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Abstract

In this paper, we show how to use the theory of fractional ideals in order to study the fractional representation approach
to analysis and synthesis problems for SISO systems. Within this mathematical framework, we give necessary and su8cient
conditions so that a plant is internally/strongly/bistably stabilizable or admits a (weak) coprime factorization. Moreover, we
show how to generalize the Youla–Ku'cera parametrization of the stabilizing controllers to any stabilizable plant which does
not necessarily admit a coprime factorization. This parametrization is generally a8ne in two free parameters.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we show why the theory of frac-
tional ideals [3,6,16] is a natural mathematical frame-
work for the fractional representation approach to
analysis and synthesis problems [4,5,7,18,20] in the
case of single input single output (SISO) systems.
Within this algebraic framework, we prove that some
analysis problems (stability, existence of (weak) co-
prime factorizations) as well as synthesis problems
(internal/strong/bistable stabilization, parametrization
of all the stabilizing controllers, etc.) have simple and
tractable formulations.
For >nite-dimensional systems (rational transfer

functions), internal stabilizability is equivalent to the
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existence of a coprime factorization [20] but this is
not true anymore in the general setting (non-rational
transfer functions coming from diHerential time-delay
systems or partial diHerential equations) [4,5,20].
The Youla–Ku'cera parametrization was developed
in [8,21] in order to parametrize all the stabilizing
controllers of a plant admitting a coprime factoriza-
tion. Hence, it is natural to ask whether or not it is
possible to parametrize all the stabilizing controllers
of an internally stabilizable plant which does not
admit a coprime factorization. In this paper, we ex-
hibit such a parametrization without any assumption
on the existence of a coprime factorization for the
plant. We prove that this parametrization is a8ne like
the Youla–Ku'cera parametrization and generally has
two free parameters. Moreover, we show that if p
admits a coprime factorization, then this parametriza-
tion is nothing else than the Youla–Ku'cera one and

0167-6911/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-6911(03)00149-X

mailto:Alban.Quadrat@sophia.inria.fr


136 A. Quadrat / Systems & Control Letters 50 (2003) 135–148

if p admits no coprime factorization but p2 does,
then this parametrization has a unique free parameter.
We illustrate all these results using explicit examples
coming from [1,4,9,11].
The fractional ideal approach also allows us to show

that all the plants belonging to the same isomorphy
class [3,6,16] share the same structural properties (in-
ternal stabilizability, existence of a (weak) coprime
factorization, etc.). Using the concept of class semi-
group [3,6,16], we give an explicit relation between
two transfer functions so that the corresponding plants
belong to the same isomorphy class, and thus, have the
same structural properties. Moreover, using the con-
cept of Picard group [3,6,16], we show how to check
whether or not every stabilizing plant has a Youla–
Ku'cera parametrization or a generalized parametriza-
tion with one or two parameters.
Finally, let us notice that K. Mori has also attempted

in [10] to generalize the Youla–Ku'cera parametriza-
tion to any stabilizable plant using a diHerent ap-
proach. However, contrary to the fractional ideal
approach developed in this paper, the number of
free parameters in his parametrization is not minimal
and no system interpretation to the number of free
parameters is given.

2. Fractional representation approach to
stabilization problems

In the course of the text, A will denote a commu-
tative integral domain with a unity (ab= 0; a �= 0 ⇒
b= 0), U (A) = {a∈A | ∃b∈A: ab= 1} the group of
the invertible elements of A and

K = Q(A) = {n=d | 0 �= d; n∈A}
the >eld of fractions of A [17]. We shall denote the set
of q × p (resp. p × p) matrices with entries in A by
Mq×p(A) (resp. Mp(A)) and Ip the identity matrix. If
a1; : : : ; an ∈K=Q(A), then (a1; : : : ; an) will denote the
A-module de>ned by Aa1 + · · ·+ Aan, and, if M and
N are two A-modules, M ∼= N will mean that M and
N are isomorphic. Finally, the notation , will mean
‘by de>nition’.
The fractional representation approach to anal-

ysis and synthesis problems was developed in the
1980s in order to unify in a common mathematical
framework certain questions arising from diHerent

synthesis problems (internal, robust, strong or si-
multaneous stabilization problems, parametrization
of the stabilizing controllers, graph metric, H2 or
H∞-optimal controllers, etc.) [4,5,20]. In this input–
output framework, the class of linear time-invariant
SISO systems is de>ned by means of the quotient >eld
K = Q(A) of an integral domain A of SISO stable
plants. Examples of such rings A of SISO stable plants
are RH∞; H∞(C+) or the Wiener algebras Â and
l1(Z+) [4,5,20]. Hence, the fact that a transfer func-
tion does not belong to the ring A of SISO stable plants
means that it is not stable, i.e. unstable. For example,
the unstable transfer function p= 1=(s− 1) does not
belong to RH∞ but to K = Q(RH∞) = R(s) because
it can be written as p=n=d with n=1=(s+1)∈RH∞
and 0 �= d = (s − 1)=(s + 1)∈RH∞. Therefore, one
of the main ideas of the fractional representation ap-
proach to systems is to replace the veri>cation of the
stability of a plant p by the membership problem
p∈A [5,20].
We shall need the following de>nitions.

De�nition 1.

• A transfer function p∈K =Q(A) admits a weakly
coprime factorization if there exist 0 �= d; n∈A
such that p= n=d and [13,14,19]:

∀k ∈K = Q(A): kn; kd∈A ⇒ k ∈A:

• A transfer function p∈K=Q(A) admits a coprime
factorization if there exist 0 �= d; n; x; y∈A such
that p= n=d and dx − ny = 1 [4,19,20].

• A plant, de>ned by a transfer function p∈K , is
internally stabilizable iH there exists a controller
c∈K such that [19,20]

H (p; c) =

(
1 −p

−c 1

)−1

=

( 1
1−pc

p
1−pc

c
1−pc

1
1−pc

)
∈M2(A);

where H (p; c) represents the transfer matrix from
(u1 : u2)T to (e1 : e2)T (see Fig. 1 for more details).

• A plant, de>ned by a transfer function p∈K =
Q(A), is strongly stabilizable (resp. bistably sta-
bilizable) if there exists a stable (resp. stable with
a stable inverse) controller c∈A (resp. c∈U(A))
which internally stabilizes p [20].
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Fig. 1. Closed-loop system.

3. SISO systems & fractional ideals

Let us give few de>nitions on fractional ideals. See
[3,6,16,17] for more details.

De�nition 2.

• A fractional ideal I of A is an A-submodule of
K=Q(A) such that there exists 0 �= a∈A satisfying
aI ⊆ A.

• A fractional ideal I of A is principal if I=(k), Ak
for a certain k ∈K .

• An ideal I ⊆ A is a fractional ideal of A called
integral ideal of A.

If I and J are two fractional ideals of A, then




I ∩ J = {a∈ I; a∈ J};
I + J = {a+ b | a∈ I; b∈ J};

IJ =

{
n∑

i=1

aibi | ai ∈ I; bi ∈ J; n∈Z+

}
;

I : J = {k ∈K = Q(A) | (k)J ⊆ I};

are also fractional ideals. Hence, the fractional ide-
als are stable under intersections, >nite sums, prod-
ucts and residuals. Let us denote by F(A) the set of
non-zero fractional ideals of A.

Lemma 1 (Fuchs and Salce [6]). If I; J; L are three
fractional ideals of A, then we have

(1) I(J + L) = IJ + IL,
(2) I : (J + L) = (I : J ) ∩ (I : L),
(3) (I : J ) : L= I : (JL) = (I : L) : J .

De�nition 3. A non-zero fractional ideal I of A is
invertible if there exists J ∈F(A) such that IJ = A.

Let us note that an invertible fractional ideal I of A
is cancellative, namely

∀J; L∈F(A): IJ = IL ⇒ J = L:

In particular, this means that every invertible fractional
ideal has a unique inverse. We denote this inverse
by I−1.

Lemma 2 (Bourbaki [3], Fuchs and Salce [6],
Rosenberg [16], Rotman [17]): If I is an invertible
fractional ideal of A, then we have

(1) I is a :nitely generated projective A-module,
namely an A-module I such that there exist
r ∈Z+ and an A-module P which satisfy I ⊕P ∼=
Ar ,

(2) I−1 = A : I = {k ∈K = Q(A) | (k)I ⊆ A},
(3) I−1 is invertible and (I−1)−1 = I .

We have the following theorem.

Theorem 1. Let A be an integral domain of stable
SISO systems, K =Q(A); p∈K a transfer function
and J =(1; p), A+Ap the fractional ideal de:ned
by 1 and p. Then, we have

(1) p is stable, i.e. p∈A, i< J = A, or equivalently,
i< A : J = A.

(2) p admits a weakly coprime factorization i< the
fractional ideal A : J is a principal integral ideal,
i.e. there exists 0 �= d∈A such that A : J = (d).
Then, p=n=d; n, dp∈A, is a weakly coprime
factorization of p.
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(3) p is internally stabilizable i< the fractional ideal
J is invertible, namely we have J (A : J ) = A, i.e.
i< there exist a; b∈A such that

a− pb= 1;

pa∈A: (1)

If a �= 0, then c = b=a is a stabilizing controller
of p and J−1 = (a; b). Moreover, c internally
stabilizes p i< we have the following equality:

(1; p)(1; c) = (1− pc): (2)

(4) p admits a coprime factorization i< the frac-
tional ideal J is a principal fractional ideal of
A, i.e. there exists 0 �= k ∈K = Q(A) such that
J = (k). Moreover, there exists 0 �= d∈A such
that k =1=d and p= n=d is a coprime factoriza-
tion where n, dp∈A.

(5) p is strongly stabilizable i< there exists c∈A
such that J = (1− pc).

(6) p is bistably stabilizable i< there exists c∈U(A)
such that J = (1− pc).

Proof. (1) If p is stable, i.e. p∈A, then J =(1; p)=
(1)=A, and thus, A : J =A : A=A. Now, if A : J =A,
then we have

1∈A : J = {k ∈K | k; kp∈A}
= {d∈A |dp∈A} ⇒ p∈A:

(2) If p has a weakly coprime factorization
p = n=d (0 �= d; n∈A), then we have A : (d; n) =
{k ∈K | kd; kn∈A} = A. By (3) of Lemma 1, we
obtain

A : J = (A : (d−1)(d; n)) = (A : (d; n)) : (d−1)

= A : (d−1) = (d):

Thus, A : J is a principal integral ideal. Conversely,
let us suppose that A : J is a principal integral ideal,
i.e. A : J = (d); 0 �= d∈A. Then, we have

A : J = {k ∈K | k; kp∈A}
= {d′ ∈A |d′p∈A}= (d);

and thus, dp∈A. If we note n=dp∈A, then p=n=d.
Moreover, by (3) of Lemma 1, we have

A : (d; n) = A : ((d)J ) = (A : J ) : (d)

= (d) : (d) = A;

i.e. A : (d; n) = {k ∈K | kd; kn∈A} = A, and thus,
p= n=d is a weakly coprime factorization of p.
(3)⇒ Ifp is internally stabilizable, then there exists

a controller c∈K such that 1− pc �= 0 and

H (p; c) =

(
1 −p

−c 1

)−1

=

( 1
1−pc

p
1−pc

c
1−pc

1
1−pc

)
∈M2(A): (3)

Let us note a = 1=(1 − pc)∈A; b = c=(1 − pc)∈A.
The integral ideal L= (a; b) of A, de>ned by a and b,
satis>es

1 = a− bp∈ JL= (a; b; ap; bp) ⊆ A

⇒ JL= A ⇒ L= J−1;

i.e. J is an invertible ideal of A and J−1 = (a; b).
⇐ If J = (1; p) is an invertible ideal of A, then we

have (A : J )J=A, with A : J={d∈A |dp∈A}. Thus,
there exist a; b∈A : J , i.e. a; b∈A and ap; bp∈A,
which satisfy a−bp=1, and thus, we have (1) because
bp= 1− a∈A. If a �= 0, then c= b=a is a stabilizing
controller of p because


1=(1− pc) = a∈A;

p=(1− pc) = ap∈A;

c=(1− pc) = b∈A;

⇒
(

1 −p

−c 1

)−1

=

(
a pa

b a

)
∈M2(A):

Finally, if c internally stabilizes p, then J−1 = (a; b),
and thus

A = JJ−1 = (1; p)(a; b) = (1; p)(a)(1; b=a)

⇒ (1; p)(1; c) = (a−1) = (1− pc):

Conversely, if we have (2), then we have

(1; p)(1=(1− pc); c=(1− pc)) = A;

which shows that J = (1; p) is invertible and

J−1 = {d∈A |dp∈A}= (1=(1− pc); c=(1− pc)):

If we de>ne a , 1=(1 − pc)∈A, b , c=(1 − pc)
∈A, then ap∈A and a − bp = 1, which shows
that c = b=a is a stabilizing controller of p.
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(4) If p has a coprime factorization p = n=d (0 �=
d; n∈A), then there exist x; y∈A such that dx−ny=1.
Therefore, I=(d; n)=A, and thus, J=(1; p)=(d−1)I=
(d−1) is a principal fractional ideal of A. Conversely,
if J is a principal fractional ideal of A, then there exists
k ∈K such that J =(k). Then, there exist x; y; n; d∈A
such that we have


k = x − y=p;

1 = dk;

p= nk:

From the second and third equations, we deduce that
k=1=d and p=n=d. Therefore, in substituting k=1=d
and p = n=d into the >rst equation, we obtain that
1=d= x− y(n=d), i.e. dx− ny=1, and thus, p= n=d
is a coprime factorization of p.
(5) (resp. 6). If p is strongly (resp. bistably) sta-

bilizable, then there exists a stable controller c∈A
(resp. c∈U(A)) such that we have (2). But, we have
(1; c) = A because c∈A (resp. c ∈ U (A)), and thus,
(2) implies (1; p) = (1− pc).

Conversely, if there exists c∈A (resp. c∈U(A))
such that J = (1− pc), then there exist 0 �= d; n∈A
such that we have

{
1 = d(1− pc);

p= n(1− pc);
⇒




1− pc �= 0;

p= n=d;

p= (d− 1)=(dc);

p= n=(1 + nc):

Also, from the >rst previous system, we obtain

1 + p(−c) = d(1− pc) + n(1− pc)(−c)

= (1− pc)(d− nc): (4)

Then, from the fact that 1−pc �= 0 and (4), we obtain
that d−nc=1, and thus, p=n=d is internally stabilized
by the stable (resp. bistable) controller c because we
have(

1 −n=d

−c 1

)−1

=
1

(d− nc)

(
d n

dc d

)

=

(
d n

dc d

)
∈M2(A):

Example 1. Let us consider the wave equation [4]:


92z
9t2 (x; t)− 92z

9x2 (x; t) = 0;

9z
9x (0; t) = 0; 9z

9x (1; t) = u(t);

y(t) = 9z
9t (1; t):

⇒ ŷ(s) =
(es + e−s)
(es − e−s)

û(s):

The transfer function

p= (es + e−s)=(es − e−s) = (1 + e−2s)=(1− e−2s)

belongs to the >eld of fractions of A = H∞(C+) be-
cause 1 + e−s; 1 − e−s ∈A. Let us consider the frac-
tional ideal J =(1; p) of A. We can check that 1 is the
greatest common divisor of 1− e−2s and 1 + e−2s (A
is a greatest common divisor domain [13,19]). Thus,
we have A : J = {d∈A |dp∈A} = (1 − e−2s) and,
by (2) of Theorem 1, p = (1 + e−2s)=(1− e−2s) is a
weakly coprime factorization.
Moreover, using the fact that ((1 + e−2s) + (1 −

e−2s))=2 = 1, we obtain J (A : J ) = (1 + e−2s; 1 −
e−2s) = A, and thus, by (3) of Theorem 1, p is inter-
nally stabilizable. Let us compute a stabilizing con-
troller c of p. Using the fact that we have a− bp=1,
with a=−b= (1− e−2s)=2∈ (A : J ), we obtain that
c = b=a=−1 is a stabilizing controller of p.
The fact that p is internally stabilizable implies that

J−1 = A : J = (1 − e−2s), and thus, J = (J−1)−1 =
(1=(1− e−2s)) is a principal fractional ideal of A. By
(4) of Theorem 1, p admits the coprime fatorization
p=(1+e−2s)=(1−e−2s), with 1

2 (1+e−2s)−(− 1
2

)
(1−

e−2s)=1. Finally, we have 1−pc=1+p=2=(1−e−2s),
and thus, J =(1=(1−e−2s))=(1−pc). Therefore, by
(5) of Theorem 1, we >nd thatp is bistably stabilizable
(−1∈U(A) is a bistable stabilizing controller).

Example 2. Let us consider A= H∞(C+),

p= e−s=(s− 1)∈K = Q(A)

and the fractional ideal J =(1; p) of A. Then, we have
A : J = ((s − 1)=(s + 1)), because p = n=d, where
d = (s − 1)=(s + 1)∈A and n = e−s=(s + 1)∈A, is
a weakly coprime factorization of p (n and d have
no common factor [13,14]). By (3) of Theorem 1, p
is internally stabilizable iH there exist a; b∈A : J =
(d) such that a − bp = 1, i.e. iH there exist x; y∈A
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such that

a= ((s− 1)=(s+ 1))x; b= ((s− 1)=(s+ 1))y;

a− bp= 1: (5)

Then, we need to understand what are the constraints
on x and y so that (5) is satis>ed [2]. From (5), we
obtain

b =
(a− 1)

p
=
(
s− 1
s+ 1

)(
(s− 1)x − (s+ 1)

e−s

)

⇒ y =
(s− 1)x − (s+ 1)

e−s ⇔ x =
(s+ 1) + e−sy

s− 1
:

Thus, the numerator (s+1)+e−sy(s) of x must have
a zero at s= 1 if we want to have x∈A, i.e. we must
have y(1) = −2e. Let us take y = y(1) = −2e∈A,
then we obtain

x= ((s+ 1)− 2e−(s−1))=(s− 1)

= 1 + 2((1− e−(s−1))=(s− 1))∈A:

Therefore, we have


a=
(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
∈A : J;

b=−2e
(
s−1
s+1

)∈A : J;

a− bp= 1;

⇒ c =
b
a
=

y
x
=

−2e

1 + 2
(

1−e−(s−1)

s−1

)
is a stabilizing controller of p. Finally, we have J =
(1=d) because

1 = d=d; p= n=d;

1 + 2
(
1− e−(s−1)

s− 1

)
+ 2ep= 1=d:

By (4) of Theorem 1, p admits the coprime factoriza-
tion p= n=d.

De�nition 4. A fractional ideal I of A is divisorial if
I = A : (A : I).

By (2) and (3) of Lemma 2, every invertible ideal
of F(A) is divisorial.

Corollary 1. Let p∈K = Q(A) be a transfer func-
tion. Then, we have the following equivalences:

(1) p admits a coprime factorization,
(2) p admits a weakly coprime factorization and the

fractional ideal J = (1; p) of A is divisorial.

Proof. 1 ⇒ 2. By hypothesis, p admits a coprime
factorization. Thus, by (4) of Theorem 1, there exists
0 �= d∈A such that we have J = (1=d). In particular,
J is invertible and J−1 =A : J = (d). Thus, by (2) of
Theorem 1, p admits a weakly coprime factorization.
Moreover, we have J = A : (d) = A : (A : J ), i.e. J is
a divisorial ideal of A.
2 ⇒ 1. By hypotheses, p admits a weakly coprime

factorization. Thus, by (2) of Theorem 1, there exists
0 �= d∈A such that A : J = (d). Now, using the fact
that J is divisorial, we obtain that

J = A : (A : J ) = A : (d) = (1=d);

and thus, p admits a coprime factorization by (4) of
Theorem 1.

Example 3. Let A = W+ be the algebra of analytic
functions on the unit disc D whose Taylor series con-
verge absolutely, i.e.

W+ =

{
f(z) =

+∞∑
n=0

cnzn |
+∞∑
n=0

|cn|¡+∞
}

:

A=W+ is the integral domain of unit-pulse responses
of BIBO-stable causal digital >lters [20]. In [11], it is
shown that{

n= (1− z)3e−((1+z)=(1−z)) ∈A;

d= (1− z)3 ∈A;

and thus, p = n=d = e−((1+z)=(1−z)) ∈K = Q(A). Let
us de>ne the fractional ideal J = (1; p) of A and
A : J = {d∈A |dp∈A}. In [11], it is proved that
A : J is not a >nitely generated ideal of A, and thus,
by (2) of Theorem 1, p does not admit a weakly co-
prime factorization. Moreover, by Corollary 1, p does
not admit a coprime factorization. Finally, p is not in-
ternally stabilizable because, otherwise, A : J would
have been generated by at most two elements of A.
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4. A generalization of the Youla–Ku+cera
parametrization

Points (3) and (4) of Theorem 1 show that the sta-
bilizability of a plant is generally not equivalent to
the existence of a coprime factorization: if a plant has
a coprime factorization, then it is internally stabili-
zable but the converse fails to be generally true. The
Youla–Ku'cera parametrization of all the stabilizing
controllers of a plant is based on the assumption that
this plant admits a coprime factorization. Hence, the
question of the possibility to parametrize all the sta-
bilizing controllers of a stabilizable plant which does
not admit coprime factorization naturally arises. In this
section, we shall give a general answer to this prob-
lem. First of all, we shall need the following lemma.

Lemma 3. Let p∈K = Q(A); J = (1; p) be an in-
vertible ideal of A and J−1 = (a; b), where a and b
satisfy (1). Then, we have

(1) J 2 is an invertible ideal of A; J 2 = (1; p2), there
exist r1 and r2 ∈A such that r1 − r2p2 = 1;
r1p2 ∈A and (J 2)−1 = (r1; r2).

(2) (J−1)2 = (a; b)2 = (a2; b2).
(3) (J 2)−1 = (J−1)2, and thus, if we note J−2 =

(J 2)−1 = (J−1)2, then we have J−2 = (a2; b2) =
(r1; r2), where r1 − r2p2 = 1; r1p2 ∈A.

Proof. (1) If J is invertible, then we have JJ−1 = A,
and thus,

(JJ−1)(JJ−1) = J 2(J−1)2 = A;

i.e. J 2 is invertible with inverse (J 2)−1 = (J−1)2.
Now, let us prove that we have J 2 = (1; p2). We have
(1; p2) ⊆ J 2=(1; p; p2). Now, using the fact that J is
invertible, then there exist a; b∈A such that a−bp=1
and ap∈A. Hence, by multiplying the last equality
by p, we obtain p = (ap) − (b)p2. Using the fact
that ap∈A and b∈A, then we have p∈ (1; p2), and
thus, J 2 = (1; p2). Finally, using that J 2 = (1; p2) is
an invertible fractional ideal of A, we obtain that there
exist r1; r2 ∈A such that (J 2)−1=(r1; r2) (see the proof
of (3) of Theorem 1).
(2) We have J−1 = (a; b), and thus, (a2; b2) ⊆

(J−1)2=(a2; ab; b2). However, we have a−bp=1 and
ap∈A, and thus, ab= (b)a2 − (ap)b2 ∈ (a2; b2), be-
cause b; ap∈A. Therefore, we have (J−1)2=(a2; b2).

(3) In (1), we have proved that (J 2)−1 = (J−1)2,
and thus, with the notation J−2 = (J 2)−1 = (J−1)2,
from (1) and (2), we obtain J−2 = (r1; r2) = (a2; b2).

Theorem 2. Let A be an integral domain of SISO
stable plants, K = Q(A) its quotient :eld, p∈K a
plant and J = (1; p) , A + Ap the fractional ideal
of A de:ned by 1 and p. If p is internally stabi-
lizable, then all the stabilizing controllers of p are
parametrized by

c(q1; q2) =
b+ q1a2 + q2b2

a+ q1pa2 + q2pb2
; (6)

where q1 and q2 are any element of A such that
a + q1pa2 + q2pb2 �= 0 and c = b=a (0 �= a; b∈A)
is a stabilizing controller of p and{

a− bp= 1;

ap∈A:

The parametrization of all the stabilizing controllers
of p has also the form

c(q1; q2) =
b+ q1r1 + q2r2

a+ q1pr1 + q2pr2
; (7)

where J−2 = (r1; r2) (see Lemma 3), and q1 and q2
are any element of A such that a+pq1r1+pq2r2 �= 0.

Proof. Let c1; c2 ∈K = Q(A) be two stabilizing con-
trollers of p. Then, by (3) of Theorem 1, we have
ci = bi=ai (ai =1=(1−pci); bi = ci=(1−pci)∈A), for
i = 1; 2, where


0 �= ai; bi ∈A;

ai − bip= 1;

aip∈A;

⇒




(b2−b1)∈A;

(b2−b1)p= (a2−a1)∈A;

(b2−b1)p2 = (a2−a1)p∈A;

and thus, we have

(b2 − b1)∈ (A : (1; p; p2)) = A : J 2 = J−2:

By Lemma 3, we know that there exist r1; r2 ∈A (we
can choose r1=a2 and r2=b2) such that J−2=(r1; r2).
Thus, there exist q1; q2 ∈A such that b2 = b1 + q1r1 +
q2r2 and a2 = a1 +p(b2 − b1) = a1 +pq1r1 +pq2r2.
If a1 + pq1r1 + pq2r2 �= 0, then we have

c2 =
b2
a2

=
b1 + q1r1 + q2r2

a1 + q1pr1 + q2pr2
:
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Now, let us show that any controller c2 of the pre-
vious form is a stabilizing controller of p. We have

(a1 + q1pr1 + q2pr2)− (b1 + q1r1 + q2r2)p

=a1 − b1p= 1;

(a1 + q1pr1 + q2pr2)p

=a1p+ (q1r1 + q2r2)p2 ∈A;

because a1p∈A and q1r1 + q2r2 ∈ J−2. Thus, by (3)
of Theorem 1, c2 is a stabilizing controller ofp. There-
fore, if c1 = b1=a1 is a stabilizing controller of p, then
all the stabilizing controllers of p have the form (7),
with q1; q2 ∈A such that a1 +q1pr1 +q2pr2 �= 0, and,
in particular, of form (6).

Example 4. In [9], the ring of discrete >nite-time de-
lay system A = R[x2; x3] has been used in order to
modelize some high-speed electronic circuits. Let us
consider the plant p= (1− x3)=(1− x2)∈K = Q(A)
[9] and the fractional ideal J = (1; p) of A. Using the
identity

(1− x3)(1 + x3) = (1− x2)(1 + x2 + x4);

we obtain that

A : J = {d∈A |dp∈A}= (1− x2; 1 + x3):

A : J is not a principal ideal of A (A : J is the prin-
cipal ideal (1 + x) over R[x] but not over A). Then,
by (2) of Theorem 1, p does not admit a weakly co-
prime factorization, and thus, by Corollary 1, p has
no coprime factorization. Therefore, it is not possible
to parametrize all the stabilizing controllers of p by
means of the Youla–Ku'cera parametrization. But, we
have

J (A : J ) = (1− x2; 1 + x3; 1− x3; 1 + x2 + x4);

which shows that

(1− x3)=2 + (1 + x3)=2 = 1∈ J (A : J );

and thus, by (3) of Theorem 1, p is internally stabi-
lizable, J−1 = A : J and{

a= (1 + x3)=2∈ J−1;

b= (x2 − 1)=2∈ J−1;

⇒ c = b=a=−(1− x2)=(1 + x3)

is a stabilizing controller of p. Let us compute the
parametrization of all the stabilizing controllers of p.
From (2) of Lemma 3, the ideal

J−2 = (J−1)2 = ((1− x2)2; (1 + x3)2)

is not a principal ideal of A, and thus, all the stabilizing
controllers of p are of form (6), namely

c(q1; q2) =

−(1− x2) + (1− x2)2q1 + (1 + x3)2q2
(1 + x3) + (1− x2)(1− x3)q1 + (1 + x3)(1 + x2 + x4)q2

;

where q1 and q2 are two free parameters of A such
that the denominator of c(q1; q2) does not vanish.

Lemma 4. Let p∈K=Q(A) and J=(1; p).We have
the following results:

(1) If p is internally stabilizable, then p2 admits a
coprime factorization i< J 2 is a principal frac-
tional ideal, or equivalently, i< J−2 is a principal
fractional ideal.

(2) If p admits a coprime factorization, so does p2.

Proof. (1) By (4) of Theorem 1, p2 has a coprime
factorization iH (1; p2) is a principal fractional ideal.
Using the fact that p is internally stabilizable, i.e. by
(3) of Theorem 1, J is invertible, and, from (1) of
Lemma 3, we have J 2 = (1; p2). Hence, p2 admits
a coprime factorization iH J 2 is a principal fractional
ideal of A. Finally, if 0 �= k ∈K , then we have

J 2 = (J−2)−1 = (k) ⇔ J−2 = (k−1);

i.e. J 2 is a principal fractional ideal iH so is J−2.
(2) If p admits a coprime factorization, then, by

(4) of Theorem 1, there exists 0 �= k ∈K such that
J = (1; p) = (k). Thus, J 2 = (k2) is also a principal
ideal and, using the fact that J 2 = (1; p2) (see (1) of
Lemma 3), then, by (4) of Theorem 1, we obtain that
p2 admits a coprime factorization.

Corollary 2. Let p be an internally stabilizable
plant. Then, all the stabilizing controllers of p can
be parametrized by means of a parametrization with
only one free parameter i< p2 admits a coprime
factorization. Moreover, we have

(1) If p has no coprime factorization but p2 does
admit one (p2 = s=r is a coprime factorization
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of p2), then, all the stabilizing controllers of p
are of the form

c(q) =
b+ qr
a+ qpr

; (8)

where q is any element of A such that a+pqr �=
0 and c= b=a is a stabilizing controller of p, i.e.
0 �= a; b∈A satisfy (1).

(2) If p admits a coprime factorization p= n=d;

dx − ny = 1 (0 �= d; n∈A; x; y∈A);

then, all the stabilizing controllers of p are of
the form

c(q) =
y + qd
x + qn

; (9)

where q is any element of A such that x+qn �= 0.
We recover the Youla–KuAcera parametrization
of the stabilizing controllers [8,20,21].

Proof. By Theorem 2, a stabilizable plant p has a
parametrization of all its stabilizing controllers with
only one free parameter iH J−2 is a principal ideal of
A. By, (1) of Lemma 4, J−2 is principal iH p2 admits a
coprime factorization. Then, point (1) comes directly
from Theorem 2 with J−2 = (r); r ∈A.
Let us prove (2). From (4) of Theorem 1, we have

J = (1; p) = (d−1), and thus, J 2 = (d−2). Moreover,
we have

(dx)− (dy)p= 1; a= dx; b= dy∈A;

(dx)p= nx∈A:

Using (1), we obtain that all the stabilizing controllers
of p have the form

c(q) =
dy + qd2

dx + qd2p
=

dy + qd2

dx + qdn
=

y + qd
x + qn

;

∀q∈A : x + qn �= 0:

Example 5. Let us consider A = Z[i
√
5] and p =

(1 + i
√
5)=2∈K = Q(A) de>ned in [1]. The ideal

J = (1; p) is such that A : J = (2; 1 − i
√
5) is not

a principal ideal [16] which implies, by (2) of The-
orem 1, that p does not admit any weakly coprime
factorization, and thus, by Corollary 1, p does not
admit any coprime factorization. However, we have
(−2) − (−1 + i

√
5)p = 1; −2p∈A, which shows,

by (3) of Theorem 1, that c internally stabilizes p.

Moreover, we check that (2; 1+i
√
5)2=(2), and thus,

J 2 = (4−1)(2; 1+ i
√
5)2 = (2−1). By (1) of Corollary

2, all the stabilizing controllers of p are of the form

c(q) =
−1 + i

√
5 + 2q

−2 + 2((1 + i
√
5)=2)q

=
1− i

√
5− 2q

2− (1 + i
√
5)q

; q∈A:

Let us notice that for some classes of linear
in>nite-dimensional linear systems (e.g. transfer func-
tions which belong to the quotient >eld of A or Â
[4,20]) or multidimensional systems (A={n=d | 0 �= d;
n∈R[z1; : : : ; zm]; d(z) = 0 ⇒ z ∈Cm \ Dm}, where
Dm is the closed polydisc) [10], it is still not known
whether or not any internally stabilizable plant admits
a coprime factorization, and thus, whether or not we
can parametrize the stabilizing controllers of a general
plant by means of the Youla–Ku'cera parametrization,
by (6) or by (8).

5. Isomorphism classes of F(A)

Let us denote the multiplicative group of the
non-zero principal fractional ideals of A by P(A).
We can de>ne an equivalence relation on F(A) as
follows: I and J are equivalent, denoted by I ∼ J , if
there exists 0 �= (k)∈P(A) such that I = (k)J .

Lemma 5 (Fuchs and Salce [6]): Let I and J be two
fractional ideals of A. Then, we have

I ∼ J ⇔ I ∼= J:

Proof. ⇒ If I ∼ J , then there exists 0 �= k ∈K=Q(A)
such that I = (k)J . Let us de>ne the following two
maps:

': I → J;  : J → I;

a → a=k; b → bk:

We easily check that these two maps are A-morphisms
and  ◦ ' = idI and ' ◦  = idJ , which proves that
I ∼= J .

⇐ If I ∼= J , then there exists an isomorphism
' : I → J . Let us >x 0 �= a∈ I . The element a has the
form a=n=d with 0 �= d; n∈A. Let i=x=y be any ele-
ment of I (0 �= y; x∈A). Then, we have a=(ny)=(dy)
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and i=(dx)=(dy) with 0 �= dy∈A. Hence, we can al-
ways suppose that we have a= r=s and i= r′=s. Using
the fact that ' is an A-morphism, then, for all i∈ I ,
we obtain

a'(i) = (r=s)'(r′=s) = (1=s)'(rr′=s)

= (r′=s)'(r=s) = i'(a) (10)

and thus, we have aJ = '(a)I ⇒ J = ('(a)=a)I , i.e.
I ∼ J (0 �= '(a)=a∈K).

De�nition 5. Let us de>ne S(A) =F(A)= ∼. If we
denote by [I ] (resp. [J ]) the class of I ∈F(A) (resp.
J ∈F(A)) in S(A), then S(A) has a natural product
de>ned by [I ][J ] = [IJ ] and [A] is a unit. S(A) is
called the class semigroup of A.

Using Lemma 3, we can also seeS(A) as the semi-
group of the isomorphism classes of the non-zero frac-
tional ideals of A. Let us de>ne byI(A) the subgroup
of F(A) formed by the invertible ideals of A. The
group I(A) is called the group of Cartier divisors
(a Cartier divisor is an invertible ideal of A).

Proposition 1. The structural properties of a system,
de:ned by a transfer function p∈K = Q(A), only
depend on the class [(1; p)] inS(A) of the fractional
ideal (1; p), A+ Ap of A.

Proof. The structural properties of a plant, de>ned
by a transfer function p∈K , must not depend on the
choice of fractional representations of p. If

p= n1=d1 = n2=d2; 0 �= di; ni ∈A; i = 1; 2; (11)

then the structural properties of p must not depend
on the choice of the integral ideals I1 = (d1; n1) and
I2=(d2; n2). Using the fact thatA is an integral domain,
from (11), we obtain d2n1 = d1n2. Thus, we have

(d1)I2 = (d1d2; d1n2) = (d1d2; d2n1)

= (d2)I1 ⇒ I2 = (d1=d2)I1 ⇒ [I1] = [I2]:

Hence, the structural properties of pmust only depend
on [I1] = [I2]. Finally, using the fact that (1; p) =
(1=d1)I1, we have [(1; p)] = [I1] = [I2], which shows
that the structural properties of p only depend on the
class [(1; p)].

Proposition 2. (1) p has a weakly coprime factor-
ization i< [A : (1; p)] = [A].

(2) p is internally stabilizable i< [(1; p)] is invert-
ible in S(A). Moreover, if p is internally stabilized
by c, then we have [(1; p)]−1 = [(1; c)].

(3) p admits a coprime factorization i< [(1; p)] =
[A].

Proof. (1) By (2) of Theorem 1, p admits a weakly
coprime factorization iH the fractional ideal J =(1; p)
of A satis>es that A : J is a principal ideal of A, i.e.
iH there exists 0 �= d∈A such that A : J = (d), and
thus, iH [A : J ] = [A].
(2) If p is internally stabilizable, then J = (1; p) is

invertible by (3) of Theorem 1, and thus, JJ−1 =A ⇒
[JJ−1] = [A] ⇒ [J ][J−1] = [A]. Conversely, if [J ] is
invertible in S(A), then there exists [I ] of I(A) such
that [J ][I ] = A, and thus, [JI ] = [A], i.e. there exists
0 �= k ∈K such that JI = (k). Hence, J ((k−1)I) = A,
i.e. J is invertible, i.e. p is internally stabilizable by
(3) of Theorem 1. Finally, by (3) of Theorem 1, we
know that c is a stabilizing controller of p, iH we have

(1; p)(1; c) = (1− pc)

⇒ [(1; p)][(1; c)] = [(1− pc)] = [A]

⇒ [(1; p)]−1 = [(1; c)]:

(3) By (4) of Theorem 1, p admits a coprime factor-
ization iH J = (1; p) is a principal fractional ideal of
A, i.e. iH there exists 0 �= k ∈K such that J =(k), and
thus, iH [J ] = [A].

Proposition 3. Letp1; p2 ∈K=Q(A) and J1=(1; p1)
and J2 = (1; p2) be the fractional ideals of A de:ned
by 1 and pi. Then, we have the equivalences:

(1) J1 ∼= J2, i.e. [J1] = [J2],
(2) there exist )=()ij)∈M2(A) and +=(+ij)∈M2(A)

such that


()11 + )12p2)(+11 + +12p1) = 1;

p1 =
)21 + )22p2

)11 + )12p2
;

p2 =
+21 + +22p1

+11 + +12p1
:

(12)

If p1 and p2 satisfy (12), then p1 and p2 have
the same structural properties (e.g. existence of
a (weakly) coprime factorization, internal stabili-
zability).



A. Quadrat / Systems & Control Letters 50 (2003) 135–148 145

Proof. We have the following equivalences:

J1 ∼= J2

⇔∃0 �= k ∈K; J1 = (k)J2; i:e: (1; p1) = (k; kp2);

⇔ ∃0 �= k ∈K; ∃)= ()ij); + = (+ij)∈M2(A) :
(13)




1 = ()11 + )12p2)k;

k = +11 + +12p1;

p1 = ()21 + )22p2)k;

kp2 = +21 + +22p1:

(14)

From (14), we obtain (12). Conversely, if we note
k = +11 + +12p1 ∈K , then, from the >rst equation of
(12), we obtain 0 �= k = 1=()11 + )12p2) and, by
substitution in the second and third equations of (12),
we obtain (14).
Finally, if p1 and p2 satisfy (12), then, by the pre-

vious equivalence, we obtain that [(1; p1)]=[(1; p2)],
and thus, by Proposition 2, p1 and p2 have the same
structural properties.

Example 6. For instance, the transformations, de>ned
by

T1 : p1 → p2 = p1 + a (a∈A);

T2 : p1 → p2 = 1=p1;

T3 : p1 → p2 = p1=(1 + ap1) (a∈A);

T4 : p1 → p2 = up1 (u∈U(A));

keep the structural properties of the systems (e.g. ex-
istence of a (weak) coprime factorization, internal sta-
bilizability) because p1 and p2 satisfy (12).

6. The fractional representation approach to
systems

Lemma 6. Let p = n=d (0 �= d; n∈A) be any frac-
tional representation of p∈K = Q(A). If we denote
J = (1; p), then we have

(1) [(1; p)] = [(d; n)].
(2) (d) ∩ (n) = (n)(A : J ).

Proof. (1) We have J=(1; p)=(1=d)(d; n), and thus,
[(1; p)] = [(d; n)].
(2) This point is a generalization of a result used

in [11]. We have A : J = {d∈A |dp∈A}, and thus,
an element a∈ (n)(A : J ) is of the form a= nb, with
b∈A and bp∈A. Thus, a∈ (n) and a= (bp)d∈ (d),
i.e. a∈ (d) ∩ (n). Conversely, if a∈ (d) ∩ (n), then
there exist u; v∈A such that a = ud = vn, and thus,
ud = (vp)d ⇒ u = vp because d �= 0 and A is an
integral domain. Thus, we have v∈A : J which shows
that a= vn∈ (n)(A : J ).

Theorem 3. Let p∈K = Q(A) and p = n=d (0 �=
d; n∈A) be any fractional representation of p. Let
I = (d; n) be the integral ideal of A de:ned by d and
n. Then, we have

(1) p is stable i< I = (d), or equivalently, i<
A : I = (d−1).

(2) p admits a weakly coprime factorization i< the
ideal (d) ∩ (n) is principal.

(3) p is internally stabilizable i< I is an in-
vertible integral ideal of A, namely we have
I(A : I) = A, or equivalently, i< there exists
x; y∈K such that{

dx − ny = 1;

dx; dy; nx∈A:
(15)

If x �= 0, then c= y=x internally stabilizes p and
I−1 =A : I =(x; y). Moreover, c= s=r internally
stabilizes p= n=d i< we have

(d; n)(r; s) = (dr − ns): (16)

(4) p admits a coprime factorization i< I = (d; n) is
a principal integral ideal of A, i.e. there exists
0 �= a∈A such that I = (a).

(5) p is strongly stabilizable i< there exists c∈A
such that I = (d− nc).

(6) p is bistably stabilizable i< there exists c∈U(A)
such that I = (d− nc).

Proof. Let us denote by J =(1; p) the fractional ideal
de>ned by 1 and p.
(1) If p is stable, i.e. p∈A, then I = (d; n) =

(d; dp) = (d). Thus, we have A : I = (d−1). Finally,
if A : I = {k ∈K | kd; kn∈A}= (d−1), then we have
d−1n= p∈A, i.e. p is stable.



146 A. Quadrat / Systems & Control Letters 50 (2003) 135–148

(2) Using (2) of Theorem 1, we know that p admits
a weakly coprime factorization iH A : J is a principal
ideal of A. But, from the second point of Lemma 6,
A : J is principal iH (d)∩(n) is also a principal integral
ideal of A.
(3) Using (3) of Theorem 1, p is internally stabiliz-

able iH we have J (A : J )=A. But, we have J=(1=d)I ,
and thus, J is invertible iH so is I . Hence, p is in-
ternally stabilizable iH we have I(A : I) = A, that is
to say, there exist x; y∈A such that dx; dy; nx; ny∈A
and dx− ny= 1. Thus, we have (d; n)(x; y) = A, and
thus, I−1 = (x; y). Finally, if x �= 0, then c = y=x is a
stabilizing controller of p because we have

(
1 −p

−c 1

)−1

=
1

(dx − ny)

(
dx nx

dy dx

)

=

(
dx nx

dy dx

)
∈M2(A):

Finally, from (3) of Theorem 1, c = s=r internally
stabilizes p = n=d iH (2) is satis>ed, and thus, iH we
have (1=(dr))(d; n)(r; s) = (1=(dr))(dr − ns), which
is equivalent to (16).
(4) From (4) of Theorem 1, p has a coprime fac-

torization iH the fractional ideal J of A is principal,
i.e. there exists 0 �= k ∈K such that J =(k). Thus, we
have J = (1=d)(d; n) = (k) ⇒ I = (d; n) = (kd), i.e. I
is a principal integral ideal of A. Conversely, if there
exists 0 �= a∈A such that I = (a), then there exists
d′; n′; x; y∈A such that




d= d′a;

n= n′a;

a= dx + ny;

⇒
{

p= n=d= n′=d′;

d′x + n′y = 1;

i.e. p admits the coprime factorization p= n′=d′ with
d′x + n′y = 1.
(5) (resp. 6) If p is strongly (resp. bistably) sta-

bilizable then, by (5) (resp. 6) of Theorem 1, there
exists c∈A (resp. c∈U(A)) such that J = (1 − pc).
Thus, we have J = (1=d)(d; n) = (1=d)(d − nc) ⇒
(d)J = (d; n) = (d − nc). Conversely, if there exists
c∈A (resp. c∈U(A)) such that we have I = (d; n) =
(d−nc), then d �= 0 ⇒ I =(d; n) �= 0 ⇒ d−nc �= 0.

Moreover, there exist u; v∈A such that{
d= (d− nc)u;

n= (d− nc)v;

⇒ p= n=d= v=u= (u− 1)=(uc) = v=(1 + vc):

Thus, we have d−nc=(d−nc)(u−vc) ⇒ u−vc=1.
Hence, we have(

1 −p

−c 1

)−1

=

(
u v

uc u

)
∈M2(A);

i.e. p is strongly (resp. bistably) stabilizable.

In [13], we show how to use point (3) of Theo-
rem 2 in order to recover the characterization of in-
ternal stabilizability given in [18]. Moreover, let us
notice that if p is strongly stabilizable, then, in par-
ticular, p admits a coprime factorization p = n′=d′

and I ′ = (d′; n′) = A. Using the fact that (5) of Theo-
rem 3 does not depend on the choice of the fractional
representation of p, then there exists c′ ∈A such that
I ′=(d′; n′)=(d′−n′c′)=A, i.e. d′−n′c′ ∈U(A) [20].

Proposition 4. If p= n=d∈K =Q(A); 0 �= d; n∈A,
is internally stabilizable, then all the stabilizing con-
trollers of p have the form

c(q1; q2) =
y + q1dz1 + q2dz2
x + q1nz1 + q2nz2

; (17)

where q1 and q2 are two free parameters of A; x; y∈A
satisfy (15) and I−2={k ∈K | kd2; kn2 ∈A}=(z1; z2).
We can take z1 = x2 and z2 = y2.

Proof. Let c1; c2 ∈K be two stabilizing controllers of
p and ci= si=ri; 0 �= ri; si ∈A, be any fractional repre-
sentation of ci. Then, by (3) of Theorem 3, ci satis>es
(16), and thus, (d; n)(ri=(dri−nsi); si=(dri−nsi))=A.
If we note I = (d; n) and

xi = ri=(dri − nsi); yi = si=(dri − nsi)∈K = Q(A);

then we have I−1 = (xi; yi); ci = yi=xi and{
dxi − nyi = 1;

dxi; dyi; nxi ∈A:
∀i = 1; 2;

⇒ d(x2 − x1) = n(y2 − y1): (18)

From (2) of Lemma 3, we obtain that I 2=(d2; n2; dn)=
(d2; n2), and thus, there exist z1; z2 ∈K such that
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I−2 = {k ∈K | kd2; kn2 ∈A} = (z1; z2) (let us notice
that we can choose z1 = x21 and z2 = y2

1 because we
have I−2 = (x21 ; y

2
1)). Using (18), we have

d2((y2 − y1)=d) = d(y2 − y1)∈A;

n2((y2 − y1)=d) = n(n(y2 − y1)=d)

= n(d(x2 − x1)=d) = n(x2 − x1)∈A;

which proves that (y2 − y1)=d∈ I−2, i.e. y2 −
y1 ∈ (d)I−2, and thus, there exist q1; q2 ∈A such that
y2 = y1 + q1dz1 + q2dz2. Using (18), we obtain

x2 = x1 + p(y2 − y1) = x1 + q1nz1 + q2nz2

⇒ c2 =
y1 + q1dz1 + q2dz2
x1 + q1nz1 + q2nz2

:

Finally, we have

d(x1 + q1nz1 + q2nz2)

−n(y1 + q1dz1 + q2dz2) = dx1 − ny1 = 1;

d(x1 + q1nz1 + q2nz2)

=dx1 + dn(q1z1 + q2z2)∈A;

d(y1 + q1dz1 + q2dz2)

=dy1 + d2(q1z1 + q2z2)∈A;

n(x1 + q1nz1 + q2nz2)

= nx1 + n2(q1z1 + q2z2)∈A;

because dn; d2n2 ∈ I 2 and (q1z1 + q2z2)∈ I−2. There-
fore, all the stabilizing controllers of p have the form
of (17) with x + q1nz1 + q2nz2 �= 0.

7. Integral domains, Picard group and Class group

Corollary 3. If A is a greatest common divisor
domain (gcdd) [3,17], namely a domain such that two
elements a; b∈A have a greatest common divisor
[a; b], then

(1) Every p∈K = Q(A) admits a weakly coprime
factorization.

(2) p admits a coprime factorization i< J =(1; p) is
a divisorial ideal of A.

Proof. (1) Let p = n=d (0 �= d; n∈A) be a frac-
tional representation of p. Then, we have p = n=d=
(n=[d; n])=(d=[d; n]);

and thus

(d=[d; n])p= n=[d; n]∈A ⇒ (d=[d; n]) ⊆ A : J:

If d′ ∈A : J = {d∈A |dp∈A}, then we have

p= n′=d′ = (n=[d; n])=(d=[d; n]);

and thus, d′(n=[d; n]) = n′(d=[d; n]). Using the fact
that A is a gcdd and n=[d; n] does not divide d=[d; n]
and conversely, then there exists a∈A such that d′ =
(d=[d; n])a, and thus, d′ ∈A : J ⊆ (d=[d; n]), which
proves that A : J = (d=[d; n]) is an integral principal
ideal of A, and thus, by (2) of Theorem 1, p admits the
weakly coprime factorizationp=(n=[d; n])=(d=[d; n]).
(2) This result directly follows from the >rst point

and Corollary 1.

The following corollary easily follows from (3) of
Theorem 1 and (4) of Theorem 2.

Corollary 4.

• Every plant p∈K=Q(A) is internally stabilizable
i< A is a PrRufer domain [3,17], namely an integral
domain such that, for every p∈K , the fractional
ideal J = (1; p) is invertible [14].

• Every transfer function p∈K = Q(A) admits a
coprime factorization i< A is a BSezout domain [17],
namely an integral domain such that every :nitely
generated integral ideal of A is generated by one
element of A [20].

Using the fact that P(A) is a subgroup of I(A),
then C(A) = I(A)=P(A) is the group of the iso-
morphy classes of (:nitely generated) invertible
ideals of A. C(A) is sometimes called the Picard
group of A. If A is a PrRufer domain (see Corol-
lary 4) [3,6,16], then C(A) is called the class group
of A [6]. We have the following consequences of
Corollary 2.

Corollary 5. (1) If C(A) ∼= Z=2Z, then all stabili-
zing controllers of a stabilizing plant p∈K = Q(A)
are parametrized by (8), i.e. by means of a
parametrization with only one free parameter.
(2) If C(A) ∼= 1, then every internally stabilizable

plant admits a coprime factorization, and thus, all
its stabilizing controllers are parametrized by the
Youla–KuAcera parametrization (9). This condition
is satis:ed if A is a projective-free ring [14], namely
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a ring such that every :nitely generated projective
A-module is free (e.g. BBezout domains, H∞(C+)
[13,14]).

Proof. (1) C(A) ∼= Z=2Z means that for every
(>nitely generated) invertible fractional ideal J of
A; J 2 is a principal fractional ideal of A. In particular,
if we take J = (1; p), then J 2 is a principal fractional
ideal of A, and thus, by Lemma 3, we obtain that
J 2 = (1; p2) is principal, i.e. p2 admits a coprime
factorization. The result follows directly from (1) of
Corollary 2.
(2) C(A) ∼= 1 means that every (>nitely generated)

invertible fractional ideal of A is principal. Hence, us-
ing (2) of Corollary 2, we obtain that every stabilizable
plant has a Youla–Ku'cera parametrization (9).

Example 7. It is known that A = Z[i
√
5] is a PrRufer

domain with a class group C(A) ∼= Z=2Z [16]. There-
fore, every plant—de>ned by p∈K = Q(A)—is in-
ternally stabilizable but some plants fail to admit co-
prime factorizations (for instance, p de>ned in Ex-
ample 5). However, using Corollary 5, we know that
we can parametrize all their stabilizing controllers by
means of (8).

8. Conclusion

We hope that we have convinced the reader that the
theory of fractional ideals is a natural mathematical
framework for the fractional representation approach
to analysis and synthesis problems. In this approach,
the characterizations of some structural properties be-
come simple and tractable. Moreover, we were able
to generalize the Youla–Ku'cera parametrization of the
stabilizing controllers to any stabilizing plant which
does not admit any coprime factorization. In [15], we
show how these results can be extended to multi-input
multi-output (MIMO) systems using the concept of
lattice [3]. Finally, a duality between the fractional
ideal approach and the operator-theoretic one [7] is
developed in [12]. This duality allows us to give be-
havioral interpretations to stabilization problems.
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