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Abstract. In this paper, we show how to reformulate the fractional representation approach to
analysis and synthesis problems within an algebraic analysis framework. In terms of modules, we
give necessary and sufficient conditions so that a system admits (weakly) left/right/doubly coprime
factorizations. Moreover, we explicitly characterize the integral domains A such that every plant—
defined by means of a transfer matrix whose entries belong to the quotient field of A—admits (weakly)
doubly coprime factorizations. Finally, we show that this algebraic analysis approach allows us to
recover, on the one hand, the approach developed in [M. C. Smith, IEEE Trans. Automat. Control ,
34 (1989), pp. 1005–1007] and, on the other hand, the ones developed in [K. Mori and K. Abe,
SIAM J. Control Optim., 39 (2001), pp. 1952–1973; V. R. Sule, SIAM J. Control Optim., 32 (1994),
pp. 1675–1695 and 36 (1998), pp. 2194–2195; M. Vidyasagar, H. Schneider, and B. A. Francis, IEEE
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Introduction. In the seventies, Vidyasagar and others introduced the idea of
representing a class of transfer functions as the quotient field of a certain integral
domain A of proper and stable transfer functions. Examples of such integral domains
A, usually encountered in the literature, are the Banach algebra H∞(C+) of bounded
analytic functions in the open right half-plane C+ = {s ∈ C |Re s > 0} [8], the algebra
RH∞ = R(s)∩H∞(C+) of proper stable real rational functions [49], and the Wiener
algebras A, Â [3, 8], and l1(Z+) [49]. In the early eighties, this idea naturally led to
the fractional representation approach to synthesis problems, principally developed in
[3, 9, 48, 49]. The main outcome of this point of view is a reformulation of various ques-
tions of feedback stabilization of systems in terms of algebraic properties of some ma-
trices whose entries belong to A (e.g., internal/strong/simultaneous/robust/optimal
stabilization, parametrization of all the stabilizing controllers, graph topology, etc.).

Unfortunately, questions seem to remain for some classes of (infinite-dimensional)
systems, in particular, the following:

1. Do necessary and sufficient conditions exist for internal stabilizability?
2. Is it possible to characterize all the integral domains A such that every

plant—defined by means of a transfer matrix whose entries belong to the quotient
field of A—is internally stabilizable?

3. What are the links between internal stabilizability and the existence of a
doubly coprime factorization for the transfer matrix?
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4. Is it always possible to parametrize all the stabilizing controllers of a stabi-
lizing plant by means of the Youla–Kučera parametrization?

In order to solve certain of these open questions, the authors of [40] tried to
revisit the fractional representation approach to stabilization problems of single-input
single-output (SISO) systems using a more intrinsic framework than the one used in
[3, 9, 48, 49]. A module approach has recently been developed in [44] and continued
in [22]. In the same years as that last work, another approach was developed in
[30, 31, 32] using the ideas of algebraic analysis (see [27, 28, 29] and the references
therein). The purpose of this paper is to present this new mathematical framework
and to explain how certain of the previous open questions can be solved using this
algebraic analysis point of view.

In this paper, we first introduce the concepts of weakly left/right/doubly coprime
factorizations, give necessary and sufficient conditions in terms of modules so that
a transfer matrix admits such factorizations, and characterize all the integral do-
mains A over which every transfer matrix admits weakly doubly coprime factoriza-
tions (namely, coherent Sylvester domains, e.g., H∞(C+)). Moreover, we also give
necessary and sufficient conditions so that a transfer matrix admits left/right/doubly
coprime factorizations, and we recover a result of Vidyasagar [49] describing all the
integral domains A over which every transfer matrix admits doubly coprime factor-
izations (namely, Bézout domains). In particular, we recover and generalize some
standard results of [22, 43, 44, 49]. In the second part of the paper [33], we shall use
the same mathematical framework and the previous results to develop necessary and
sufficient conditions for internal stabilizability [9, 48, 49]. Moreover, we shall char-
acterize all the integral domains A over which every plant—defined by means of a
transfer matrix whose entries belong to the quotient field of A—is internally stabi-
lizable (namely, Prüfer domains). Hence, the algebraic analysis framework seems to
solve the first three questions listed above. We refer the reader to [34] for a general
answer to the fourth one. Let us note that all these results use the techniques of
module theory and homological algebra, and they seem difficult to obtain using only
a matrix approach.

If we want to develop some general algorithms (i.e., valid for a general integral
domain A) that check the existence of (weakly) left/right/doubly coprime factoriza-
tions and compute them, we then have to overcome the difficulty arising from the
fact that most of the integral domains of SISO stable plants are Banach algebras
(e.g., H∞(C+), A, Â, l1(Z+)). Indeed, a result proves that noetherian Banach al-
gebras are only finite-dimensional [41], and thus, most of the Banach algebras used
in systems theory are not noetherian. Therefore, it seems that we cannot use the
standard techniques of commutative algebra, module theory, and homological algebra
developed for noetherian rings to study general (infinite-dimensional) linear systems.
(Some modules may fail to be finitely generated.) We show that the only possibility
for coping with this difficulty seems to require that the Banach algebras be coherent
rings. This result could explain why coherent Sylvester domains, Prüfer and Bézout
domains, which play important roles in the fractional representation approach (see
above), are all coherent. Using the fact that a system is defined by means of a transfer
matrix, we prove that, if A is a coherent domain, then every system defines a coherent
A-module. Now, the (category of) coherent A-modules over a coherent ring A (is) are
invariant under all the elementary algebraic manipulations (e.g., intersection, sum,
quotient, tensor product, duality, etc.). Therefore, we can use homological algebra to
develop general algorithms which check the existence of (weakly) left/right/doubly co-
prime factorizations (or internal stabilizability in [33]) of (infinite-dimensional) linear
systems defined over a coherent domain A.
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Plan. In the first part of this paper (section 1), we describe the framework of
the fractional representation approach to analysis and synthesis problems and explain
why and how it is possible to use module theory. We recall some definitions of module
theory and homological algebra that will be constantly used in the rest of the paper
and in [33]. The second part (section 2) is related to factorization problems. We
first introduce the concept of a weakly doubly coprime factorization and show that
it corresponds to the weakest coprimeness for transfer matrices. We give necessary
and sufficient conditions so that a transfer matrix admits a weakly left/right/doubly
coprime factorization. In the third part (section 3), we introduce the concept of
coherent rings and modules. We prove that every transfer matrix, with entries in the
quotient field of A, admits a weakly doubly coprime factorization iff A is a coherent
Sylvester domain. We show that H∞(C+) is a coherent Sylvester domain. Finally, in
the last part (section 4), we give necessary and sufficient conditions so that a transfer
matrix admits left/right/doubly coprime factorizations.

Notation. In the course of the text, A denotes a commutative integral domain
(a b = 0, a �= 0⇒ b = 0) with a unit, Mq×p(A) (resp., Mp(A)) the set of q × p (resp.,
p×p) matrices whose entries belong to A, and Ip the identity matrix. If R ∈Mq×p(A),
then RT is the transposed matrix. By convention, every vector with entries in A is
a row vector. The positive integers p, q ∈ Z+ will always satisfy p ≥ q. If M and N
are two A-modules, then M ∼= N means that M and N are isomorphic as A-modules,
homA(M,N) is the A-module of the A-morphisms (i.e., A-linear maps) from M to
N , and M∗ = homA(M,A). Finally, (a1, . . . , an) denotes the ideal Aa1 + · · ·+Aan,
and � means “by definition.”

1. The fractional representation approach to synthesis problems.

1.1. Introduction. Following ideas of Zames [51], a class of transfer functions
needs to have the structure of a ring if we want to connect two systems in cascade
(product) or in parallel (sum). In the fractional representation approach to analysis
and synthesis problems, we start with an integral domain A of SISO stable plants [3, 8,
9, 48, 49]. Classical examples of integral domains of SISO stable plants are the Banach
algebra H∞(C+) of the bounded analytic functions on the open right half-plane C+ =
{s ∈ C | Re s > 0} [8], the ring RH∞ of proper stable real rational functions [49], or
the Wiener algebras A, Â, l1(Z+) [8, 49]. Then, the class of (unstable) SISO plants
considered is defined by the field of fractions of A:

K = Q(A) = {n/d | 0 �= d, n ∈ A}.(1.1)

Example 1.1. Let us give some examples.

• Let us consider A = RH∞ = {p = n/d | deg n ≤ deg d, d(s) = 0⇒ Re s < 0}
the integral domain of proper stable real rational functions. The transfer
function p = 1/(s− 1) (resp., p = s) does not belong to A because p has the
unstable pole 1 in C+ (resp., p is not proper) but belongs to K = Q(A) = R(s)
because p can be represented as p = n/d with n = 1/(s + 1) ∈ A and
d = (s− 1)/(s + 1) ∈ A (resp., n = s/(s + 1) ∈ A and d = 1/(s + 1) ∈ A).
• Let us consider the following Wiener algebra [3, 8]:

A =

{
f(t) +

∞∑
i=0

ai δ(t− ti) | f ∈ L1(R+), (ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 . . .

}
,
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with the two operations + and the convolution � and the Dirac distribution
δ as the unit. Endowed with the topology defined by the norm

‖ g ‖A = ‖ f ‖L1(R+) + ‖ (ai)i≥0 ‖l1(Z+),

A becomes a Banach algebra and an integral domain [3, 8, 48, 49]. The same

properties hold for Â = {f̂ | f ∈ A} (̂· is the Laplace transform) with the

norm ‖ f̂ ‖Â = ‖ f ‖A. For instance, an example of a transfer function which
belongs to K = Q(A) is the following:

p = et Y (t) � δ(t− 1) = (δ(t)− 2 e−t Y (t))−1 � (e−t Y (t) � δ(t− 1)),

where Y (t) denotes the Heaviside distribution (i.e., 1 for t ≥ 0, and 0 oth-
erwise) and δ(t) − 2 e−t Y (t), e−t Y (t) � δ(t − 1) ∈ A. Equivalently, in the
frequency domain, the same plant is defined by the following transfer func-
tion:

p = e−s

s−1 =

(
e−s

s+1

)
(
s−1
s+1

) ∈ Q(Â), e−s

s+1 ,
s−1
s+1 ∈ Â.

If P ∈ Mq×(p−q)(K), then it is always possible to write it as P = D−1 N =

Ñ D̃−1, where D ∈ Mq(A) and D̃ ∈ Mp−q(A) are two invertible matrices and N ∈
Mq×(p−q)(A), Ñ ∈Mq×(p−q)(A), i.e., all the entries of these four matrices are stable.
For example, we can use D = d Iq and N = dP , where 0 �= d ∈ A is the product of

the denominators of all the entries of P , and similarly for D̃ = d Ip−q and Ñ = P d.
Example 1.2. Let A = H∞(C+), and let us consider the plant defined by

P =

(
e−s

s+1
s−1
s+1

0 1
s−1

)
∈M2(K), K = Q(A).(1.2)

Then, P can be written as P = D−1 N with

D =

( s−1
s+1 0

0 s−1
s+1

)
∈M2(A), N =

(
(s−1) e−s

(s+1)2

(
s−1
s+1

)2

0 1
s+1

)
∈M2(A).(1.3)

Thus, instead of representing a plant by y = P u with P ∈ Mq×(p−q)(K), the
fractional representation approach studies the following two systems:

(D : −N)

(
y
u

)
= 0,

(
y
u

)
=

(
Ñ

D̃

)
z,

with R = (D : −N) ∈ Mq×p(A) and R̃ = (ÑT : D̃T )T ∈ Mp×(p−q)(A). Then, using
linear algebra over the ring A, it is possible to study the structural properties of P
by looking at the algebraic properties of the matrices R and R̃ (left/right/doubly
factorizations). See [3, 8, 9, 48, 49] for more information.

For linear finite-dimensional systems [49], the fractional representation approach
gives necessary and sufficient conditions for internal stabilizability, existence of doubly
coprime factorizations, or Youla–Kučera parametrizations of all the stabilizing control-
lers, etc. [49]. The possibility of generalizing these results to linear infinite-dimensional
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systems (delay systems, partial differential equations such as the wave/heat/Euler–
Bernoulli equations) has naturally been asked from theoretical and practical points of
view [3, 8, 9, 48, 49]. In this framework, classes of linear infinite-dimensional systems
are generally modelized by means of Banach algebras such as H∞(C+), Â, l1(Z+).
These rings are algebraically and topologically more complex than the ring RH∞ used
for finite-dimensional systems. Hence, some questions, such as the ones given in the
introduction, are still open for some classes of infinite-dimensional systems [8, 48, 49].
As we described it in the introduction, the purpose of this paper is to show that we
can solve certain of these problems if we adopt an algebraic analysis framework rather
than a matricial one. Here, we call “algebraic analysis” a mathematical framework
which uses commutative algebra, module theory, and homological algebra combined
with functional analysis (Banach algebras). This idea could seem natural if we notice
that, in order to understand the structural properties of a plant, defined by the
transfer matrix P ∈ Mq×(p−q)(K), we need to study the matrices R ∈ Mq×p(A)

and R̃ ∈ Mp×(p−q)(A), whose entries belong to a certain algebra of functions (e.g., a
Banach algebra), and linear algebra over a ring is just a part of module theory.

1.2. Definitions. In this section, we give some definitions that we shall need to
characterize intrinsically the structural properties of systems.

Let R ∈ Mq×p(A), and let us define the A-morphism (i.e., an A-linear map) .R
by

.R : Aq −→ Ap,
(a1 : · · · : aq) −→ (a1 : · · · : aq)R.

Then, the image im .R is the A-module generated by the A-linear combinations of the
rows of R. This A-module is usually used in control theory [22, 44]. In algebraic anal-
ysis [27, 28, 29], one usually prefers to use the A-module M = coker .R = Ap/Aq R.

Definition 1.1. We have the following definitions (see [1, 2, 39]):

• A complex is a sequence of A-modules Fi and A-morphisms di, denoted by

· · · −→ Fi+1
di+1−→ Fi

di−→ Fi−1 −→ · · · , such that di ◦ di+1 = 0, i.e.,

im di+1 ⊆ ker di.

• The ith A-module of homology of a complex is defined by

H(Fi) =
ker di

im di+1
.

• A sequence is said to be exact at Fi if H(Fi) = 0, i.e., ker di = im di+1, and
exact if we have H(Fi) = 0 for all i.

Example 1.3. For instance, the exact sequence 0 −→M ′ f−→M means that f is

injective, whereas the exact sequence M
g−→M ′′ −→ 0 means that g is surjective.

Let π be the A-morphism which associates to every row vector of Ap its class in
the quotient A-module M = Ap/Aq R. We have the following exact sequence:

Aq
.R−→ Ap

π−→M −→ 0.(1.4)

Let {e1, . . . , ep} be the canonical basis of Ap, and {f1, . . . , fq} that of Aq. We define
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zi = π(ei), i = 1, . . . , p. Then, we have for i = 1, . . . , q

fiR = (Ri1 : · · · : Rip) =

p∑
j=1

Rij ej ∈ Aq R

⇒ π(fiR) =

p∑
j=1

Rij π(ej) =

p∑
j=1

Rij zj = 0.

(1.5)

Hence, M is defined by the equations Rz = 0, where z = (z1 : · · · : zp)T , and their
A-linear combinations. Moreover, for all m ∈M, there exists (a1 : · · · : ap) ∈ Ap such
that

m = π((a1 : · · · : ap)) = π

(
p∑
i=1

ai ei

)
=

p∑
i=1

ai π(ei) =

p∑
i=1

ai zi.

This means that every element m of M is an A-linear combination of the elements
z1, . . . , zp, and the A-module M is said to be finitely generated. In fact, the module is
defined by a finite number of equations (q equations) with a finite number of unknowns
(p unknowns). In this case, we say that M is finitely presented, a fact which is
equivalent to the existence of the exact sequence (1.4).

Example 1.4. Let us reconsider Example 1.2. We have A = H∞(C+), and the
matrix R = (D : −N) ∈M2×4(A) is defined by

R =


 s−1
s+1 0 − (s−1) e−s

(s+1)2 −
(
s−1
s+1

)2

0 s−1
s+1 0 − 1

s+1


 .(1.6)

Then, the A-morphism .R is defined by

A2 −→ A4,

(a1 : a2) −→
(
a1

(
s−1
s+1

)
: a2

(
s−1
s+1

)
: −a1

(
(s−1) e−s

(s+1)2

)
: −a1

(
s−1
s+1

)2

− a2
1

(s+1)

)
.

Therefore, the A-module M = A4/A2 R is defined by the equations


(s−1)
(s+1) y1 − (s−1) e−s

(s+1)2 u1 −
(
s−1
s+1

)2

u2 = 0,

(s−1)
(s+1) y2 − 1

(s+1) u2 = 0

and their A-linear combinations, where yi = π(ei), ui = π(ei+2), i = 1, 2.
Definition 1.2. We have the following definitions (see [1, 39]):
• An A-module M is finitely generated if there exists an A-module of the form

F0
∼= Ar0 , r0 ∈ Z+, such that we have the following exact sequence:

F0
d0−→M −→ 0.(1.7)

• An A-module M is finitely presented if there exist two A-modules Fi ∼= Ari ,
ri ∈ Z+, i = 0, 1, such that we have the following exact sequence:

F1
d1−→ F0

d0−→M −→ 0.(1.8)
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One of the main interests of associating an A-module with a matrix R ∈Mq×p(A)
is that we can use the natural classification of the properties of the module to un-
derstand the structural properties of the system Rz = 0. The purpose of the next
sections and [33] is to illustrate how some concepts of modules play interesting roles
in characterizing the existence of a (weakly) left/right/doubly coprime factorization
and internal stabilizability.

Definition 1.3 (see [2, 39]). If M is a finitely generated A-module, then
• M is free if M ∼= Ar for r ∈ Z+.
• M is stably free if there exist r, s ∈ Z+ such that M ⊕As ∼= Ar.
• M is projective if there exist an A-module N and r ∈ Z+ such that

M ⊕N ∼= Ar.

• M is reflexive if the A-morphism ε : M −→ homA(homA(M,A), A)—defined
by ε(m)(f) = f(m) for all m ∈ M, for all f ∈ homA(M,A)—is an isomor-
phism.
• M is torsion-free if its torsion submodule

t(M) = {m ∈M | ∃ a ∈ A \0 : am = 0}

is reduced to 0. m ∈ t(M) is a torsion element. We have the exact sequence:

0 −→ t(M) −→M −→M/t(M) −→ 0.(1.9)

• M is a torsion A-module if t(M) = M .
• M is a flat A-module if, for every relation

∑q
i=1 aimi = 0, ai ∈ A, mi ∈M ,

there exist ni ∈M and bij ∈ A such that


mi =

r∑
j=1

bij nj , 1 ≤ i ≤ q,

q∑
i=1

ai bij = 0, 1 ≤ j ≤ r.

Proposition 1.4 (see [1, 2, 39]). We have the following relations:
1. Free ⇒ stably free ⇒ projective ⇒ reflexive ⇒ torsion-free.
2. Projective ⇒ flat⇒ torsion-free.
3. A finitely generated flat A-module is projective.
4. If A is a Bézout domain—namely, a domain A such that every finitely gen-

erated ideal I of A has the form I = (a) for a certain a ∈ A—then every
finitely generated torsion-free A-module is free and M ∼= t(M)⊕M/t(M).

Definition 1.5. We have the following definitions (see [6, 20]):
• A is a Hermite ring if every finitely generated stably free A-module is free, or,

equivalently, if every unimodular row (a1 : · · · : an) ∈ An—namely a row such
that there exists (b1 : · · · : bn)T satisfying

∑n
i=1 ai bi = 1—can be completed

to a unimodular matrix, i.e., to a matrix of GLn(A).
• A is a projective-free ring if every finitely generated projective A-module is

free.
In particular, a projective-free ring (e.g., a Bézout domain) is a Hermite ring. A

difficult result, namely, the Quillen–Suslin theorem [20, 39], proves that the ring of
polynomials k[χ1, . . . , χn] in χi, with coefficients in a field k, is projective-free.
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Theorem 1.6. RH∞ and k[s], where k is a field, are principal ideal domains
(namely, a domain such that every ideal I of A is principal, i.e., has the form I = (a)
for a certain a ∈ A; see [49]). The domain of entire functions with coefficients in
k = R, C,

E(k) =

{
f(s) =

+∞∑
n=0

an s
n | an ∈ k, lim

n→+∞ |an|
1/n = 0

}
,

and E = E(R) ∩ R(s) [e−s] are Bézout domains (see [18, 21]). Thus, all these rings
are projective-free.

We introduce the concept of localization of modules. In the following sections,
we shall show why this concept is interesting for the study of the links between a
transfer matrix y = P u, P = D−1 N ∈ Mq×(p−q)(K) and the system Dy = N u,
where R = (D : −N) ∈Mq×p(A).

Definition 1.7 (see [1, 39]). We have the following definitions:
• A multiplicative set S of A is a subset of A such that for all a, b ∈ S ⇒ a b ∈ S

and 1 ∈ S.
• Let M be an A-module. We define an equivalence relation ∼ on S × M

by (s,m) ∼ (s′,m′) if there exists t ∈ S such that t(sm′ − s′m = 0). The
localization of the A-module M with respect to S is the S−1A = {a/s |
(s, a) ∈ S ×A}-module

S−1M = (S ×M)/ ∼ .

If we denote by m/s the equivalence class of (s,m) in S−1M , then we have

S−1M = {(a/s)m | (s, a) ∈ S ×A, m ∈M} .
The localization of a module is just a way to extend the scalars of the A-module

M from A to S−1A. Moreover, we have the following canonical A-morphism:

iS : M −→ S−1M,
m −→ m/1,

from which we obtain ker iS = {m ∈M | ∃ 0 �= a ∈ S, am = 0} .
Definition 1.8. If S = A \0, then S is a multiplicative set of A, and the field

of fractions of A is defined by S−1A = Q(A) = {a/b | 0 �= b, a ∈ A}. We have

ker iS = t(M) = {m ∈M | ∃ 0 �= a ∈ A : am = 0}.(1.10)

In the course of the paper, we shall denote by K the field of fractions Q(A) of A.
Example 1.5. Let us reconsider the A-module M = A4/A2 R defined in Exam-

ple 1.4. We can check that the element z = y1− e−s

(s+1) u1− (s−1)
(s+1) u2 satisfies (s−1)

(s+1) z = 0,

i.e., z is a torsion element of M . (See Example 3.4 for an explicit computation of the
torsion elements of M .) If S = A \0, then, in the K = Q(A)-module S−1 M , we have

(s− 1)

(s + 1)

(z
1

)
=

(s−1)
(s+1) z

1
=

0

1
⇒ (s + 1)

(s− 1)

(s− 1)

(s + 1)

(z
1

)
=

z

1
=

0

1
⇒ iS(z) =

0

1
.

Moreover, we have the following isomorphism (see [1, 39]):

S−1M ∼= S−1A⊗AM,
(a/b)m ←→ a/b⊗m,

(1.11)
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which shows that the localization corresponds to the tensor product S−1A⊗A.
Definition 1.9 (see [1, 39]). The rank of an A-module is defined by

rankA(M) = dimK(K ⊗AM),

where K ⊗AM is a K-vector space and dimK(K ⊗AM) is its dimension over K.
Proposition 1.10 (see [1, 2, 39]). If S is a multiplicative set of A, then S−1A

is a flat A-module, and, for every exact sequence 0 −→M ′ −→M −→M ′′ −→ 0, we
have the following exact sequence:

0 −→ S−1A⊗AM ′ −→ S−1A⊗AM −→ S−1A⊗AM ′′ −→ 0.

Moreover, if M ′,M , and M ′′ are finitely generated A-modules, then we have

rankA(M) = rankA(M ′) + rankA(M ′′).(1.12)

2. Weakly doubly coprime factorizations. Since the work of Rosenbrock [38]
on coprime factorizations of rational matrices, this concept has played an increasing
role in analysis and synthesis problems. This technique has been popularized by the
book of Vidyasagar [49]. However, contrary to finite-dimensional systems, the transfer
matrices of more general systems (delay systems, partial differential equations) do not
generally admit doubly coprime factorizations. Intuitively, this comes from the fact
that the algebraic properties of rings such as H∞(C+), A, Â, and l1(Z+) are more
complex than the ones of RH∞ or k[s] (with k a field), which are used for finite-
dimensional systems. In the next section, we shall give a mathematical formulation
of the term “more complex.” In order to achieve this goal, we shall need to introduce
the concept of weakly doubly coprime factorizations of a transfer matrix.

2.1. Weak primeness and torsion-free modules. Let us introduce the con-
cept of a weakly left-prime matrix.

Definition 2.1. Let A be an integral domain and K = Q(A) its field of fractions.
The matrix R ∈Mq×p(A) is weakly left-prime if it satisfies

KqR ∩ Ap = AqR,

namely, if, for every λ ∈ Ap satisfying λ = µR for a certain µ ∈ Kq, there exists
ν ∈ Aq such that λ = ν R. The concept of weak right-primeness can be defined
similarly. Let us notice that R is weakly right-prime iff RT is weakly left-prime.

If R ∈ Mq×p(A) has full row rank, namely, if the q rows of R are A-linearly
independent, then R is weakly left-prime iff

µ ∈ Kq, µR ∈ Ap ⇒ µ ∈ Aq.

Example 2.1. Let us consider the full row rank matrix R defined by (1.6). This
matrix R is not weakly left-prime because ( s+1

s−1 : 0) /∈ A2 and we have

(
s+1
s−1 : 0

) ( s−1
s+1 0 − (s−1) e−s

(s+1)2 −
(
s−1
s+1

)2

0 s−1
s+1 0 − 1

s+1

)
=
(
1 : 0 : − e−s

s+1 : − s−1
s+1

)
∈ A4.

Proposition 2.2 (see [43]). If A is a greatest common divisor domain (GCDD),
namely, every couple of elements of A has a greatest common divisor, then a full row
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rank matrix R ∈Mq×p(A) is weakly left-prime iff R is irreducible (or minor left-prime
[27]), namely, 1 is the greatest common divisor of the q × q minors of R.

Let us notice that if A is no longer a GCDD, then the previous result fails to be
true [43]. In particular, it is not known whether or not A or Â are GCDD.

Lemma 2.3. Let A be an integral domain, K = Q(A) its field of fractions, and
R ∈Mq×p(A). Then, we have

Kq R ∩Ap = Aq R,

where Aq R = {λ ∈ Ap | ∃ 0 �= a ∈ A : aλ ∈ Aq R} is called the A-closure of the
submodule Aq R in Ap (see [7]).

Proof. Let λ ∈ Kq R ∩ Ap; then λ ∈ Ap, and there exists µ ∈ Kq such that
λ = µR. Let us write µ = d−1 ν with ν ∈ Aq and 0 �= d ∈ A. Then, we have
d λ = ν R, i.e., λ ∈ Aq R. Conversely, let λ ∈ Aq R; then λ ∈ Ap, and there exists
0 �= d ∈ A such that d λ ∈ Aq R. Thus, there exists ν ∈ Aq such that d λ = ν R; i.e.,
λ = (d−1 ν)R ∈ Kq R, i.e., λ ∈ Kq R ∩Ap.

Proposition 2.4. Let A be an integral domain, K = Q(A) its field of fractions,
R ∈Mq×p(A), and M = Ap/Aq R. Then, we have{

t(M) = (Kq R ∩Ap)/Aq R,
M/t(M) = Ap/(Kq R ∩Ap).

Proof. Let us note that we have Aq R ⊆ Kq R ∩ Ap. Therefore, we have the
following commutative exact diagram,

0 0
↓ ↓

0 −→ Aq R −→ Ap −→ M −→ 0
↓ ‖ ↓

0 −→ Kq R ∩Ap −→ Ap −→ Ap/(Kq R ∩Ap) −→ 0
↓ ↓ ↓

(Kq R ∩Ap)/Aq R 0 0
↓
0

from which we deduce the following exact sequence (snake lemma [2, 39]):

0 −→ (Kq R ∩Ap)/Aq R −→M −→ Ap/(Kq R ∩Ap) −→ 0.(2.1)

Using Lemma 2.3, we obtain

(Kq R ∩Ap)/Aq R = AqR/AqR = {m ∈M | ∃ 0 �= a ∈ A : am = 0} = t(M).

Then, we have Ap/(Kq R ∩ Ap) = M/t(M) (see (1.9)), which proves the proposi-
tion.

A direct consequence of Proposition 2.4 is the following corollary, which gives a
module interpretation of the weak left-primeness.

Corollary 2.5. Let A be an integral domain and K = Q(A) its field of fractions,
R ∈Mq×p(A), and the A-module M = Ap/Aq R. Then, we have the equivalences

1. R is weakly left-prime, i.e., Aq R = Kq R ∩Ap = Aq R;
2. M is a torsion-free A-module, i.e., t(M) = 0.
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Example 2.2. From Example 2.1, we know that the matrix R defined by (1.6) is
not weakly left-prime. By Corollary 2.5, we deduce that the A-module M = A4/A2 R
is not torsion-free. A torsion element is obtained by taking the class of the vector

(1 : 0 : − e−s

s+1 : − s−1
s+1 ) (see Example 2.1) in M to obtain z = y1− e−s

(s+1) u1− (s−1)
(s+1) u2.

We recover the torsion element z obtained in Example 1.5. It satisfies (s−1)
(s+1) z = 0.

Dually, we can prove that R̃ ∈Mp×(p−q)(A) is weakly right-prime iff the A-module

Ap/Ap−q R̃T is torsion-free.

2.2. Transfer matrices. The following lemma shows that if a transfer matrix
P ∈ Mq×(p−q)(K) is such that P = D−1 N , then the A-module Aq R depends only
on P and not on R = (D : −N) ∈Mq×p(A).

Lemma 2.6. Let A be an integral domain, K = Q(A) its field of fractions, and
P ∈ Mq×(p−q)(K) a transfer matrix. If P can be written as P = D−1

1 N1 = D−1
2 N2,

where R1 = (D1 : −N1) ∈Mq×p(A) and R2 = (D2 : −N2) ∈Mq×p(A), then we have

Aq R1 ⊆ Aq R2,

Aq R2 ⊆ Aq R1,
⇒ Aq R1 = Aq R2,

and thus, Aq Ri and Mi/t(Mi) = Ap/Aq Ri depend only on P and not on Ri, where
Mi = Ap/Aq Ri. In particular, if Aq R1 (resp., Aq R2) is A-closed, then we have

Aq R2 = Aq R1 (resp., Aq R1 = Aq R2). The same result holds for P = Ñi D̃i
−1

.
Proof. Clearing the denominators of P , we have P = d−1 H = H d−1, where

0 �= d ∈ A, and H ∈Mq×(p−q)(A). Let R = (d Iq : −H) ∈Mq×p(A). Then, we have

DiH = dNi,

(detDi)H = (Dci d)Ni,
⇒


DiR = dRi,

(detDi)R = (Dci d)Ri,
i = 1, 2,

where Dci is the cofactors matrix of Di, i.e., it satisfies Dci Di = (detDi) Iq. Let
λ ∈ Aq Ri; then there exists µ ∈ Aq such that λ = µRi, and thus,

d λ = µ (dRi) = µ (DiR) = (µDi)R⇒ λ ∈ Aq R⇒ Aq Ri ⊆ Aq R.

Conversely, let λ ∈ Aq R; then there exists µ ∈ Aq such that λ = µR. Thus,

(det Di)λ = µ ((det Di)R) = µ (Dci dRi) = (µDci d)Ri ⇒ λ ∈ Aq Ri ⇒ Aq R ⊆ Aq Ri.

Using the fact that X ⊆ Y ⇒ X ⊆ Y for two submodules X and Y of a free A-module,
we obtain

Aq Ri ⊆ Aq R ⊆ Aq Rj ⇒ AqRi = AqRj , i, j = 1, 2.

Now, if Aq Ri is A-closed, then

Aq Ri ⊆ Aq Rj ⊆ Aq Ri = Aq Ri ⇒ Aq Rj = Aq Ri.

Lemma 2.7. If R ∈ Mq×p(A) has full row rank and F is a free submodule of
ker .RT of rank p− q, then F = ker .RT , where F is the A-closure of F in Ap.

Proof. Let us note N � coker .RT . We have the following exact sequence:

0←− N ←− Aq
.RT

←− Ap ←− ker .RT ←− 0.
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The A-module N is defined by the A-linear combinations of the equations RT z = 0,
where zi is the class of the ith vector of the canonical basis of Aq in N = Aq/ApRT (see
(1.5)). Using the fact that R has full row rank, then there exist q equations of RT z = 0
which are A-linearly independent. If we denote by RT0 ∈Mq(A) the full rank matrix
corresponding to these q A-linearly independent equations, then we have RT0 z = 0,
and thus, by multiplying RT0 by its cofactors matrix, we obtain (detRT0 ) z = 0 with
0 �= detRT0 ∈ A. This equation shows that N is a torsion A-module. Now, let us
notice that we have K ⊗A N = 0 because N is a torsion A-module: for all n ∈ N,
there exists 0 �= a ∈ A : an = 0, and thus, 1 ⊗ n = (a/a) ⊗ n = (1/a) ⊗ an = 0.
Using the fact that K = Q(A) is a flat A-module (see Proposition 1.10), we have the
following exact sequence:

0 = K ⊗A N ←− Kq
.RT

←− Kp ←− K ⊗A ker .RT ←− 0.

Here K ⊗A ker .RT is a subvector space of Kp of dimension p − q. As F is a free
submodule of ker .RT of rank p−q, we have K⊗AF = K⊗A ker .RT ⊂ Kp, and thus,

F = (K ⊗A F ) ∩Ap = (K ⊗A ker .RT ) ∩Ap = ker .RT = ker .RT

because ker .RT is an A-closed submodule of Ap. Indeed, using the fact that A is an
integral domain, we obtain

λ ∈ ker .RT ⇒ ∃ 0 �= a ∈ A : aλ ∈ ker .RT ⇒ a (λRT ) = 0⇒ λRT = 0

⇒ λ ∈ ker .RT .

Proposition 2.8. Let P ∈ Mq×(p−q)(K) be such that P = D−1 N = Ñ D̃−1,

where R = (D : −N) ∈Mq×p(A) and R̃ = (ÑT : D̃T )T ∈Mp×(p−q)(A). If we define

the A-modules M = Ap/Aq R and M̃ = Ap/Ap−q R̃T , then we have{
ker .RT = Ap−q R̃T ,
ker .R̃ = Aq R,

{
M̃/t(M̃) ∼= ApRT ,

M/t(M) ∼= Ap R̃.

Proof. Using the fact that R R̃ = 0, we obtain the following two complexes:

0 −→ Aq
.R−→ Ap

.R̃−→ Ap−q,

Aq
.RT

←− Ap
.R̃T

←− Ap−q ←− 0.

Thus, Ap−q R̃T (resp., Aq R) is a free submodule of ker .RT (resp., ker .R̃) of rank
p− q (resp., q). By Lemma 2.7, Proposition 2.4, and Lemma 2.3, we obtain that{

ker .RT = Ap−q R̃T ,
ker .R̃ = Aq R,

⇒
{
ApRT ∼= Ap/ ker .RT = Ap/Ap−q R̃T = M̃/t(M̃),

ApR̃ ∼= Ap/ ker .R̃ = Ap/Aq R = M/t(M).

Let us notice that Proposition 2.8 is close in its spirit to some results obtained in
[26] for linear multidimensional systems in the behavioral approach.

From Proposition 2.8 and Lemma 2.6, we obtain that the A-modules Ap R̃ and
ApRT depend only, up to an isomorphism, on the transfer matrix P . This result was
proved in [22] in a different way (without any references to torsion-free A-modules).
Using the fact that the structural properties of P do not depend on the choice of the
fractional representation of P , we obtain the following corollary.
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Corollary 2.9. Let P ∈ Mq×(p−q)(K) be such that P = D−1 N = Ñ D̃−1,

where R = (D : −N) ∈ Mq×p(A) and R̃ = (ÑT : D̃T )T ∈ Mp×(p−q)(A). Then, the

structural (intrinsic) properties of P depend only on the A-modules Aq R and Ap−q R̃T
or, up to an isomorphism, on the A-modules Ap R̃ and ApRT .

2.3. Weakly doubly coprime factorizations. Let us introduce the concepts
of weakly left/right/doubly coprime factorizations.

Definition 2.10. Let A be an integral domain and K = Q(A).

• A transfer matrix P ∈ Mq×(p−q)(K) admits a weakly left-coprime factoriza-
tion if there exists a weakly left-prime matrix R = (D : −N) ∈ Mq×p(A),
with detD �= 0, such that P = D−1 N .

• A transfer matrix P ∈ Mq×(p−q)(K) admits a weakly right-coprime factor-

ization if there exists a weakly right-prime matrix R̃ = (ÑT : D̃T )T ∈
Mp×(p−q)(A), with det D̃ �= 0, such that P = Ñ D̃−1.

• A transfer matrix P admits a weakly doubly coprime factorization if P admits
weakly left- and right-coprime factorizations P = D−1 N = Ñ D̃−1.

Theorem 2.11. Let A be an integral domain, K = Q(A) its quotient field, P =
D−1 N = Ñ D̃−1 ∈ Mq×(p−q)(K) a transfer matrix, R = (D : −N) ∈ Mq×p(A), and

R̃ = (ÑT : D̃T )T ∈ Mp×(p−q)(A). Then, P = D−1 N admits a weakly left-coprime

factorization (resp., weakly right-coprime factorization) iff Aq R (resp., Ap−q R̃T ) is
a free A-module of rank q (resp., p− q).

Proof. ⇒ If P admits a weakly left-coprime factorization, then there exists a
weakly left-prime matrix R′ = (D′ : −N ′) ∈ Mq×p(A), with detD′ �= 0, such that

we have P = D′−1
N ′. Using Lemma 2.6, we deduce that Aq R = Aq R′. Moreover,

Aq R′ ∼= Aq because R′ has full row rank, and thus, Aq R ∼= Aq.

⇐ If Aq R is a finitely generated free A-module of rank q, then, choosing a basis
for Aq R, we obtain a full row rank matrix R′ ∈ Mq×p(A) such that Aq R = Aq R′,
and thus, R′ is weakly left-prime. If Ri is the ith row of R, then Ri ∈ Aq R = Aq R′

because Ri ∈ Aq R ⊆ Aq R. Therefore, there exists R′′
i ∈ Aq such that Ri = R′′

i R
′,

and then, there exists R′′ ∈ Mq(A) such that R = R′′ R′. Using the fact that R has
full row rank, we deduce that R′′ also has full row rank. Finally, let R′ = (D′ : N ′),
where R′ ∈Mq×p(A); then we have D = R′′ D′ and N = R′′ N ′, and thus, detD′ �= 0.

This proves the result because we have P = D−1 N = (R′′ D′)−1 (R′′ N ′) = D′−1
N ′.

The result for weak right-coprime factorizations can be proved similarly.

Corollary 2.12. A transfer matrix P = D−1 N = Ñ D̃−1 admits a weakly

doubly coprime factorization iff the A-modules Aq R and Ap−q R̃T are two free A-
modules of rank, respectively, q and p− q.

Let us notice that, from Corollary 2.9, Corollary 2.5, and the fact that a coprime
factorization is an intrinsic property of the transfer matrix, we deduce that weakly
left/right/coprime factorizations are the weakest possible coprime factorizations.

3. Coherent rings and modules.

3.1. Introduction. Any mathematical model of a plant is only an approxima-
tion of the real system. Thus, the algebra of SISO stable plants needs to be endowed
with a norm in order to take into account some errors in the modelization. For tech-
nical reasons, we usually prefer to ask this normed algebra to be complete. Therefore,
we generally require an algebra of SISO stable systems to be a Banach algebra [16, 49]
(e.g., H∞(C+), A, Â, l1(Z+) [3, 8, 9, 48, 49]).
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However, it is known that all noetherian k-Banach algebras (k = R,C)—namely,
Banach algebras such that every ideal is finitely generated—are k-finite-dimensional
[41]. Hence, for instance, H∞(C+), Â, L1(R+) + R δ, l1(Z+) are not noetherian
rings, and thus, an ideal I of these algebras A generally does not have the form
I =

∑n
i=1 Aai for a finite set {a1, . . . , an} of elements of A. A direct consequence

is that most of the algebraic objects (kernel, image, quotient, sum, intersection, etc.)
are generally not finitely generated. Hence, we cannot study the algebraic properties
of systems, defined by matrices whose entries belong to Banach algebras, by means
of the concepts and techniques developed for noetherian rings (i.e., the main part of
commutative algebra).

The concept of a coherent ring was first introduced in 1960 by Chase [5], and
the definition of a coherent module appeared in [1] in 1964 (see [17] for more details).
Coherent rings form a general class of rings including noetherian rings, Boolean rings,
Bézout domains, semihereditary rings, etc. [17, 39]. This concept is closely related to
the one of a coherent sheaf introduced by Cartan [4] and Serre [42] in the study of
analytic and algebraic geometries.

In this section, we show that one possible way to cope with the fact that most of
the integral domains of SISO stable plants are not noetherian is to require that these
domains be coherent rings. In particular, for coherent rings, we give algorithms which
compute the A-closure Aq R of an A-module of the form Aq R (see Theorem 2.11) and
which check whether or not a finitely generated A-module is torsion-free, reflexive,
or projective. Finally, we shall characterize explicitly the class of integral domains A
such that every transfer matrix, with entries in K = Q(A), admits a weakly doubly
coprime factorization.

3.2. Definitions and results.
Definition 3.1 (see [2, 15, 39]). We have the following definitions:
• An A-module M is coherent if M is a finitely generated A-module and every

finitely generated submodule of M is finitely presented.
• A ring A is coherent if it is coherent as an A-module.

Hence, A is a coherent ring iff every finitely generated ideal I =
∑n
i=1 Aai of A

is finitely presented, i.e., the module of relations of I (or syzygy of I), defined by

S(I) =

{
r = (r1 : · · · : rn) ∈ An |

n∑
i=1

ri ai = 0

}
,(3.1)

is finitely generated. In terms of equations, A is a coherent ring iff for every n ∈ Z+

and a = (a1 : · · · : an)T ∈ An there exist m ∈ Z+ and R ∈Mm×n(A) such that

∀ r = (r1 : · · · : rn) ∈ An : r a = 0⇔ ∃ b = (b1 : · · · : bm) ∈ Am : r = bR.

Example 3.1. Any noetherian ring, namely a ring where any ideal I is finitely
generated, i.e., has the form I =

∑n
i=1 Aai for a finite number of ai ∈ A, is coherent

[1, 39]. In particular, RH∞ and k[s], with k a field, are coherent domains. An
example of a coherent ring which is not noetherian is given by the ring k[χi, i ∈ N] of
polynomials in infinitely many variables χi with coefficients in a field k (see [39]).

We give a few definitions which are related to the extension of (1.4) on the left.
Definition 3.2. We have the following definitions (see [1, 14, 24, 39]):
• A projective (resp., free, flat) resolution of an A-module M is an exact se-

quence of the form

· · · d3−→ F2
d2−→ F1

d1−→ F0 −→M −→ 0,(3.2)
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where Fi is a projective (resp., free, flat) A-module and di is an A-morphism.
• A finite free resolution of an A-module M is an exact sequence of the form

(3.2), where Fi is a finite free A-module, i.e., Fi ∼= Ari , ri ∈ Z+, for i ≥ 0.
• The projective (resp., flat) dimension pdA(M) (resp., w.dimA(M)) of an A-

module M is the minimum n ∈ Z+ ∪{+∞} such that there exists a projective
(resp., flat) resolution of M of length n, i.e., of the form

0 −→ Fn
dn−→ Fn−1

dn−1−→ · · · d2−→ F1
d1−→ F0 −→M −→ 0.

• The global dimension and weak global dimension of A are defined by

gl.dim(A) = sup {pdA(M) | A−module M} ∈ Z+ ∪ {+∞},
w.gl.dim(A) = sup {w.dimA(M) | A−module M} ∈ Z+ ∪ {+∞}.

For a general ring A, we have the inequality w.gl.dim(A) ≤ gl.dim(A). If A is a
noetherian ring, then the equality holds [2, 39].

Remark 3.1. Using the canonical basis of the free A-module Fi ∼= Ari , every finite
free resolution of an A-module M has the form

· · · .R2−→ Ar1
.R1−→ Ar0 −→M −→ 0,(3.3)

where Ri is an (ri× ri−1)-matrix whose entries belong to A, and .Ri : Ari → Ari−1 is
defined by letting operate a row vector of length ri on the left of Ri to obtain a row
vector of length ri−1. Moreover, M is defined by the system R1 z = 0, where zi is the
class of ei in M and {e1, . . . , er0} is the canonical basis of Ar0 (see (1.5)).

Definition 3.3. We have the following definitions (see [1, 39]):
• A ring A is semihereditary if every finitely generated ideal of A is a projective

A-module.
• A semihereditary integral domain is called a Prüfer domain.
• A ring A is a Bézout domain if every finitely generated ideal of A is a principal

ideal, i.e., generated by a single element of A.
• A ring A is hereditary if every ideal of A is a projective A-module.
• A hereditary integral domain is called a Dedekind domain.
• A ring A is a principal ideal domain if every ideal of A is generated by a

single element of A.
We shall give in [33] some examples of Prüfer and Dedekind domains, as they

will play an important role in internal stabilizability. Coherent rings with small weak
global dimensions have been studied and classified largely in algebra [17, 39, 47].

Theorem 3.4 (see [2, 39]). We have the following results:
1. Semihereditary rings and Prüfer domains are coherent rings.
2. Hereditary rings and Dedekind domains are noetherian and, thus, coherent

rings.
3. If A is an integral domain, then w.gl.dim(A) ≤ 1⇔ A is a Prüfer domain.
4. If A is an integral domain, then gl.dim(A) ≤ 1⇔ A is a Dedekind domain.

We have the following inclusions of rings:

Noetherian rings: Principal ideal domains ⊂ Dedekind domains
∩ ∩ ∩

Coherent rings: Bézout domains ⊂ Prüfer domains

Example 3.2. The integral domains E(k), k = R, C, and E = E(R) ∩ R(s)[e−s],
defined in Theorem 1.6, are Bézout domains and, thus, two coherent rings.
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Proposition 3.5 (see [15, 47]). An integral domain with gl.dim(A) ≤ 2 is
coherent.

General rings with w.gl.dim(A) = 2 are less understood [14, 17, 24, 47].
Proposition 3.6 (see [1, 39]). If A is a coherent ring, then an A-module M is

coherent iff M is a finitely presented A-module.
Definition 3.7. We call an A-system a system of the form Rz = 0, where z is

a set of formal variables and R is a finite matrix whose entries belong to A.
From Proposition 3.6, we have the following corollary.
Corollary 3.8. If A is a coherent ring, then there is a one-to-one correspon-

dence between coherent A-modules and A-systems.
Proof. ⇒ Let

∑p
j=1 Rij zj = 0, Rij ∈ A, i = 1, . . . , q, be an A-system and

R = (Rij) ∈Mq×p(A). Let us define the following A-morphism:

.R = Aq −→ Ap,
(a1 : · · · : aq) −→ (a1 : · · · : aq)R.

If we note M = coker .R = Ap/Aq R, then we have the following exact sequence,

Aq
.R−→ Ap

π−→M −→ 0,(3.4)

and, by Proposition 3.6, M is a coherent A-module because A is a coherent ring.
⇐ Let M be a coherent A-module. Using the fact that A is a coherent ring, by

Proposition 3.6, M is a finitely presented A-module, there exists an exact sequence
of the form (3.4), and, thus, M is defined by means of a system of equations of the
form Rz = 0.

3.3. Elementary algebraic operations. The next proposition shows that the
class (category) of finitely presented A-modules over a coherent ring A, i.e., coherent
modules, is invariant under elementary algebraic operations. First, let us notice that
any finitely generated submodule of a coherent module is also coherent.

Proposition 3.9 (see [1, 39]). If two terms in the exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

are coherent A-modules, so is the third one.
Corollary 3.10 (see [1, 39]). Let M, N, M ′ ⊂ M, M ′′ ⊂ M be coherent A-

modules, φ : M −→ N an A-morphism, I a coherent ideal, and S a multiplicative set
of A. Then, we have the following:

1. M/M ′,M ⊕N,M ′ ∩M ′′,M ′ + M ′′ are coherent A-modules.
2. ker φ, imφ, cokerφ, and coimφ are coherent A-modules.
3. M ⊗A N and homA(M,N) are coherent A-modules.
4. S−1 A is a coherent A-module.
5. IM = {∑n

i=1 aimi | ai ∈ I, mi ∈ I} is a coherent A-module.
6. ann(M) = {a ∈ A | aM = 0} is a coherent ideal of A.
Corollary 3.11. Let A be a coherent ring and M a finitely presented A-module.

Then there exists a finite free resolution of M of the form (3.3).
Proof. Using Proposition 3.9, we prove by induction that every finite power Ari

of A is a coherent A-module (take M = An,M ′ = An−1,M ′′ = A). The kernel of a
homomorphism di between two coherent A-modules is a coherent A-module and, by
Proposition 3.6, is a finitely presented A-module. Then, the module of relations of Ri
is finitely presented, and thus, M has a finite free resolution.

Definition 3.12. Let M be an A-module with a projective resolution of the form
(3.2) and N another A-module. Then we have the following definitions:
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• The defects of exactness of

· · · d
�
3←− homA(F2, N)

d�2←− homA(F1, N)
d�1←− homA(F0, N)←− 0,(3.5)

where d�i is defined by d�i (f) = f ◦ di for all f ∈ homA(Fi−1, N), depend only
on M and N and not on (3.2) and are called extiA(M,N) (see [2, 29, 39]).
In particular, we have{

ext0A(M,N) = ker d�1 = homA(M,N),
extiA(M,N) = ker d�i+1/im d�i , i ≥ 1.

• The defects of exactness of

· · · idN⊗d3−→ N ⊗A F2
idN⊗d2−→ N ⊗A F1

idN⊗d1−→ N ⊗A F0 −→ 0,(3.6)

where idN ⊗ di is defined by (idN ⊗ di)(n ⊗m) = n ⊗ di(m) for all n ∈ N,
for all m ∈ Fi, depend only on M and N and not on (3.2) and are called
torAi (M,N) (see [2, 29, 39]). In particular, we have{

torA0 (M,N) = coker (idN ⊗ d1) = N ⊗AM,
torAi (M,N) = ker(idN ⊗ di)/im(idN ⊗ di+1), i ≥ 1.

Remark 3.2. If M has a finite free resolution of the form (3.3), then (3.5) is

defined by · · · R3.←− Nr2
R2.←− Nr1

R1.←− Nr0 ←− 0, where Ri. : Nri−1 → Nri is defined
by letting operate a column vector of length ri−1, whose entries belong to N on the
right of Ri, to obtain a column vector of length ri, whose entries belong to N . We
have

extiA(M,N) = kerN (Ri+1.)/ imN (Ri.) ∀ i ≥ 1.

Similarly, (3.6) becomes the complex · · · .R3−→ Nr2
.R2−→ Nr1

.R1−→ Nr0 −→ 0, where
.Ri : Nri → Nri−1 is defined by letting operate a row vector of length ri, whose
entries belong to N on the right of Ri, to obtain a row vector of length ri−1, whose
entries belong to N and

torAi (M,N) = kerN .Ri/imN .Ri+1 ∀ i ≥ 1.

Proposition 3.13 (see [2, 39]). We have the following results:
• extiA(M,N) = 0 ∀ i ≥ 1, ∀N A−module ⇔M is a projective A-module.
• toriA(M,N) = 0 ∀ i ≥ 1, ∀N A−module ⇔M is a flat A-module.

Corollary 3.14. If A is a coherent ring, and M and N are two coherent A-
modules, then extiA(M,N) and torAi (M,N) are coherent A-modules for i ≥ 0. More-
over, extiA(M,A) is a torsion A-module for i ≥ 1.

Proof. Using the fact that extiA(M,N) (resp., torAi (M,N)) does not depend on
the projective resolution of M , by Proposition 3.6 and Corollary 3.11, we choose a
finite free resolution (3.3) for M . By Proposition 3.9, homA(Fi, N) (resp., N⊗AFi) is
a coherent A-module, and thus, ker d�i and im d�i (resp., ker(idN⊗di) and im(idN⊗di))
are coherent A-modules. Finally, extiA(M,N) (resp., torAi (M,N)) is also a coherent
A-module for i ≥ 0 as a quotient of two coherent A-modules. The proof of the fact
that extiA(M,A) is a torsion A-module is the same as that of Lemma 1 in [28].
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Definition 3.15. Let M be an A-module defined by a finite presentation:

F1
d1−→ F0 −→M −→ 0.

We call the transposed module1 of M , the A-module T (M) = coker d�1 defined by

0←− T (M)←− F �1
d�1←− F �0 .

Hence, if M = Ap/Aq R, then the transposed module is T (M) = Aq/RAp, where
the vectors of Aq and Ap are now column ones (duality). Using the fact that A is
commutative, we finally have T (M) = Aq/ApRT , where we use only row vectors.

If A is a coherent ring and M a coherent A-module, i.e., finitely presented A-
module, then T (M) is also a coherent A-module because it is finitely presented.

Remark 3.3. We commit a little abuse of notation in denoting the transposed
A-module of M by T (M): coker d�1 depends on the particular choice of d1, i.e., on the
particular form of the system of equations chosen to represent the module. However,
we have (see [29]):

1. If R has full row rank, then T (M) depends only on M and not on R.
2. If R does not have full rank, i.e., ker .R �= 0, then coker d�1 depends only on M

up to a projective equivalence [39], a fact which shows that extiA(T (M), N)
depends only on M and N for i ≥ 1.

The next theorem shows how to characterize the module properties in terms of
the extension and torsion functors.

Theorem 3.16. Let A be a coherent ring with w.gl.dim(A) ≤ n, M a finitely
presented A-module, and T (M) its transposed A-module. Then, we have

1. t(M) ∼= ext1A(T (M), A),
2. t(M) ∼= torA1 (K/A,M),
3. M is torsion-free iff ext1A(T (M), A) = 0,
4. M is reflexive iff extiA(T (M), A) = 0, i = 1, 2,
5. M is projective iff extiA(T (M), A) = 0, i = 1, . . . , n.

Proof. The proofs of 1, 3, 4, 5 are the same as those given in [27, 28] for noetherian
rings: we just need to change finitely generated modules (resp., noetherian rings) into
finitely presented (resp., coherent) ones. See also the proof of Proposition 3.4 of [33].
For a proof of 2, see [39].

Using Proposition 2.4, Lemma 2.3, and Theorem 3.16, we obtain an algorithm
which computes the closure Aq R of an A-module of the form Aq R.

Algorithm. Input: A coherent ring A and R ∈ Mq×p(A). Output: R′ ∈
Mr×p(A) such that Aq R = Ar R′.

1. Start with R ∈Mq×p(A).
2. Transpose R to obtain RT ∈Mp×q(A).
3. Find a family of generators of ker .RT = {λ ∈ Ap | λRT = 0}. If {λ1, . . . , λm}

is a family of generators of ker .RT , then denote by RT−1 ∈ Mm×p(A) the
matrix whose ith row is λi.

4. Transpose RT−1 to obtain R−1 ∈Mp×m(A).
5. Find a family of generators of ker .R−1 = {η ∈ Ap | η R−1 = 0}. If
{η1, . . . , ηr} is a family of generators of ker .R−1, then denote by R′ ∈
Mr×p(A) the matrix whose ith row is ηi. We have Aq R = Ar R′, Ap/AqR ∼=
ApR−1.

1Do not confuse the notation of the transposed module T (M) of an A-moduleM with the torsion
submodule t(M) of M .
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If R′ has full row rank, then Aq R = Ar R′ is a free A-module. (See Example 3.4
for the explicit computations of the A-closure Aq R of a certain A-module Aq R.) To
finish, let us note that we can use the previous algorithm to check whether a transfer
matrix admits a weakly left/right/doubly coprime factorization (see Theorem 2.11).
Indeed, the previous algorithm allows us to have a precise description of the A-closure
of an A-module of the form Aq R. However, checking whether such an A-closure is
free can be a very difficult algebraic problem (see, e.g., the proof of the Quillen–Suslin
theorem in [39]).

3.4. Coherent Sylvester domains.

Definition 3.17 (see [6, 10]). A projective-free coherent domain with

w.gl.dim(A) ≤ 2

is called a coherent Sylvester domain.

Example 3.3. A Bézout domain (e.g., E(k), E by Theorem 1.6) and thus, a
principal ideal domain (e.g., RH∞ by Theorem 1.6, k[s], with k a field) are coherent
Sylvester domains. More generally, A = B[x] is a coherent Sylvester domain iff B is a
Bézout domain [11] (e.g., A = Z[x], A = k[s][z] = k[s, z], with k a field, or A = B[x],
where B is the ring of all algebraic integers, i.e., the integral closure of Z in C; see
[39]).

Definition 3.18. A ring A is regular if every finitely generated ideal of A has a
finite projective dimension.

Theorem 3.19 (see [50]). A coherent regular domain A is a GCDD—every a
and b of A have a greatest common divisor [a, b]—iff every finitely generated projective
ideal of A is principal.

Corollary 3.20.2 A coherent Sylvester domain is a GCDD.

Proof. A coherent Sylvester domain is a projective-free coherent domain with
w.gl.dim(A) ≤ 2 and, thus, a regular ring which satisfies that every finitely generated
projective ideal is free, i.e., is principal, because A is an integral domain. Then, the
result follows directly from Theorem 3.19.

Proposition 3.21. If A is a coherent Sylvester domain, then, for every A-module
M defined by a finite free resolution,

F1
d1−→ F0 −→M −→ 0,

there exist a free A-module F ′
1 and two A-morphisms d′1 : F ′

1 → F0 and d′′1 : F1 → F ′
1

such that d1 = d′1 ◦ d′′1 and we have the following exact sequences:

0 −→ F ′
1

d′1−→ F0 −→M/t(M) −→ 0,(3.7)

0 −→ ker d1 −→ F1
d′′1−→ F ′

1 −→ t(M) −→ 0.(3.8)

2We would like to thank Prof. W. Dicks for pointing out to us that this result is already contained
in Lemma 4.1 of [11].
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Proof. We have the following commutative exact diagram:

0 0
↓ ↓

ker d′′1 0 t(M)
↓ ↓ ↓

0 −→ ker d1 −→ F1
d1−→ F0

π−→ M −→ 0
↓ d′′1 ‖ ↓ π′

0 −→ ker φ −→ F0
φ−→ M/t(M) −→ 0,

↓ ↓ ↓
coker d′′1 0 0
↓
0

where φ = π′◦π and d′′1 : F1 → kerφ is induced by the identity homomorphism from F0

to F0 and π′ : M →M/t(M). An easy chase in the diagram shows that ker d′′1 ∼= ker d1

and coker d′′1 ∼= t(M). Now, let us prove that kerφ is a finite free A-module. M/t(M)
is a coherent A-module over a coherent ring A [15] and, in particular, M/t(M) is a
finitely generated A-module. It is well known that M/t(M) can be imbedded into a
finitely generated free A-module F−1 (see, e.g., [39] or [15]), and we have the following
exact sequence:

0 −→M/t(M) −→ F−1 −→ F−1/(M/t(M)) −→ 0.

Hence, we have the following exact sequence:

0 −→ kerφ −→ F0
φ−→ F−1 −→ F1/(M/t(M)) −→ 0.

Using the fact that w.gl.dim(A) = 2, we then have pdA(F1/(M/t(M))) ≤ 2, and thus,
pdA(kerφ) = 0 [2, 39], i.e., kerφ is a projective A-module, and thus, a free A-module
because A is a projective-free ring. kerφ is a finitely generated A-module because kerφ
is a coherent A-module. (kerφ is the kernel of an A-morphism between two finite free
A-modules.) Thus, kerφ ∼= F ′

1
∼= Ar, r ∈ Z+, which gives (3.7) and (3.8).

In the next corollary, we reformulate Proposition 3.21 in terms of weakly doubly
coprime factorizations. It generalizes to coherent Sylvester domains a result obtained
by Smith in [43] for H∞(C+) (see section 3.5).

Corollary 3.22. If A is a coherent Sylvester domain, then every matrix P ,
whose entries belong to K = Q(A), admits a weakly doubly coprime factorization.

Proof. If P ∈ Mq×(p−q)(K), then we can define R = (dIq : −H) ∈ Mq×p(A),
where d is the product of the denominators of the entries of P and H = dP ∈
Mq×(p−q)(A). By Proposition 3.21, there exist a full rank matrix R′′ ∈ Mq(A) and
a weakly left-prime full row rank matrix R′ = (D : −N) ∈ Mq×p(A) such that
R = R′′ R′. Thus, we have (dIq : −H) = R′′ (D : −N) and detR′′ �= 0. Then, we
have{

d Iq = R′′ D ⇒ detD �= 0,
H = R′′ N,

⇒ P = (d Iq)
−1 H = (R′′ D)−1(R′′ N) = D−1 N.

Dually, we have P = G (d Ip−q)−1, and thus, there exists a weakly right-prime ma-

trix R̃′ = (ÑT : D̃T )T such that R̃ = (GT : (dIp−q)T )T = (ÑT : D̃T )T R̃′′.
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Therefore, P = G (d Ip−q)−1 = (Ñ R̃′′) (D̃ R̃′′)−1 = Ñ D̃−1 is a weakly right-coprime
factorization.

To prove the next theorem, we shall need the next proposition due to Dicks.

Proposition 3.23 (based on [12]). Let A be an integral domain. If, for every
finitely generated free A-module F0 and every finitely generated free A-submodule F1

of F0, the A-closure of F1 in F0 is a finitely generated free A-module, then A is a
coherent Sylvester domain.

Proof. Let K = Q(A), p, q ∈ Z+, F0 = Ap, and R be any matrix belonging to

Mp×q(A). We have the exact sequence Aq
.R←− Ap ←− ker .R ←− 0. Applying the

tensor product K⊗A to the previous exact sequence, we obtain the exact sequence (K

is a flat A-module) Kq
.R←− Kp ←− K⊗A ker .R←− 0. Therefore, K⊗A ker .R is a K-

subvector space of Kp, and thus, there exists a finite basis {e1, . . . , em} of K⊗Aker .R,
where m = dimK(K ⊗A ker .R) ≤ p. Let us note ei = fi/di, with fi ∈ Ap and
0 �= di ∈ A, and let F1 be the A-submodule of Kp generated by {f1, . . . , fm}. Then,
F1 is a free A-submodule of ker .R. Thus, F1 ⊆ ker .R = ker .R, because ker .R is an A-
closed submodule of Aq. Moreover, for every λ ∈ ker .R, we have λ =

∑m
i=1 ai ei, with

ai ∈ K, and clearing the denominators of ai and ei = fi/di, there exists 0 �= a ∈ A
such that aλ ∈ F1, i.e., λ ∈ F1, and thus F1 = ker .R ⊆ Ap = F0. Then, by
hypothesis, ker .R is a finitely generated free A-module. Using the implication (v) ⇒
(i) of Theorem 10 of [10] (namely, the annihilator of every matrix is free ⇒ A is a
coherent Sylvester domain), we obtain that A is a coherent Sylvester domain.

The next theorem characterizes the integral domains over which every transfer
matrix admits a weakly doubly coprime factorization.

Theorem 3.24. We have the following equivalences:

1. Every multi-input multi-output (MIMO) plant admits a weakly doubly coprime
factorization.

2. A is a coherent Sylvester domain.

Proof. 1 ⇒ 2. Let F0 be any finitely generated free A-module, and suppose
that F0 = Ap for a certain positive integer p. Let F1 be any finitely generated free
A-submodule of F0, and suppose that F1 has rank q. Taking a basis for F1, then
there exists a full row rank matrix R ∈ Mq×p(A) such that we have F1 = Aq R. We
can always suppose that R can be written as R = (D : −N), where D is a full rank
matrix. Then, by hypothesis, P = D−1 N has a weakly doubly coprime factorization,
i.e., there exists a weakly left-prime matrix R′ = (D′ : −N ′) ∈ Mq×p(A) such that

detD′ �= 0 and P = D′−1
N ′. Then, by Lemma 2.6 and Theorem 2.11, we have

Aq R = Aq R′ and, using the fact that Aq R′ is a free A-module of rank q, we obtain
that F1 = Aq R is a finite free A-submodule of F0. From Proposition 3.23, it follows
that A is a coherent Sylvester domain.

2⇒ 1 was already proved in Corollary 3.22.

3.5. An example: H∞(C+).

Theorem 3.25 (see [23, 37]). If D is a finitely connected domain of C, then
H∞(D) is a coherent domain. In particular, if we denote the open right half-plane
by C+ = {s ∈ C | Re s > 0} and the open unit disc by D = {z ∈ C | |z| < 1}, then
H∞(C+) and H∞(D) are two coherent integral domains.

In the rest of this paper, we shall consider only the case D = D and, by extension,
D = C+. The proof of the coherence of H∞(D) is based on the following theorem,
which is a weak-� version of the Beurling–Lax theorem [25]. The condition on m is
given by point 2 of the lemma on the local rank (p. 44) and Remark (p. 45) of [25].
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Theorem 3.26. Let R ∈Mq×p(H∞(D)), and let us define the H∞(D)-morphism:

R : H∞(D)p −→ H∞(D)q,
(a1 : · · · : ap)T −→ R (a1 : · · · : ap)T .

Then, there exists R−1 ∈Mp×m(H∞(D)) such that

kerR = R−1 H∞(D)m,(3.9)

(R−1(e
i θ))� R−1(e

i θ) = Im for almost every θ ∈ [0, 2π),(3.10)

m = p− rankR,(3.11)

where rankR is the number of H∞(D)-linearly independent rows of R.
Corollary 3.27. Let A = H∞(D). If M is a finitely presented A-module, then

pdA(M) ≤ 2.

Proof. Let A = H∞(D) and Aq
.R−→ Ap −→ M −→ 0 be a finite presentation of

M . Using Theorem 3.26, up to a transposition, there exists an r× q-matrix R1 whose
entries belong to A such that we have the following exact sequence:

0 −→ ker .R1 −→ Ar
.R1−→ Aq

.R−→ Ap −→M −→ 0.(3.12)

From the exactness of (3.12), we obtain (see Definition 1.9 and Proposition 1.10)

rank (ker .R1) + rankM = r + p− q.

From the exact sequence 0 −→ im.R −→ Ap −→ M −→ 0, we obtain rankM =
p − rankR. From (3.11), we have r = q − rankR, and thus, rank (ker .R1) = 0,
i.e., ker .R1 is a torsion A-module. However, ker .R1 is a submodule of the free A-
module Aq, and thus, ker .R1 = 0 because a free module is torsion-free. Hence, every
finitely presented A-module M has a finite free resolution of length at most 2, i.e.,
pdA(M) ≤ 2.

Corollary 3.28. H∞(D) has a weak global dimension 2, i.e.,

w.gl.dim(H∞(D)) = 2.(3.13)

Proof. Let A = H∞(D). Using Corollary 3.27 and the fact that every finitely
presented flat module is projective (see 3 of Proposition 1.4), then every finitely pre-
sented A-module M has a finite flat resolution of length at most 2, i.e., w.dimA(M) =
pdA(M) ≤ 2. Moreover, w.gl.dim(A) is attained by taking the supremum of the weak
dimension of finitely presented modules [14, 24], and thus, w.gl.dim(A) ≤ 2. In
Example 4.3, we shall give a finitely presented torsion-free H∞(C+)-module which
is not projective (similar examples can be exhibited for D = D). Thus, we have
w.gl.dim(A) = 2.

The next corollary follows directly from the fact that w.gl.dim(H∞(D)) = 2.
Corollary 3.29. H∞(D) is a regular ring.
The following corollary was first proved in [46] for full row rank matrices.
Corollary 3.30. H∞(D) is a projective-free integral domain.
Proof. Let A = H∞(D). Every finitely generated projective module is finitely

presented [2]. Hence, let us suppose that M is a finitely presented projective A-module

defined by a finite free resolution F1
d1−→ F0 −→M −→ 0. Then, T (M) is a coherent
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A-module and, by Theorem 3.26, T (M) has a finite free resolution of length 2 of the

form 0 ←− T (M) ←− F �1
d�1←− F �0

d�2←− F �−1 ←− 0. The fact that M is a projective
A-module implies that extiA(T (M), A) = 0, i ≥ 1 (see Theorem 3.16), and thus,

F1
d1−→ F0

d2−→ F−1 −→ 0 is an exact sequence; i.e., M = coker d1
∼= im d2 = F−1 is a

free A-module.
Corollary 3.31. H∞(D) is a coherent Sylvester domain and, thus, a GCDD.
The fact that H∞(D) is a GCDD was first proved in [36] (see also [43]).
Corollary 3.28 shows that, for any finitely presented A = H∞(D)–module M ,

we have extiA(T (M), A) = 0 for all i ≥ 3. Hence, by Theorem 3.16, every finitely
presented A-module M satisfies only one of the three following possibilities: M has a
nontrivial torsion submodule, M is torsion-free but not free, or M is free.

Example 3.4. In Example 2.1, we proved that the factorization P = D−1 N,
defined by (1.3), of the transfer matrix (1.2) was not weakly left-coprime. Let us
notice that R = (D : −N) was obtained by clearing the denominators of P once all
its entries were written as quotients of (stable) elements of A = H∞(C+). Hence,
clearing the denominators of P does not generally lead to weakly doubly coprime
factorizations. In general, we need to use the algorithm developed at the end of
section 3.3 to compute a weakly doubly coprime factorization of a transfer matrix.
Let us compute a weakly left-coprime factorization of the transfer matrix (1.2).

1. Let us reconsider the A-module M = A4/A2 R defined in Example 1.4. The
matrix R ∈M2×4(A) has full row rank, and thus, we have the finite free presentation

0 −→ A2 .R−→ A4 −→M −→ 0.

2. The transposed A-module T (M) is defined by the exact sequence

0←− T (M)←− A2 .R
T

←− A4 ←− ker .RT ←− 0.

3. Let λ = (λ1 : λ2 : λ3 : λ4)
T ∈ ker .RT ; then we have


(s−1)
(s+1) λ1 − (s−1) e−s

(s+1)2 λ3 −
(
s−1
s+1

)2

λ4 = 0,

(s−1)
(s+1) λ2 − 1

(s+1) λ4 = 0.
(3.14)

By Corollary 3.31, A is a GCDD. The greatest common factor of s−1
s+1 and 1

s+1 is 1;
thus, from the second equation of (3.14), we have{

λ2 = 1
(s+1) µ1,

λ4 = (s−1)
(s+1) µ1,

µ1 ∈ A.

Substituting λ4 in the first equation of (3.14), we obtain

(s−1)
(s+1)

(
λ1 − e−s

(s+1) λ3 −
(
s−1
s+1

)2

µ1

)
= 0⇒ λ1 = e−s

(s+1) λ3 +
(
s−1
s+1

)2

µ1

because A is an integral domain and λi, µ1 ∈ A. Finally, we have


λ1 =
(
s−1
s+1

)2

µ1 + e−s

(s+1) µ2,

λ2 = 1
(s+1) µ1,

λ3 = µ2,

λ4 = (s−1)
(s+1) µ1,

⇔ (λ1 : λ2 : λ3 : λ4) = (µ1 : µ2)

(
( s−1
s+1 )2 1

s+1 0 s−1
s+1

e−s

s+1 0 1 0

)
.
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If we call the matrix in the second member RT−1, then we have the following exact
sequence:

0←− T (M)←− A2 .R
T

←− A4 .R
T
−1←− A2 ←− 0.(3.15)

Moreover, if we note µ = (µ1 : µ2), then, from λ = µRT−1, we have

{
µ1 = 2λ2 + λ4,
µ2 = λ3,

⇒ ST−1 �




0 0
2 0
0 1
1 0


 : RT−1 S

T
−1 = I2 ⇒ S−1 R−1 = I2.

4. Dualizing (3.15), we obtain the following complex:

0 −→ A2 .R−→ A4 .R−1−→ A2 −→ 0.

Therefore, we have {
ext1A(T (M), A) = ker .R−1/A

2 R,
ext2A(T (M), A) = A2/A4 R−1.

From S−1 R−1 = I2, we deduce that for all ξ ∈ A2, the element η = ξ S−1 ∈ A4 is
such that ξ = η R−1, i.e., A4 R−1 = A2, and thus, ext2A(T (M), A) = A2/A4 R−1 = 0.

5. If η = (η1 : η2 : η3 : η4) ∈ ker .R−1, then we have



(
s−1
s+1

)2

η1 + 1
(s+1) η2 + (s−1)

(s+1) η4 = 0,

e−s

(s+1) η1 + η3 = 0,
⇔



η3 = − e−s

(s+1) η1,

(s−1)
(s+1)

(
(s−1)
(s+1) η1 + η4

)
= − 1

(s+1) η2.

(3.16)

Using the fact that the greatest common factor of s−1
s+1 and 1

s+1 is 1, we then have:

(3.16)⇔




η3 = − e−s

(s+1) η1,

η2 = (s−1)
(s+1) ζ2, ζ2 ∈ A,

(s−1)
(s+1) η1 + η4 = − 1

(s+1) ζ2,

⇔




η1 = ζ1, ζ1 ∈ A,

η2 = (s−1)
(s+1) ζ2, ζ2 ∈ A,

η3 = − e−s

(s+1) ζ1,

η4 = − (s−1)
(s+1) ζ1 − 1

(s+1) ζ2,

⇔ η = ζ R′,

where ζ = (ζ1 : ζ2) and the matrix R′ ∈M2×4(A) is defined by

R′ =

(
1 0 − e−s

(s+1) − s−1
s+1

0 s−1
s+1 0 − 1

s+1

)
.(3.17)

Thus, we have A2 R = A2 R′, and R′ has full row rank. Hence, A2 R is a free A-module
of rank 2, and, by Theorem 2.11, the transfer matrix P defined by (1.2) admits the
following weakly left-coprime factorization:

P =

(
e−s

s+1
s−1
s+1

0 1
s−1

)
=

(
1 0

0 s−1
s+1

)−1 ( e−s

s+1
s−1
s+1

0 1
s−1

)
.(3.18)
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Moreover, using the fact that R′ has full row rank, we have the exact sequence

0 −→ A2 .R′
−→ A4 .R−1−→ A2 −→ 0(3.19)

and {
t(M) ∼= ext1A(T (M), A) = A2 R′/A2 R,
M/t(M) = A4/A2 .R′ ∼= A4 R−1 = A2.

From t(M) ∼= A2 R′/A2 R, we obtain that the class of (1 : 0)R′ in t(M) is the

torsion element z1 = y1 − e−s

(s+1) u1 − (s−1)
(s+1) u2, which satisfies (s−1)

(s+1) z1 = 0. Similarly,

the class z2 of (0 : 1)R′ in t(M) is the trivial torsion element 0 because we have

z2 = (s−1)
(s+1) y2 − 1

(s+1) u2 = 0. Thus, M is not a torsion-free A-module and M/t(M) is

a free A-module of rank 2. Finally, we have(
s−1
s+1 0 − (s−1) e−s

(s+1)2 −
(
s−1
s+1

)2

0 s−1
s+1 0 − 1

s+1

)
=

(
s−1
s+1 0

0 1

)(
1 0 − e−s

(s+1) − s−1
s+1

0 s−1
s+1 0 − 1

s+1

)
.

Remark 3.4. For the sake of simplicity, we have treated here just a simple ex-
ample. Simple computations, which do not require the algorithm developed in sec-
tion 3.3, can easily give the weakly left-prime matrix (3.17) and, thus, the weakly
left-coprime factorization (3.18) of (1.2). However, for more general systems (see,

e.g., P = ( e
−s

(s−1) : e−s

(s−1)2 )T [32, 35]), it becomes more difficult to guess a weakly

left-coprime factorization, and thus, we really need the algorithm to obtain weakly
left/right/doubly coprime factorizations.

4. Doubly coprime factorizations.

4.1. Left-coprime factorizations and stably free modules. Let us intro-
duce the concept of a splitting exact sequence.

Definition 4.1 (see [2, 39]). An exact sequence 0 −→M ′ f−→M
g−→M ′′ −→ 0

is a splitting exact sequence if one of the following equivalent assertions is satisfied:
• there exists an A-morphism h : M ′′ −→M such that g ◦ h = idM ′′ ,
• there exists an A-morphism k : M −→M ′ such that k ◦ f = idM ′ ,
• there exist φ = (kg ) : M −→ M ′ ⊕M ′′ and ψ = (f : h) : M ′ ⊕M ′′ −→ M

such that φ ◦ ψ = idM ′⊕M ′′ and ψ ◦ φ = idM , where idM (m) = m, for all
m ∈M.

Proposition 4.2. We have the following results:
1. (see [2, 39]) Let R ∈Mq×p(A) be a full row rank matrix. Then, the A-module

M = Ap/Aq R is stably free iff the exact sequence

0 −→ Aq
.R−→ Ap −→M −→ 0(4.1)

is a splitting exact sequence, i.e., iff there exists S ∈Mp×q(A) such that

R S = Iq.(4.2)

2. (see [19]) Let R ∈Mq×p(A) be a full row rank matrix and M = Ap/Aq R the
corresponding A-module. Then, M is stably-free iff

T (M) = Aq/ApRT = 0.
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Example 4.1. Let us consider the full row rank matrix R′ ∈ M2×4(A) defined
by (3.17) and A = H∞(C+). By point 1 of Proposition 4.2, R′ admits a right-
inverse S′ ∈ M4×2(A) iff the A-module M ′ = A4/A2 R′ is stably free, i.e., iff the

A-module T (M ′) = A2/A4 R′T = 0 by point 2 of Proposition 4.2. The A-module

T (M ′) = A2/A4 R′T is defined by the following equations:


λ1 = 0,

(s−1)
(s+1) λ2 = 0,

− e−s

(s+1) λ1 = 0,

− (s−1)
(s+1) λ1 − 1

(s+1) λ2 = 0.

(4.3)

If we put a second member µ = (µ1 : µ2 : µ3 : µ4)
T in (4.3), then we have{

λ1 = µ1,

λ2 = −2 (s−1)
(s+1) µ1 + µ2 − 2µ4,

which proves that, from (4.3), we can deduce that λ1 = λ2 = 0, i.e., T (M ′) = 0 and
M ′ is a stably free A-module. A right-inverse S′ of R′, i.e., R′ S′ = I2, is defined by

S =




1 −2 (s−1)
(s+1)

0 1
0 0
0 −2


 ∈M4×2(A).(4.4)

Let us give the definition of the fitting ideals of a finitely presented A-module M .
Definition 4.3 (see [13]). Let d : F1 −→ F0 be an A-morphism between two finite

free A-modules F0 and F1. If we choose bases for F0 and F1 (F0
∼= Ap, F1

∼= Aq),
then d is defined by a matrix R ∈Mq×p(A).

• We denote by Ii(R) the ideal of A defined by
– all the i× i minors of R if 1 ≤ i ≤ min{p, q, },
– Ii(R) = 0 if i > min{p, q},
– Ii(R) = A if i ≤ 0.

• Let us define the A-module M = coker d, i.e., M = Ap/Aq R. The ith fitting
ideal Fitti(M) is the ideal of A defined by Ip−i(R). Fitti(M) does not depend
on the choice of the finite free presentation of M .
• We denote by I(M) the first nonzero fitting ideal Fitti(M) of M .

Proposition 4.4 (see [13]). Let M be a finitely presented A-module. Then, we
have the following:

• M is a projective A-module of rank r iff Fittr(M) = A and Fittr−1(M) = 0.
• M is a projective A-module of a certain rank iff I(M) = A.

Example 4.2. Let us reconsider Example 4.1. We have

Fitt0(M
′) = Fitt1(M

′) = 0, Fitt2(M
′) =

(
s− 1

s + 1
,

1

s + 1
,

e−s

(s + 1)2
,
(s− 1) e−s

(s + 1)2

)
.

We can check that 1 = s−1
s+1 + 2

s+1 ∈ Fitt2(M
′), and thus, Fitt2(M

′) = A; i.e., M ′ is
a projective A-module of rank 2 by Proposition 4.4.

The next proposition characterizes the projective modules over Banach algebras.
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Proposition 4.5. If A is a Banach algebra which is an integral domain without

radical, i.e.,
√
A = {a ∈ A | limn→+∞ ‖an‖1/nA = 0} = 0, then a full row rank matrix

R ∈Mq×p(A) defines a projective A-module M = Ap/Aq R iff rk(R̂(χ)) is a constant

function on the maximal ideal space X(A) of A (see [16, 49]), where R̂ denotes the
Gelfand transform of R (see [16, 49]), or, equivalently, iff

inf
χ∈X(A)

∑
i∈I
|R̂i(χ)| ≥ δ > 0,

where (R̂i)i∈I is the family of the q × q minors of R.
Proof. Using the fact that the maximal ideal space X(A) of a Banach algebra is a

Hausdorff compact set and A has only two idempotent elements 1 and 0, then, by the
Shilov theorem [16], X(A) is a connected space. By the Swan theorem [45], any vector
bundle over X(A) is in one-to-one correspondence to a projective module over the ring
of continuous functions C(X(A)) on X(A). The fact that X(A) is a connected space
implies that the rank of any vector bundle over X(A) is globally constant. Finally,
using the fact that A is without radical, by the Gelfand transform [16], any matrix
whose entries belong to A can be seen as a matrix whose entries belong to C(X(A)).
Hence, we find that M is a projective A-module iff rk(R̂(χ)) is a constant function
on X(A).

Example 4.3. H∞(C+) and Â are two integral domains which are Banach algebras
without radical. We can use Proposition 4.5 to check whether or not an A-module
is projective. For A = H∞(C+), we can use the fact that C+ is dense in X(A) (by
the Corona theorem; see [25]) in order to take χ only in C+ instead of the whole
X(A). Similarly, for A = Â, we can restrict the evaluation of infχ∈X(A)

∑
i∈I |R̂i(χ)|

to χ ∈ C+, where C+ = {s ∈ C | Re s ≥ 0} (see [3, 8]).

• Let A = H∞(C+). Let R = ( s−1
s+1 : e−s

s+1 ) ∈ M1×2(A) and the A-module

M = A2/AR. Then, M is a projective A-module (i.e., free because A is a
coherent Sylvester domain) because we have

inf
s∈C+

(∣∣∣∣s− 1

s + 1

∣∣∣∣+
∣∣∣∣ e−ss + 1

∣∣∣∣
)

> 0.

We can check that we have the following Bézout identity:(
s− 1

s + 1

) (
1 + 2

(
1− e−(s−1)

s− 1

))
+ 2 e

(
e−s

s + 1

)
= 1.

• Let A = H∞(C+). The matrix R = ( 1
s+1 : e−s) ∈ M1×2(A) does not define

a projective A-module M = A2/AR because we have

inf
s∈C+

(∣∣∣∣ 1

s + 1

∣∣∣∣+ | e−s |
)

= 0.

Indeed, if (xn)n∈Z+ is a sequence of strictly positive real numbers tending to
+∞, we check that limn→+∞ | 1

xn+1 | = 0 and limn→+∞ |e−xn | = 0. However,

the greatest common divisor of 1
s+1 and e−s is 1, and thus, R is a weakly left-

prime matrix by Proposition 2.2 and Corollary 3.31; i.e., M is a torsion-free
(see Corollary 2.5) but not free A-module.

Definition 4.6. Let A be an integral domain and K = Q(A) its field of fractions.
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• A transfer matrix P ∈ Mq×(p−q)(K) admits a left-coprime factorization if
there exists a matrix R = (D : −N) ∈ Mq×p(A), with detD �= 0, such that
P = D−1 N and R has a right-inverse S = (XT : Y T )T ∈Mp×q(A), i.e.,

RS = DX −N Y = Iq.

• A transfer matrix P ∈ Mq×(p−q)(K) admits a right-coprime factorization if

there exists a matrix R̃ = (ÑT : D̃T )T ∈Mp×(p−q)(A), with det D̃ �= 0, such

that P = Ñ D̃−1 and R̃ has a left-inverse S̃ = (−Ỹ : X̃) ∈ M(p−q)×p(A),
i.e.,

S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ip−q.

Proposition 4.7. Let P = D−1 N = Ñ D̃−1 ∈ Mq×(p−q)(K) be a transfer

matrix, where R = (D : −N) ∈Mq×p(A) and R̃ = (ÑT : D̃T )T ∈Mp×(p−q)(A). Let

us define the A-modules M = Ap/Aq R and M̃ = Ap/Ap−q R̃T . Then, we have
1. P admits a left-coprime factorization iff Aq R is a free A-module of rank q

and M/t(M) = Ap/Aq R is a stably free A-module.

2. P admits a right-coprime factorization iff Ap−q R̃T is a free A-module of rank

p− q and M̃/t(M̃) = Ap/Ap−q R̃T is a stably free A-module.
Proof. 1. ⇒ Let us suppose that P admits a left-coprime factorization of the

form P = D′−1
N ′, where the matrix R′ = (D′ : −N ′) ∈ Mq×p(A) has right-inverse

S′ = (X ′T : Y ′T )T ∈ Mp×q(A). In particular, R′ is weakly left-prime and, by
Lemma 2.6, we have Aq R = Aq R′. Moreover, R′ is a full row rank matrix, and thus,
Aq R′ = Aq R is a free A-module of rank q. We have the exact sequence

0 −→ Aq
.R′
−→ Ap −→M/t(M) = Ap/Aq R −→ 0.(4.5)

Using the fact that R′ has a right-inverse S′, we obtain that (4.5) splits, and thus, we
have Ap ∼= Aq ⊕M/t(M); i.e., M/t(M) is a stably free A-module.
⇐ Let P = D−1 N be such that Aq R is a free A-module of rank q and the A-

module M/t(M) = Ap/Aq R is stably free. Using the fact that Aq R is a free A-module
of rank q, there then exists a weakly left-prime matrix R′ = (D′ : −N ′) ∈ Mq×p(A)

such that Aq R = Aq R′ and P = D′−1
N ′. Then, we have the exact sequence (4.5),

which splits because M/t(M) = Ap/Aq R′ is a stably free A-module, and thus, there

exists S′ = (X ′T : Y ′T )T ∈Mp×q(A) such that D′ X ′−N ′ Y ′ = Iq, i.e., P = D′−1
N ′

is a left-coprime factorization of P . Part 2 can be proved similarly.
Example 4.4. In Example 3.4, we proved that A2 R = A2 R′, where R (resp.,

R′) is defined by (1.6) (resp., (3.17)), is a free A-module of rank 2. Moreover, in
Example 4.1, we proved that M/t(M) = A4/A2 R′ is a stably free A-module. Hence,
from point 1 of Proposition 4.7, we deduce that (3.18) is a left-coprime factorization
of the transfer matrix (1.2). Finally, using S′ obtained in Example 4.1, we obtain




P =

(
e−s

s+1
s−1
s+1

0 1
s−1

)
=

(
1 0

0 s−1
s+1

)−1 ( e−s

s+1
s−1
s+1

0 1
s+1

)
,

(
1 0

0 s−1
s+1

) (
1 −2 (s−1)

(s+1)

0 1

)
−
(

e−s

s+1
s−1
s+1

0 1
s+1

) (
0 0

0 −2

)
= I2.
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Example 4.5. Let us consider the example defined in [49, p. 349]. Let us consider
the integral domain A = R[t0, t1, t2]/(t

2
0+t21+t22−1) of polynomials on the unit sphere

of R
3. Let xi be the class of ti in A. We have A = R[x0, x1, x2] with the relation

x2
0 + x2

1 + x2
2 = 1. It is shown in [20, p. 32] that A is a unique factorization domain

(UFD) [39], and thus, A is a GCDD.
Let us consider P = −(x1/x0 : x2/x0) ∈ M1×2(K) with K = R(x0, x1, x2). We

have P = −x−1
0 (x1 : x2) and, if we define R = (x0 : x1 : x2) ∈ A3, then we have

RRT = 1. Thus, AR = AR is a free A-submodule of rank 1, and M = A3/AR
is a stably free A-module, which proves that P admits a (normalized) left-coprime
factorization. Moreover, we have P = −(x1 : x2) (x−1

0 I2). Let us define the matrix

R̃ =


 −x1 −x2

x0 0
0 x0


 ∈M3×2(A)

and the corresponding A-module M̃ = A3/A2 R̃T . We easily check that Fitt0(M̃) = 0
and Fitt1(M̃) = (x0 x1, x0 x2, x

2
0). Thus, x0 is a greatest common factor of all the

2× 2 minors, which, by Proposition 2.2, proves that R̃T is not weakly left-prime, i.e.,
the A-module M̃ , defined by the equations{ −x1 y0 + x0 y1 = 0,

−x2 y0 + x0 y2 = 0,

has a nonzero torsion submodule. We easily check that z = −x2 y1 + x1 y2, satisfying
x0 z = 0, defines the torsion submodule of M̃ . Therefore, A2 R̃T is not A-closed, and

we have M̃/t(M̃) = A3/A3 R̃′T , where R̃′T is defined by

R̃′T =


 −x1 x0 0
−x2 0 x0

0 −x2 x1


 ∈M3(A).

We have Fitt0(M̃/t(M̃)) = 0 and x2
0, x

2
1, x

2
2 ∈ Fitt1(M̃/t(M̃))⇒ 1 ∈ Fitt1(M̃/t(M̃)),

and thus, by Proposition 4.4, M̃/t(M̃) is a projective A-module of rank 1. However,
a projective module of rank 1 over a UFD is free (see [20, 45]), and thus, M̃/t(M̃) is
a free A-module of rank 1: u = x0 y0 + x1 y1 + x2 y2 is a basis of M̃/t(M̃) because
we have yi = xi u for i = 1, . . . , 3. Thus, we obtain that M̃/t(M̃) ∼= A3 RT ∼= A.

Moreover, by Proposition 2.8, we know that ker .RT = A2 R̃T = A3 R̃′T . However,
it is well known that ker .RT is a stably free but not a free A-module [20, 49]. By
Proposition 4.7, P does not admit a right-coprime factorization.

Corollary 4.8. Let P = D−1 N = Ñ D̃−1 ∈Mq×(p−q)(K) be a transfer matrix,

where R = (D : −N) ∈ Mq×p(A) and R̃ = (ÑT : D̃T )T ∈ Mp×(p−q)(A). Let us

define the A-modules M = Ap/Aq R and M̃ = Ap/Ap−q R̃T . Then, we have

1. P admits a left-coprime factorization iff M̃/t(M̃) = Ap/Ap−q R̃T is a free
A-module of rank q.

2. P admits a right-coprime factorization iff M/t(M) = Ap/Aq R is a free A-
module of rank p− q.

Proof. 1. ⇒ Let us suppose that P admits the left-coprime factorization P =
D′−1

N ′, where R′ = (D′ : −N ′) ∈ Mq×p(A) has a right-inverse S′. Then, Aq R =
Aq R′ is a free A-module of rank q, and thus, M/t(M) = Ap/Aq R′, i.e., we have the
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following exact sequence:

0 −→ Aq
.R′
−→ Ap −→M/t(M) −→ 0.

By Proposition 4.2, this exact sequence splits, and thus, ApR′T ∼= Aq. Finally, by
Proposition 2.8, we now have M̃/t(M̃) ∼= ApR′T ∼= Aq.
⇐ Let us suppose that the A-module M̃/t(M̃) is a free A-module of rank q. t(M̃)

is a torsion A-module, and thus, we have (t(M̃))� = 0. Hence, dualizing the exact
sequence 0 −→ t(M̃) −→ M̃ −→ M̃/t(M̃) −→ 0, we obtain M̃� ∼= (M̃/t(M̃))� ∼= Aq.
By Proposition 2.8, we know that M̃� ∼= ker .R̃ = Aq R, and thus, Aq R is a free A-
module of rank q. Moreover, by Proposition 1.9 of [33], Ap R̃ is a projective A-module
because so is M̃/t(M̃). Thus, the exact sequence 0 −→ ker .R̃ −→ Ap −→ Ap R̃ −→ 0
splits, and we obtain that Ap ∼= Ap R̃⊕ ker .R̃. However, by Proposition 2.8, Ap R̃ ∼=
M/t(M). Thus, we have Ap ∼= M/t(M)⊕Aq; i.e., M/t(M) is a stably-free A-module.
Then, by Proposition 4.7, P admits a left-coprime factorization. Point 2 can be proved
similarly.

Example 4.6. Let us reconsider the system defined in Example 4.5. We proved
that the A-module M̃/t(M̃) is a free A-module of rank 1, and thus, by Corollary 4.8,
P admits a left-coprime factorization. Moreover, it is known that M/t(M) = M is
a stably free but not a free A-module [20, 45], i.e., P does not admit right-coprime
factorizations.

4.2. Doubly coprime factorizations and free modules. The following re-
sult characterizes generalized Bézout identities in terms of free A-modules.

Proposition 4.9. Let M = Ap/Aq R be an A-module defined by a full row rank
matrix R ∈Mq×p(A), i.e., by the following finite free resolution:

0 −→ Aq
.R−→ Ap −→M −→ 0.(4.6)

Then, M is a free A-module iff there exist three matrices R−1, S−1, and S such that
we have the following splitting exact sequence,

0 −→ Aq
.R−→ Ap

.R−1−→ Ap−q −→ 0,
.S←− .S−1←−

(4.7)

or equivalently, iff we have the following generalized Bézout identities:

(i)
(
S R−1

) ( R
S−1

)
= Ip,

(ii)

(
R
S−1

) (
S R−1

)
=

(
Iq 0
0 Ip−q

)
= Ip.

Proof. ⇒ The A-module M is free, and thus, there exists a p × (p − q) matrix
R−1 with entries in A such that the exact sequence (4.6) has the form

0 −→ Aq
.R−→ Ap

.R−1−→ Ap−q −→ 0.

This exact sequence finishes by the free A-module Ap−q, and thus, by Proposition 4.2,
it splits; i.e., there exists a (p− q)× p matrix S−1 such that R−1 S−1 = Ip−q. By the
equivalences of Definition 4.1, we have the Bézout identities (i) and (ii).
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⇐ If we have the splitting exact sequence (4.7) or, equivalently, the Bézout iden-
tities (i) and (ii), then M ∼= ApR−1 = Ap−q, i.e., M is a free A-module of rank
p− q.

Definition 4.10. A transfer matrix P ∈Mq×(p−q)(K) admits a doubly coprime

factorization if there exist (D : −N) ∈ Mq×p(A), (ÑT : D̃T )T ∈ Mp×(p−q)(A),

(XT : Y T )T ∈Mp×q(A), and (−Ỹ : X̃) ∈M(p−q)×p(A) such that

• P = D−1 N = Ñ D̃−1,

• ( D−Ỹ
−N
X̃

) (XY
Ñ
D̃ ) = Ip,

• (XY
Ñ
D̃ ) ( D−Ỹ

−N
X̃

) = Ip.

Theorem 4.11. Let P = D−1 N = Ñ D̃−1, R = (D : −N), R̃ = (ÑT : D̃T )T ,
and the A-modules M = Ap/Aq R and M̃ = Ap/Ap−q R̃T . Then, P admits a doubly
coprime factorization iff M/t(M) and M̃/t(M̃) are free A-modules of rank p − q
and q.

Proof. ⇒ If P admits a doubly coprime factorization, then P admits left and
right-coprime factorizations, and thus, by Proposition 4.8, the A-modules M/t(M)
and M̃/t(M̃) are free A-modules of rank, respectively, p− q and q.
⇐ By Proposition 4.8, there exist a left and a right-coprime factorization of P :

P = D′−1
N ′ = Ñ ′ D̃′−1

,

{
D′ X −N ′ Y = Iq,

−Ỹ ′ Ñ ′ + X̃ ′ D̃′ = Ip−q.

From P = D′−1
N ′ = Ñ ′ D̃′−1

, we deduce that (D′ : −N ′) ( Ñ
′

D̃′ ) = 0. If we take{
X ′ = X + Ñ ′ (Ỹ ′ X − X̃ ′ Y ),

Y ′ = Y + D̃′ (Ỹ ′ X − X̃ ′ Y ),

we can easily check that P = D′−1
N ′ = Ñ ′ D̃′−1

is a doubly coprime factorization:(
D′ −N ′

−Ỹ ′ X̃ ′

) (
X ′ Ñ ′

Y ′ D̃′

)
= Ip,

(
X ′ Ñ ′

Y ′ D̃′

) (
D′ −N ′

−Ỹ ′ X̃ ′

)
= Ip.

Using Proposition 2.8, we obtain the following corollary of Theorem 4.11.
Corollary 4.12. Let P = D−1 N = Ñ D̃−1 ∈ Mq×(p−q)(A) be a transfer

matrix, R = (D : −N) ∈Mq×p(A), and R̃ = (ÑT : D̃T )T ∈Mp×(p−q)(A). Then, P

admits a doubly coprime factorization iff the A-modules Ap R̃ and ApRT are two free
A-modules of rank, respectively, p− q and q.

This corollary was first proved in [44]. We have the following corollary of Propo-
sition 4.12, which was first obtained in [49].

Corollary 4.13. A SISO plant, defined by p = n/d (0 �= d, n ∈ A), admits a
coprime factorization iff the ideal I = (n, d) of A is principal.

Proof. By Proposition 4.12, p = n/d has a coprime factorization iff the A-module
I = A2 RT = (d, n) is free of rank 1, where R = (d : −n) ∈M1×2(A). Using the fact
that A is an integral domain, I is a free A-module iff I is a principal ideal.

The next corollary of Proposition 4.7 was first proved in [49].
Corollary 4.14. If A is a Hermite ring, then every transfer matrix P with

a left-coprime (resp., right-coprime) factorization admits a doubly coprime factoriza-
tion.

Proof. Let P = D−1 N be a left-coprime factorization of the transfer matrix P ,
where R = (D : −N) ∈ Mq×p(A). By Proposition 4.7, the A-module M = Ap/Aq R
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is stably free. Using the fact that A is a Hermite ring, then M is free, and the result
follows directly from Corollary 4.8, and similarly for right-coprime factorizations.

Example 4.7. In Example 4.4, we proved that the transfer matrix P defined
by (1.2) admits a left-coprime factorization. Using the fact that A = H∞(C+) is
a coherent Sylvester domain and, in particular, a Hermite ring, by Corollary 4.14,
we know that P admits a doubly coprime factorization. In fact, we have already
done all the computations to obtain a right-coprime factorization of P . Indeed, we
proved that (3.19) is an exact sequence, and thus it splits. Hence, using the matrices
R−1 = (ÑT : D̃T )T ∈ M4×2(A) and S−1 = (−Ỹ : X̃) ∈ M2×4(A), defined in
Example 3.4, we obtain the following right-coprime factorization of P :



P = Ñ D̃−1 =



(
s−1
s+1

)2
e−s

s+1

1
s+1 0


 (

0 1
s−1
s+1 0

)−1

,

−
(

0 −2
0 0

) 
(
s−1
s+1

)2
e−s

s+1

1
s+1 0


+

(
0 1
1 0

) (
0 1
s−1
s+1 0

)
= I2.

Theorem 4.15 (see [49]). The following assertions are equivalent:
1. every MIMO plant admits doubly coprime factorizations,
2. every SISO plant admits coprime factorizations,
3. A is a Bézout domain.

Proof. 1⇒ 2 is trivial. 2⇒ 3 is given by Lemma 4.13.
3 ⇒ 1. If A is a Bézout domain, then every A-module M = Ap/Aq R, defined

by a full row rank matrix R = (D : −N) ∈ Mq×p(A), is such that M/t(M) is a free
A-module. Moreover, a Bézout domain A is a coherent Sylvester domain, and thus, by
Proposition 3.21, there exists a full row rank matrix R′ = (D′ : −N ′) ∈Mq×p(A) such

that M/t(M) = Ap/Aq R′ and P = D−1 N = D′−1
N ′. Finally, using Proposition 4.9,

we obtain that P admits a doubly coprime factorization.

Conclusion. We hope we have convinced the reader that the reformulation of the
fractional representation approach to analysis problems within the algebraic analysis
framework allows us to obtain some new results. These results will be used in the
second part of this work [33] to obtain necessary and sufficient conditions for internal
stabilizability and to determine the class of rings A over which every plant is internally
stabilizable. For the sake of simplicity, we have treated only the case of integral
domains, but all the results are still valid for general rings: we need only to slightly
change some definitions (e.g., K = Q(A) = {a/b | a ∈ A, b ∈ A \Z(A)}, where Z(A)
is the set of the nonzero divisors of A, t(M) = {m ∈ M | ∃ a ∈ A\Z(A) : am = 0},
etc.).
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[37] J.-P. Rosay, Sur la cohérence de certains anneaux de fonctions, Illinois J. Math., 21 (1977),
pp. 895–897.

[38] H. H. Rosenbrock, State Space and Multivariable Theory, Nelson, London, 1970.
[39] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
[40] S. Shankar and V. R. Sule, Algebraic geometric aspects of feedback stabilization, SIAM J.

Control Optim., 30 (1992), pp. 11–30.
[41] A. M. Sinclair and A. W. Tullo, Noetherian Banach algebras are finite dimensional, Math.

Ann., 211 (1974), pp. 151–153.
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