A),

there exists an element u ∈ U(A) such that a1 + a2 u ∈ U(A).
• [39] A ring A is said to be n-fold if, for every n-tuple ai = (ai1 : ai2) ∈ U2(A),

1 ≤ i ≤ n, there exists b ∈ A such that ai1 + ai2 b ∈ U(A) for 1 ≤ i ≤ n.
Example 7.2. Using a result of Handelman [15], one can easily prove that

sr(L∞(T)) = 1, where T = {z ∈ C | |z| = 1} is the unit circle, because L∞(T) is
a commutative von Neumann algebra [23], and thus L∞(T) has unit 1-stable range
(for a C�-algebra A with a unit [23], it is well known that sr(A) = 1 is equivalent to
A has unit 1-stable range [14]). See [18] for the study of stabilization problems over
A = L∞(T). For the sake of simplicity, in this paper we have studied only the case
of integral domains A of SISO stable plants. However, all the results can be easily
extended to any ring A with zero divisors.

Proposition 7.6. We have the following results:
1. If A satisfies unit 1-stable range, then any SISO plant—defined by the transfer

function P = n/d (d �= 0, n ∈ A)—admitting a coprime factorization is
bistably stabilizable; namely it is stabilized by a bistable controller (i.e., a
stable and inverstable controller) [2].

2. If A is an n-fold ring, then every n-tuple of SISO plants—defined by the
transfer function Pi = ni/di (di �= 0, ni ∈ A) with 1 ≤ i ≤ n—having coprime
factorizations is stabilized by a stable controller.

Proof. 1. Let P = n/d be a plant which has a coprime factorization. We may
assume that we have d x + n y = 1 with x, y ∈ A. Thus, we have (d : −n) ∈ U2(A).
Using the fact that A satisfies unit 1-stable range, there exists u ∈ U(A) such that
d− nu ∈ U(A), and thus a stabilizing controller is given by C = u ∈ U(A); i.e., P is
bistably stabilizable.

2. Let i = 1, . . . , n, and let Pi = ni/di be a transfer function admitting a coprime
factorization. We may assume that we have di xi + ni yi = 1 for certain xi, yi ∈ A.
Thus, we have (di : −ni) ∈ U2(A). Using the fact that A is n-fold, there exists y ∈ A
such that we have di−ni y ∈ U(A) for i = 1, . . . , n. Thus, the stable controller defined
by C = y simultaneously stabilizes the family of plants {Pi}1≤i≤n.

Conclusion. In this paper, we have shown that the concept of stable range was
an interesting one in the study of the strong and simultaneous stabilization problems.
In particular, we proved that a plant, defined by means of a transfer matrix which
admits a left-coprime factorization P = D−1 N , is internally stabilized by a controller,
where its unstable and stable parts are separated and the dimension of the unstable
part depends only on the k-stability of the matrix R = (D : −N) ∈ Aq×p. Then,
using the fact that the stable range of A gives a lower bound of the k-stability of
every matrix with entries in A, we proved that, if the stable range of A is 1, then
every plant, defined by a transfer matrix admitting a left-coprime factorization, is
strongly stabilizable. In particular, using the fact that the stable range of H∞(D) is
1 (see [38]), we proved that every stabilizable plant, defined by a transfer matrix with
entries in the quotient field of H∞(C+) or H∞(D), is strongly stabilizable. Moreover,
we were able to prove that there always exists a stabilizing controller which stabilizes
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simultaneously two stabilizable plants defined by a transfer matrix with entries in
the quotient field of H∞(C+) or H∞(D). Finally, using the fact that the topological
stable range of H∞(D) is equal to 2 (see [37]), we proved that every unstabilizable
SISO plant, defined by a transfer function with entries in Q(H∞(D)), is as close as
we want to a stabilizable plant in the product topology.

In this paper, we proved the existence of some particular stabilizing controllers.
However, the algorithmical aspects of their constructions were not developed. In
forthcoming publications, we shall try to develop this difficult problem.

The concept of a stable range of A was developed by Bass [1] in order to “stabi-
lize” the computation of the group K1(A) which is the quotient of the group GL(A)
of invertible matrices with entries in A by its normal subgroup EL(A) of elementary
matrices with entries in A. The connections between the strong stabilization problem
and the computation of this group K1(A) need to be clarified. Moreover, in [35],
the obstruction of the simultaneous stabilization of two n-D plants is explicitly ex-
pressed in terms of the vanishing of a certain cohomology class. Using the concept
of the Chern character, it would be interesting to study the links between the re-
sults developed in [35] and topological K-theory. More generally, it seems that some
mathematical tools developed in algebraic/topological/Hermetian K-theory are useful
for some stabilization problems. Hence, we believe that the study of stabilization
problems within a K-theoretical approach should give new interesting results [29].

Finally, a necessary condition for strong stabilizability is the existence of a doubly
coprime factorization for the plant (see Proposition 4.5). However, internal stabiliz-
ability is generally not equivalent to the existence of doubly coprime factorizations
(see [24, 25, 26, 27, 28] and the references therein). Hence, if we do not assume the
existence of doubly coprime factorizations for the plants, then the existence of a con-
troller which simultaneously stabilizes two plants P1 and P2 is generally not equivalent
to the existence of a stable controller for a certain plant P built from P1 and P2. For
more details, see [30].
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systems, in Proceedings of the Workshop on Time-Delay Systems (TDS03), INRIA, Roc-
quencourt, France, 2003.

[29] A. Quadrat, A systemic K-theory, in preparation.
[30] A. Quadrat, An introduction to internal stabilization of infinite-dimensional linear systems,

to appear in the electronic journal e-STA (http://www.e-sta.see.asso.fr/).
[31] M. A. Rieffel, Dimension and stable rank in the K-theory of C�-algebras, Proc. London

Math. Soc. (3), 46 (1983), pp. 301–333.
[32] J. Rosenberg, Algebraic K-Theory and Its Applications, Grad. Texts in Math. 147, Springer-

Verlag, New York, 1996.
[33] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
[34] R. Rupp, Stable rank of holomorphic function algebras, Studia Math., 97 (1990), pp. 85–90.
[35] S. Shankar, An obstruction to the simultaneous stabilization of two n-D plants, Acta Appl.

Math., 36 (1994), pp. 289–301.
[36] M. C. Smith, On the stabilization and the existence of coprime factorizations, IEEE Trans.

Automat. Control, 34 (1989), pp. 1005–1007.
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