
THE FRACTIONAL REPRESENTATION APPROACH TO
SYNTHESIS PROBLEMS: AN ALGEBRAIC ANALYSIS VIEWPOINT

PART II: INTERNAL STABILIZATION∗

A. QUADRAT†

SIAM J. CONTROL OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. 300–320

Abstract. In this second part of the paper [A. Quadrat, SIAM J. Control Optim., 40 (2003),
pp. 266–299], we show how to reformulate the fractional representation approach to synthesis prob-
lems within an algebraic analysis framework. In terms of modules, we give necessary and suffi-
cient conditions for internal stabilizability. Moreover, we characterize all the integral domains A
of SISO stable plants such that every MIMO plant—defined by means of a transfer matrix whose
entries belong to the quotient field K = Q(A) of A—is internally stabilizable. Finally, we show
that this algebraic analysis approach allows us to recover on the one hand the approach devel-
oped in [M. C. Smith, IEEE Trans. Automat. Control, 34 (1989), pp. 1005–1007] and on the
other hand the ones developed in [K. Mori and K. Abe, SIAM J. Control Optim., 39 (2001),
pp. 1952–1973; S. Shankar and V. R. Sule, SIAM J. Control Optim., 30 (1992), pp. 11–30; V.
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Introduction. Using the algebraic analysis viewpoint of the fractional represen-
tation approach to analysis and synthesis problems [5, 28, 29], developed in the first
part of the paper [17], we give necessary and sufficient conditions for internal stabiliz-
ability. Moreover, using these results, we prove that every multi-input multi-output
(MIMO) plant—defined by means of a transfer matrix P = D−1 N = Ñ D̃−1, where
R = (D : −N) and R̃ = (ÑT : D̃T )T are matrices whose entries belong to an integral
domain A of single input single output (SISO) stable plants—is internally stabiliz-
able iff A is a Prüfer domain [6, 23]. From the fact that the intersection between
coherent Sylvester domains (see [17] for more details) and Prüfer domains are just
Bézout domains, we also recover the result of Vidyasagar [29]: every MIMO plant
admits doubly coprime factorizations iff A is a Bézout domain. Hence, if the algebra
A is a Prüfer domain but not a Bézout domain, there exist plants which are inter-
nally stabilizable but fail to admit doubly coprime factorizations. Therefore, it is not
possible to parametrize all their stabilizing controllers by means of the Youla–Kučera
parametrization [4, 28]. These results allow us to explain the counterexamples exhib-
ited in [1, 12]. We prove that, over a projective-free domain A (e.g., H∞(C+), RH∞),
every stabilizable system admits doubly coprime factorizations. Finally, we show that
the previous results allow us to recover, on the one hand, the results of [25] and, on
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Fig. 1. Closed-loop.

the other hand, the ones developed in [12, 13, 24, 26, 27, 28, 29]. We refer to [17] for
the development of the algebraic analysis approach used in this second part, as well
as for some results that will be continually used in what follows.

Notation. In the course of the text, A denotes a commutative integral domain
(a b = 0, a �= 0 ⇒ b = 0) with a unit, Mq×p(A) (resp., Mp(A)), the set of q× p (resp.,
p × p) matrices with entries in A and Ip the identity matrix. If R ∈ Mq×p(A), then
RT is the transposed matrix. By convention, every vector with entries in A is a row
vector. The positive integers p, q ∈ Z+ will always satisfy p ≥ q. If M and N are
two A-modules, then M ∼= N means that M and N are isomorphic as A-modules,
homA(M,N) is the A-module of the A-morphisms (i.e., A-linear maps) from M to
N , and M∗ = homA(M,A). Finally, (a1, . . . , an) denotes the ideal Aa1 + · · ·+Aan
and � means “by definition.”

1. Closed-loop systems. Let A be an algebra of SISO stable systems which
forms an integral domain and letK = Q(A) be its field of fractions. Let us consider the
closed-loop formed by a plant P ∈ Mq×(p−q)(K) and a controller C ∈ M(p−q)×q(K)
as it is shown in Figure 1. The equations of the closed-loop are


e1 = u1 + P e2,
e2 = u2 + C e1,
y1 = e2 − u2,
y2 = e1 − u1.

(1.1)

Definition 1.1 (see [5, 28, 29]). The plant P ∈ Mq×(p−q)(K) is internally
stabilizable if there exists a controller C ∈ M(p−q)×q(K) such that all the entries of
the following transfer matrix

H(P,C) =

(
Iq −P
−C Ip−q

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P
C (Iq − P C)−1 Ip−q + C (Iq − P C)−1 P

)
(1.2)

are stable, i.e., H(P,C) ∈ Mp(A).
Let us write P and C in the form P = Dp

−1 Np and C = Dc
−1 Nc, where

Rp = (Dp : −Np) ∈ Mq×p(A) and Rc = (−Nc : Dc) ∈ M(p−q)×p(A). Thus, we have

(1.1) ⇔



Dp e1 −Np e2 −Dp u1 = 0,
−Nc e1 +Dc e2 −Dc u2 = 0,
y1 − e2 + u2 = 0,
y2 − e1 + u1 = 0.

(1.3)

Let us define the matrices

R =

(
Dp −Np −Dp 0
−Nc Dc 0 −Dc

)
∈ Mp×2p(A)
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and

Rs =




Dp −Np −Dp 0 0 0
−Nc Dc 0 −Dc 0 0
0 −Ip−q 0 Ip−q Ip−q 0

−Iq 0 Iq 0 0 Iq


 ∈ M2p×3p(A),

as well as the following A-modules

Mp = Ap/Aq Rp,
Mc = Ap/Ap−q Rc,
M = A2p/ApR,
Ms = A3p/A2pRs.

Lemma 1.2. We have Ms = M ∼= Mp ⊕Mc, and thus

Ms/t(Ms) = M/t(M) ∼= Mp/t(Mp)⊕Mc/t(Mc),(1.4)

or equivalently

A3p/A2pRs = A2p/ApR ∼= Ap/Aq Rp ⊕Ap/Ap−q Rc,

where, for instance, ApR is the A-closure of ApR in A2p (see [17] for more details).
Proof. We have the following equality:

(
Dp −Np −Dp 0
−Nc Dc 0 −Dc

) 


0 0 Iq 0
0 Ip−q 0 0

−Iq 0 Iq 0
0 Ip−q 0 −Ip−q




=

(
Dp −Np 0 0
0 0 −Nc Dc

)
.

The second matrix in the left-hand side of the previous equality is unimodular, and
thus, invertible. Let us denote this matrix by U . Then, from the previous equality,
i.e., RU = Rp ⊕Rc, we obtain the following commutative exact diagram:

0 0
↓ ↓

0 −→ Ap .R−→ A2p π−→ M −→ 0
↓ .Ip ↓ .U

0 −→ Ap . (Rp⊕Rc)−→ A2p
π′ −→ Mp ⊕Mc −→ 0.

↓ ↓
0 0

From the previous commutative exact diagram, we deduce that there exists an iso-
morphism φ : M → Mp ⊕ Mc, defined by φ(m) = π′(z U), where z ∈ A2p is such
that π(z) = m, and thus, M ∼= Mp ⊕ Mc. Moreover, using the equations which
define the A-module Ms, we can easily check that Ms = M . Finally, using the fact
that Ms = M ∼= Mp ⊕ Mc, we obtain t(Ms) = t(M) ∼= t(Mp) ⊕ t(Mc), and thus,
M/t(M) ∼= Mp/t(Mp)⊕Mc/t(Mc).
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2. Internal stabilization: A particular case. We refer the reader to [17] for
the definition of a weakly left/right/doubly coprime factorization.

Theorem 2.1. Let P = D−1
p Np and C = D−1

c Nc be two weakly left-coprime fac-
torizations, i.e., Rp = (Dp : −Np) ∈ Mq×p(A) and Rc = (−Nc : Dc) ∈ M(p−q)×p(A)
are weakly left-prime matrices. Then, P = D−1

p Np is internally stabilized by the
controller C = D−1

c Nc iff

(
Rp

Rc

)−1

∈ Mp(A), i.e.,

(
Rp

Rc

)
∈ GLp(A).(2.1)

The same result also holds for weakly right-coprime factorizations.
Proof. ⇒ By hypothesis, Rp and Rc are two weakly left-prime matrices, and thus,

by Corollary 2.5 of [17], the A-modules Mp = Ap/Aq Rp and Mc = Ap/Ap−q Rc are
torsion-free. Thus, t(M) ∼= t(Mp ⊕Mc) ∼= t(Mp)⊕ t(Mc) = 0, i.e., M is a torsion-free
A-module. Then, by Corollary 2.5 of [17], R is weakly left-prime. Now, the fact that
C internally stabilizes P implies (see Definition 1.1)

H(P,C) =

(
Iq −P
−C Ip−q

)−1

=

(
Rp

Rc

)−1(
Dp 0
0 Dc

)
∈ Mp(A).

Therefore, we have(
Rp

Rc

)−1

R =

(
Rp

Rc

)−1 (
Rp −Dp 0
Rc 0 −Dc

)

=

(
Ip −

(
Rp

Rc

)−1(
Dp 0
0 Dc

) )
∈ Mp×2p(A).

Finally, using the fact that R is a weakly left-prime full row rank matrix, we obtain
(2.1) (see [17] for more details).

⇐ We have

(2.1) ⇒
(
Rp

Rc

)−1(
Dp 0
0 Dc

)
=

(
Iq −P
−C Ip−q

)−1

∈ Mp(A),

i.e., the controller C = D−1
c Nc internally stabilizes the plant P = D−1

p Np.
Corollary 2.2. Let P = D−1

p Np ∈ Mq×(p−q)(K) be a weakly left-coprime
factorization of P . Then, P is internally stabilized by a controller C ∈ M(p−q)×q(K)
which admits a weakly left-coprime factorization C = D−1

c Nc iff P admits a doubly
coprime factorization. The same result also holds for a stabilizable plant P admitting
a weakly right-coprime factorization.

Proof. ⇒ Let us suppose that the plant P = D−1
p Np is internally stabilized by a

controller C = D−1
c Nc and Rp and Rc are two weakly left-prime matrices. Then, by

Theorem 2.1, we have (2.1). Let us note

(
Rp

Rc

)−1

=

(
U1 V1

U2 V2

)
∈ Mp(A).

Then, we have the following Bézout identities:(
Dp −Np

−Nc Dc

) (
U1 V1

U2 V2

)
= Ip,

(
U1 V1

U2 V2

) (
Dp −Np

−Nc Dc

)
= Ip.(2.2)
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In particular, we have(
Dp −Np

0 Ip−q

) (
U1 V1

U2 V2

)
=

(
Iq 0
U2 V2

)
⇒ detDp det

(
U1 V1

U2 V2

)
= detV2,

and, using the fact that the second matrix is unimodular and detDp �= 0, we obtain
that detV2 �= 0. Finally, from (2.2), we deduce


Dp V1 −Np V2 = 0,
Dp U1 −Np U2 = Iq,
−Nc V1 +Dc V2 = Ip−q,

which shows that P = D−1
p Np = V1 V

−1
2 is a doubly coprime factorization of P .

⇐ If P = D−1
p Np = Ñp D̃p

−1
is a doubly coprime factorization of P , then

there exist Bézout identities of the form (2.2). Thus, Rp = (Dp : −Np) ∈ Mq×p(A)
can be complemented into (RT

p : RT
c )

T ∈ GLp(A), with Rc ∈ M(p−q)×p(A). The

complement Rc = (−Nc : Dc) to Rp into a unimodular matrix (RT
p : RT

c )
T is not

uniquely defined (see Corollary 6.1 on the Youla–Kučera parametrization) and we
can choose Dc ∈ Mp−q(A) such that detDc �= 0. Finally, Rc admits a right-inverse,
i.e., C = D−1

c Nc is in particular a weakly left-coprime factorization. Finally, by
Theorem 2.1, C = D−1

c Nc internally stabilizes P .
The next corollary generalizes a result obtained by Smith for H∞(C+) [25].
Corollary 2.3. If A is a coherent Sylvester domain (e.g., A = H∞(C+),

RH∞, Bézout domains), then P ∈ Mq×(p−q)(K) is internally stabilizable iff P admits
a doubly coprime factorization.

Proof. By Theorem 3.24 of [17], every transfer matrix whose entries belong to
K = Q(A) admits a weakly doubly coprime factorization. Then, the result follows
directly from Corollary 2.2.

3. Internal stabilization: The general case. In the previous section, we
have obtained some results on internal stabilization in the particular case where the
transfer matrices admit weakly left- or right-coprime factorizations. In this section,
we give some necessary and sufficient conditions for internal stabilizability without
any assumption on the transfer matrices.

Lemma 3.1. Let P = D−1
p Np ∈ Mq×(p−q)(K) (resp., C = D−1

c Nc ∈ M(p−q)×q(K))
be a plant (resp., a controller). If C internally stabilizes P , then the A-modules
Mp = Ap/Aq Rp and Mc = Ap/Ap−q Rc, where Rp = (Dp : −Np) ∈ Mq×p(A),
Rc = (−Nc : Dc) ∈ M(p−q)×p(A), satisfy

Mp/t(Mp)⊕Mc/t(Mc) ∼= Ap,

i.e., Mp/t(Mp) = Ap/Aq Rp and Mc/t(Mc) = Ap/Ap−q Rc are projective A-modules.
Proof. By hypothesis, P is internally stabilized by C, and thus, we have

H(P, C) =

(
Iq −P
−C Ip−q

)−1

=

(
Rp

Rc

)−1(
Dp 0
0 Dc

)
= N ∈ Mp(A).

Let us define the following A-modules M = A2p/ApR and M ′ = A2p/Ap (Ip : −N).
By Lemma 2.6 of [17], we have ApR = Ap (Ip : −N) because Ap (Ip : −N) is an
A-closed submodule of A2p, and thus, we have

M/t(M) = A2p/ApR = A2p/Ap (Ip : −N) = M ′.
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Moreover, it is easy to see that the A-module M ′ is free of rank p and thus, that we
have M/t(M) ∼= Ap. Finally, using (1.4), we obtain

M/t(M) ∼= Mp/t(Mp)⊕Mc/t(Mc) ∼= Ap,

which shows thatMp/t(Mp) = Ap/Aq Rp andMc/t(Mc) = Ap/Ap−q Rc are projective
A-modules.

Theorem 3.2. A plant P = D−1
p Np ∈ Mq×(p−q)(K) is internally stabilizable iff

Mp/t(Mp) = Ap/Aq Rp is a projective A-module, with Rp = (Dp : −Np) ∈ Mq×p(A)
and Mp = Ap/Aq Rp.

Proof. ⇒ It was proved in Lemma 3.1.
⇐ Let Mp/t(Mp) be a projective A-module. We have the following commutative

exact diagram:

0
↓

0 0 t(Mp)
↓ ↓ ↓

0 −→ Aq .Rp−→ Ap π−→ Mp −→ 0
↓ κ ‖ ↓ π′

0 −→ kerφ −→ Ap φ−→ Mp/t(Mp) −→ 0,
↓ ↓ ↓

cokerκ 0 0
↓
0

(3.1)

where φ = π′ ◦ π and κ : Aq → kerφ is induced by id : Ap → Ap and π′ : Mp →
Mp/t(Mp). The fact that Mp/t(Mp) is a projective A-module implies that the exact
sequence

0 −→ kerφ −→ Ap φ−→ Mp/t(Mp) −→ 0(3.2)

splits (see [17]), and thus, Ap ∼= Mp/t(Mp)⊕kerφ, i.e., kerφ is a projective A-module.
The fact that kerφ is a projective A-module is equivalent to the existence of a

family {a1, . . . , am} of elements of A satisfying [3, 23]:
1. The ideal (a1, . . . , am) is equal to A, i.e., ∃ xi ∈ A :

∑m
i=1 xi ai = 1.

2. If Sai = {1, ai, a2
i , . . . } is the multiplicative set defined by ai, then S−1

ai
kerφ

is a free S−1
ai

A-module (see [17]).
By Proposition 1.10 of [17], we obtain the exact sequence of S−1

ai
A-modules:

0 −→ S−1
ai

(kerφ) −→ (S−1
ai

A)p
S−1
ai

φ−→ S−1
ai

(Mp/t(Mp)) −→ 0.(3.3)

The fact that t(Mp) is a torsion A-module implies that K⊗A t(Mp) = 0 (see (1.10) of
[17]), and thus, rankA(t(Mp)) = dimK(K ⊗A t(Mp)) = 0 (see [17] for more details).
Applying Proposition 1.10 of [17] to the exact sequence

0 −→ t(Mp) −→ Mp −→ Mp/t(Mp) −→ 0,

we obtain rankA(Mp/t(Mp)) = rankA(Mp) − rankA(t(Mp)) = p − q. Applying again
Proposition 1.10 of [17] to the exact sequence (3.2), we obtain

rankA(kerφ) = p− rankA(Mp/t(Mp)) = p− (p− q) = q.(3.4)
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If we note S−1
ai

A = Ai, then S−1
ai

kerφ is a free Ai-module of rank q. Taking a basis
of S−1

ai
kerφ ∼= Aq

i , there exists a matrix Ri ∈ Mq×p(Ai) such that (3.3) becomes

0 −→ Aq
i

.Ri−→ Ap
i −→ S−1

ai
(Mp/t(Mp)) −→ 0.

By hypothesis, Mp/t(Mp) is a projective A-module, and thus, S−1
ai

(Mp/t(Mp)) is also
a projective Ai-module [3, 23]. Hence, using Proposition 4.2 of [17], the previous
exact sequence splits, and thus there exists Si ∈ Mp×q(Ai) such that

Ri Si = Iq.(3.5)

Let us note Rp = (Dp : −Np) ∈ Mq×p(A) and Ri = (Di : −Ni) ∈ Mq×p(Ai).
First, we prove that P = D−1

p Np = D−1
i Ni. By localization of (3.1) with respect to

Sai , we obtain the commutative exact diagram (S−1
ai

A is a flat A-module [17])

0
↓

0 0 S−1
ai
t(Mp)

↓ ↓ ↓
0 −→ Aq

i

.Rp−→ Ap
i −→ S−1

ai
Mp −→ 0

↓ .R′′
i ‖ ↓

0 −→ Aq
i

.Ri−→ Ap
i −→ S−1

ai
(Mp/t(Mp)) −→ 0,

↓ ↓ ↓
Aq

i /A
q
i R

′′
i 0 0

↓
0

where R′′
i ∈ Mq(Ai) corresponds to S−1

ai
κ : Aq

i → S−1
ai

kerφ ∼= Aq
i . Hence, we have

Rp = R′′
i Ri, i.e.,

(Dp : −Np) = R′′
i (Di : −Ni),(3.6)

where R′′
i ∈ Mq(Ai) has full rank and S−1

ai
t(Mp) ∼= Aq

i /A
q
i R

′′
i . Hence, we have

P = D−1
p Np = (R′′

i Di)
−1(R′′

i Ni) = D−1
i Ni.

Cleaning the denominators of each Ri and Si = (XT
i : Y T

i )T , there exists αi ∈ Z+

such that all the entries of the matrix aαi
i SiRi are in A. If α = max1≤i≤m αi, then

aαi SiRi = aαi

(
XiDi −XiNi

YiDi −YiNi

)
∈ Mp(A), i = 1, . . . ,m.(3.7)

Using the fact that (a1, . . . , am) = A, then there exists a family {b1, . . . , bm} of
elements of A such that

∑m
i=1 bi a

α
i = 1. Therefore, we have

Dp = R′′
i Di ⇒ Dp =

m∑
i=1

bi a
α
i Dp =

m∑
i=1

bi a
α
i R

′′
i Di,(3.8)

Np = R′′
i Ni ⇒ Np =

m∑
i=1

bi a
α
i Np =

m∑
i=1

bi a
α
i R

′′
i Ni.(3.9)
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If we define S =
∑m

i=1 bi a
α
i SiDi, then we have

S =


( m∑

i=1

bi a
α
i XiDi

)T

:

(
m∑
i=1

bi a
α
i YiDi

)T



T

.

We claim that the controller C ∈ Mq×(p−q)(K), defined by

C =

(
m∑
i=1

bi a
α
i YiDi

)(
m∑
i=1

bi a
α
i XiDi

)−1

,

internally stabilizes the plant P ; i.e., we have(
Iq −P
−C Ip−q

)−1

=

(
(Iq − PC)−1 (Iq − PC)−1P
C(Iq − PC)−1 Ip−q + C(Iq − PC)−1P

)
∈ Mp(A).

We easily check that

Iq − PC

= Iq −D−1
p Np (

∑m
i=1 bi a

α
i YiDi) (

∑m
i=1 bi a

α
i XiDi)

−1

= D−1
p [Dp (

∑m
i=1 bi a

α
i XiDi)−Np (

∑m
i=1 bi a

α
i YiDi)] (

∑m
i=1 bi a

α
i XiDi)

−1

= D−1
p [
∑m

i=1 bi a
α
i (DpXi −Np Yi)Di] (

∑m
i=1 bi a

α
i XiDi)

−1

= D−1
p [
∑m

i=1 bi a
α
i R′′

i (DiXi −Ni Yi)Di] (
∑m

i=1 bi a
α
i XiDi)

−1
(by (3.6))

= D−1
p [
∑m

i=1 bi a
α
i R′′

i Di] (
∑m

i=1 bi a
α
i XiDi)

−1
(by (3.5))

= D−1
p Dp (

∑m
i=1 bi a

α
i XiDi)

−1
(by (3.8))

= (
∑m

i=1 bi a
α
i XiDi)

−1

⇒ (Iq − PC)−1 =
∑m

i=1 bi a
α
i XiDi ∈ Mq(A),

⇒ C(Iq − PC)−1 =
∑m

i=1 bi a
α
i YiDi ∈ M(p−q)×q(A),

⇒ (Iq − PC)−1P =
∑m

i=1 bi a
α
i XiNi ∈ Mq×(p−q)(A),

⇒ Ip−q + C(I − PC)−1P = Ip−q +
∑m

i=1 bi a
α
i YiNi ∈ Mp−q(A).

Remark 3.1. Let us note that the proof of Theorem 3.2 seems to be dual to
the one given in [13]. The duality between the approach developed in [26], using
the A-modules ApRT and Ap R̃T , and the one developed here, using the A-modules

Ap/Aq R and Ap/Ap−q R̃T , will be explained in Proposition 3.4 (see also Proposition
2.8 of [17]). We refer the reader to [20] for another proof of Theorem 3.2 and where
it is shown that

C ′ =

(
m∑
i=1

bia
α
i YiR

′′−1
i

)(
m∑
i=1

bia
α
i XiR

′′−1
i

)−1

is also a stabilizing controller of P .
Example 3.1. Let A = H∞(C+) and let us consider the following transfer matrix:

P =

(
e−s

s−1 a

b 1
s−1

)
∈ M2(K),(3.10)
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where a, b ∈ A. The A-system (see [17]) which corresponds to P is defined by


(s−1)
(s+1) y1 − e−s

(s+1) u1 − a (s−1)
(s+1) u2 = 0,

(s−1)
(s+1) y2 − b (s−1)

(s+1) u1 − 1
(s+1) u2 = 0,

i.e., Rz = 0, where z = (y1 : y2 : u1 : u2)
T and R is the matrix defined by

R =

(
s−1
s+1 0 − e−s

s+1 −a (s−1)
(s+1)

0 s−1
s+1 −b (s−1)

(s+1) − 1
s+1

)
∈ M2×4(A).(3.11)

Let us check whether or not the A-module M = A4/A2 R is projective. We have
Fitt0(M) = 0, Fitt1(M) = 0, and

Fitt2(M) =

((
s−1
s+1

)2

, (s−1)
(s+1)2 ,

e−s

(s+1)2 ,
(s−1) e−s

(s+1)2

)
.

Then, we have 

(

s−1
s+1

)2

+ 2 (s−1)
(s+1)2 = s−1

s+1 ∈ Fitt2(M),

(s−1) e−s

(s+1)2 + 2 e−s

(s+1)2 = e−s

s+1 ∈ Fitt2(M).

Moreover,

(
s−1
s+1

) (
1 + 2

(
1−e−(s−1)

s−1

))
+ 2 e

(
e−s

s+1

)
= 1 ∈ Fitt2(M) ⇒ Fitt2(M) = A,

(3.12)

and thus, by Proposition 4.4 of [17], M is a projective A-module of rank 2. Thus,
by Theorem 3.2, P is internally stabilizable. Let us find a controller C using the
construction given in the proof of Theorem 3.2. First, let us notice that the fact
that M = A4/A2 R is a projective A-module implies that M/t(M) = M = A4/A2 R.
Second, from (3.12), with the notations of the proof of Theorem 3.2, we have


a1 = s−1

s+1 ∈ Fitt2(M),

a2 = e−s

s+1 ∈ Fitt2(M),

b1 = 1 + 2 (1−e−(s−1))
(s−1) ∈ A,

b2 = 2 e ∈ A.

In A s−1
s+1

, we have the following right-inverse S s−1
s+1

of R s−1
s+1

= R:

(
s−1
s+1 0 − e−s

s+1 −a (s−1)
(s+1)

0 s−1
s+1 −b (s−1)

(s+1) − 1
s+1

)
s+1
s−1 0

0 s+1
s−1

0 0
0 0


 =

(
1 0
0 1

)
.

In A e−s

s+1

, we have the following right-inverse S e−s

s+1

of R e−s

s+1

= R:

(
s−1
s+1 0 − e−s

s+1 −a (s−1)
(s+1)

0 s−1
s+1 −b (s−1)

(s+1) − 1
s+1

)
0 −2 a

−b (s+1)
e−s 1

− (s+1)
e−s 0
0 −2


 =

(
1 0
0 1

)
.
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Hence, S is defined by

S=


 (s−1)

(s+1)

(
1 + 2 (1−e−(s−1))

(s−1)

)
s+1
s−1 0

0 s+1
s−1

0 0
0 0


+ e−s

(s+1) 2 e




0 −2 a

−b (s+1)
e−s 1

− (s+1)
e−s 0
0 −2






(s−1)
(s+1) I2

= (s−1)
(s+1)




1 + 2 (1−e−(s−1))
(s−1) −4 a e−(s−1)

s+1

−2 e b 1 + 2 (1−e−(s−1))
(s−1) + 2 e−(s−1)

(s+1)

−2 e 0

0 −4 e−(s−1)

s+1


 .

Then, a stabilizing controller C of P is defined by

C =

(
−2 e 0

0 −4 e−(s−1)

s+1

)1 + 2 (1−e−(s−1))
(s−1) −4 a e−(s−1)

(s+1)

−2 e b 1 + 2 (1−e−(s−1))
(s−1) + 2 e−(s−1)

(s+1)




−1

.

Remark 3.2. Dually to Theorem 3.2, P = Ñp D̃
−1
p ∈ Mq×(p−q)(K) is inter-

nally stabilized by C = X̃−1
c Ỹc ∈ M(p−q)×q(K) iff M̃p = Ap/Ap−q R̃p

T
is such that

M̃p/t(M̃p) is a projective A-module, with R̃p
T

= (ÑT
p : D̃T

p )
T ∈ Mp×(p−q)(A). In

order to shorten the paper, we let the readers check this result themselves. (We can
use the fact that C internally stabilizes P iff CT internally stabilizes PT .)

Corollary 3.3. If P = D−1
p Np ∈ Mq×(p−q)(K) is a weakly left-coprime fac-

torization of P , then P is internally stabilizable iff the A-module Mp = Ap/Aq Rp

is stably free, i.e., iff P = D1
pNp is a left-coprime factorization of P . Moreover, a

stabilizing controller C of P has the form

C = YcX
−1
c ,

where S = (XT
c : Y T

c )T ∈ Mp×q(A) is a right inverse of Rp, i.e., DpXc−Np Yc = Iq.
Proof. ⇒ If P = D−1

p Np is internally stabilizable, then, by Theorem 3.2, the

A-module Ap/Aq Rp is a projective A-module, where Rp = (Dp : −Np) ∈ Mq×p(A).
Using the fact that P = D−1

p Np is a weakly left-coprime factorization of P , then, by

Lemma 2.6 and Theorem 2.11 of [17], we have Aq Rp = Aq Rp. Thus, the A-module
Mp = Ap/Aq Rp is projective and, using the fact that Mp is a projective A-module

and Rp is a full row rank matrix, the exact sequence 0 −→ Aq .Rp−→ Ap −→ Mp −→ 0
splits [3, 23]. Thus, we have Mp ⊕Aq ∼= Ap, i.e., Mp is a stably free A-module.

⇐ Let us suppose that Mp is a stably free A-module. In particular, Mp =
Mp/t(Mp) is a stably free A-module, and thus, by Theorem 3.2, P is internally sta-
bilizable.

Moreover, we have the exact sequence 0 −→ Aq .Rp−→ Ap −→ Mp −→ 0. Using
the fact that Mp is a stably free A-module, then this exact sequence splits, i.e., there
exists S = (XT

c : Y T
c )T ∈ Mp×q(A) such that Rp S = Iq. We check that C = YcX

−1
c

is a stabilizing controller of P = D−1
p Np by computing (1.2) [29]. (We can also

use the construction of the stabilizing controller given in the proof of Theorem 3.2:
kerφ = Aq, C = (YcDp) (XcDp)

−1 = Yc ·X−1
c .)
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Example 3.2. Let us reconsider the transfer matrix P defined by (3.10). In
Example 3.1, we proved that the A = H∞(C+)-module M = A4/A2 R, where R is
defined by (3.11), is projective. Let us check whether or not the A-moduleM is stably
free. The A-module T (M) = A2/A4 RT is defined by the following equations:



(s−1)
(s+1) λ1 = 0,

(s−1)
(s+1) λ2 = 0,

− e−s

(s+1) λ1 − b (s−1)
(s+1) λ2 = 0,

−a (s−1)
(s+1) λ1 − 1

(s+1) λ2 = 0.

(3.13)

If we denote by µ = (µ1 : µ2 : µ3 : µ4)
T the second member of (3.13), we have{

λ1 = (1 + 2 (1−e−(s−1))
(s−1) )µ1 − 2 e b µ2 − 2 e µ3,

λ2 = −2 aµ1 + µ2 − 2µ4,

which proves that, from (3.13), we can deduce λ1 = λ2 = 0, i.e., T (M) = 0, and thus,
by 2 of Proposition 4.2 of [17], M is a stably free A-module. Moreover, a right-inverse
S of R, i.e., RS = I2, is defined by

S =



1 + 2 (1−e−(s−1))

(s−1) −2 a

−2 e b 1
−2 e 0
0 −2


 .(3.14)

Thus, a stabilizing controller C of P is defined by

C =

(−2 e 0
0 −2

)(
1 + 2 (1−e−(s−1))

(s−1) −2 a

−2 e b 1

)−1

.

The next example shows a situation where Corollary 3.3 cannot be used to con-
struct a stabilizing controller for a plant.

Example 3.3. Let us consider the ring A = R[t0, t1]/(t
2
0 + t21 − 1) of polynomials

on the unit circle and xi the class of ti in A. We have A = R[x0, x1] with the relation
x2

0 + x2
1 = 1. Let 0 �= a, b ∈ R be such that a2 + b2 = 1 and let us consider

p = (b− x1)/(x0 − a) ∈ K = Q(A).(3.15)

It is easy to check that R = (x0 − a : x1 − b) ∈ M1×2(A) is not weakly left-prime:(
x0+a
x1−b

)
(x0 − a : x1 − b) = (−(x1 + b) : x0 + a) ∈ A � (x0 + a)/(x1 − b) ∈ A.

Therefore, by Corollary 2.5 of [17], the A-module M = A2/AR is not torsion-free.
We can show that the torsion submodule t(M) of M is generated by

z = (x1 + b) y − (x0 + a)u,

which satisfies (x1 − b) z = 0. In particular, M is not a free A-module, a fact that
implies that there do not exist r and s in A such that (b− x1) s− (x0 + a) r = 1, i.e.,
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p does not admit a coprime factorization. Moreover, we have M/t(M) = A2/A2 R′,
where R′ is defined by

R′ =
(
x0 − a x1 − b
x1 + b −x0 − a

)
∈ M2(A)(3.16)

and we easily check that{
Fitt0(M/t(M)) = (−x2

0 + a2 − x2
1 + b2) = 0,

Fitt1(M/t(M)) = (x0 − a, x0 + a, x1 − b, x1 + b).

Moreover, we have

(x0 + a)/2 a− (x0 − a)/2 a = 1 ∈ Fitt1(M/t(M)) ⇒ Fitt1(M/t(M)) = A.(3.17)

Thus, by Proposition 4.4 of [17], we obtain that M/t(M) is a projective A-module
of rank 1 and, then, by Theorem 3.2, p is internally stabilizable. Hence, we are in a
situation where Corollary 3.3 cannot be used to determine a stabilizing controller of p
because p does not admit any weakly coprime factorization. (AR = A2 R′ and A2 R′

is not a free A-module.)
We show how to construct a stabilizing controller c for p by following the explicit

construction given in the proof of Theorem 3.2. Using the fact M/t(M) = A2/A2 R′,
we obtain that kerφ defined by (3.2) satisfies kerφ = A2 R′, where

A2 R′ = {λ1 (x0 − a : x1 − b) + λ2 (x1 + b : −(x0 + a)) | λ1, λ2 ∈ A}.
Let α = (x0 − a : x1 − b) and β = (x1 + b : −(x0 + a)). We have the relations{

(x0 + a)α+ (x1 − b)β = 0,
(x1 + b)α− (x0 − a)β = 0.

Ax0+a ⊗A kerφ is a free Ax0+a-module generated by β because we have

α = −[(x1 − b)/(x0 + a)]β.

Thus, we have Ax0+a⊗A (M/t(M)) = A2
x0+a/Ax0+a (x1 + b : −(x0 +a)) and we have


− (x1−b)

(x0+a) (x1 + b : −(x0 + a)) = (x0 − a : x1 − b) ⇒ R′′
x0+a = − (x1−b)

(x0+a) ,

(x1 + b : −(x0 + a))

(
0
−1

x0+a

)
= 1.

Ax0−a ⊗A kerφ is a free Ax0−a-module generated by α because we have

β = [(x1 + b)/(x0 − a)]α.

Thus, we have Ax0−a ⊗A (M/t(M)) = A2
x0−a/Ax0−a (x0 − a : x1 − b), and


(x0 − a : x1 − b) = (x0 − a : x1 − b) ⇒ R′′

x0−a = 1,

(x0 − a : x1 − b)

(
1

x0−a

0

)
= 1.

Hence, from (3.17), we obtain

S = (x0+a)
2 a


 0

−1

x0 + a


 (x1 + b)− (x0−a)

2 a


 1

x0 − a
0


 (x0 − a) = − 1

2 a

(
x0 − a
x1 + b

)
,
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and thus, the controller defined by

c =
(
− (x1+b)

2 a

)
/
(
− (x0−a)

2 a

)
= (x1+b)

(x0−a)

internally stabilizes p. We can easily check that we have

(
1 −p
−c 1

)−1

= − 1

2 a

(
x0 − a −x1 + b
x1 + b x0 − a

)
∈ M2(A).

Remark 3.3. Let us notice that Corollary 2.3 also follows from Corollary 3.3: If
A satisfies the conditions of Corollary 2.3, then, by Corollary 3.22 of [17], there exists

a weakly left-prime matrix R′
p = (D′

p : −N ′
p) ∈ Mq×p(A) such that P = D′

p
−1

N ′
p.

By Corollary 3.3, P is internally stabilizable iff P admits a left-coprime factorization,
i.e. the A-module M ′

p = Ap/Aq R′
p is a stably free A-module (see Proposition 4.7 of

[17]). Using the fact that A is a projective-free ring, and thus, a Hermite ring, then
M ′

p is a free A-module and, by Proposition 4.9 of [17], P is internally stabilizable iff
P admits a doubly coprime factorization.

Proposition 3.4. Let R ∈ Mq×p(A) and M = Ap/Aq R be an A-module. Then,
M/t(M) = Ap/Aq R is a projective A-module iff ApRT is a projective A-module.

Proof. ⇒ Let M/t(M) be a projective A-module. We have the commutative
exact diagram

0 0
↓ ↓

kerκ 0 t(M)
↓ ↓ ↓

0 −→ ker .R −→ Aq .R−→ Ap π−→ M −→ 0
↓ κ ‖ ↓ π′

0 −→ kerφ −→ Ap φ−→ M/t(M) −→ 0,
↓ ↓ ↓

cokerκ 0 0
↓
0

(3.18)

where φ = π′ ◦ π and κ : Aq → kerφ is induced by id : Ap → Ap and π′ :
M → M/t(M). Thus, by the snake lemma [3, 23], we obtain kerκ ∼= ker .R and
cokerκ ∼= t(M). M/t(M) is a projective A-module, and thus, the last horizontal
exact sequence splits and Ap ∼= kerφ ⊕ M/t(M). Then, kerφ is a finitely gener-
ated projective A-module. Therefore, its dual (kerφ)� � homA(kerφ,A) is also a
projective A-module [3, 23]. Dualizing the previous diagram and using the fact that
t(M)� � homA(t(M), A) = 0, we obtain the following commutative exact diagram:

0 0
↑ ↑

0 ←− ApRT .RT

←− Ap ←− M� ←− 0
‖ ↑

0 ←− (kerφ)� ←− Ap ←− (M/t(M))� ←− 0.
↑ ↑
0 0
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Hence, we deduce that ApRT ∼= (kerφ)�, and thus, ApRT is a projective A-module.
⇒ Let ApRT be a projective A-module. Then, the exact sequence

0 ←− ApRT .RT

←− Ap ←− M� ←− 0

splits, and thus, we have Ap ∼= ApRT ⊕M�, which implies that M� � homA(M,A) is
a finitely generated projective A-module, and thus, M�� is also a projective A-module
[3, 23]. Moreover, using the fact that M� is a finitely generated A-module, then M�

has a finite free resolution [3], and thus, T (M) = Aq/ApRT has a finite free resolution:

0 ←− T (M) ←− Aq .RT

←− Ap .RT
−1←− An .RT

−2←− Am .RT
−3←− . . . .

Dualizing this exact sequence, we obtain the following complex:

0 −→ Aq .R−→ Ap .R−1−→ An .R−2−→ Am .R−3−→ . . . .

Therefore, we have the following exact sequence (see [3] for more details):

0 −→ ext1A(T (M), A) −→ M −→ ker .R−2 −→ ext2A(T (M), A) −→ 0.

Moreover, we have the exact sequence 0 ←− M� ←− An
.RT

−2←− Am, which gives by

duality the exact sequence 0 −→ M�� −→ An .R−2−→ Am, from which we deduce that
ker .R−2 = M��. Hence, we obtain the following exact sequence [14]:

0 −→ ext1A(T (M), A) −→ M
ε−→ M�� −→ ext2A(T (M), A) −→ 0.

We have ext2A(T (M), A) ∼= ext1A(A
pRT , A) = 0 because ApRT is a projective A-

module [3, 23]. Using the fact that M is a finitely presented A-module, we have the
following commutative exact diagram (see [14] for more explanations):

0
↓

0 0 0 t(M)
↓ ↓ ↓ ↓

0 −→ homA(T (M), A) −→ Aq .R−→ Ap −→ M −→ 0
↓ ↓ ↓ ↓

0 −→ homA(T (M),K) −→ Kq .R−→ Kp −→ K ⊗A M −→ 0
↓ ↓ ↓ ↓

0 −→ homA(T (M),K/A) −→ (K/A)q −→ (K/A)p −→ (K/A) ⊗A M −→ 0,
↓ ↓ ↓ ↓

ext1A(T (M), A) 0 0 0
↓

ext1A(T (M),K) = 0

where ext1A(T (M),K) = 0 because K is an injective A-module [3]. Thus, a chase
in the diagram shows that ext1A(T (M), A) ∼= t(M). Finally, using the fact that
ext1A(T (M), A) ∼= t(M), we have M/t(M) ∼= M��. The result follows from the fact
that M�� is projective, and thus, so is M/t(M) = Ap/Aq R.

Using Theorem 3.2 and Proposition 3.4, we obtain the following corollary.
Corollary 3.5 (see [26]). The system P = D−1 N ∈ Mq×(p−q)(K) is internally

stabilizable iff the A-module ApRT is projective, where R = (D : −N) ∈ Mq×p(A).



314 A. QUADRAT

From Corollary 3.5, we deduce the next result. We refer to [20] for more details
and a direct proof of this result.

Corollary 3.6. The system P = D−1 N ∈ Mq×(p−q)(K) is internally stabiliz-
able iff there exists S = (XT : Y T )T ∈ Mp×q(K) such that

1. S R =
(
X D −X N
Y D −Y N

)
∈ Mp(A),

2. RS = DX −N Y = Iq,
where R = (D : −N) ∈ Mq×p(A). Then, C = Y X−1 internally stabilizes P.

Proposition 3.7. Let P = (P1 +P2) ∈ Mq×(p−q)(K) be a transfer matrix where
P1 ∈ Mq×(p−q)(A) is the stable part of P and P2 ∈ Mq×(p−q)(K) the instable one.
Then, we have the following results:

(1) P is internally stabilizable iff P2 is internally stabilizable.
(2) If P2 = D−1

2 N2 admits a left-coprime factorization and S2 = (XT
2 : Y T

2 )T is
a right-inverse of R2 = (D2 : −N2) ∈ Mq×p(A), then a stabilizing controller
of P is given by C = C2 (Iq + P1 C2)

−1, where C2 = Y2 X
−1
2 is a stabilizing

controller of P2. A similar result exists if P2 admits a right-coprime factor-
ization.

Proof. (1) Let us suppose that P2 = D−1
2 N2 is a fractional representation of

P2 where R2 = (D2 : −N2) ∈ Mq×p(A). Then, P has the following fractional
representation: P = D−1

2 (D2 P1 +N2) with R = (D2 : −(D2 P1 +N2)) ∈ Mq×p(A).
Let M = Ap/Aq R and M2 = Ap/Aq R2; then we have to prove that the A-module
M/t(M) is projective iff M2/t(M2) is projective or, equivalently by Proposition 3.4,
that the A-module Aq RT is projective iff Aq RT

2 is also projective. But, we have
trivially Aq RT = Aq RT

2 .
(2) The A-module T (M2) = Aq/ApRT

2 is defined by the following equations:{
DT

2 λ = 0,
−(NT

2 + PT
1 DT

2 )λ = 0.

Putting a second member µ = (µT
1 : µT

2 )
T in the previous equations and using the

fact that S2 is a right-inverse of R2, we obtain λ = (XT
2 + Y T

2 PT
1 )µ1 + Y T

2 µ2, i.e.,
S = ((X2 + P1 Y2)

T : Y T
2 )T is a right-inverse of R. Therefore, by Corollary 3.3,

C = Y2 (X2 + P1 Y2)
−1 = Y2 ((I + P1 Y2 X

−1
2 )X2)

−1

= Y2 X
−1
2 (I + P1 (Y2 X

−1
2 ))−1 = C2 (I + P1 C2)

−1

is a stabilizing controller of P .
Proposition 3.8. A system of the form P ∈ M1×(p−1)(K) is internally stabiliz-

able iff one of the following assertions is satisfied:
• The ideal I = (a1, . . . , ap) is invertible [22, 23], namely we have

I (A : I) �
{

n∑
i=1

ai bi | ai ∈ I, bi ∈ (A : I)

}
= A,(3.19)

where (A : I) = {k ∈ K = Q(A) | (k) I ⊆ A} is a fractional ideal of A
and P = d−1 N , 0 �= d ∈ A, N ∈ M1×(p−1)(A), a1 = d, and ai = Ni for
2 ≤ i ≤ p.

• For i = 1, . . . , p, there exist xi ∈ K = Q(A) such that{ ∑p
i=1 ai xi = 1,

ai xj ∈ A, i, j = 1, . . . , p.
(3.20)
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Then, the inverse I−1 � A : I of I is defined by I−1 = (x1, . . . , xp) and

C = − (x2/x1 : . . . : xp/x1)
T ∈ M(p−1)×1(K)(3.21)

internally stabilizes P .
Proof. By Theorem 3.2, a plant defined by P = d−1 N ∈ M1×(p−1)(K) is inter-

nally stabilizable iff the A-module M = Ap/AR is such that the A-module M/t(M)
is projective, where R = (d : −N) = (a1 : . . . : ap) ∈ M1×p(A). A

pRT is the ideal
I = (a1, . . . , ap) of A. Thus, by Proposition 3.4, M/t(M) is a projective A-module
iff the ideal I = (a1, . . . , ap) is also a projective A-module. Using the fact that I �= 0,
then I is a projective A-module iff I is an invertible ideal, i.e., I (A : I) = A [2, 22, 23].
Finally, (3.20) is just (3.19) written in terms of equations (see [23]).

4. Internal stabilization of SISO plants. The following corollary of Propo-
sition 3.8 gives a characterization of internal stabilization for SISO plants.

Corollary 4.1. A SISO plant, defined by p = n/d (0 �= d, n ∈ A), is internally
stabilizable iff one of the following equivalent assertions is satisfied:

• The ideal I = (n, d) is invertible, i.e., we have

I (A : I) = A,(4.1)

where A : I = {k ∈ K = Q(A) | k n, k d ∈ A} is a fractional ideal of A.
• There exist x, y ∈ K = Q(A) such that{

d x− n y = 1,
d x, n x, d y, n y ∈ A.

(4.2)

Then, I−1 = A : I = (x, y) and c = y/x internally stabilizes p = n/d.
Remark 4.1. We can also check Corollary 4.1 by computing(

1 −n/d
−y/x 1

)−1

=
1

(d x− n y)

(
d x nx
d y d x

)
∈ M2(A),

because d x− n y = 1 and d x, n x, d y ∈ A. We refer to [16, 19] for more characteri-
zations of stabilization problems of SISO plants in terms of fractional ideals.

Example 4.1. Let us consider the ring A = R[t0, t1]/(t
2
0 + t21 − 1) of polynomials

on the unit circle S1. Let xi be the class of ti in R1 and let us reconsider

p = (b− x1)/(x0 − a) ∈ K = Q(A), where a2 + b2 = 1, 0 �= a, b ∈ R.

Let us define the ideal I = (b− x1, x0 − a) of A; then, using the fact that

(x0 − a) (x0 + a) = (b− x1) (b+ x1),

we have A : I = (1, (x0 + a)/(b− x1)) and(−1
2a

)
(x0 − a)−

(
− x0+a

2a(b−x1)

)
(b− x1) = 1 ∈ I (A : I) ⇒ I (A : I) = A.

Thus, c = (x0+a)/(b−x1) = (x1+b)/(x0−a) internally stabilizes p = (b−x1)/(x0−a).
Example 4.2. Let us consider p = (1 + i

√
5)/2 [1]. Let us define the ideal

I = (2, 1 + i
√
5) of A = Z[i

√
5]. Using the fact that 6 = 2× 3 = (1− i

√
5)(1 + i

√
5),

we obtain that A : I =
(
1, (1− i

√
5)/2

)
. Moreover, we have

(−1) 2−
(
− 1−i

√
5

2

)
(1 + i

√
5) = 1 ∈ I (A : I) ⇒ I (A : I) = A,
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and thus, c = (1− i
√
5)/2 is a stabilizing controller of the plant p = (1 + i

√
5)/2.

Lemma 4.2 (see [15]). Let I = (n, d) be an ideal of A such that d �= 0; then we
have

I (A : I) = (d : n) + (n : d),

where (a : b) � {c ∈ A | c b ∈ (a)} for all a, b ∈ A [24].
Proof. Let us prove that (d : n) + (n : d) ⊆ I (A : I). Let us choose an element

a ∈ (d : n) = {b ∈ A | ∃ k ∈ A : b n = k d}; then we have{
(a/d)n = k ∈ A,
(a/d) d = a ∈ A,

⇒ (a/d) ∈ (A : I), d ∈ I ⇒ a = d (a/d) ∈ I (A : I).

Similarly, we prove that b/n ∈ (A : I), and using the fact that n ∈ I, we obtain that
b = n (b/n) ∈ I (A : I). Finally, any element c ∈ (d : n) + (n : d) can be written as
c = a+ b with a ∈ (d : n) and b ∈ (n : d), and thus, c = d (a/d) + n (b/n) ∈ I (A : I),
which proves the first inclusion. Second, let us prove that I (A : I) ⊆ (d : n)+(n : d).
Any element c ∈ I (A : I) can be written as

c =

(
l∑

i=1

ai xi

)
n+


 m∑

j=1

bj xj


 d,

where ai, bj ∈ A and xi ∈ K is such that xi n ∈ A and xi d ∈ A. We have

d (
∑l

i=1 ai xi n) = (
∑l

i=1 ai xi d)n ∈ (n) because
∑l

i=1 ai xi d ∈ A. In a similar way,
we have n (

∑m
j=1 bj xj d) = (

∑m
j=1 bj xj n) d ∈ (d), and thus, c ∈ (d : n) + (n : d),

which concludes the proof.
Using Lemma 4.2, we have the following corollary of Proposition 4.1.
Corollary 4.3 (see [24]). A SISO plant, defined by p = n/d (0 �= d, n ∈ A), is

internally stabilizable iff (d : n) + (n : d) = A.

5. Characterization of the classes of internal stabilizable plants. The
following proposition characterizes the integral domains A of SISO stable plants over
which every plant is internally stabilizable. We refer to section 3.2 of [17] for the
definition of a Prüfer domain.

Proposition 5.1 (see [6, 23]). An integral domain A is a Prüfer domain iff
every finitely generated torsion-free A-module M is projective.

Theorem 5.2 (see [15]). We have the equivalences:
1. every MIMO plant is internally stabilizable,
2. every SISO plant is internally stabilizable,
3. A is a Prüfer domain.

Proof. 1 ⇒ 2 follows from the fact that MIMO plants contain SISO plants.
2 ⇒ 3 Let us suppose that every SISO system, defined by p = n/d, is internally

stabilizable. Then, R = (d : −n) ∈ M1×2(A) has full row rank. By Theorem 3.2,
the A-module M = A2/AR is such that M/t(M) is a projective A-module. But,
A2 RT = (n, d) is the ideal of A defined by n and 0 �= d. By Proposition 3.4, M/t(M)
is a projective A-module iff I = (n, d) is a projective A-module. Hence, every ideal I,
generated by two elements n and 0 �= d of A, is a projective A-module, a result which
is equivalent to the fact that A is a Prüfer domain (see Lemma 3 of [9]).

3 ⇒ 1 Let us note K = Q(A) and P = D−1 N ∈ Mq×(p−q)(K). Let us define the
A-module M = Ap/Aq R, where R = (D : −N) ∈ Mq×p(A). By hypothesis, A is a
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Prüfer domain, and thus, by Proposition 5.1, the torsion-free A-module M/t(M) is
projective. Finally, by Theorem 3.2, P is internally stabilizable.

Example 5.1. We have the following examples of Prüfer domains.
• The domain of entire functions E(k) is a Bézout domain (k = R,C) [8], and
thus, a Prüfer domain [17]. So is E = R(s)[e−s] ∩ E(R) [11] and RH∞ [29].

• The integral closure of Z into a finite extension of Q is a Dedekind domain,
and thus, a Prüfer domain (see section 3.2 of [17] for more details). For
instance, the integral closure of Z in Q(i

√
5) is the Dedekind domain Z[i

√
5].

• If A is a one-dimensional Noetherian domain, K is its field of fractions, and L
is a finite algebraic extension field of K, then the integral closure of A in L is
a Dedekind domain, and thus, a Prüfer domain. In particular, a nonsingular
algebraic surface defines a Dedekind affine domain. For instance, the ring
R[t0, t1]/(t

2
0 + t21 − 1) of polynomials on the unit circle is a Dedekind domain.

• IfX is an affine irreducible nonsingular real algebraic variety of dimensionm+
1 and Y is any subset of X, then the ring HY (X) of rational functions on X,
which are locally bounded on Y (i.e., for all y ∈ Y , there exist a neighborhood
V(y) and a positive real number M(y) such that |n(x)/d(x)| ≤ M(y) for all
x ∈ V(y)\ (d−1(0)y), is a Prüfer domain and every finitely generated ideal
of HY (X) is generated by m + 1 elements [10]. More generally, the ring
of meromorphic bounded Nash functions on a Nash submanifold of Rm is a
Prüfer domain [10].

• The integral domain A = {P ∈ Q[x] | P (Z) ⊆ Z} of Z-valued polynomials in
Q[x] is a Prüfer domain [6].

6. Youla–Kučera parametrization of the stabilizing controllers. The ma-
trices S and S−1 defined in Proposition 4.9 of [17] are defined up to an arbitrary matrix
which corresponds to the free parameter in the Youla–Kučera parametrization [4, 29].

Corollary 6.1. With the same hypothesis as in Proposition 4.9 of [17], we have
the following splitting exact sequence:

0 −→ Aq .R−→ Ap .R−1−→ Ap−q −→ 0,
.S(Q)←− .S−1(Q)←−

(6.1)

with {
S−1(Q) = S−1 +Q R,
S(Q) = S −R−1 Q,

(6.2)

where R−1, S, and S−1 are defined in Proposition 4.9 of [17] and Q ∈ M(p−q)×q(A).
This is equivalent to the following two Bézout identities:

(1)
(
S(Q) R−1

) (
R

S−1(Q)

)
= Ip,

(2)
(

R
S−1(Q)

) (
S(Q) R−1

)
=
(
Iq 0
0 Ip−q

)
= Ip.

Proof. We have the following relations which prove the identities (1) and (2):
• S(Q) R+R−1 S−1(Q) = S R+R−1 S−1 = Ip,
• R S(Q) = R S = Iq,
• S−1(Q) R−1 = S−1 R−1 = Ip−q,
•

S−1(Q) S(Q) = S−1 S − S−1 R−1 Q+Q R S −Q R R−1 Q = Q−Q

= 0.
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Corollary 6.2. Let P ∈ Mq×(p−q)(K) be a transfer matrix which admits a dou-
bly coprime factorization. Then, all the stabilizing controllers of P are parametrized
by means of the Youla–Kučera parametrization

C(Q) = Y (Q)X(Q)−1 = X̃(Q)−1 Ỹ (Q),

where Q ∈ M(p−q)×q(A) is a free parameter such that detX(Q) �= 0, det X̃(Q) �= 0,

and S1(Q) = (−Ỹ (Q) : X̃(Q)) and S(Q) = (X(Q)T : Y (Q)T )T are defined by (6.2).
Example 6.1. In Example 4.3 of [17], we proved that the A = H∞(C+)-module

M = A2/AR, with R = ( s−1
s+1 : e−s

s+1 ) ∈ M1×2(A), is projective and thus free because
A is a coherent Sylvester domain (see Corollary 3.31 of [17]). Few computations lead
to the following Bézout identity (q ∈ A):


s−1
s+1 − e−s

s+1

2 e+ (s−1)
(s+1) q 1 + 2 (1−e−(s−1))

(s−1) − e−s

(s+1) q




1 + 2 (1−e−(s−1))

(s−1) − e−s

(s+1) q
e−s

s+1

−2 e− (s−1)
(s+1) q

s−1
s+1


=I2.

Thus, all the stabilizing controllers of p = e−s/(s− 1) are parametrized by

c(q) =
−(2 e+ (s−1)

(s+1) q)

1 + 2 (1−e−(s−1))
(s−1) − e−s

(s+1) q
, q ∈ A.

Theorem 6.3. If A is a projective-free domain, then every internally stabiliz-
able plant, defined by a transfer matrix P with entries in K = Q(A), admits doubly
coprime factorizations and all the stabilizing controllers of a stabilizable plant can be
parametrized by means of the Youla–Kučera parametrization.

Proof. Using Theorem 3.2 and the exact sequence (3.2), we obtain thatMp/t(Mp)
and kerφ are two projective A-modules. Using the fact that A is a projective-free
ring, we obtain that Mp/t(Mp) and kerφ are two free A-modules. From (3.4), we
obtain that kerφ ∼= Aq, and thus, we have the following exact sequence:

0 −→ Aq .R′
−→ Ap −→ Mp/t(Mp) −→ 0,

with R′ ∈ Mq×p(A). Using (3.1), we obtain that there exists a full rank matrix
R′′ ∈ Mq(A) such that R = R′′R′, i.e., (D : −N) = R′′ (D′ : −N ′), and thus

P = D−1 N = (R′′D′)−1 (R′′N ′) = D′−1
N ′.

Therefore, by Proposition 4.9 of [17] and Corollary 6.1, the plant P admits doubly
coprime factorizations and all the stabilizing controllers of P are parametrized by the
Youla–Kučera parametrization.

Corollary 6.4 (see [25]). If A = H∞(C+), then a plant is internally stabilizable
iff it admits a doubly coprime factorization.

Example 6.2. The ring A = R[t0, t1](t
2
0+t21−1) (resp., A = Z[i

√
5]) is a Dedekind

domain which is not a principal ideal domain: The ideal I = (x0 − a, −x1 + b) (resp.,
I = (2, 1 + i

√
5)) is not a principal ideal [22]. By Corollary 4.13 of [17], it is not

possible to parametrize all the stabilizing controllers of p = (b− x1)/(x0 − a) (resp.,
p = (1 + i

√
5)/2) by means of the Youla–Kučera parametrization.

It is possible to obtain a parametrization of all the stabilizing controllers which
generalizes the Youla–Kučera parametrization for a stabilizable plant which does not
admit doubly coprime factorizations. We refer the reader to [19, 20] for more details.
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Proposition 6.5. The intersection between the sets of coherent Sylvester do-
mains and Prüfer domains is exactly the set of Bézout domains.

Proof. ⇒ If A is a Prüfer domain, then every ideal I = (d, n), generated by two
elements 0 �= d and n of A, is invertible [9]. Using the fact that A is also a coherent
Sylvester domain, and thus, a greatest common divisor domain (see Corollary 3.20 of
[17]), then I−1 = (1, 1/[d, n]), where [d, n] denotes the greatest common divisor of d
and n, and thus, we have

I I−1 = (d/[d, n], n/[d, n]) = A ⇒ ∃ x, y ∈ A : d x+ n y = [d, n],

which proves that I is a principal ideal of A, and thus, A is a Bézout domain.
⇐ By definition, a Bézout domain is a Prüfer and a coherent Sylvester

domain.

Conclusion. We hope we have convinced the reader that the algebraic analysis
framework developed in this paper allows us to generalize some results on internal
stabilization and to obtain new ones. Due to a lack of space, it was not possible to
develop here the strong and the simultaneous stabilization problems [29]. We refer the
reader to [16, 18] for a description of a canonical form, based on the concept of stable
range, that certain stabilizing controllers possess. This canonical form allows us to
show that, over a ring A of SISO stable plants of stable range 1 (e.g., A = H∞(C+)),
every plant which admits a doubly coprime factorization is strongly stabilizable (i.e.,
stabilized by means of a stable controller). We also refer the reader to [19, 20] for
other results on synthesis problems using fractional ideal and lattice approaches. In
particular, a new parametrization of the stabilizing controllers for plants which do
not admit doubly coprime factorizations is obtained. Moreover, in this paper the
concept of class group C(A) and the group K0(A) of nontrivial isomorphism classes
of projective A-modules [22] are introduced. The computations of these groups allow
us to check whether or not every internally stabilizable plant admits a doubly coprime
factorization (e.g., C(R[t0, t1]/(t

2
0 + t21 − 1)) ∼= Z/2Z �= 0 and C(Z[i√5]) ∼= Z/2Z �= 0

[22] showing that there exist internal stabilizable plants which do not admit a doubly
coprime factorization). Finally, in [21], from the algebraic analysis point of view,
we show how to recover the operator-theoretic approach developed in [7] (graphs,
domains, unbounded operators, etc.) and to obtain new results.
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