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Abstract: The purpose of this paper is to give new necessary and sufficient
conditions for internal stabilizability and existence of left/right/doubly coprime
factorizations for linear MIMO systems. In particular, we generalize the Youla-
Kučera parametrization of all stabilizing controllers for every internally stabilizable
MIMO plant which does not necessarily admit doubly coprime factorizations.
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1. INTRODUCTION

For finite-dimensional linear systems (i.e. ordinary
differential equations), it is well known that a
transfer matrix is internally stabilizable if and
only if it admits a doubly coprime factoriza-
tion (Vidyasagar, 1985). However, this result is
generally not true for infinite-dimensional lin-
ear systems (e.g. differential time-delay systems,
partial differential equations) (Quadrat, 2003;
Vidyasagar, 1985) or for multidimensional linear
systems (Mori, 2002; Sule, 1994).

The Youla-Kučera parametrization of all sta-
bilizing controllers was developed for transfer
matrices which admit doubly coprime factor-
izations (Vidyasagar, 1985). The fact that this
parametrization is affine in a matrix of free param-
eters highly simplifies the research of all optimal
stabilizing controllers. Indeed, this parametriza-
tion allows us to transform this non-linear optimal
problem with constraints into a free affine, and
thus, convex optimal problem.

The purpose of this paper is to give new general
necessary and sufficient conditions for the exis-
tence of left/right/doubly coprime factorizations

and internal stabilizability. In order to do that,
we shall introduce the concept of lattices on vec-
tor spaces (Bourbaki, 1989) into the fractional
representation approach to analysis and synthesis
problems (Vidyasagar, 1985). Using these results,
we shall exhibit the general parametrization of all
the stabilizing controllers for a stabilizable plant
which does not necessarily admit doubly coprime
factorizations. In particular, if the transfer ma-
trix admits a doubly coprime factorization, then
the previous parametrization becomes the Youla-
Kučera one. These results generalize for MIMO
systems the results obtained in (Quadrat, 2003).

2. FRACTIONAL REPRESENTATION
APPROACH

Let us recall the fractional representation ap-
proach to synthesis problems (Vidyasagar, 1985).
Let us consider a commutative integral domain A
of (proper) stable SISO plants.

Example 1. For instance, we have the following
examples of integral domains of stable systems



RH∞ = {n/d |n, d ∈ R[s], deg n ≤ deg d
d(s?) = 0⇒ Re s? < 0},

H∞(C+) = {f ∈ H(C+) |
‖ f ‖∞= sup

s∈C+

|f(s)| < +∞},

A = {f(t) +
∞∑

i=0

ai δ(t− ti) | f ∈ L1(R+),

(ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 ≤ . . .},
where C+ = {s ∈ C |Re s > 0}, H(C+) is the ring
of holomorphic functions in C+ (Quadrat, 2003;
Vidyasagar, 1985).

A transfer function p belongs to RH∞ (resp.
H∞(C+), Â = {L(f) | f ∈ A}, where L(f) de-
notes the Laplace transform) iff p is the transfer
function of an exponentially stable (resp. L2(R+)-
stable, L∞(R+)-stable) linear time-invariant finite-
dimensional (resp. infinite-dimensional) system.

Let us define the quotient field of A, namely:

K = Q(A) = {n/d | 0 6= d, n ∈ A}.
K = Q(A) corresponds to the class of A-stable
and A-unstable SISO plants. For instance, we
have p = e−s/(s − 1) /∈ H∞(C+) because p has
an unstable pole in C+. But, p ∈ Q(H∞(C+))
because we have p = n/d, where:

n = e−s/(s+ 1), d = (s− 1)/(s+ 1) ∈ H∞(C+).

More generally, we can consider the class of MIMO
plants defined by transfer matrices with entries in
K = Q(A). If we have P ∈ Kq×(p−q), then we can
always write P as P = D−1N = Ñ D̃−1, where:{

R = (D : −N) ∈ Aq×p,

R̃ = (ÑT : D̃T )T ∈ Ap×(p−q).

Definition 1. (Vidyasagar, 1985) Let A be an in-
tegral domain of stable SISO plants and K =
Q(A) its quotient field.

• A transfer matrix P ∈ Kq×(p−q) is inter-
nally stabilizable if there exists a stabilizing
controller C ∈ K(p−q)×q of P , namely a
controller C ∈ K(p−q)×q such that all the
entries of the following matrix belong to A:

H(P, C) =
(
Iq −P
−C Ip−q

)−1

=
(

(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ip−q + C (Iq − P C)−1 P

)

=
(

Iq + P (Ip−q − C P )−1 C P (Ip−q − C P )−1

(Ip−q − C P )−1 C (Ip−q − C P )−1

)
(1)

(2)

• A transfer matrix P ∈ Kq×(p−q) admits a
left-coprime factorization if there exist

{
R = (D : −N) ∈ Aq×p,

S = (XT : Y T )T ∈ Ap×q,

such that detD 6= 0, P = D−1N and:

RS = DX −N Y = Iq.

• A transfer matrix P ∈ Kq×(p−q) admits a
right-coprime factorization if there exist{

R̃ = (ÑT : D̃T )T ∈ Ap×(p−q),

S̃ = (−Ỹ : X̃) ∈ A(p−q)×p,

such that det D̃ 6= 0, P = Ñ D̃−1 and:

S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ip−q.

• A transfer matrix P ∈ Kq×(p−q) admits a
doubly coprime factorization iff P admits a
left and right-coprime factorization.

3. COPRIME FACTORIZATIONS

Definition 2. (Bourbaki, 1989) Let V be a finite-
dimensional K = Q(A)-vector space. An A-
submodule M of V is called a lattice on V if there
exist free A-submodules L1 and L2 of V such that:{

L1 ⊆M ⊆ L2,

rkA(L1) = dimK(V ).

Proposition 1. (Bourbaki, 1989) An A-submodule
M of V is a lattice on V iff the K-vector space

KM , {km | k ∈ K, m ∈M} = V

and M is contained in a finitely generated A-
submodule of V .

Example 2. If P ∈ Kq×(p−q), then the A-module
(Iq : −P )Ap is a lattice on the K-vector space

Kq. Similarly, the A-module A1×p

(
P
Ip−q

)
is a

lattice on the K-vector space K1×(p−q).

Definition 3. (Bourbaki, 1989) Let V and W be
two finite-dimensional K-vector spaces and M
(resp. N) a lattice on V (resp. W ). Then, we de-
note by N : M the A-submodule of homK(V,W )
formed by the K-linear maps f : V → W which
satisfy f(M) ⊆ N .

Proposition 2. (Bourbaki, 1989) Let V and W
be two finite-dimensional K-vector spaces and M
(resp. N) a lattice on V (resp. W ). Then, we have:

(1) N : M is a lattice on

homK(V,W ) = { f : V →W |
f is a K − linear map},

(2) the canonical map N : M → homA(M,N),
which maps f ∈ N : M into f|M , is bijective.



Example 3. If P ∈ Kq×(p−q), then we have:

A : (Iq : −P )Ap

= {f ∈ homK(Kq,K) | f((Iq : −P )Ap) ⊆ A}
= {λ ∈ K1×q |λ (Iq : −P )Ap ⊆ A}
= {λ ∈ K1×q |λ ∈ A1×q, λ P ∈ A1×(p−q)}
= {λ ∈ A1×q |λP ∈ A1×(p−q)}.

Theorem 1. (1) P ∈ Kq×(p−q) admits a left-
coprime factorization iff there exists a square
matrix D ∈ Aq×q such that detD 6= 0 and

(Iq : −P )Ap = D−1Aq, (3)

i.e. (Iq : −P )Ap is a free A-module of rank q.
Then, P = D−1N (N = DP ∈ Aq×(p−q))

is a left-coprime factorization of P .
(2) P ∈ Kq×(p−q) admits a right-coprime fac-

torization iff there exists a square matrix
D̃ ∈ A(p−q)×(p−q) such that det D̃ 6= 0 and

A1×p

(
P
Ip−q

)
= A1×(p−q) D̃−1, (4)

is a free A-module of rank p− q.
Then, P = Ñ D̃−1 (Ñ = P D̃ ∈ Aq×(p−q))

is a right-coprime factorization of P .

Proof. 1. ⇒ If P admits a left-coprime factoriza-
tion P = D−1N , with DX − N Y = Iq, then
we have (Iq : −D)Ap = (D−1 (D : −N))Ap =
D−1 (D : −N)Ap and (D : −N)Ap = Aq,
because (D : −N)Ap ⊆ Aq and ∀µ ∈ Aq, we
have µ = (D : −N)λ ∈ (D : −N)Ap, where:

λ =
(
X
Y

)
µ ∈ Ap.

Therefore, we have (Iq : −D)Ap = D−1Aq, and
thus, (Iq : −D)Ap ∼= Aq is a free A-module of
rank q because we have D−1Aq ∼= Aq.

1.⇐ Let us denote by {ei}1≤i≤p (resp. {fj}1≤j≤q)
the canonical basis of Ap (resp. Aq), namely ei

(resp. fi) is the vector defined by 1 in the ith
position and 0 elsewhere. Let us also denote

P = (P1 : . . . : Pp−q), Pi ∈ Kq,

and D−1 = (D−1
1 : . . . : D−1

q ), where D−1
i ∈ Aq.

Now, if there exists D ∈ Aq×q such that detD 6= 0
and (Iq : −P )Ap = D−1Aq, then:

fi = (Iq : −P ) ei ∈ (Iq : −P )Ap = D−1Aq

⇒ ∃λi ∈ Aq : fi = D−1 λi, 1 ≤ i ≤ q,

−Pj = (Iq : −P ) eq+j ∈ (Iq : −P )Ap = D−1Aq

⇒ ∃µi ∈ Aq : Pj = D−1 µi, 1 ≤ j ≤ p− q,

D−1
k = D−1 fk ∈ D−1Aq = (Iq : −P )Ap

⇒ ∃ νk ∈ Ap : D−1
k = (Iq : −P ) νk, 1 ≤ k ≤ q,

⇒



∃ D′ = (λ1 : . . . : λq) ∈ Aq×q : Iq = D−1D′

⇒ D′ = D−1,

∃ N = (µ1 : . . . : µp−q) ∈ Aq×(p−q) :
P = D−1N,

∃ S = (ν1 : . . . : νq) = (XT : Y T )T ∈ Ap×q :
(Iq : −P )S = D−1 ⇒ DX −N Y = Iq,

which shows that P admits a left-coprime factor-
ization P = D−1N , DX −N Y = Iq.

2 can be proved similarly.

4. INTERNAL STABILIZABILITY

Theorem 2. A plant, defined by a transfer matrix
P ∈ Kq×(p−q), is internally stabilizable iff one of
the following equivalent assertions is satisfied:

(1) There exists S = (UT : V T )T ∈ Ap×q which
satisfies det U 6= 0 and:

(a) S P =
(
U P
V P

)
∈ Ap×(p−q),

(b) (Iq : −P )S = U − P V = Iq.
Then, the controller C = V U−1 internally
stabilizes the plant P .

(2) There exists T = (−X : Y ) ∈ A(p−q)×p

which satisfies det Y 6= 0 and:
(a) P T = (−P X : P Y ) ∈ Aq×p,

(b) T
(

P
Ip−q

)
= −X P + Y = Ip−q.

Then, the controller C = Y −1X internally
stabilizes the plant P .

(3) There exist S = (UT : V T )T ∈ Kp×q and
T = (−X : Y ) ∈ K(p−q)×p which satisfy
det U 6= 0, det Y 6= 0 and:(

Iq −P
−X Y

) (
U P
V Ip−q

)
=

(
U P
V Ip−q

) (
Iq −P
−X Y

)
= Ip, (5)(

U
V

)
(Iq : −P ) ∈ Ap×p, (6)(

P
Ip−q

)
(−X : Y ) ∈ Ap×p. (7)

Then, the controller C = V U−1 = Y −1X
internally stabilizes the plant P .

Proof. 1 ⇒ Let us suppose that P ∈ Kq×(p−q) is
internally stabilizable, i.e. there exists a controller
C ∈ K(p−q)×q such that we have:
A1 = (Iq − P C)−1 ∈ Aq×q,

A2 = (Iq − P C)−1 P ∈ Aq×(p−q),

A3 = C (Iq − P C)−1 ∈ A(p−q)×q,

A4 = Ip−q + C (Iq − P C)−1 P ∈ A(p−q)×(p−q).
(8)



From (8), we obtain C = A3A
−1
1 . If we define

S = (AT
1 : AT

3 )T ∈ Ap×q, then we have:

S (Iq : −P ) =
(
A1 −A1 P
A3 −A3 P

)
=

(
A1 −A2

A3 Ip−q −A4

)
∈ Ap×p,

(Iq : −P )S = A1 − P A3

= (Iq − P C)−1 − P C (Iq − P C)−1

= Iq.

1⇐ Let us suppose that there exists a matrix S =
(UT : V T )T ∈ Ap×q satisfying detU 6= 0, and 1.a
and 1.b. If we define C = V U−1 ∈ K(p−q)×q,
then, using point 1.b, we obtain:

Iq − P C = (U − P V )U−1 = U−1

⇒ (Iq − P C)−1 = U ∈ Aq×q.

Hence, using point 1.a and (1), we obtain

H(P, C)

=
(

(Iq − P C)−1 (Iq − P C)−1 P
C (Iq − P C)−1 Ip−q + C (Iq − P C)−1 P

)
=

(
U U P
V Ip−q + V P

)
∈ Ap×p,

i.e. C = V U−1 internally stabilizes the plant P .

2 can be proved similarly.

3 ⇒ Let us suppose that P ∈ Kq×(p−q) is in-
ternally stabilized by C ∈ K(p−q)×q. Following
the proofs of 1 ⇒ and 2 ⇒, we obtain that
S = (AT

1 : AT
3 )T (resp. T = (−B3 : B4), where

B3 = (Ip−q−C P )−1 C and B4 = (Ip−q−C P )−1)
satisfies (6) (resp. (7)) and(

Iq −P
−B3 B4

) (
A1 P
A3 Ip−q

)
=

(
Iq 0

−B3A1 +B4A3 Ip−q

)
= Ip,

(9)

because we have:

B3A1 = ((Ip−q − C P )−1 C) (Iq − P C)−1

= (Ip−q − C P )−1 (C (Iq − P C)−1)
= B4A3.

Moreover, from (9), we obtain(
Iq −P
−B3 B4

)−1

=
(
A1 P
A3 Ip−q

)
⇒

(
A1 P
A3 Ip−q

) (
Iq −P
−B3 B4

)
= Ip,

which proves (5).

3 ⇐ Let us suppose that there exist{
S = (UT : V T )T ∈ Kp×q,

T = (−X : Y ) ∈ K(p−q)×p,

which satisfy (5), (6) and (7). Hence, S (resp.
T ) satisfies 1.a and 1.b (resp. 2.a and 2.b), and
thus, by point 1 (resp. point 2), C1 = V U−1

(resp. C2 = Y −1X) is a stabilizing controller
of P . From (5), we have X U = Y V , and thus,
C1 = V U−1 = Y −1X = C2 is a stabilizing
controller of P .

Definition 4. (1) 0 −→M ′ f−→M
g−→M ′′ −→ 0

is a short exact sequence of A-modules if
the A-linear maps f and g satisfy that f is
injective, g is surjective and ker g = im f .

(2) (Bourbaki, 1989) A short exact sequence is
a split exact sequence if one of the following
equivalent assertions is satisfied:
• there exists h : M ′′ →M , A-linear map,

which satisfies g ◦ h = idM ′′ ,
• there exists k : M → M ′, A-linear map,

which satisfies k ◦ f = idM ′ ,
• there exist two A-linear maps φ =

(
g
k

)
: M →M ′′ ⊕M ′,

ψ = (h : f) : M ′′ ⊕M ′ →M

which satisfy:
φ ◦ ψ =

(
g
k

)
(h : f) = idM ′′ ⊕ idM ′ ,

ψ ◦ φ = (h : f)
(
g
k

)
= idM .

In this case, we say that M is isomorphic
to M ′′⊕M ′, denoted by M ∼= M ′′⊕M ′.

We shall denote a split exact sequence by:

0←− M ′′ g←− M
f←− M ′ ←− 0.

h−→ k−→
(10)

(3) (Bourbaki, 1989) An A-module M is projec-
tive if there exist an A-module P and r ∈ Z+

such that we have M ⊕ P ∼= Ar, i.e. M is a
summand of a finite free A-module (namely,
a finite product of A).

Corollary 1. A plant P ∈ Kq×(p−q) is internally
stabilizable iff one of the following equivalent
assertions is satisfied:

(1) The A-module (Iq : −P )Ap is projective.

(2) The A-module A1×p

(
P
Ip−q

)
is projective.

Proof. 1. Let us define the following A-linear map:

g : Ap −→ (Iq : −P )Ap,
λ −→ (Iq : −P )λ.

The A-linear map g is surjective and:

ker g = {λ = (λT
1 : λT

2 )T ∈ Ap |λ1 = P λ2}

= {((P λ2)T : λT
2 )T ∈ Ap |λ2 ∈ Ap−q : Pλ2 ∈ Aq}

=
(

P
Ip−q

)
{λ2 ∈ Ap−q |Pλ2 ∈ Aq}

=
(

P
Ip−q

)
A :

(
A1×p

(
P
Ip−q

))
.



Therefore, we have the following exact sequence

0←− (Iq : −P )Ap g←− Ap

f←− A :
(
A1×p

(
P
Ip−q

))
←− 0,

(11)
where f is defined by f(λ) = (PT : IT

p−q)
T λ.

Now, from 1 of Theorem 2, we know that P
is internally stabilizable iff there exists a matrix
S = (UT : V T )T ∈ Ap×q such that{

S (Iq : −P ) ∈ Ap×p,

(Iq : −P )S = Iq,

i.e. iff there exists an A-linear map

h : (Iq : −P )Ap −→ Ap,
µ −→ S µ,

(12)

satisfying g◦h = id(Iq :−P ) Ap , i.e. iff (11) is a split
exact sequence (see 2 of Definition 4). However, if
the exact sequence (11) splits, then we have

Ap ∼= (Iq : −P )Ap ⊕
(
A :

(
A1×p

(
P
Ip−q

)))
,

which shows that (Iq : −P )Ap is a projec-
tive A-module. Conversely, if (Iq : −P )Ap is a
projective A-module, then (11) is a split exact
sequence because (11) ends by a projective A-
module (Bourbaki, 1989), and thus, P is internally
stabilizable iff (Iq : −P )Ap is projective.

2 can be proved similarly.

Corollary 2. (1) If P ∈ Kq×(p−q) admits a left-
coprime factorization P = D−1N , where

DX −N Y = Iq, detX 6= 0,

and (XT : Y T )T ∈ Ap×q, then the matrix
S = ((XD)T : (Y D)T )T ∈ Ap×q satisfies
1.a and 1.b of Theorem 2 and C = Y X−1 is
a stabilizing controller of P .

(2) If P ∈ Kq×(p−q) admits a right-coprime
factorization P = Ñ D̃−1, where

−Ỹ Ñ + X̃ D̃ = Ip−q, det X̃ 6= 0,

and (−Ỹ : X̃) ∈ A(p−q)×p, then the matrix
T = (−D̃ Ỹ : D̃ X̃) ∈ A(p−q)×p satisfies 2.a
and 2.b of Theorem 2 and C = X̃−1 Ỹ is a
stabilizing controller of P .

5. A GENERALIZATION OF THE
YOULA-KUČERA PARAMETRIZATION

Lemma 1. Let us consider the split exact se-
quence (10). Then, we have:

(1) All the A-linear maps h : M ′′ −→ M
satisfying g ◦ h = idM ′′ are of the form
h = h + f ◦ l, where l is any element of
homA(M ′′,M ′), namely any A-linear map
from M ′′ to M ′.

(2) All the A-linear maps k : M −→ M ′ satisfy-
ing k ◦ f = idM ′ are of the form k = k+ l ◦ g,
where l is any element of homA(M ′′,M ′),
namely any A-linear map from M ′′ to M ′.

(3) For every l ∈ homA(M ′′,M ′), we have:
(

g
k − l ◦ g

)
(h+ f ◦ l : f) = idM ′′ ⊕ idM ′ ,

(h+ f ◦ l : f)
(

g
k − l ◦ g

)
= idM .

Theorem 3. If P ∈ Kq×(p−q) is internally sta-
bilizable and S = (UT : V T )T ∈ Ap×q (resp.
T = (−X : Y ) ∈ A(p−q)×p) is a matrix satisfying
detU 6= 0 (resp. detY 6= 0) and 1.a and 1.b (resp.
2.a and 2.b) of Theorem 2. Then, all stabilizing
controllers of P are given by

C(Q) = (V +Q) (U + P Q)−1

= (Y +QP )−1 (X +Q),
(14)

where Q is every matrix which belongs to

Ω ,

(
A :

(
A1×p

(
P
Ip−q

)))
: ((Iq : −P )Ap) (15)

= {L ∈ A(p−q)×q |LP ∈ A(p−q)×(p−q),

P L ∈ Aq×q, P LP ∈ Aq×(p−q)}, (16)

and satisfies

{
det(U + P Q) 6= 0,
det(Y +QP ) 6= 0.

Proof. Using the fact that P is internally stabiliz-
able, then, by 3 of Theorem 2, there exist{

S = (UT : V T )T ∈ Ap×q,

T = (−X : Y ) ∈ A(p−q)×p,

which satisfy (5), (6) and (7). Then, the A-linear
map h : (Iq : −P )Ap −→ Ap, defined by (12),
satisfies f ◦ h = id(Iq :−P ) Ap , and thus, (11)
becomes the split exact sequence defined by (13),

where k : Ap → A :
(
A1×p

(
P
Ip−q

))
is defined

by k(λ) = T λ, ∀λ ∈ Ap. By Lemma 1, we obtain

(
g

k − l ◦ g

)
(h+ f ◦ l : f)

= id(Iq :−P ) Ap ⊕ idA:(A1×p (P T : IT
p−q

)T ),

(h+ f ◦ l : f)
(

g
k − l ◦ g

)
= idAp ,

where l belongs to (see 2 of Proposition 2):

homA

(
(Iq : −P )Ap, A :

(
A1×p

(
P
Ip−q

)))
∼=

(
A :

(
A1×p

(
P
Ip−q

)))
: ((Iq : −P )Ap).

Therefore, every right inverse of g has the form
h + f ◦ l, whereas every left-inverse of f has the
form k − l ◦ g, where l ∈ Ω. Hence, we have



0←− (Iq : −P )Ap g←− Ap f←− A :
(
A1×p

(
P
Ip−q

))
←− 0,

h−→ k−→
(13)

(Iq : −P )Ap h+f◦l−→ Ap,

ν −→
(
U + P Q
V +Q

)
ν,

Ap k−l◦g−→ A :
(
A1×p

(
P
Ip−q

))
,

µ −→ (−(X +Q) : Y +QP )µ,

for every Q ∈ Ω, and thus, by 3 of Theorem 2,
we obtain that every controller of P has the form
(14), where Q ∈ Ω is such that det(U + P Q) 6= 0
and det(Y +QP ) 6= 0.

Using the fact that (Iq : −P )Ap is a lattice on
Kq and A : (A1×p (PT : IT

p−q)
T )) is a lattice on

Kp−q, we obtain that:

Ω = {L ∈ K(p−q)×q |
L (Iq : −P )Ap ⊆ {λ ∈ Ap−q |P λ ∈ Aq}}

= {L ∈ K(p−q)×q |
LAq, LP Ap−q ⊆ {λ ∈ Ap−q |P λ ∈ Aq}}

= {L ∈ K(p−q)×q |LAq ⊆ Ap−q,

LP Ap−q ⊆ Ap−q, P LAq ⊆ Aq,

P LP Ap−q ⊆ Aq}

= {L ∈ A(p−q)×q |LP ∈ A(p−q)×(p−q),

P L ∈ Aq×q, P LP ∈ Aq×(p−q)}.

Corollary 3. If P ∈ Kq×(p−q) admits a doubly
coprime factorization P = D−1N = Ñ D̃−1,

(
D −N
−Ỹ X̃

) (
X Ñ

Y D̃

)
= Ip, (17)

then all stabilizing controllers of P are of the form

C(Λ) = (Y + D̃Λ) (X + Ñ Λ)−1

= (X̃ + ΛN)−1 (Ỹ + ΛD),

where Λ ∈ A(p−q)×q is every matrix such that
det(X + Ñ Λ) 6= 0 and det(X̃ + ΛN) 6= 0.

Proof. If P admits a doubly coprime factorization
P = D−1N = Ñ D̃−1, then, by 1 and 2 of
Theorem 1, we have

(Iq : −P )Ap = D−1Aq,

A1×p

(
P
Ip−q

)
= A1×(p−q) D̃−1,

and thus, A :
(
A1×p

(
P
Ip−q

))
= D̃ Ap−q and:

Ω = D̃ Ap−q : D−1Aq

= {T ∈ K(p−q)×q |T D−1Ap ⊆ D̃ Ap−q}.

Let us denote D−1 = (D−1
1 : . . . : D−1

q ), where
D−1

i ∈ Aq. If T ∈ Ω, then T D−1
i ∈ D̃ Ap−q, i.e.

there exists λi ∈ Ap−q such that T D−1
i = D̃ λi,

1 ≤ i ≤ q. Now, if we denote

Λ = (λ1 : . . . : λq) ∈ A(p−q)×q,

then we have T D−1 = D̃Λ ⇒ T = D̃ΛD.

Conversely, if T = D̃ΛD, with Λ ∈ A(p−q)×q,
then T D−1 = D̃Λ, and thus, we have:

T D−1Aq = D̃ΛAq ⊆ D̃ Ap−q ⇒ T ∈ Ω,

⇒ Ω = {D̃ΛD |Λ ∈ A(p−q)×q} = D̃ A(p−q)×q D.

By Corollary 2, S = ((XD)T : (Y D)T )T satisfies
1.a and 1.b of Theorem 2, and thus, by 1 of
Theorem 2, C = (Y D) (XD)−1 = Y X−1 is a
stabilizing controller of P . Moreover, by Corol-
lary 2, T = (−D̃ Ỹ : D̃ X̃) satisfies 2.a and 2.b of
Theorem 2, and thus, by 2 of Theorem 2,

C ′ = (D̃ X̃)−1 (D̃ Ỹ ) = X̃−1 Ỹ

is a stabilizing controller of P . Using (17), we
obtain that −Ỹ X + X̃ Y = 0, and thus, we have
C ′ = C. By Theorem 3, we obtain that all the
stabilizing controllers of P are defined by

C(Λ) = (Y D + D̃ΛD) (XD + P D̃ΛD)−1

= (Y + D̃Λ)DD−1 (X + Ñ Λ)−1

= (Y + D̃Λ) (X + Ñ Λ)−1,

C(Λ) = (D̃ X̃ + D̃ΛDP )−1 (D̃ Ỹ + D̃ΛD)

= (X̃ + ΛN)−1 D̃−1 D̃ (Ỹ + ΛD)

= (X̃ + ΛN)−1 (Ỹ + ΛD),

where Λ ∈ A(p−q)×q is every matrix which satisfies
det(X + Ñ Λ) 6= 0 and det(X̃ + ΛN) 6= 0.
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