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Abstract

The main purpose of this paper is to revisit the internal/simultaneous/robust stabilization
problems without assuming the existence of doubly coprime factorizations for the transfer matrices.
Indeed, it has been recently shown in the literature that an internally stabilizable does not generally
admit doubly coprime factorizations. Firstly, we give new necessary and sufficient conditions for
internal stabilizability by means of matrix equalities. On these characterizations, the fact that
internal stabilizability does not imply the existence of coprime factorizations becomes obvious.
Secondly, we recall that a necessary condition for strong stabilizability is the existence of a doubly
coprime factorization for the transfer matrix. Then, using the concept of stable range sr(A) of
a ring A, introduced in (algebraic, topological) K-theory, we prove that sr(A) = 1 implies that
every transfer matrix defined over the quotient field of A and which admits a left- or a right-
coprime factorization is strongly stabilizable. In particular, this result holds for A = H∞(D),
H∞(C+), W+ and A(D), solving a question asked by A. Feintuch in [8]. Thirdly, we point out
that the simultaneous stabilization problem is not equivalent to the strong stabilization problem
if the plants do not admit doubly coprime factorizations. Using the fractional ideal approach to
stabilization problems, we give a necessary and sufficient condition for a pair of SISO plants to be
simultaneously stabilizable without assuming the existence of coprime factorizations. Finally, using
the parametrization of all stabilizing controllers of an internally stabilizable SISO plant (which does
not necessarily admit coprime factorizations), we show how to transform the non-linear sensitivity
minimization problem into an affine, and thus, convex minimization problem.

Keywords Internal/strong/simultaneous/robust stabilization problems, parametrization of all
stabilizing controllers, Bass stable range, topological stable range, module theory, theory of frac-
tional ideals, K-theory.

1 Internal stabilization problem

In what follows, we shall use the fractional representation approach to analysis and synthesis prob-
lems developed in [5, 27]. In this theory, the set of all SISO (proper) stable time-invariant linear
systems is defined by means of a commutative integral domain A and the class of all the (stable
and unstable) systems is defined by the quotient field K = Q(A) = {n/d | 0 6= d, n ∈ A} of A. For
instance, A = RH∞, H∞(C+), W+, Â are some examples of integral domains of SISO stable plants
[14, 27]. Let us recall the definitions of internal, strong and simultaneous stabilizations [2, 7, 27].

Definition 1. • A plant, defined by a transfer matrix P ∈ Kq×r, is internally stabilizable if
there exists a controller C ∈ Kr×q such that the entries of the transfer matrix H(P,C),
defined by (eT

1 : eT
2 )T = H(P,C) (uT

1 : uT
2 )T (see the figure below), belong to A or, in other

words, if we have:(
Iq −P
−C Ir

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)
∈ A(q+r)×(q+r) (1)

=

(
Iq + P (Ir − C P )−1 C P (Ir − C P )−1

(Ir − C P )−1 C (Ir − C P )−1

)
∈ A(q+r)×(q+r). (2)
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Then, C is called a stabilizing controller of P .

• A plant, defined by a transfer matrix P ∈ Kq×r, is strongly stabilizable if there exists a stable
stabilizing controller of P or, in other words, if C ∈ Ar×q internally stabilizes P .

• Two plants, defined by two transfer matrices P1, P2 ∈ Kq×r, are simultaneously stabilizable
if there exists a controller C ∈ Kr×q which internally stabilizes P1 and P2.

Let us state the first main result of this paper. Up to our knowledge, this simple result is new.

Theorem 1. 1. Let P = D−1 N ∈ Kq×r be a fractional representation of the transfer matrix
P and R = (D : −N) ∈ Aq×(q+r). Then, P is internally stabilizable iff there exists a matrix
S = (XT : Y T )T ∈ K(q+r)×q which satisfies det X 6= 0 and:

(a) R S = D X −N Y = Iq,

(b) S R =

(
X D −X N

Y D −Y N

)
∈ A(q+r)×(q+r).

Then, the controller C = Y X−1 internally stabilizes the plant P .

2. Let P = Ñ D̃−1 ∈ Kq×r be a fractional representation of P and R̃ = (ÑT : D̃T )T ∈ A(q+r)×r.
Then, P is internally stabilizable iff there exists a matrix T = (−Ỹ : X̃) ∈ Kr×(q+r) which
satisfies det X̃ 6= 0 and:

(a) T R̃ = −Ỹ Ñ + X̃ D̃ = Ir,

(b) R̃ T =

(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)
∈ A(q+r)×(q+r).

Then, the controller C = X̃−1 Ỹ internally stabilizes the plant P .

Proof. 1 ⇒ Let us suppose that there exists a stabilizing controller C ∈ Kr×q of the plant P . Thus,
we have: 

A1 = (Iq − P C)−1 ∈ Aq×q,

A2 = (Iq − P C)−1 P ∈ Aq×r,

A3 = C (Iq − P C)−1 ∈ Ar×q,

A4 = Ir + C (Iq − P C)−1 P ∈ Ar×r.

Let us define the following matrices:

X = A1 D−1, Y = A3 D−1, S = (XT : Y T )T ∈ K(q+r)×q.

Then, we have C = A3 A−1
1 = Y X−1. Moreover, we have

R S = (D : −N) S = D A1 D−1 −N A3 D−1 = (D A1 −N A3) D−1

= (D −N C) (Iq − P C)−1 D−1 = D (Iq − P C) (Iq − P C)−1 D−1 = Iq,

and thus, we obtain R S = D X −N Y = Iq, which proves 1.a. Using this identity, we obtain

A−1
1 = Iq − P C = Iq − (D−1 N) (Y X−1) = D−1 (D X −N Y ) X−1 = (X D)−1,

and thus, we have A1 = X D, A2 = X N , A3 = Y D and A4 = Ir + Y N . Finally, we obtain

S R =

(
X D −X N

Y D −Y N

)
=

(
A1 −A2

A3 Ir −A4

)
∈ A(q+r)×(q+r),

which proves 1.b.
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1 ⇐ Let us suppose that there exists a matrix S = (XT : Y T )T ∈ K(q+r)×q satisfying 1.a, 1.b
and det X 6= 0. Let us define C = Y X−1. Then, using point 1.a, we obtain

Iq − P C = Iq − (D−1 N) (Y X−1) = D−1 (D X −N Y ) X−1 = (X D)−1,

and thus, we have:

(Iq − P C)−1 = X D, (Iq − P C)−1 P = X N, C (Iq − P C)−1 = Y D, C (Iq − P C)−1 P = Y N.

Hence, using 1.b, we obtain

H(P,C) =

(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)
=
(

X D X N
Y D Ir + Y N

)
∈ A(q+r)×(q+r),

and thus, C = Y X−1 internally stabilizes the plant P = D−1 N .
2 ⇒ Let us suppose that there exists a stabilizing controller C ∈ Kr×q of the plant P . Thus,

we have: 
B1 = Iq + P (Ir − C P )−1 ∈ Aq×q,

B2 = P (Ir − C P )−1 ∈ Aq×r,

B3 = (Ir − C P )−1 C ∈ Ar×q,

B4 = (Ir − C P )−1 ∈ Ar×r.

Let us define the following matrices:

Ỹ = D̃−1 B3, X̃ = D̃−1 B4, T = (−Ỹ : X̃) ∈ Kr×(q+r).

Then, we have C = B−1
4 B3 = X̃−1 Ỹ . Moreover, we have

T R̃ = −D̃−1 B3 Ñ + D̃−1 B4 D̃ = D̃−1 (−B3 Ñ + B4 D̃)

= D̃−1 (Ir − C P )−1 (D̃ − C Ñ) = D̃−1 (Ir − C P )−1 (Ir − C P ) D̃ = Ir,

and thus, we obtain T R̃ = −Ỹ Ñ + X̃ D̃ = Ir, which proves 2.a. Using this identity, we obtain

B−1
4 = Ir − C P = Ir − (X̃−1 Ỹ ) (Ñ D̃−1) = X̃−1 (X̃ D̃ − Ỹ Ñ) D̃−1 = (D̃ X̃)−1,

and thus, we have B4 = D̃ X̃, B3 = D̃ Ỹ , B2 = Ñ X̃ and B1 = Iq + Ñ Ỹ . Finally, we have

R̃ T =

(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)
=

(
Iq −B1 B2

−B3 B4

)
∈ A(q+r)×(q+r),

which proves 2.b.
2 ⇐ Let us suppose that there exists a matrix T = (−Ỹ : X̃) ∈ Kr×(q+r) satisfying 2.a, 2.b

and det X̃ 6= 0. Let us define C = X̃−1 Ỹ ∈ Kr×q. Then, using point 2.a, we obtain

Iq − C P = Iq − (X̃−1 Ỹ ) (Ñ D̃−1) = X̃−1 (X̃ D̃ − Ỹ Ñ) D̃−1 = (D̃ X̃)−1,

and thus, we obtain:

(Iq − C P )−1 = D̃ X̃, P (Iq − C P )−1 = Ñ X̃, (Iq − C P )−1 C = D̃ Ỹ , P (Iq − C P )−1 C = Ñ Ỹ .

Hence, using 2.b, we obtain

H(P,C) =

(
Iq + P (Ir − C P )−1 C P (Ir − C P )−1

(Ir − C P )−1 C (Ir − C P )−1

)
=

(
Iq + Ñ Ỹ Ñ X̃

D̃ Ỹ D̃ X̃

)
∈ A(q+r)×(q+r),

and thus, C = X̃−1 Ỹ internally stabilizes the plant P = Ñ D̃−1.

The following corollary shows that every stabilizing controller C of P can be written in the form
C = Y X−1, where the matrix S = (XT : Y T )T satisfies 1.a and 1.b.

Corollary 1. Let C ∈ Kr×q be a stabilizing controller of P ∈ Kq×r.
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1. Let P = D−1 N be a fractional representation of the plant P and let us define the matrices
X = (D−N C)−1 ∈ Kq×q and Y = C (D−N C)−1 ∈ Kr×q. Then, S = (XT : Y T )T satisfies
C = Y X−1, 1.a and 1.b of Theorem 1.

2. Let P = Ñ D̃−1 be a fractional representation of the plant P and let us define the matrices
X̃ = (D̃ −C Ñ)−1 ∈ Kr×r and Ỹ = (D̃ −C Ñ)−1 C ∈ Kr×q . Then, T = (−Ỹ : X̃) satisfies
C = X̃−1 Ỹ , 2.a and 2.b of Theorem 1.

Proof. 1. Let C be a stabilizing controller of P = D−1 N . Then, using the same notations as in
the proof 1 ⇒ of Theorem 1, let us define{

X = A1 D−1 = (Iq − P C)−1 D−1 = (D −N C)−1,

Y = A3 D−1 = C (Iq − P C)−1 D−1 = C (D −N C)−1,

and S = (XT : Y T )T ∈ K(q+r)×q. Then, we have C = A3 A−1
1 = Y X−1 and the result directly

follows from the end of the proof 1 ⇒ of Theorem 1.
2. Let C be a stabilizing controller of P = Ñ D̃−1. Then, using the same notations as in the

proof 2 ⇒ of Theorem 1, let us define{
Ỹ = D̃−1 B3 = D̃−1 (Ir − C P )−1 C = (D̃ − C Ñ)−1 C,

X̃ = D̃−1 B4 = D̃−1 (Ir − C P )−1 = (D̃ − C Ñ)−1,

and T = (−Ỹ : X̃) ∈ Kr×(q+r). Then, we have C = B−1
4 B3 = X̃−1 Ỹ and the result directly

follows from the end of the proof 2 ⇒ of Theorem 1.

Corollary 2. Let P ∈ Kq×r be a plant and C ∈ Kr×q a controller.

1. Let P = D−1 N be a fractional representation of P , R = (D : −N) ∈ Aq×(q+r) and let
us define the following matrices X = (D − N C)−1 and Y = C (D − N C)−1. Then, P is
internally stabilized by the controller C iff the matrix

Π1 =

(
X D −X N

Y D −Y N

)

is an idempotent (projector) of A(q+r)×(q+r), namely Π1 ∈ A(q+r)×(q+r) satisfies Π2
1 = Π1.

2. Let P = Ñ D̃−1 ∈ Kq×r be a fractional representation of P , R̃ = (ÑT : D̃T )T ∈ A(q+r)×r

and let us define the following matrices X̃ = (D̃ − C Ñ)−1 and Ỹ = (D̃ − C Ñ)−1 C. Then,
P is internally stabilized by the controller C iff the matrix

Π2 =

(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)

is an idempotent (projector) of A(q+r)×(q+r), namely Π2 ∈ A(q+r)×(q+r) satisfies Π2
2 = Π2.

Finally, the two idempotents Π1 and Π2 of A(q+r)×(q+r) satisfy the relation Π1 + Π2 = Iq+r.

Proof. 1. ⇒ Let us suppose that C internally stabilizes P . Then, by 1 of Corollary 1, we know that
S = (XT : Y T )T satisfies 1.a and 1.b of Theorem 1. Therefore, using 1.a and 1.b of Theorem 1,
we obtain  Π1 =

(
X
Y

)
(D : −N) = S R ∈ A(q+r)×(q+r),

Π2
1 = S R S R = S (R S) R = S R = Π1,

which proves that Π1 is an idempotent of A(q+r)×(q+r).
1. ⇐ Let us suppose that Π1 is an idempotent of A(q+r)×(q+r). Let us define the matrix S =

(XT : Y T )T ∈ K(q+r)×q. Then, we have Π1 = S R ∈ A(q+r)×(q+r), i.e., condition 1.b is satisfied.
Moreover, we have R S = D (D − N C)−1 − N C (D − N C)−1 = (D − N C) (D − N C)−1 = Iq,
which proves 1.a.
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2 can be proved similarly. Finally, using the following standard matrix equalities [27]
(Iq − P C)−1 = P (Ir − C P )−1 C + Iq,

(Iq − P C)−1 P = P (Ir − C P )−1,

C (Iq − P C)−1 = (Ir − C P )−1 C,

C (Iq − P C)−1 P = (Ir − C P )−1 − Ir,

we obtain:

Π1 + Π2 =

(
X D − Ñ Ỹ −X N + Ñ X̃

Y D − D̃ Ỹ −Y N + D̃ X̃

)

=

(
(Iq − P C)−1 − P (Ir − C P )−1 C −(Iq − P C)−1 P + P (Ir − C P )−1

C (Iq − P C)−1 − (Ir − C P )−1 C −C (Iq − P C)−1 P + (Ir − C P )−1

)
= Iq+r.

Corollary 2 can be reinterpreted in a more intrinsic way using module theory [21]. First of all,
let us introduce a few definitions. We refer to [3, 21] for more details.

Definition 2. Let M be a finitely generated A-module [3, 21].

• The A-module M is a called free if M is isomorphic to a finite number of copies of A, i.e.,
there exists m ∈ Z+ such that M ∼= Am, where ∼= denotes the isomorphism of A-modules.

• The A-module M is a called stably free if there exist m and n ∈ Z+ such that M ⊕An ∼= Am,
where ⊕ denotes the direct sum of A-modules.

• The A-module M is a called projective if there exist an A-module N and m ∈ Z+ such that
M ⊕N ∼= Am.

We easily check that a free A-module is stably free (take n = 0) and a stably free A-module is
projective (take N = An). Let us give an intrinsic formulation of Theorem 1 and Corollary 2.

Corollary 3. The plant P ∈ Kq×r is internally stabilizable iff one of the following A-modules
(D : −N) Aq+r and A1×(q+r) (ÑT : D̃T )T is projective, where P = D−1 N = Ñ D̃−1 is a fractional
representation of P , R = (D : −N) ∈ Aq×(q+r) and R̃ = (ÑT : D̃T )T ∈ A(q+r)×r.

Proof. Let P = D−1 N be a fractional representation of P with R = (D : −N) ∈ Aq×(q+r). We
have the following exact sequence

0 −→ ker(R.) i−→ Aq+r R.−→ R Aq+r −→ 0
λ 7−→ (D : −N) λ,

(3)

i.e., the A-morphism (R.) : Aq+r → R Aq+r (A-linear map) is surjective and i is the canonical
injection of ker(R.) in Aq+r.

⇒ By Theorem 1, if P is internally stabilizable, then there exists S = (XT : Y T )T ∈ K(q+r)×q

satisfying 1.a and 1.b. From 1.a, we can define the A-morphism (S.) defined by:

R Aq+r S.−→ Aq+r

µ 7−→
(

X
Y

)
µ.

Indeed, (S.) is trivially A-linear and it is well-defined as, for all µ ∈ R Aq+r, there exists a certain
ν ∈ Aq+r such that µ = R ν, and thus, we have S µ = (S R) ν ∈ Aq+r. Moreover, 1.b means that
(R.) ◦ (S.) = (R S). = (Iq.), i.e., the A-morphism (S.) is a right-inverse of the A-morphism (R.).
Then, let us prove that we have the following direct sum:

R Aq+r ⊕ ker(R.) ∼= Aq+r. (4)

For all λ ∈ Aq+r, let us define µ = R λ ∈ R Aq+r and κ = (Iq+r − S R)λ. We have κ ∈ ker(R.) as,
by condition 1.a, we have R κ = R λ− (R S) R λ = R λ−R λ = 0. Moreover, we have λ = κ+µ and
the result follows from the fact that ker(R.) ∩ R Aq+r = ker(R.) ∩ im(R.) = 0. Finally, using (4),
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we obtain that R Aq+r is a direct summand of the free A-module Aq+r, i.e., R Aq+r is a projective
A-module.

⇐ Let us suppose that R Aq+r is a projective A-module. Then, the exact sequence (3) splits
[21], namely, there exists an A-morphism s : R Aq+r → Aq+r such that (R.) ◦ s = idR Aq+r . The
A-morphism s can be written by means of S ∈ K(q+r)×q, i.e., we have s(µ) = S µ for µ ∈ R Aq+r

[16]. Hence, we have s(R Aq+r) = (S R) Aq+r, i.e., we have S R ∈ A(q+r)×(q+r). Moreover, we
have (R.) ◦ s = (R.) ◦ (S.) = (R S). = idR Aq+r , and thus, we obtain (R S)(R Aq+r) = R Aq+r, i.e.,
R S R = R. Finally, we have (R S − Iq)R = 0 and using the fact that R = (D : −N) has full row
rank, we obtain R S = Iq.

Corollary 3 was first obtained in [24] with a different proof. See also [14, 16] for different proofs
and equivalent results. Let us also recall some well-known definitions of coprime factorizations.

Definition 3. We have the following definitions [4, 5, 27]:

• A transfer matrix P ∈ Kq×r admits a left-coprime factorization if there exist two matrices
R = (D : −N) ∈ Aq×(q+r) and S = (XT : Y T )T ∈ A(q+r)×q such that det D 6= 0 and:{

P = D−1 N,

R S = D X −N Y = Iq.

• A transfer matrix P ∈ Kq×r admits a right-coprime factorization if there exist two matrices
R̃ = (ÑT : D̃T )T ∈ A(q+r)×r and T = (−Ỹ : X̃) ∈ Ar×(q+r) such that det D̃ 6= 0 and:{

P = Ñ D̃−1,

T R̃ = −Ỹ Ñ − X̃ D̃ = Ir.

• A transfer matrix P ∈ Kq×r admits a doubly coprime factorization if P admits both a left-
and right-coprime factorization.

We have the following trivial corollary of Theorem 1.

Corollary 4. 1. Let the transfer matrix P ∈ Kq×r admit the following left-coprime factorization
P = D−1 N , where R = (D : −N) ∈ Aq×(q+r), S = (XT : Y T )T ∈ A(q+r)×q, R S = Iq and
det X 6= 0. Then, the controller C = Y X−1 ∈ Kr×q internally stabilizes P .

2. Let the transfer matrix P ∈ Kq×r admit the following right-coprime factorization P = Ñ D̃−1,
where R̃ = (ÑT : D̃T )T ∈ A(q+r)×r, T = (−Ỹ : X̃) ∈ Ar×(q+r), T R̃ = Ir and det X̃ 6= 0.
Then, the controller C = X̃−1 Ỹ ∈ Kr×q internally stabilizes P .

Proof. By hypothesis, 1.a of Theorem 1 is satisfied and using the fact that the entries of R and S
are in A, then we have S R ∈ A(q+r)×(q+r), and thus, 1.b is satisfied. Then, the result follows from
1 of Theorem 1. 2 can be proved similarly.

See [27] for a proof of this well-known result by means of direct computations. From Corollary 4,
we deduce that the existence of a left- or a right-coprime factorization for the transfer matrix P
is a sufficient but not a necessary condition for internal stabilizability. Let us notice that this
equivalence is still open for some classes of systems (e.g., Â (resp. W+) the integral domain of
BIBO stable continuous (resp. discrete) infinite-dimensional linear systems [4, 27]).

We recall the following necessary and sufficient conditions for the existence of left- or right-
coprime factorization for a transfer matrix.

Theorem 2. 1. Let P = D−1 N ∈ Kq×r be a fractional representation of the transfer matrix P
and R = (D : −N) ∈ Aq×(q+r). Then, P ∈ K admits a left-coprime factorization iff R Aq+r

is a free A-module of rank q, namely, we have R Aq+r ∼= Aq.

2. Let P = Ñ D̃−1 ∈ Kq×r be a fractional representation of P and R̃ = (ÑT : D̃T )T ∈ A(q+r)×r.
Then, P admits a right-coprime factorization iff A1×(q+r) (ÑT : D̃T )T is a free A-module of
rank r, namely, we have A1×(q+r) (ÑT : D̃T )T ∼= A1×r.

This result has been firstly obtained in [24]. See [14, 16] for different proofs and equivalent
results. Hence, the concept of internal stabilizability is equivalent to the fact that certain A-
modules are projective, whereas the existence of a doubly coprime factorization corresponds to the
freeness of the same modules.
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Definition 4. [13] A ring A is called a projective-free ring (resp. Hermite ring) if every finitely
generated projective (resp. stably free) A-module is free.

In particular, a projective-free ring is a stably free ring.

Theorem 3. 1. [14, 17] Let us denote by D = {z ∈ C | |z| < 1} the open unit disc of C, by
C+ = {s ∈ C |Re s > 0} the open right half plane of C and by Dn

= {z ∈ Cn | |z| ≤ 1}
the closed unit polydisc of Cn. Then, the integral domains RH∞, H∞(D), H∞(C+) and
MDn = {a/b | 0 6= b, a ∈ R[z1, . . . , zn], b(z) = 0 ⇒ z ∈ Cn\Dn} are projective-free. In
particular, every internally stabilizable plant admits a doubly coprime factorization.

2. [27] A is a Hermite ring iff every transfer which admits a left-coprime (resp. right-coprime)
factorization admits a doubly coprime factorization (see also [14]).

In (commutative) algebra, the differences between projective, stably free and free modules over
a given ring A have been largely studied since few decades (e.g., Serre’s conjecture (1955), Quillen-
Suslin’s theorem (1976) [13, 21]). A large literature on this subject exists and this problem is
still active nowadays. In particular, (algebraic, topological) K-theory focuses on computing some
invariants such as K0(A), K̃0(A), C(A) . . . of the ring A in order to check whether or not a finitely
generated stably free (resp. projective) A-module is free [20]. Hence, K-theory develops some
interesting mathematical tools in order to study the difference between internal stabilizable plants
and plants admitting left- or right-coprime factorizations. For instance, see [17] for the recent proof
of Z. Lin’s conjecture on the existence of doubly coprime factorizations for internal stabilizable (in
the sense of the structural stability) multidimensional linear systems. Moreover, see [15] for an
application of the Picard group C(A) in the problem of parametrizing all stabilizing controllers of
an internally stabilizable SISO plant which does admit a coprime factorization. Hence, we believe
that the mathematical tools developed in K-theory should be studied in details in the future.

2 Strong stabilization problem

One of the main purpose of K-theory is also to compute the group K1(A) (resp. SK1(A)) defined
as the quotient of the general group GL(A) of invertible matrices with entries in A (resp. special
group of matrices of determinant 1) by its normal subgroup EL(A) of elementary matrices with
entries in A. In order to “stabilize” the computation of K1(A), H. Bass introduced in [1] the
concept of stable range of a (commutative) ring A. While we were studying K-theory in order
to apply it to stabilization problems, we develop the idea of using the concept of stable range for
the study of the Bézout identities appearing in internal stabilizability and specially in the strong
stabilization problem. In the same period, a private communication with V. Blondel (University of
Louvain-la-Neuve) showed me that he already had the idea to use such a concept in the study of the
strong stabilization problem. More recently, while reading [7, 8], it appeared to us that A. Feintuch
(Ben-Gurion University) had also already used this concept in the study of strong stabilizability.

In this section, we mainly recall some result on the strong stabilization problem recently obtained
in [18] for MIMO plants. First of all, let us introduce some definitions [1, 9, 26].

Definition 5. • A matrix R ∈ Aq×p is unimodular if there exists a matrix S ∈ Ap×q such that
R S = Iq. In particular, we denote the set of all the unimodular vectors of A1×n by Un(A).

• Let us denote the matrix formed by the columns R1, . . . , Rp ∈ Aq by col(R1, . . . , Rp) ∈ Aq×p

and let k be a positive integer satisfying 1 ≤ k ≤ r = p − q. Then, a unimodular matrix
col(R1, . . . , Rp) ∈ Aq×p is called k-stable if there exists a matrix Tk ∈ Ak×(p−k) such that
the q × (p − k)-matrix defined by Rk = col(R1 : . . . : Rp−k) + col(Rp−k+1 : . . . : Rp) Tk is
unimodular.

In particular, a vector a = (a1 : . . . : an) ∈ Un(A) is 1-stable, or simply stable, if there exists a
(n− 1)-tuple b = (b1 : . . . : bn−1) ∈ An−1 such that (a1 + an b1 : . . . : an−1 + an bn−1) ∈ Un−1(A),
i.e., there exists (c1 : . . . : cn−1) ∈ An−1 such that we have

∑n−1
i=1 (ai + an bi) ci = 1.

Definition 6. [1, 9, 26] The (Bass) stable range sr(A) of A is the least integer n such that every
vector of Un+1(A) is stable. If no such integer exists, we set sr(A) = ∞.

The following alternative definition of the base stable range was obtained by R. B. Warfield.

Proposition 1. [19] The stable range sr(A) of A is the least integer n such that for every vector
(a1 : . . . : an+1) ∈ Un+1(A), there exists (ci)1≤i≤n+1 ∈ An+1 satisfying:
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•
∑n+1

i=1 ai ci = 1,

• (c1 : . . . : cn) ∈ Un(A).

Theorem 4. sr(H∞(D)) = 1 [25], sr(RH∞) = 2 [27], sr(A(D)) = 1 [12], sr(W+) = 1 [22],
sr(L∞(i R)) = 1 [10], sr(B(H)) = ∞, where H is a separable Hilbert space (e.g. L2(R+), l2(Z+)) [6].

Remark 1. We have also sr(H∞(C+) = 1 [18]. Let us notice that the stable range of the R-
subalgebra

A = {f ∈ H∞(C+) | f(s) = f(s)}

of H∞(C+) is still not known. We believe that sr(A) = 2 but we do not know any proof.

Let us introduce some definitions. See [3] for more details.

Definition 7. • A topological space X is noetherian if every decreasing chain

F1 ⊃ F2 ⊃ F3 ⊃ F4 ⊃ . . .

of distinct closed subsets Fi in X is stationary, i.e., there exists n ∈ Z+ such that, for all
m ≥ n, we have Fm = Fn.

• A non-empty topological set X is irreductible if X is not the union of two proper closed subsets
of X.

• The dimension of X is the supremum of the lengths of all chains F1 ⊃ F2 ⊃ . . . ⊃ Fd of
distinct non-empty irreductible closed subsets of X.

• An ideal P of A is called prime if x y ∈ P and x /∈ P, then y ∈ P and maximal if A is the only
ideal strictly containing P. We denote by spec (A) (resp. max (A)) the set of prime (resp.
maximal) ideals in A.

• spec (A) becomes a topological space when it is equipped with the Zariski topology, namely
the topology defined by the closed set of spec(A), parametrized by the ideals I of A, of the
form CI = {P ∈ spec (A) | I ⊆ P}. By restriction, max (A) ⊆ spec (A) can also be equipped
with the Zariski topology.

• The Krull dimension of a commutative ring A is the supremum of the lengths of chains
P0 ⊂ P1 ⊂ P2 . . . ⊂ Pd of distinct proper prime ideals in A.

If A is a noetherian ring [3, 21], then max(A) is a noetherian topological space (see [3]).

Theorem 5. • [1] Let A be a ring such that max(A) is a noetherian topological space of di-
mension d. Then, we have sr(A) ≤ d + 1.

• [11] If A is a ring (resp. an integral domain) of Krull dimension d, then sr(A) ≤ d+2 (resp.
sr(A) ≤ d + 1).

We have the following corollary of Theorem 5.

Corollary 5. If A is a Dedekind domain, namely an integral domain over which every ideal is
projective (see Definition 2), then sr(A) ≤ 2. This result holds if A is a principal ideal domain.

Let us recall that if P = D−1
1 N1 = D−1

2 N2 are two left-coprime factorizations of P and
Ri = (Di : −Ni) for i = 1, 2, then there exists an invertible matrix U ∈ GLq(A) such that
R2 = U R1 [27]. Therefore, we obtain R1 is k-stable iff R2 is also k-stable.

Definition 8. Let P ∈ Kq×r be a transfer matrix which admits a left-coprime (resp. right-coprime)
factorization P = D−1 N (resp. P = Ñ D̃−1). Then, the transfer matrix P is called left (resp.
right) k-stable if the matrix (D : −N) ∈ A(q+r)×r (resp. (D̃T : ÑT ) ∈ Ar×(q+r)) is k-stable.

Hence, we have the following proposition.

Proposition 2. [18] A plant defined by a transfer matrix P ∈ Kq×r is strongly stabilizable iff
P admits a doubly coprime factorization P = D−1 N = Ñ D̃−1 such that the following matrices
(D : −N) ∈ Aq×(q+r) and (D̃T : ÑT ) ∈ Ar×(q+r) are respectively r and q-stable.

Therefore, the existence of doubly coprime factorization for the transfer matrix is a necessary
condition for strong stabilizability. We have the following interesting result.
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Theorem 6. [18] Let P = D−1 N be a left-coprime factorization of P and R = (D : −N) ∈
Aq×(q+r). If R is k-stable and s = r − k ≥ 0, then there exist two stable matrices T1 ∈ Ak×q and
T2 ∈ Ak×s such that the matrix Rk = (D−Λ T1 : −(Ns + Λ T2)) ∈ Aq×(q+s) admits a right-inverse
with entries in A, with the notations:

R = (D : −N) = ( D : −Ns : −Λ) ∈ Aq×(q+r).
↔
q

↔
s

↔
k

Let us define by Sk = (UT : V T )T ∈ A(q+s)×q, U ∈ Aq×q, V ∈ As×q, a right-inverse of Rk such
that detU 6= 0. Then, the controller C ∈ Kr×q, defined by

C =
(

V U−1

T1 + T2 (V U−1)

)
,

l s = r − k
l k

internally stabilizes P . Moreover, if det(D − Λ T1) 6= 0, then the controller Cs = V U−1 ∈ Ks×q

internally stabilizes Ps = (D − Λ T1)−1 (Nr + Λ T2) ∈ Kq×s. Hence, the unstable part of C is only
contained in the transfer matrix Cs = V U−1 and its dimension is equal to s× q.

Similar results also hold for a transfer matrix P admitting a right-coprime factorization.

Up to our knowledge, there is no general algorithm checking whether or not a matrix R is
k-stable. However, we can prove that any matrix R ∈ Aq×(q+r) satisfying r ≥ sr(A) is r−sr(A)+1-
stable (see [18] for more details). Hence, Theorem 6 is always true for s = sr(A) − 1, i.e., the
unstable part of C can be reduced to a (sr(A)− 1)× q-matrix Csr(A)−1. Let us point out that this
bound only depends on the ring A. Then, we have the following corollary of Theorem 6.

Corollary 6. [18] If sr(A) = 1, then every transfer matrix which admits a left- or a right-coprime
factorization is strongly stabilizable. In particular, this result holds for A = W+ or A(D).

Moreover, every internally stabilizable plant, defined by a transfer matrix P with entries in the
quotient field of A = H∞(D) or H∞(C+), is strongly stabilizable.

Let us point out that Corollary 6 solves a question asked by A. Feintuch in [8] on the general-
ization of S. Treil’s result [25] for MIMO systems defined over A = H∞(D) or H∞(C+).

Corollary 7. If sr(A) = 1, then A is a Hermite ring (see Definition 4). In particular, this result
holds for the rings H∞(D), H∞(C+), A(D), W+ and L∞(i R). Therefore, if a transfer matrix P
with entries in K = Q(A) admits a left- or a right-coprime factorization, then P admits a doubly
coprime factorization.

Proof. Let P be a transfer matrix which admits a left-coprime factorization. Then, using the fact
sr(A) = 1, by Corollary 6, P is strongly stabilizable. But, by Proposition 2, a necessary condition
for strong stabilizability is the existence of a doubly coprime factorization for P . Hence, every
transfer matrix which admits a left-coprime factorization admits a doubly coprime factorization.
The result directly follows from 2 of Theorem 3.

Up to our knowledge, it is not known whether or not A = A(D) or W+ are projective-free
rings, and thus, whether or not every internally stabilizable plant over A admits doubly coprime
factorizations (it is even not known whether or not Â [4] is a Hermite ring).

Corollary 8. [18] If sr(A) = 1, then every pair of plants, defined by two transfer matrices P0 and P1

with entries in K = Q(A), with the same dimensions, and admitting doubly coprime factorizations
is simultaneously stabilized by a controller. In particular, this result holds for A = W+ or A(D).

Moreover, if A = H∞(D) or H∞(C+) and P0, P1 are two internally stabilizable plants with
entries in K, then there exists a stabilizing controller which simultaneously stabilizes P0 and P1.

To finish this section, let us introduce the concept of topological stable range.

Definition 9. [19] If A is a Banach algebra [27], then the topological stable range tsr(A) of A is the
least integer n such that Un(A) is dense in An for the product topology. If no such integer exists,
we set tsr(A) = ∞.

Theorem 7. tsr(H∞(D)) = 2 [23], tsr(A(D)) = 2 [19].

Proposition 3. [19] If A is a Banach algebra, then we have sr(A) ≤ tsr(A).

We have the following application of the topological stable range in stabilization problems.
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Proposition 4. [18] If A is a Banach algebra such that tsr(A) = 2, then every SISO plant, defined
by the transfer function p = n/d, 0 6= d, n ∈ A, satisfies:

∀ ε > 0, ∃ (dε : nε) ∈ U2(A) :

{
‖ n− nε ‖A≤ ε,

‖ d− dε ‖A≤ ε.

If dε 6= 0, then, in the product topology, p is as close as we want to a transfer function pε = nε/dε

which admits a coprime factorization. In particular, this result holds for A = H∞(D) or A(D).

Finally, different concepts of stable ranges have been recently introduced in the literature of Ba-
nach algebras as, for instance, the Bass and (dual) topological stable ranges for (projective) modules
[19]. Their applications for stabilization problems will be studied in forthcoming publications.

3 Simultaneous stabilization problem

The main purpose of this section is to point out that the simultaneous stabilization problem is not
equivalent to the strong stabilization problem if the plants do not admit doubly coprime factoriza-
tions. For simplicity reasons, we shall only consider here the case of SISO systems. The MIMO
case can be handled similarly using the lattice approach developed in [16, 17].

We have recently shown in [15] how the theory of fractional ideals [3] developed in commuta-
tive algebra was a natural mathematical framework for the study of the fractional representation
approach to analysis and synthesis problems. Let us introduce some definitions [3, 15].

Definition 10. • A fractional ideal J of A is an A-submodule of K = Q(A) such that there
exists 0 6= a ∈ A satisfying (a) J = {a j | j ∈ J} ⊆ A. The set of non-zero fractional ideals of
A is denoted by F(A).

• If I, J ∈ F(A), then their sums, products, intersections and residuals, namely

I + J = {a + b | a ∈ I, b ∈ J}, I J = {
∑n

i=1 ai bi | ai ∈ I, bi ∈ J, n ∈ Z+},

I ∩ J = {a ∈ I, a ∈ J}, I : J = {k ∈ K | (k) J = {k j | j ∈ J} ⊆ I},

belong to F(A).

• A fractional ideal J of A is called principal if there exists k ∈ K such that J = (k).

• A fractional ideal J of A is invertible if there exists I ∈ F(A) such that I J = A. In that case,
J has a unique inverse denoted by J−1 and J−1 = A : J . We have (J−1)−1 = J .

A principal fractional ideal J = (k), 0 6= k ∈ K, is invertible and its inverse is J−1 = (1/k).

Example 1. If p ∈ K = Q(A), then J = (1, p) = A + A p = {λ + µ p |λ, µ ∈ A} is a fractional
ideal of A because there exist 0 6= d, n ∈ A such that p = n/d, and thus, (d) J = (d, n) ⊆ A. Then,
the ideal A : J = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A} of A is usually called the ideal of the
denominators of p whereas (p) (A : J) is the ideal of the numerators of p.

Let us recall necessary and sufficient conditions for internal stabilizability or for the existence
of a coprime factorization recently obtained in terms of fractional ideals [15].

Theorem 8. [15] Let A be an integral domain of SISO stable systems and K = Q(A) its quotient
field. Then, we have:

1. p ∈ K admits a coprime factorization iff the fractional ideal J = (1, p) is principal of the form
J = (1/d), where 0 6= d ∈ A. Then, p = n/d, where n = d p ∈ A, is a coprime factorization.

2. p ∈ K is internally stabilizable iff the fractional ideal J = (1, p) is invertible, namely we have

J (A : J) = {a + b p | a, b ∈ A : a p, b p ∈ A} = A,

or, equivalently, iff there exist a, b ∈ A which satisfy:{
a− b p = 1,

a p ∈ A.
(5)

Then, if a 6= 0 (resp. a = 0), c = b/a ∈ K (resp. c = 1− b ∈ A) is a stabilizing controller of
p, J−1 = (a, b) and a = 1/(1− p c), b = c/(1− p c).
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3. c ∈ K internally stabilizes p ∈ K iff the following equality holds:

(1, p) (1, c) = (1− p c). (6)

In the following easy lemma, we firstly recall a well-known result (see e.g., [2]) and we secondly
give a necessary and sufficient condition for external stabilizability.

Lemma 1. 1. c ∈ K internally stabilizes 0 iff c ∈ A.

2. c ∈ K externally stabilizes p, namely (p c)/(1− p c) ∈ A, iff (1, p c) = (1− p c).

Proof. 1. Using 3 of Theorem 8, c ∈ K internally stabilizes 0 iff (1, 0) (1, c) = (1), i.e., iff (1, c) = A.
But, we trivially have (1, c) = A iff c ∈ A, which proves the result.

2. ⇒ Let us suppose that c externally stabilizes p, namely (p c)/(1− p c) ∈ A or, equivalently,
1/(1− p c) = 1 + (p c)/(1− p c) ∈ A. Therefore, we have: 1 =

(
1

1−p c

)
(1− p c),

p c =
(

p c
1−p c

)
(1− p c),

⇒ (1, p c) ⊆ (1− p c).

Moreover, we trivially have the inclusion (1− p c) ⊆ (1, p c), which proves the first implication.
⇐ Let us suppose that we have (1, p c) = (1−p c). Thus, we obtain

(
1

(1−p c) ,
p c

1−p c

)
= A, which

shows that (p c)/(1− p c) ∈ A, i.e., c externally stabilizes p.

Let us give necessary and sufficient conditions for strong and bistably stabilizabilities.

Proposition 5. The following assertions are equivalent:

1. p ∈ K = Q(A) is strongly (resp. bistably) stabilizable,

2. there exists c ∈ A (resp. c ∈ U(A)) such that (1, p) = (1− p c),

3. there exists c ∈ A (resp. c ∈ U(A)) such that p/(1− p c) ∈ A.

Proof. Let us suppose that we have 1. Then, there exists a stable (resp. bistable) stabilizing
controller c of p, i.e., c ∈ A (resp. c ∈ U(A)). Then, using (6), we obtain (1, p) = (1− p c) because
c ∈ A implies (1, c) = A, and thus, we obtain 2. Now, let us suppose that we have 2, i.e., there
exists c ∈ A such that (1, p) = (1− p c). Trivially, 2 is equivalent to (1/(1− p c), p/(1− p c)) = A
which, in particular, shows that p/(1− p c) ∈ A, i.e., we obtain 3. Finally, let us suppose that we
have 3. Therefore, there exists c ∈ A such that p/(1− p c) ∈ A. Hence, using the fact that c ∈ A,
we obtain (p c)/(1 − p c) ∈ A and 1/(1 − p c) = 1 + (p c)/(1 − p c) ∈ A, which shows that H(p, c),
defined by (1), is A-stable, and thus, c ∈ A internally stabilizable p, i.e., we obtain 1.

Firstly, using 1 of Theorem 8, we obtain again the fact that a necessary condition for strong
stabilizability is the existence of coprime factorization of the transfer function (see Proposition 2).
Secondly, if p = n/d is a fractional representation of p, with 0 6= d, n ∈ A, let us notice that 2 of
Proposition 5 is equivalent to the existence of c ∈ A (resp. c ∈ U(A)) such that:(

1,
n

d

)
=
(
1− n c

d

)
⇔
(

1
d

)
(d, n) =

(
1
d

)
(d− n c) ⇔ (d, n) = (d− n c). (7)

In particular, if p = n/d is a coprime factorization of p, with d x − n y = 1 for certain x, y ∈ A,
then we have 1 = d x− n y ∈ (d, n), i.e., (d, n) = A, and thus, (d− n c) = A. But, (d− n c) = A is
equivalent to d− n c ∈ U(A). Thus, we obtain the following corollary.

Corollary 9. [2, 27] Let p = n/d be a coprime factorization of p ∈ K. Then, p is strongly (resp.
bistably) stabilizable iff there exists c ∈ A (resp. c ∈ U(A)) such that d− n c ∈ U(A).

Corollary 10. If c ∈ U(A) externally stabilizes p ∈ K, then c bistably stabilizes p.

Proof. Using 2 of Lemma 1, we obtain that (1, p c) = (1 − p c). Now, the fact that c belongs to
U(A) implies that we have (1, p c) = (c) (1/c, p) = (1, p), and thus, we obtain (1, p) = (1 − p c),
showing that c bistably stabilizes p by 2 of Proposition 5.
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Example 2. Let p = (1 + e−2 s)/(1 − e−2 s) ∈ Q(H∞(C+)) be the transfer function of a wave
equation (see [4, 15] for more details). Then, if we take c = −1 ∈ U(A), then a = 1/(1 − p c) =
(1−e−2 s)/2 ∈ A, i.e., c externally stabilizes p. By Corollary 10, we obtain that c bistably stabilizes
p. Similarly for p = 1/(s− 1) ∈ R(s) and c = −1 ∈ RH∞.

Using the fractional ideal approach, we were able in [15] to parametrize all stabilizing controllers
for an internally stabilizable plant which does not necessarily admit a coprime factorization.

Theorem 9. [4, 15] Let p ∈ K = Q(A) be an internally stabilizable plant and c? a particular
stabilizing controller of p. Then, we have:

1. All stabilizing controllers of p have the form

c(q1, q2) =
b + q1 a2 + q2 b2

a + q1 a2 p + q2 b2 p
=

(1− p c?) c? + q1 + q2 c2
?

(1− p c?) + q1 p + q2 p c2
?

, (8)

where a = 1/(1 − p c?) and b = c?/(1 − p c?) satisfy (5), and q1, q2 are any element of A
satisfying a + q1 a2 p + q2 b2 p 6= 0.

2. The parametrization (8) has only one arbitrary parameter iff p2 admits a coprime factoriza-
tion. If p2 = s/r is a coprime factorization of p, then the parametrization (8) becomes

c(q) =
b + q r

a + q r p
=

c? + q r (1− p c?)
1 + q r (1− p c?) p

,

where q is any element of A such that a + q p r 6= 0.

3. If p admits a coprime factorization p = n/d, d x − n y = 1 for some x, y ∈ A, then we have
a = d x, b = d y and r = d2, and thus, (8) becomes

c(q) =
y + q d

x + q n
, (9)

where q is any element of A such that x + q n 6= 0.

We recover the Youla-Kučera parametrization (9) of all stabilizing controllers [5, 27] as a par-
ticular case of the general parametrization (8). Let us point out that the issue of recognizing when
there exist Youla-Kučera parametrizations or generalized parametrizations (8) with one or two ar-
bitrary parameters is deeply related to the computation of the so-called Picard group C(A) of A.
See [15] for more details and the end of Section 1. Let us state the following useful lemma.

Lemma 2. Let c1 ∈ K be stabilizing controller of p1 ∈ K, p2 ∈ K and

c(k) =
b1 + k

a1 + k p1
, k ∈ (a2

1, b2
1) : a1 + k p1 6= 0, (10)

be the parametrization of all stabilizing controllers (8) of p1, where:

a1 = 1/(1− p1 c1), b1 = c1/(1− p1 c1).

Then, we have:
(1− p2 c(k))
(1− p1 c(k))

=
(1− p2 c1)
(1− p1 c1)

− (p2 − p1) k (11)

Proof. Let us point out that (10) is a compact way to rewrite the parametrization (8) of all stabi-
lizing controllers of p1. The lemma directly follows from the following computations:

(1− p2 c(k))
(1− p1 c(k))

= (a1 + p1 k)− p2 (b1 + k) =
(1− p2 c1)
(1− p1 c1)

− (p2 − p1) k.

Let us give a necessary and sufficient condition for simultaneous stabilizability without requiring
that the transfer functions p1 and p2 ∈ K admit coprime factorizations.
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Theorem 10. Let c1 ∈ K be a stabilizing controller of p1. Then, p1 and p2 are simultaneously
stabilizable iff there exist α and β ∈ A such that k = α

(1−p1 c1)2
+ β c2

1
(1−p1 c1)2

satisfies:(
(1− p2 c1)
(1− p1 c1)

− (p2 − p1) k

)
=
(

1
1− p1 c1

,
c1

1− p1 c1
,

p2

1− p1 c1
,

p2 c1

1− p1 c1

)
. (12)

Then, the controller

c(k) =
c1 + k (1− p1 c1)

1 + k p1 (1− p1 c1)

simultaneously internally stabilizes p1 and p2.

Proof. p1 and p2 are simultaneously stabilizable if there exists a controller c ∈ K which internally
stabilizes p1 and p2. By 3 of Theorem 8, this is equivalent to:{

(1, p1) (1, c) = (1− p1 c),
(1, p2) (1, c) = (1− p2 c),

⇔

 (1, p1) (1, c) = (1− p1 c),

(1, p2) (1, p1)−1 =
(

1−p2 c
1−p1 c

)
.

(13)

Let (10) be the parametrization of all stabilizing controllers of p1 (which is nothing else than (8)
written in a more compact way) . By substituting c(k) in (13), then this first equation of (13) is
trivially fulfilled whereas, using the identity defined by (11), the second equation becomes

(1, p2)
(

1
1− p1 c1

,
1

1− p1 c1

)
=
(

(1− p2 c1)
(1− p1 c1)

− (p2 − p1) k

)
,

and thus, we obtain (12). Therefore, p1 and p2 are simultaneously stabilizable iff there exists
k ∈ (a2

1, b2
1) = (1/(1− p1 c1)2, c2

1/(1− p1 c1)2) which satisfies (12) or, in other words, iff there exist
α, β ∈ A such that k = α

(1−p1 c1)2
+ β c2

1
(1−p1 c1)2

satisfies (12). Then, the controller c(k) which both
internally stabilizes p1 and p2 is defined by:

c(k) =
b1 + k

a1 + k p1
=

c1 + k (1− p1 c1)
1 + k p1 (1− p1 c1)

.

It seems that the simultaneous stabilization problem has not been yet investigated when the
plants do not admit coprime factorizations. The next corollary allows us to find again different
well-known results when the existence of coprime factorizations for the plants is assumed [2].

Corollary 11. 1. Let p1 = n1/d1, p2 = n2/d2 ∈ K be two coprime factorizations with:

d1 x1 − n1 y1 = 1.

Then, p1 and p2 are simultaneously stabilizable iff the plant defined by the transfer function

p3 =
(d1 n2 − n1 d2)
(d2 x1 − n2 y1)

is strongly stabilizable.

2. Let p1 ∈ A and p2 ∈ K. Then, p1 and p2 are simultaneously stabilizable iff the plant defined
by the transfer function p2 − p1 is strongly stabilizable.

Proof. 1. The fact that p1 = n1/d1 is a coprime factorization with d1 x1 − n1 y1 = 0 implies that
c1 = y1/x1 is a stabilizing controller of p1 and 1/(1 − p1 c1) = d1 x1, c1/(1 − p1 c1) = d1 y1. By
1 of Theorem 8, we have (1, p1) = (1/d1) and (1, p2) = (1/d2), and thus, (1, p1)−1 = (d1) and
(a2

1, b2
1) = (1, p1)−2 = (d2

1) (see [15] for more details). Moreover, we easily check that:(
1− p2 c1

1− p1 c1

)
= (d2 x1 − n2 y1)

(
d1

d2

)
.

Now, by Theorem 10, p1 and p2 are simultaneously stabilizable iff there exists l ∈ A such that:(
d1

d2

)
((d2 x1 − n2 y1)− l (d1 n2 − n1 d2)) =

(
d1

d2

)
⇔ ((d2 x1 − n2 y1)− l (d1 n2 − n1 d2)) = A.
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The last equality is equivalent to (d2 x1 − n2 y1) − l (d1 n2 − n1 d2) ∈ U(A). Therefore, by Corol-
lary 9, p1 and p2 are simultaneously stabilizable iff p3 = (n2 d1 − n1 d2)/(d1 n2 − n2 y1) is strongly
stabilizable.

2. By 1 of Lemma 1, the fact that p1 belongs to A implies that c1 = 0 is a stabilizing controller
of p1. Therefore, by Theorem 10, we obtain that p1 ∈ A and p2 ∈ K are simultaneously stabilizable
iff there exists k = α ∈ A such that (1− (p2 − p1) k) = (1, p2), and thus, by 2 of Proposition 5, iff
p2 − p1 is strongly stabilizable. We can also use 1 with n1 = p1, d1 = 1, x1 = 1 and y1 = 0.

Finally, let us show how to find again some known results about simultaneous stabilization when
the assumption of the existence of coprime factorizations is made. See [2] for different proves.

Proposition 6. 1. Let p1 = n1/d1, . . . , pk = nk/dk ∈ K be k plants which admit coprime
factorizations and d1 x1 − n1 y1 = 1. Then, p1, . . . , pk are simultaneously stabilizable iff the
plants pk+1, . . . , p2 k−1, defined by

pk+i−1 =
di n1 − ni d1

di x1 − ni y1
, i = 2, . . . , k,

are simultaneously stabilized by a stable controller.

2. Let p1 ∈ A and p2, . . . , pk ∈ K. Then, c simultaneously stabilizes p1, . . . , pk iff c/(1−p1 c) ∈ A
simultaneously stabilizes the plants p2 − p1, . . . , pk − p1.

Proof. 1. By 3 of Theorem 8, c internally stabilizes pi, i = 1, . . . , k, iff we have the equalities:

(1, pi) (1, c) = (1− pi c), i = 1, . . . , k. (14)

Using 3 of Theorem 9, we obtain that c(q) = (y1+q d1)/(x1+q n1) is the Youla-Kučera parametriza-
tion of all stabilizing controllers of p1. Hence, taking c(q) for c, (14) becomes:

(1, pi) (1, c(q)) = (1− pi c(q)), i = 2, . . . , k. (15)

By 1 of Theorem 8, (1, pi) = (1/di) and (1, c(q)) = (1/(x1 + q n1)) because pi = ni/di (resp.
c(q) = (y1 + q d1)/(x1 + q n1)) is a coprime factorization of pi (resp. c(q)). Then, we have

(15) ⇔
(

1
di

) (
1

x1 + q n1

)
=
(

di (x1 + q n1)− ni (y1 + q d1)
di (x1 + q n1)

)
, i = 2, . . . , k,

⇔ (di (x1 + q n1)− ni (y1 + q d1)) = A,

⇔ ∃ ui ∈ U(A) : (di x1 − ni y1) + q (di n1 − ni d1) = ui, i = 2, . . . , k,

and thus, by Corollary 9, we obtain that c internally stabilizes pi, i = 1, . . . , k iff −q ∈ A internally
stabilizes the k − 1 plants defined by pk+i−1 = (di n1 − ni d1)/(di x1 − ni y1), for i = 2, . . . , k.

2. First of all, let us notice that p1 ∈ A implies the following equalities:
(1, p1) = A,

(1, pi) = (1, pi − p1), 2 ≤ i ≤ k,

(1, c) = (1− p1 c, c).

Moreover, using 3 of Theorem 8, we obtain that c simultaneously stabilizes p1 ∈ A and pi ∈ K,
i = 2, . . . , k, iff we have (14). But, (14) is equivalent to{

(1, c) = (1− p1 c),
(1, pi) (1, c) = (1− pi c), 2 ≤ i ≤ k,

⇔

{
(1, c) = (1− p1 c),
(1, pi − p1) (1− p1 c, c) = (1− pi c), 2 ≤ i ≤ k,

⇔

{
(1, c) = (1− p1 c),

(1, pi − p1) (1− p1 c)
(
1, c

1−p1 c

)
= (1− pi c), 2 ≤ i ≤ k,

⇔

{
(1, c) = (1− p1 c),

(1, pi − p1)
(
1, c

1−p1 c

)
=
(

1−pi c
1−p1 c

)
, 2 ≤ i ≤ k,

⇔

{
(1, c) = (1− p1 c),

(1, pi − p1)
(
1, c

1−p1 c

)
=
(
1− (pi−p1) c

(1−p1 c)

)
, 2 ≤ i ≤ k.
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By interchanging p and c in Proposition 5, i.e., (1, c) = (1 − p1 c) ⇔ c/(1 − p1 c) ∈ A, the first
equation of the last system is equivalent to c/(1− p1 c) ∈ A. Therefore, using 3 of Theorem 8, the
last system means that c/(1−p1 c) ∈ A simultaneously stabilizes the plants p2−p1, . . . , pk−p1.

Let us notice that, using 1 of Lemma 1, 2 of Proposition 6 can be reformulated as c simultane-
ously stabilizing p1, . . . , pk iff c/(1−p1 c) simultaneously stabilizes p1−p1 = 0, p2−p1, . . . , pk−p1.

4 Robust stabilization problem

Let us start by recalling the small gain theorem [4, 27] for SISO plants.

Lemma 3. Let p, c ∈ A. Then, c internally stabilizes p iff 1/(1 − p c) ∈ A or, equivalently, iff c
externally stabilizes p. In particular, if A is a Banach algebra and ‖ c ‖A < 1/ ‖ p ‖A, then c ∈ A
internally stabilizes p.

Proof. The fact that p, c ∈ A implies that (1, p) = (1, c) = A. Hence, using 3 of Theorem 8, we
obtain that c internally stabilizes p iff we have (1, p) (1, c) = (1−p c), and thus, iff (1−p c) = A, i.e.,
1−p c ∈ U(A), which proves the first part of the result. Now, if A is a Banach algebra, then we have
‖ 1−a ‖A < 1 ⇒ a ∈ U(A). Hence, if we have ‖ c ‖A < 1/ ‖ p ‖A, then ‖ p c ‖A≤‖ p ‖A ‖ c ‖A < 1,
and thus, 1− p c ∈ U(A), showing that c internally stabilizes p by the first part of the result.

Now, let us try to investigate how a stabilizing controller c of a plant p is transformed when we
apply some particular linear fractional transformations on p (see Proposition 3 [15]).

Lemma 4. 1. 0 6= c ∈ K internally stabilizes 0 6= p ∈ K iff 1/c internally stabilizes 1/p.

2. Let δ ∈ A. Then, c internally stabilizes p ∈ K iff c/(1 + δ c) internally stabilizes p + δ.

3. Let δ ∈ A. Then, c internally stabilizes p ∈ K iff c + δ internally stabilizes p/(1 + δ p).

Proof. 1. Let us suppose that c 6= 0 internally stabilizes p 6= 0. Thus, by 3 of Theorem 8, we obtain
(6). But, we have

(6) ⇔ (p) (1, 1/p) (c) (1, 1/c) = (1− p c),

⇔ (1, 1/p) (1, 1/c) = ((1− p c)/(p c)) = (1− 1/(p c)),

which shows that 1/c internally stabilizes 1/p by 3 of Theorem 8.
2. Let us suppose that c internally stabilizes p and δ ∈ A. Thus, by 3 of Theorem 8, we obtain

(6). Moreover, using the fact that δ ∈ A, we obtain (1, p) = (1, p + δ) and (1, c) = (1 + δ c, c).
But, we have

(6) ⇔ (1, p + δ) (1 + δ c, c) = (1− p c),

⇔ (1, p + δ) (1 + δ c)
(
1, c

1+δ c

)
= (1− p c),

⇔ (1, p + δ)
(
1, c

1+δ c

)
=
(

1−p c
1+δ c

)
=
(
1− (p + δ) c

(1+δ c)

)
,

which shows that c/(1 + δ c) internally stabilizes p + δ by 3 of Theorem 8.
3. The result directly follows from interchanging p and c in point 2.

In the next proposition, we give new proofs of well-known results on robust stabilization [27].

Proposition 7. 1. Let δ ∈ A and c ∈ K be a stabilizing controller of p ∈ K. Then,

(a) c internally stabilizes p + δ iff 1− (δ c/(1− p c)) ∈ U(A),
(b) c internally stabilizes p/(1 + δ p) iff 1 + (δ p/(1− p c)) ∈ U(A).

2. Let A be a Banach algebra and c a stabilizing controller of p ∈ K. Then,

(a) for all perturbation δ ∈ A satisfying

‖ δ ‖A <
1

‖ c/(1− p c) ‖A
, (16)

c internally stabilizes p + δ,
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(b) for all perturbation δ ∈ A satisfying

‖ δ ‖A <
1

‖ p/(1− p c) ‖A
, (17)

c internally stabilizes p/(1 + δ p).

Proof. 1.a. Let c be a stabilizing controller of p. Thus, we have (6). Moreover, the fact that δ ∈ A
implies that (1, p) = (1, p + δ). Hence, by 3 of Theorem 8, c internally stabilizes p + δ iff we have:

(1, p + δ) (1, c) = (1− (p + δ) c) ⇔ (1, p) (1, c) = (1− (p + δ) c),

⇔ (1− p c) = (1− (p + δ) c),

⇔
(

1−(p+δ) c
1−p c

)
= A,

⇔ 1−(p+δ) c
1−p c = 1− δ c

1−p c ∈ U(A).

1.b. Let c be a stabilizing controller of p. Thus, we have (6). Moreover, the fact that δ ∈ A
implies that (1, p) = (1 + δ p, p). Hence, by 3 of Theorem 8, c internally stabilizes p/(1 + δ p) iff
we have: (

1, p
1+δ p

)
(1, c) =

(
1− p c

1+δ p

)
⇔ (1 + δ p, p) (1, c) = (1− p c + δ p),

⇔ (1, p) (1, c) = (1− p c + δ p),

⇔ (1− p c) = (1− p c + δ p),

⇔
(

1−p c+δ p
1−p c

)
= A,

⇔ 1−p c+δ p
1−p c = 1 + δ p

1−p c ∈ U(A).

2.a. Let us suppose that δ ∈ A satisfies (16). Then, we have

‖ (δ c)/(1− p c) ‖A≤‖ δ ‖A ‖ c/(1− p c) ‖A < 1,

and thus, 1− (δ c)/(1− p c) ∈ U(A), i.e., c internally stabilizes p + δ by Lemma 3.
2.b Let us suppose that δ ∈ A satisfies (17). Then, we have

‖ (δ p)/(1− p c) ‖A≤‖ δ ‖A ‖ p/(1− p c) ‖A < 1,

and thus, 1 + (δ p)/(1− p c) ∈ U(A), i.e., c internally stabilizes p/(1 + δ p) by Lemma 3.

The extension to unstable perturbation δ (δ ∈ K) will be studied in forthcoming publications.
To finish, let us extend some standard results on robust stabilization for internally stabilizable

plants which do not necessarily admit coprime factorizations. In particular, the following results
show that the main interests of the Youla-Kučera parametrization for robust stabilization problems
[27] are still valid if we use the new parametrization (8) instead of the Youla-Kučera one.

Proposition 8. Let p ∈ K = Q(A) be a stabilizable plant and w ∈ A a weighted transfer function.

1. Let c? be a stabilizing controller of p. Then, all the stable transfer matrices H(p, c(q1, q2)) of
the closed-loop system (1) have the form

H(p, c(q1, q2)) =

 1
(1−p c?) + q1

p
(1−p c?)2 + q2

p c?
2

(1−p c?)2
c?

(1−p c?) + q1
1

(1−p c?)2 + q2
c?

2

(1−p c?)2

p
(1−p c?) + q1

p2

(1−p c?)2 + q2
(p c?)2

(1−p c?)2
1

(1−p c?) + q1
p

(1−p c?)2 + q2
p c?

2

(1−p c?)2

 ,

(18)
for all q1, q2 ∈ A. Hence, all the stable transfer matrices H(p, c(q1, q2)) of the closed-loop
system (1) are affine, and thus, convex in the free parameters q1 and q2 ∈ A, namely for all
λ, q1, q′1, q2, q′2 ∈ A, we have:

H(p, c(λ q1 + (1−λ) q′1, λ q2 + (1−λ) q′2)) = λ H(p, c(q1, q2)) + (1−λ)H(p, c(q′1, q′2)). (19)
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2. Let A be a Banach algebra with the norm ‖ · ‖A. Then, we have the following equality

inf
c∈Stab(p)

‖ w/(1− p c) ‖A (20)

= inf
q1, q2∈A

wwwww

(
1

(1− p c?)
+ p

(
q1

(1− p c?)2
+

q2 c2
?

(1− p c?)2

))wwww
A

, (21)

where Stab(p) denotes the set of all stabilizing controllers of p and c? ∈ Stab(p).
3. If p = n/d is a coprime factorization of p, d x− n y = 1 for some x, y ∈ A, then we have:

inf
c∈Stab(p)

‖ w/(1− p c) ‖A= inf
q∈A

‖ w d (x + n q) ‖A .

Proof. 1. If c(q1, q2) is the parametrization of all stabilizing controllers of p defined (8), then
H(p, c(q1, q2)) becomes

H(c(q1, q2)) =

(
a + q1 a2 p + q2 b2 p b + q1 a2 + q2 b2

a p + q1 a2 p2 + q2 b2 p2 b p + q1 a2 p + q2 b2 p

)
∈ A2×2,

where a = 1/(1− p c?) and b = c?/(1− p c?) and c? is a particular stabilizing controller of p. Now,
by substituting a = 1/(1 − p c?) and b = c?/(1 − p c?) in the previous matrix, we obtain (18).
Finally, using the fact that (18) is affine in the arbitrary parameters q1 and q2, we easily check (19).

2. Using the parametrization (8) of all stabilizing controllers of p, we obtain that all the stable
sensitivity transfer function are defined by

1
(1− p c(q1, q2))

=
1

(1− p c?)
+ p

(
q1

(1− p c?)2
+

q2 c2
?

(1− p c?)2

)
,

where c? is a particular stabilizing controller of p. From this result, we easily prove that the
non-linear optimization problem (20) becomes the affine, and thus, convex optimization problem
(21).

Up to our knowledge, the results stated in Proposition 8 are new. We refer the reader to [17] for
an extension of Proposition 8 to MIMO systems. To finish, let us point out that using the general
parametrization (8) of all stabilizing controllers, any convex optimization problem on the stable
closed-loop system H(p, c) can be rewritten as a convex optimization problem in q1, q2 ∈ A.

5 Conclusion

In this paper, we introduced different mathematical concepts coming from module theory, K-theory
and theory fractional ideals in order to investigate the internal/strong/simultaneous/robust stabi-
lization problems. Some new results have been obtained within this new mathematical framework.

In particular, using module theory, we first emphasized the fact that an internally stabilizable
did not generally imply the existence of doubly coprime factorizations for the transfer matrix.
Indeed, the first property is characterized in terms of projective modules whereas the second one
is characterized in terms of free modules. In commutative algebra, it is well-known that projective
modules (resp. invertible fractional ideals) are not generally free (resp. principal) and the study of
projective but not free modules has played a fundamental role in the development of the modern
commutative algebra. It can be tracked back to the work of R. Dedekind on algebraic numbers
theory (in part related to the Last Fermat’s Theorem) and algebraic geometry (algebraization of
B. Riemann’s ideas on complex manifolds). Nowadays, the problem of recognizing whether or not
a stably free (resp. projective) module is free constitutes one of the main parts of the so-called
(algebraic, topological) K-theory. Using the K-theoretic tools (e.g., stable range, topological stable
range), we obtained new results on the strong stabilization problem. Finally, we revisited some
well-known results of stabilization problems without assuming the existence of (doubly) coprime
factorizations. We also refer to [14, 15, 16, 17] for more results in this direction.

Finally, the first main philosophy of R. Dedekind’s work on the theory of ideals is that an ideal
contained more information than just the elements that generated it. The second one is that the
standard algebraic operations can be extended from numbers to ideals. We hope to have convinced
the reader that this natural “algebraic calculus on fractional ideals” can also be useful for the
study of stabilization problems and, in particular, for the internal, strong, simultaneous and robust
stabilization problems.
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