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Abstract In this paper, we study linear control systems over Ore algebras. Within
this mathematical framework, we can simultaneously deal with different classes
of linear control systems such as time-varying systems of ordinary differential
equations (ODEs), differential time-delay systems, underdetermined systems of
partial differential equations (PDEs), multidimensional discrete systems, multi-
dimensional convolutional codes, etc. We give effective algorithms which check
whether or not a linear control system over some Ore algebra is controllable, para-
metrizable, flat or π -free.
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1 Introduction

Over the last thirty years, for practical and theoretical reasons, different new classes
of linear control systems have been introduced such as differential time-delay
systems, multidimensional systems, partial differential equations, convolutional
codes, hybrid systems . . . All these classes of systems are governed by new types
of mathematical equations and have needed new techniques in order to analyze
their structural properties and to synthesize new control laws. This growth of new
types of control systems has led to generalize some previously known results and
techniques so that they could be used for more general classes of systems. The
main interest is to get similar concepts, techniques and algorithms for studying
different classes of systems.

In this paper, we study linear control systems over Ore algebras.An Ore algebra
is an algebra of non-commutative polynomials. They represent functional opera-
tors which satisfy certain commutation rules. For instance, differential/shift/differ-
ence/divided difference . . . operators can be represented as elements of some Ore
algebras. Within this mathematical framework, we can simultaneously deal with
different classes of linear control systems such as time-varying ordinary differen-
tial systems (ODEs), differential time-delay systems, partial differential equations
(PDEs), multidimensional discrete systems, convolutional codes . . . Moreover,
the recent extension of Gröbner bases to some non-commutative polynomial rings
allows us to work effectively in Ore algebras [6,7].

The purpose of this paper is to give effective algorithms which check whether or
not a linear control system over some Ore algebra is controllable, parametrizable,
flat or π -free. These problems have been intensively studied in [12,20,21] for lin-
ear differential time-delay systems and, in [22,24–27,29–31,35,39,40], for linear
multidimensional systems. The main novelty of this paper is to present algorithms
which work for both classes of systems as well as for new ones. In particular, our
approach allows us to effectively obtain parametrizations of a controllable plant
and flat outputs of a flat system. Let us notice that such algorithms were still miss-
ing for linear differential time-delay systems (see [12,20,21] for more details).
The results developed in this paper give a new effective machinery for the study of
the structural properties of linear systems. We hope that they could play important
roles in the study of motion planning or tracking problems [12,20,21].

Ore algebras are rings of non-commutative polynomials that represent linear
functional operators in a natural way. A recent extension of the theory of Gröbner
bases to this setting [5,7] makes manipulations of (one-sided) modules over Ore
algebras effective. We recall the basics of this theory in Section 2. As is the case
for linear differential systems in algebraic analysis, a fundamental remark is that
a module over an Ore algebra is canonically associated with any linear control
system. Before we provide the readers in Section 5 with a dictionary between
structural properties of control systems and algebraic properties of modules, we
recall in Section 3 the definitions and results of module theory to be used in the
rest of the article. Next, the question is to algorithmically decide the algebraic
properties of modules. This is done by means of homological algebra in Sections
4 and 6.2. The good point is that the central homological objects as syzygy mod-
ules, free resolutions, and extension modules can all be computed by algorithms
which we recall and exemplify on cases of application. In passing, the classical
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notion of involution, which exchanges left and right module structures, is recalled
in Section 6.1, where explicit examples of involutions of Ore algebras that appear
in control theory are also given.

Beside realizing the applicability of non-commutative Gröbner bases to make
the theory algorithmic, the main contribution of the paper lies in the new approach
for the proofs of the algorithms in Sections 7 and 8. These sections extend earlier
results, previously obtained in special situations only, to the broad setting of linear
control systems over Ore algebras. After collecting further results of homologi-
cal algebra that could prove difficult to find in the literature, Section 7 gives an
algorithm to determine whether a control system is parametrizable and, if so, to
compute a parametrization, while, if not, to compute a generating set of autonomous
elements. Section 8 restricts to control systems over commutative Ore algebras in
order to provide algorithms for deciding flatness, studying π -freeness and com-
puting minimal parametrizations. An essential ingredient is an algorithm which
computes left and right-inverses of matrices over an Ore algebra, when they exist.

In the appendix in Section 10, we have illustrated the main results and algo-
rithms of the paper with explicit examples. All the computations have been done
using the Maple package OreModules [8,10] written by the authors based on the
library Mgfun [6]. These libraries as well as all the example worksheets of the
appendix are freely available on the web page given in [8]. Some results are new
(e.g., the parametrization of the electric transmission line [20,37]) and we believe
that these examples have some educational interest.

Finally, some of the results developed here firstly appeared in [9,10,31].

2 Ore algebras

2.1 Definition and examples

In order to deal with different classes of linear systems (ODEs, PDEs, differential
time-delay systems, discrete systems . . . ) in a unified framework, we represent
them by means of matrices with entries in an Ore algebra of functional operators.
In what follows, we shall denote by k a field.

Definition 1 1. [17] Let A be a domain (i.e., the product of non-zero elements is
non-zero) with a unit 1 which is also a k-algebra. The skew polynomial ring
A[∂; σ, δ] is the non-commutative ring consisting of all polynomials in ∂ with
coefficients in A obeying the commutation rule

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a), (1)

where σ is a k-algebra endomorphism of A, namely, σ : A→ A satisfies

∀ a, b ∈ A,






σ(1) = 1,
σ (a + b) = σ(a)+ σ(b),
σ (a b) = σ(a) σ (b),

and δ is a σ -derivation of A, namely, δ : A→ A satisfies:

∀ a, b ∈ A,
{
δ(a + b) = δ(a)+ δ(b),
δ(a b) = σ(a) δ(b)+ δ(a) b.
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2. [5,7] Let A = k[x1, . . . , xn] be a commutative polynomial ring over a field
k (if n = 0 then A = k). Then, the iterated skew polynomial ring D =
A[∂1; σ1, δ1] . . . [∂m; σm, δm] is called Ore algebra if the σi’s and δj ’s commute
for 1 ≤ i, j ≤ m and satisfy:

∀ j < i, σi(∂j ) = ∂j , δi(∂j ) = 0.

Remark 1 [5,7,17] LetD = A[∂; σ, δ] be a skew polynomial ring. Every element
P of D has a unique normal form which is given by P = ∑n

i=0 ai ∂
i for suitable

ai ∈ A and n ∈ Z+ = {0, 1, . . . }. If an �= 0, then the degree of P is n. For every
Ore algebra, we get a similar normal form of its elements by moving all products
of ∂1, . . . , ∂m on the right in each summand.

Example 1 Our first example is the Weyl algebra A1(k) = k[t][∂; σ, δ], where

σ = idk[t], δ = d

dt
.

Rule (1) expresses the commutation of the operator which acts as differentiation
with respect to t , namely,

∀ a ∈ k[t], ∂ a = a ∂ + da

dt
,

which must be compared with ∂ (a y) = a ∂ y + (da/dt) y.
For instance, the time-varying Kalman system ẋ(t) = A(t) x(t) + B(t) u(t),

where A ∈ k[t]n×n and B ∈ k[t]n×m, is defined by the matrix of operators R =
(∂In − A(t) : −B(t)) ∈ A1(k)

n×(n+m) as we have R (x(t)T : u(t)T )T = 0.
Similar to polynomial rings in 2 n indeterminates, we can define the so-called

Weyl algebraAn(k) = k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn], where σi and δi on
k[x1, . . . , xn] are the maps

σi = idk[x1,... ,xn], δi = ∂

∂ xi
, i = 1, . . . , n,

and every other commutation rule is prescribed by Definition 1. In particular, we
have the relations

∂i xj = xj ∂i + δij , 1 ≤ i, j ≤ n,

where the Kronecker symbol δij is defined by δij = 1 if i = j and 0 else.

Example 2 The algebra of shift operators with polynomial coefficients is another
case of an Ore algebra. For h ∈ R, we define Sh = k[t][δh; σh, δ] by:

∀ a ∈ k[t], σh(a)(t) = a(t − h), δ(a) = 0.

Hence, the commutation rule δh t = (t −h) δh actually represents the action of the
shift operator on polynomials. We note that δh is a time-delay operator if h > 0
and δh is an advance operator if h < 0.

For instance, the time-delay system x(t) = x(t − h)+ u(t − 2 h) is defined by
the matrix R = (1 − δh : −δ2

h) ∈ S1×2
h , i.e., we have R (x(t) : u(t))T = 0.



Parametrizing linear control systems over Ore algebras 323

Example 3 In order to treat differential time-delay systems, we mix the
constructions of the two preceding examples. We define the Ore algebra Dh =
k[t][∂; σ1, δ1] [δh; σ2, δ2], where:

σ1 = idk[t], δ1 = d

dt
, ∀ a ∈ k[t], σ2(a)(t) = a(t − h), δ2 = 0, h ∈ R.

For instance, the matrix of operators R = (∂I − A(t) : −B(t) δh) ∈ Dn×(n+m)
h ,

where A and B are two polynomial matrices in t , defines the following linear
system R (x(t)T : u(t)T )T = ẋ(t)− A(t) x(t)− B(t) u(t − h) = 0.

If the considered system also involves an advance operator σ3 of amplitude
l ∈ R such that h and l are non-commensurate, i.e., the Q-vector space generated
by h and l is supposed to be 2-dimensional, then we can work with the Ore algebra
defined byH(h,l) = k[t][∂; σ1, δ1][δh; σ2, δ2][τl; σ3, δ3], where σi , δi , i = 1, 2, are
as above and:

∀ a ∈ k[t], σ3(a)(t) = a(t + l), δ3 = 0, l > 0.

Now, if we want to consider the case where h = l, we can then define the k-algebra
Hh formed by H(h,l) modulo the relations δh τl − 1 and τl δh − 1. We note that Hh
is not an Ore algebra but a quotient of the Ore algebraH(h,l) by the two-sided ideal
generated by τl δh − 1.

Example 4 In order to study multidimensional discrete linear systems, we define
the Ore algebra D = k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn], where σi and δi on
k[x1, . . . , xn] are the maps:

σi(a)(x1, . . . , xn) = a(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn), δi = 0, 1 ≤ i ≤ n.

Similarly, we can define an Ore algebra formed by the backward shift operators τi
defined by:

τi(a)(x1, . . . , xn) = a(x1, . . . , xi−1, xi − 1, xi+1, . . . , xn), δi = 0, 1 ≤ i ≤ n.

Ore algebras based on other functional operators can also be defined (e.g.,
Eulerian operators, divided differences). We refer to [7,17] for more details.

2.2 Properties of Ore algebras & Gröbner bases

We summarize the most important properties of Ore algebras that will enable us to
computationally deal with modules over Ore algebras. In order to do that, we first
recall some definitions. See [17,36] for more details.

Definition 2 1. A ring A is called a left (resp., right) noetherian ring if every left
(resp., right) ideal of A is finitely generated as a left (resp., right) A-module.

2. A domain A is said to have the left (resp., right) Ore property if, for each
pair (a1, a2) ∈ A × A, there is a non-trivial pair (b1, b2) ∈ A × A such that
b1 a1 = b2 a2 (resp., a1 b1 = a2 b2). In that case, A is called a left (resp., right)
Ore ring.
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Proposition 1 [17] IfD is a left (resp., right) noetherian ring, thenD has the left
(resp., right) Ore property.

Proposition 2 [17] If A is a domain and σ is injective, then the skew polynomial
ring A[∂; σ, δ] is a domain.

Proposition 3 [17] If A is a left (resp., right) noetherian ring and σ is an auto-
morphism (e.g., An, Sh, Dh, H(h,l)), then the skew polynomial ring A[∂; σ, δ] is a
left (resp., right) noetherian ring.

Proposition 4 [7] IfA has the left (resp., right) Ore property, thenA[∂; σ, δ] also
has the left (resp., right) Ore property.

In order to study systems over (non-commutative) polynomial rings effectively,
we need to introduce some algorithmic methods based on Gröbner bases. We first
need monomial orders to compare (non-commutative) polynomials.

Definition 3 1. Let D be an Ore algebra. A monomial order < on Mon (D) is
defined as a total order on the set of monomials Mon(D) satisfying 1 < m for
all monomials 1 �= m ∈ Mon(D) and, if m1 < m2 holds for two monomials
m1,m2 ∈ Mon(D), then n ·m1 < n ·m2 for all n ∈ Mon(D).

2. Given a polynomial 0 �= P ∈ D and a monomial order < on Mon (D), we
can compare the monomials with a non-zero coefficient in P with respect to
<. The greatest of these monomials is the leading monomial lm(P ) of P .

Definition 4 [1] Let A be a polynomial ring and I an ideal of A. A set of non-
zero polynomials G = {g1, . . . , gt } ⊂ I is called a Gröbner basis for I if for all
0 �= f ∈ I , there exists 1 ≤ i ≤ t such that lm(gi) divides lm(f ).

Gröbner bases for left ideals in Ore algebras are defined analogously for mono-
mial orders on ∂1, . . . , ∂m and x1, . . . , xn [7].

Remark 2 A consequence of the condition that defines Gröbner bases is that every
polynomial f in I is reduced to 0 modulo G, i.e., by subtracting suitable left
multiples of the gi ∈ G from f , we obtain the zero polynomial.

For the case of commutative polynomial rings, Buchberger’s algorithm ([1,2])
computes Gröbner bases of polynomial ideals. The next theorem states that this
algorithm can be extended to certain Ore algebras. Every Ore algebra within our
scope is of this kind.

Theorem 1 [5,7,13] Let k be a computable field [2] (e.g., k = Q, Fp), A =
k[x1, . . . , xn] the polynomial ring withn indeterminates over k andA[∂1; σ1, δ1] . . .
[∂m; σm, δm] an Ore algebra with

σi(xj ) = aij xj + bij , δi(xj ) = cij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2)

for certain aij ∈ k \ {0}, bij ∈ k, cij ∈ A. If the cij are of total degree at most 1 in
the xi’s, then a non-commutative version of Buchberger’s algorithm terminates for
any monomial order on x1, . . . , xn, ∂1, . . . , ∂m, and its result is a Gröbner basis
with respect to the given monomial order.
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In what follows, we shall use differential elimination techniques based on
Gröbner bases.

Definition 5 [1] LetD be the polynomial ring over Q with indeterminates x1, . . . ,
xn, y1, . . . , ym. Assume that monomial orders <x and <y on the monomials that
only contain respectively the xi’s and the yi’s are given. An elimination order is
then defined by

m1 · n1 < m2 · n2 ⇐⇒ m1 <x m2 or m1 = m2 and n1 <y n2,

where m1,m2 (resp., n1, n2) are monomials containing only the xi’s (resp., yi’s).

Intuitively, an elimination order serves to eliminate the xi’s.
The elimination order which we shall use in this paper is the one induced by

the degree reverse lexicographical orders on x1, . . . , xn and y1, . . . , ym. This is a
very common order called lexdeg in the Maple package Groebner.

Example 5 Given a left ideal I of D, we obtain a Gröbner basis of the left ideal
I ∩k[y1, . . . , ym] by computing the Gröbner basisG of I with respect to an elimi-
nation order and intersectingGwith k[y1, . . . , ym] (which merely amounts to omit
all polynomials in G that involve any xi).

3 Module theory over Ore algebras

Let us give a motivation for the use of modules. Let D be a domain and let us
consider a system of equations

p∑

j=1

Rij yj = 0, 1 ≤ i ≤ q, (3)

where Rij ∈ D, p, q ∈ N = {1, 2, . . . }. By collecting the coefficients Rij , we
obtain a matrix R ∈ Dq×p which, multiplied by the vector y = (y1 : . . . : yp)T ,
yields system (3) again.

We shall use the convention that elements of D1×p are row vectors whereas
those of Dp are column vectors. Let us consider the following left D-morphism
(i.e., D-linear map):

D1×q .R−→ D1×p,
(P1 : . . . : Pq) 
−→ (P1 : . . . : Pq)R.

Then, im(.R) = D1×q R is the left D-module generated by the left D-linear com-
binations of the rows of R (namely, the ring D acts on the elements of im(.R) =
D1×q R from the left). Let us show how system (3) is associated with the left
D-module M = D1×p/(D1×q R).

We denote by {ei}1≤i≤p (resp., {fj }1≤j≤q) the standard basis of D1×p (resp.,
D1×q), namely ei is the row vector with 1 in i th position and 0 elsewhere. Let
us define by κ : D1×p → M the left D-morphism which maps any element of
D1×p onto its residue class in M , i.e., modulo D1×q R. In particular, we have
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κ(λ1) = κ(λ2) iff there exists µ ∈ D1×q such that λ1 = λ2 + µR. Then, for
j = 1, . . . , q, we have:

fj R = (Rj1 : . . . : Rjp) =
p∑

i=1

Rji ei ∈ D1×q R.

Therefore, we obtain:

κ(fj R) = κ

(
p∑

i=1

Rji ei

)

=
p∑

i=1

Rji κ(ei) = 0.

Hence, if we denote by yi = κ(ei) the residue class of ei in M , then the left
D-module M is defined by

p∑

i=1

Rji yi = 0, 1 ≤ j ≤ q ⇔ R y = 0, y = (y1 : . . . : yp)
T ,

as well as by the left D-linear combinations of its equations.
The leftD-moduleM = D1×p/(D1×q R) is said to be finitely generated as any

element m ∈ M can be written as m =∑p

i=1 Pi yi where Pi ∈ D.

Definition 6 The left D-module M = D1×p/(D1×q R) is said to be associated
with (3).

IfD is a commutative ring, then we recall that a leftD-moduleM is also a right
D-module and conversely. In this case, we shall only say that M is a D-module.

Example 6 Let us consider the Ore algebra defined by

Dh = R(a, k, ζ, ω)[∂; σ1, δ1][δh; σ2, δ2]

of the type of Example 3 and revisit the wind tunnel model defined in [19]





ẋ1(t) = −a x1(t)+ k a x2(t − h),
ẋ2(t) = x3(t),

ẋ3(t) = −ω2 x2(t)− 2 ζ ω x3(t)+ ω2 u(t),

(4)

where a, k, ζ and ω are real constants. System (4) gives rise to the matrix

R =




∂ + a −k a δh 0 0
0 ∂ −1 0

0 ω2 ∂ + 2 ζ ω −ω2



 ∈ D3×4
h , (5)

and thus, system (4) corresponds to the Dh-module M = D1×4
h /(D1×3

h R).

In Section 5, we shall develop a dictionary between the properties of the left
D-moduleM = D1×p/(D1×q R) and the properties of the systemR y = 0. But, at
first, let us introduce some definitions of module theory and homological algebra
[4,36].
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Definition 7 1. A family (Mi)i∈Z of (left/right)D-modules together with a family
(di)i∈Z of (left/right) D-module morphisms di : Mi → Mi−1 is called a com-
plex if we have di ◦ di+1 = 0 for all i ∈ Z. We write:

. . .
di+2−−→ Mi+1

di+1−−→ Mi

di−→Mi−1
di−1−−→ . . . (6)

2. The defect of exactness of (6) at Mi is defined by:

H(Mi) = ker di/im di+1.

The complex (6) is said to be exact at Mi if the defect of exactness H(Mi) is
reduced to 0 or, equivalently, if ker di = im di+1. More generally, the complex
(6) is called exact if it is exact at every position.

3. We call short exact sequence an exact sequence of the form

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0, (7)

i.e., where f is injective, g is surjective and ker g = im f .

We recall some properties of modules that will play important roles in what
follows.

Definition 8 [4,36] Let D be a domain which is a left Ore ring and M a finitely
generated left D-module. Then, we have:

1. M is free if it is isomorphic to D1×r for a certain r ∈ Z+ = {0, 1, . . . }.
2. M is stably free if there exist r, s ∈ Z+ such that we have:

M ⊕D1×s ∼= D1×r .

3. M is projective if there exist a left D-module N and r ∈ Z+ such that:

M ⊕N ∼= D1×r .

4. M is reflexive if the canonical map defined by

εM : M −→ homD(homD(M,D),D), εM(m)(f ) = f (m),

for all m ∈ M,f ∈ homD(M,D), is an isomorphism, where homD(M,D)
denotes the right D-module of all D-morphisms from M to D.

5. M is torsion-free if the left submodule of M defined by

t (M) = {m ∈ M | ∃ 0 �= P ∈ D : P m = 0}
is reduced to 0. t (M) is called the torsion submodule ofM and the elements of
t (M) are the torsion elements of M .

6. M is torsion if t (M) = M , i.e., every element of M is a torsion element.

Similar definitions hold for right modules over a right Ore domain D.

We note that the fact that t (M) is a (left/right)D-submodule ofM implies that
we have the following short exact sequence

0 −→ t (M)
i−→ M

ρ−→ M/t(M) −→ 0,

where i (resp., ρ) denotes the canonical injection (resp., projection).
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Proposition 5 [4,36] LetD be a domain which is a (left/right) Ore ring andM be
a finitely generated (left/right)D-module. Then, we have the following implications
among these concepts:

free ⇒ stably free ⇒ projective ⇒ reflexive ⇒ torsion-free.

Theorem 2 1. [17,36] If D is a left hereditary ring − namely, every left ideal
of D is a left projective D-module − (e.g., a commutative Dedekind domain,
A1(k)), then every finitely generated torsion-free left D-module is projective.
Moreover, if D is a left principal ideal domain − namely, every left ideal of D
is principal − (e.g., k[x] or k(t)[∂; idk(t), ddt ], where k is a field of constants),
then every finitely generated torsion-free left D-module is free.

2. [17] If D = A[∂1; σ1, δ1] . . . [∂m; σm, δm] is an Ore algebra where σi is an
automorphism, i = 1, . . . , m, then, every finitely generated projective left
D-module is stably free.

3. [17,36] Every projective module over a commutative polynomial ring with
coefficients in a field is free (Quillen-Suslin theorem).

4. [17] If k is a field of characteristic 0, then every stably free left An(k)-module
M with rankAn(k)M ≥ 2 is free.

Definition 9 [4,36] A short exact sequence of (left/right) D-modules

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 (8)

is called a split exact sequence if one of the following equivalent conditions is
satisfied:

– There exists a D-morphism h : M ′′ −→ M such that g ◦ h = idM ′′ .
– There exists a D-morphism k : M −→ M ′ such that k ◦ f = idM ′ .
– The (left/right) D-module M is isomorphic to the direct sum of M ′ and M ′′,

which is denoted by M ∼= M ′ ⊕ M ′′, or equivalently, there exist two
D-morphisms






φ =
(
k
g

)

: M −→ M ′ ⊕M ′′,

ψ = (f : h) : M ′ ⊕M ′′ −→ M,

satisfying φ ◦ ψ = idM ′⊕M ′′ and ψ ◦ φ = idM .

Proposition 6 [4,36] If M ′′ is a (left/right) projective D-module and M ′ and M
are (left/right) D-modules, then the short exact sequence (8) splits.

In the following sections, we shall develop effective algorithms based on
Gröbner bases in order to check whether or not a finitely generated leftD-module
M associated with a linear system (e.g., the differential time-delay system (4)) is
torsion-free, reflexive, projective, stably free or free.
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4 Syzygy modules and free resolutions

If R ∈ Dq×p andM is the leftD-moduleM = D1×p/(D1×q R), then we have the
following exact sequence:

0 −→ ker(.R) −→ D1×q .R−→ D1×p κ−→ M −→ 0. (9)

In this section, we show how to extend this exact sequence on the left in order to
obtain a long exact sequence involving only M and free left D-modules.

LetM be a finitely generated left module over a left noetherian ringD. We can
reformulate the fact thatM is finitely generated by saying that there exists a surjec-
tive D-morphism f : D1×p → M which maps the i th vector of the standard basis
{ei}1≤i≤p of D1×p to some mi ∈ M . Then, we have the following exact sequence:

D1×p f−→ M −→ 0,
ei 
−→ mi.

This map can fail to be injective since there can be linear relations among the
{mi}1≤i≤p:

ker f = {P = (P1 : . . . : Pp) ∈ D1×p | f (P ) =
p∑

i=1

Pi f (ei)

=
p∑

i=1

Pi mi = 0}. (10)

Definition 10 [4,36] The D-linear relations among the m1, . . . , mp form the left
D-module S(M) defined by (10) which is called the syzygy module ofM (this mod-
ule is uniquely defined up to projective equivalence [4,36]). A similar definition
exists for right D-modules.

Since D is a left noetherian ring, S(M) is a finitely generated left D-module.
Therefore, we can again find a suitable freeD-moduleD1×q and aD-morphism g
sending the standard basis vectors of D1×q to a family of generators of S(M) and
we have the following exact sequence:

D1×q g−→ D1×p f−→ M −→ 0.

This exact sequence is called a finite presentation of the leftD-moduleM andM is
said to be finitely presented. Let us notice that, with respect to the standard bases of
D1×q and D1×p, g is defined by multiplication on the right with the matrix whose
i th row corresponds to the i th generator of S(M). Finally, iterating the preceding
construction, we get the definition of a free resolution of the left D-module M .

Definition 11 1. [4,36] An exact sequence of the form

. . .
d3−→ P2

d2−→ P1
d1−→ P0

d0−→ M −→ 0 (11)

is called a (left/right) projective resolution of the (left/right)D-moduleM if the
D-modules Pi are projective (left/right)D-modules. The (left/right)D-module
Si(M) = ker di is called the i th syzygy (left/right) D-module of M .
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2. [4,36] If the Pi in (11) are free, then (11) is called a free resolution of M .

3. [4,36] Let 0 −→ Pn
dn−→ Pn−1

dn−1−−→ . . .
d2−→ P1

d1−→ P0
d0−→ M −→ 0 be a

projective resolution of M . Then, the length of this resolution is n.
4. [4,36] The minimal length of the (left/right) projective resolutions of the

(left/right)D-moduleM is called the (left/right) projective dimension pdD(DM)
(resp., pdD(MD)) of M . If no such integer exists, then we set pdD(DM) = ∞
(resp., pdD(MD) = ∞).

5. [4,36] We set lgldD = sup {pdD(DM) | M a left D-module} ∈ Z+ ∪ {∞},
which is called the left global dimension of D. Similarly for the right global
dimension rgldD. If D is commutative, then we write:

gldD = lgldD = rgldD.

We now describe the computational tools for the construction of free resolu-
tions. The methods to compute syzygy modules use Gröbner bases and elimination
techniques (see Section 6.1 of [2]). LetD be an Ore algebra which satisfies (2) and
L a finitely generated left D-module which is a submodule of a free D-module
D1×p, p ∈ N. Thus, a set of generators of L consists of row vectors in D1×p.

Algorithm 1
Input: Set of generators {R1, . . . , Rq} ⊂ D1×p of the left D-module L,

where Ri = (Ri1 : . . . : Rip), i = 1, . . . , q.
Output: S ∈ Dr×q such that the left D-module D1×r S is the syzygy

module S(L) of L.
Syzygies (R1, . . . , Rq)

Introduce the indeterminates λ1, . . . , λp, µ1, . . . , µq over D.

P ←
{∑p

j=1 Rij λj − µi | i = 1, . . . , q
}

.

Compute the Gröbner basis G of P in the free left D-module generated
by λ1, . . . , λp, µ1, . . . , µq , namely

⊕p

i=1D λi ⊕
⊕q

i=1Dµi , with respect
to an order which eliminates the λi’s.

S = (Sij ) ∈ Dr×q ← G ∩⊕q

i=1Dµi =
{∑q

j=1 Sij µj | i = 1, . . . , r
}

.

Remark 3 Let us suppose that we have R ∈ Dq×p and the left D-module M =
D1×p/(D1×q R). Then, we can apply the preceding algorithm to the set formed by

Ri = (Ri1 : . . . : Rip) ∈ L = D1×q R ⊆ D1×p, i = 1, . . . , q,

in order to obtain a matrix S = (Sij ) ∈ Dr×q such that

S(D1×q R) = ker(.R) =
{

(P1 : . . . : Pq) ∈ D1×q |
q∑

i=1

Pi Ri = 0

}

= D1×r S

and we obtain the following exact sequence:

D1×r .S−→ D1×q .R−→ D1×p κ−→ M −→ 0.

Iterating the process, we obtain a free resolution of the left D-module M .

For further developments and optimization of the technique, see [14].
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Example 7 Let Dh be the differential time-delay Ore algebra introduced in
Example 6, R ∈ D3×4

h defined by (5) and the Dh-module L = D1×4
h RT gen-

erated by the rows of the matrix:

RT =








∂ + a 0 0

−k a δh ∂ ω2

0 −1 ∂ + 2 ζ ω

0 0 −ω2








∈ D4×3
h .

We shall see later that the transposed matrix RT plays an important role in the
characterization of the properties of the Dh-module M = D1×4

h /(D1×3
h R). Let us

compute the syzygy module of L. The Gröbner basis of

P = {(∂ + a) λ1 − µ1, −k a δh λ1 + ∂ λ2 + ω2 λ3 − µ2,

−λ2 + (∂ + 2 ζ ω) λ3 − µ3, −ω2 λ3 − µ4}
with respect to the elimination order induced by the degree reverse lexicographical
orders on λ1 > λ2 > λ3 and µ1 > µ2 > µ3 > µ4 > δh > ∂ respectively is (see
Appendix 10.3):

G = {ω2 λ2 + ∂ µ4 + ω2 µ3 + 2 ζ ω µ4, ω2 k a δh λ1 + ω2 µ2 + ω2 ∂ µ3 +
(∂2 + 2 ζ ω ∂ + ω2) µ4, ω2 k a δh µ1 + (ω2 ∂ + ω2 a)µ2 +
(ω2 ∂2 + ω2 a ∂)µ3 + (∂3 + (2 ζ ω + a) ∂2 + (ω2 + 2 a ζ ω) ∂ + a ω2) µ4,

(∂ + a) λ1 − µ1, ω2 λ3 + µ4}.
Intersecting G with

⊕4
i=1Dh µi we get

S = {ω2 k a δh µ1 + (ω2 ∂ + ω2 a)µ2 + (ω2 ∂2 + ω2 a ∂)µ3 +
(∂3 + (2 ζ ω + a) ∂2 + (ω2 + 2 a ζ ω) ∂ + a ω2) µ4}.

If we denote by QT the following row vector with entries in Dh

QT = (ω2 k a δh : ω2 ∂ + ω2 a : ω2 ∂2 + ω2 a ∂ :

∂3 + (2 ζ ω + a) ∂2 + (ω2 + 2 a ζ ω) ∂ + a ω2),

then we obtain the free resolution of the Dh-module N = D1×3
h /(D1×4

h RT ):

0 −→ Dh

.QT

−−→ D1×4
h

.RT−→ D1×3
h

κ−→ N −→ 0. (12)

We conclude this section by giving examples of left (right) global dimensions
and by stating that free resolutions of finite length exist for every finitely gener-
ated module over Ore algebrasD = A[∂1; σ1, δ1] . . . [∂m; σm, δm], where all σi are
automorphisms. Note that every Ore algebra that we consider is of this kind (see
e.g., Examples 1, 2, and 3).

Proposition 7 [17] LetA be a domain with a finite left (resp., right) global dimen-
sion lgldA (resp., rgldA) and σ an automorphism of A.
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1. The left (resp., right) global dimension of A[∂; σ, δ] satisfies:

lgldA ≤ lgldA[∂; σ, δ] ≤ lgldA+ 1

(rgldA ≤ rgldA[∂; σ, δ] ≤ rgldA+ 1).

If δ = 0, then we have:

lgldA[∂; σ, 0] = lgldA+ 1 (rgldA[∂; σ, 0] = rgldA+ 1).

2. If k is a field, then we have lgld k[x1, . . . , xn] = rgld k[x1, . . . , xn] = n.
3. The Weyl algebra An(k) satisfies lgldAn(k) = rgldAn(k) = n if k is a field of

characteristic 0 and lgldAn(k) = rgldAn(k) = 2n if k is a field of character-
istic p > 0.

Example 8 By Proposition 7, the Ore algebra Sh of Example 2 has left (resp.,
right) global dimension 2 because lgld k[t] = rgld k[t] = 1. For the Ore alge-
bra Dh of Example 3, where Q ⊆ k, we have lgldDh = rgldDh = 2 since
k[t][∂; σ1, δ1] = A1(k) has left (resp., right) global dimension 1 and δ2 = 0.

Proposition 8 [17,36] Let D = A[∂1; σ1, δ1] . . . [∂m; σm, δm] be an Ore algebra,
where σi is an automorphism, i = 1, . . . , m, andM a finitely generated (left/right)
D-module. Then, there is a free resolution of M of length less than or equal to
lgldD + 1 (resp., rgldD + 1).

Proof Iteratively applying Corollary 12.3.3 of [17] according to the construction
of D from the field k, it follows that every finitely generated projective (left/right)
D-module is stably free. SinceD has finite (left/right) global dimension according
to Proposition 7, M has a projective resolution (11) of length less than or equal
to lgldD (resp., rgldD), where all Pi are finitely generated projective, i.e., stably
free (left/right)D-modules. Now, Lemma 9.40 of [36] states that, ifM has a stably
free resolution of length n, namely a resolution of the form (11) where every Pi is
a stably free (left/right)D-module, thenM has a free resolution of length less than
or equal to n+ 1. Hence, we conclude that M has a free resolution of length less
than or equal to lgldD + 1 (resp., rgldD + 1). ��

Let us notice that the previous result is a reminiscence of the concept of a Janet
sequence developed in the theory of differential operators [25].

5 System interpretations of module properties

In this section, we give system interpretations of some module properties.

5.1 A functorial approach to behaviours of linear systems

We firstly need to introduce the concept of extension modules [4,35].
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Definition 12 [4,36] Let D be a left noetherian ring, M a finitely generated left
D-module, F a left D-module and

. . .
d2−→ P1

d1−→ P0
d0−→ M −→ 0

a projective resolution of M . Then, the defects of exactness of the complex

. . .←− homD(P2,F)
d∗2←− homD(P1,F)

d∗1←− homD(P0,F)←− 0,

where d∗i is defined by d∗i (f ) = f ◦ di for f ∈ homD(Pi−1,F), i ≥ 1, are defined
by the abelian groups:

{
ext0

D(M,F) = ker d∗1 = homD(M,F),
extiD(M,F) = ker d∗i+1/ im d∗i , i ≥ 1.

The next proposition shows that extiD(M,F) is well-defined.

Proposition 9 [4,36] The abelian group extiD(M,F), i ∈ Z+, only depends on
M and F up to group isomorphism, i.e., we can choose any projective resolution
of M to compute it.

If we consider a free resolution of M computed as indicated in Section 4,

. . .
.R4−→ D1×l3 .R3−→ D1×l2 .R2−→ D1×l1 .R1−→ D1×l0 κ−→ M −→ 0,

then, by Definition 12, we obtain the following complex

. . .
R4.←− F l3

R3.←− F l2
R2.←− F l1

R1.←− F l0 ←− 0, (13)

where Ri. : F li−1 → F li is defined by (Ri.)(η) = Ri η for all η ∈ F li−1 . Then,
using Proposition 9, we obtain that:

{
ext0

D(M,F) ∼= kerF (R1.) = {η ∈ F l0 |R1 η = 0},
extiD(M,F) ∼= kerF (Ri+1.)/(Ri F li−1), i ≥ 1.

Hence, the abelian group of all F-solutions of the linear system R1 η = 0
is intrinsically defined by ext0

D(M,F) = homD(M,F). In particular, the corre-
sponding isomorphism is defined by

homD(M,F) ∼= kerF (R1.)

ϕ 
−→ η = (ϕ(y1), . . . , ϕ(yl0))
T ,

ϕ : {ϕ(yi) = ηi}i=1,... ,l0


−→

η = (η1, . . . , ηl0)
T ,

(14)

where yi = κ(ei) denotes the residue class of the i th vector ei of the standard basis
of D1×l0 in M = D1×l0/(D1×l1 R1).

We note that kerF (R1.) = {η ∈ F l0 |R1 η = 0} is called the behaviour of the
leftD-moduleM in the behavioural approach developed in control theory [18,22,
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23,29,39,40]. In this approach, the left D-module F is called the signal space.
Hence, a behaviour is intrinsically defined by homD(M,F).

The duality between module theory and behaviour theory was firstly developed
by U. Oberst in [18] based on B. Malgrange’s ideas. It has been largely studied
since in the literature (e.g., see [22,29,39] and the references therein). See also
[30] for the introduction of homological algebra in the behavioural approach (e.g.,
extension and torsion functors, homotopic and projective equivalences).

Let us explain why ext1
D(M,F) corresponds to the obstruction of the solvabil-

ity of the inhomogeneous linear systemR1 η = ζ .As (13) is a complex, a necessary
condition for the existence of η ∈ F l0 satisfying the linear system R1 η = ζ for
a fixed ζ ∈ F l1 is R2 ζ = R2 (R1 η) = 0, i.e., ζ ∈ kerF (R2.). Moreover, if
there exists η ∈ F l0 such that R1 η = ζ , then we have ζ ∈ R1 F l0 . Hence, the
inhomogeneous linear system R1 η = ζ is solvable iff the residue class of ζ in
ext1

D(M,F) ∼= kerF (R2.)/(R1 F l0) is 0.

Definition 13 1. [4,36] A leftD-module F is said to be injective if, for every left
D-module M , then we have extiD(M,F) = 0 for i ≥ 1.

2. [4,36] A left D-module F is cogenerator if, for every left D-module M and
0 �= m ∈ M , then there exists ϕ ∈ homD(M,F) such that ϕ(m) �= 0.

Intuitively, an injective cogenerator left D-module F corresponds to a suffi-
ciently rich space of solutions for which a good duality between algebra and func-
tional analysis holds. More precisely, an equivalent definition of an injective left
D-module F is that, for every short exact sequence (7), we have the following
exact sequence:

0 ←− homD(M
′,F) f �←− homD(M,F) g�←− homD(M

′′,F)←− 0. (15)

Moreover, if F is a cogenerator left D-module, then homD(M,F) = 0 implies
M = 0. Finally, we can prove that F is an injective cogenerator left D-module
if the exactness of any complex of the form (15) is equivalent to the exactness
of the complex (7) [18]. Hence, if F is an injective cogenerator left D-module,

then the exactness of F l2
R2.←− F l1

R1.←− F l0 is equivalent to the one of D1×l2 .R2−→
D1×l1 .R1−→ D1×l0 . In particular, ifR2 generates the syzygy module ofD1×l1 R1, i.e.,
ker(.R1) = D1×l2 R2, then a necessary and sufficient condition for the existence
of η ∈ F l0 satisfying the system R1 η = ζ for ζ ∈ F l1 fixed is given by R2 ζ = 0
(fundamental principle [18]). Such a condition can be computed usingAlgorithm 1.

Proposition 10 [36] For every ring D, there exists an injective cogenerator left
D-module F .

Let us give a few examples of injective cogenerator modules.

Example 9 1. [18,22,39] If � is an open convex subset of R
n, then the space

C∞(�) (resp., D′(�)) of smooth functions (resp., distributions) on � is an
injective cogenerator over the ring D = k[∂1; σ1, δ1] . . . [∂n; σn, δn] of the
differential operators with coefficients in k = R, C (i.e., σi = id, δi = ∂/∂xi).

2. [41] If F denotes the set of all functions that are smooth on R except for a finite
number of points, then F is an injective cogenerator left D = R(t)[∂; σ, δ]-
module where δ = id and δ = d/dt .
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3. [18,39] If D = k[∂1; σ1, δ1] . . . [∂n; σn, δn] denotes the ring of forward shift
operators defined with coefficients in k = R,C (see Example 4), then F = kN

n

is an injective cogenerator D-module.

In what follows, we shall only consider solutions of linear systems over an Ore
algebra D in an injective cogenerator left D-module F .

5.2 System properties − Module properties

We now introduce properties of linear systems over Ore algebras obtained by gener-
alizing some definitions commonly used in the literature for some particular classes
of systems (e.g., ODEs, PDEs, differential time-delay equations). In the following
definition and the next theorem, the references point to the particular classes of
systems for which these concepts have been firstly introduced.

Definition 14 Let D be a left noetherian Ore algebra, R ∈ Dq×p, F an injective
cogenerator left D-module and B = {η ∈ Fp |R η = 0} the behaviour defined by
R and F . Then, we have the following definitions:

– [24,25,39] An observable of B is a left D-linear combination of the system
variables ηi (i.e., of the system variables including inputs, states, outputs). An
observable ψ(η) is called autonomous if it satisfies someD-linear equation by
itself, namely, P ψ(η) = 0 for some 0 �= P ∈ D. An observable is said to be
free if it is not autonomous.

– [12,24,25,39] A behaviour B is said to be controllable if every observable of
B is free.

– [24,25] A behaviour B is parametrizable if there exists a matrix Q ∈ Dp×m
such that B = QFm, i.e., for every η ∈ B, there exists φ ∈ Fm such that
η = Qφ. Then, Q is called a parametrization of B and φ a potential.

– [12,20,31] Let D be a commutative polynomial ring and π ∈ D \ {0}. A
parametrizable behaviour B is then called π -free if there exist Q ∈ Dp×m,
T ∈ Dm×p and α ∈ Z+ such that B = QFm and T Q = πα Im, where Im
denotes the m×m identity matrix.

– [12,20] A behaviour B is said to be flat if there exists a parametrization Q ∈
Dp×m which admits a left-inverse T ∈ Dm×p, i.e., T Q = Im. In other words,
B is flat if it is parametrizable and every component φi of the corresponding
potential φ is an observable of the system. The potential φ is then called a flat
output of B.

The following theorem gives system interpretations of the module properties
introduced in Definition 8.

Theorem 3 LetD be a noetherian Ore algebra, R ∈ Dq×p, F an injective cogen-
erator left D-module, the behaviour B = {η ∈ Fp |R η = 0} defined by R and F
and the left D-module M = D1×p/(D1×q R). Then, we have:

1. [24–26,39] The observables of B are in a one-to-one correspondence with the
elements of the left D-module M .

2. [12,22,24–26,39] The autonomous elements of B are in a one-to-one corre-
spondence with the torsion elements of M .
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3. [12,20,22,24–26] B is controllable iff M is torsion-free.
4. [24–27] The behaviour B is parametrizable iff there exists Q ∈ Dp×m such

that M = D1×p/(D1×q R) ∼= D1×p Q.
5. [12,20,31] Let D be a commutative polynomial ring and π ∈ D \ {0}. Then,

a parametrizable behaviour B is π -free iff the module

Dπ ⊗D M = {
m/a | m ∈ M, a = πn, n ∈ Z+

}

is free over the ring Dπ = {b/a | b ∈ D, a = πn, n ∈ Z+}.
6. [12,20,26] B is flat iff M is a free left D-module. Then, the bases of M are in

a one-to-one correspondence with the flat outputs of B.

Proof 1. Let m ∈ M and let us define f ∈ homD(D,M) by f (1) = m. Applying

the functor homD(·,F) to D
f−→ M , we obtain the following morphism:

homD(D,F) f �←− homD(M,F)
ϕ ◦ f 
−→

ϕ.

If we denote by yi the residue class of the i th vector ei of the standard basis ofD1×p
in M , then there exist ai ∈ D, i = 1, . . . , p, such that we have m = ∑p

i=1 ai yi .
Then, the isomorphism homD(M,F) ∼= kerF (R.) defined by (14) holds. More-
over, we have the trivial isomorphism homD(D,F) ∼= F defined by evaluating an
element of homD(D,F) at 1 ∈ D. Hence, we obtain

(ϕ ◦ f )(1) = ϕ(m) =
p∑

i=1

ai ϕ(yi) =
p∑

i=1

ai ηi,

where ηi = ϕ(yi), i = 1, . . . , p (see (14)). Therefore, we obtain an observable
ψ : B = kerF (R.) → F defined by ψ(η) = ∑p

i=1 ai ηi . Let us check that the
observable ψ does not depend on the choice of the ai but only on m ∈ M . Let us
consider m =∑p

i=1 bi yi , bi ∈ D, i = 1 . . . p. Then, we have

v = (a1 − b1, . . . , ap − bp) ∈ D1×q R ⇒ ∃ L ∈ D1×q : v = LR,

and thus, we obtain
p∑

i=1
ai ηi −

p∑

i=1
bi ηi = L (R η) = 0.

Conversely, let us consider an observable ψ : B = kerF (R.) → F defined
by ψ(η) = ∑p

i=1 ai ηi for ai ∈ D, i = 1, . . . , p. Then, we can associate with
ψ the element m = ∑p

i=1 ai yi ∈ M . Let us prove that this map is well-defined.
Let us suppose that we have

∑p

i=1 aiηi =
∑p

i=1 biηi for all η ∈ B. Then, we have
∑p

i=1(ai − bi) ηi = 0 on B. Hence, if we define

B� = {λ ∈ D1×p | ∀ η ∈ B : λ η = 0},
then we obtain (a1−b1, . . . , ap−bp) ∈ B�.We easily check that we haveD1×q R ⊆
B�. Using the fact that B� ⊆ D1×p andD is a left noetherian domain, then we obtain
that B� is a finitely generated leftD-module, and thus, there existsR′ ∈ Dq ′×p such
that B� = D1×q ′ R′. Let us define the left D-module M ′ = D1×p/(D1×q ′ R′) and
B′ = kerF (R′.) ∼= homD(M

′,F). Then, by definition of B′, we have the trivial
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inclusion B ⊆ B′. Now, applying the functor hom(·,F) to the standard short exact
sequence [4,36]

0 −→ B�/(D1×q R) −→ M −→ M ′ −→ 0,

and using the fact that F is an injective leftD-module, we then obtain the following
short exact sequence:

0 ←− homD(B�/(D1×q R),F)←− homD(M,F)←− homD(M
′,F)←− 0.

In particular, we have B′ ⊆ B, and thus, we obtain B′ = B. Hence, we have
homD(B�/(D1×q R),F) = 0 and, using the fact that F is a cogenerator left
D-module, we obtain that B�/(D1×q R) = 0, i.e., B� = D1×q R. Hence, we
have (a1 − b1, . . . , ap − bp) ∈ B� = D1×q R, and thus, the residue class of
(a1 − b1, . . . , ap − bp) in M = D1×p/(D1×q R) vanishes, which proves that
m =∑p

i=1 ai yi =
∑p

i=1 bi yi .
2 follows from 1 and the definitions of a torsion element of M and an autono-

mous observable of B. Then, 3 directly follows from 2.
4. B is parametrizable iff there exists Q ∈ Dp×m such that B = QFm, i.e.,

iff we have the following exact sequence Fq R.←− Fp Q.←− Fm. Using the fact
that F is an injective cogenerator left D-module, we know that the previous se-

quence is exact iff the sequence D1×q .R−→ D1×p .Q−→ D1×m is exact, i.e., iff
M = D1×p/(D1×q R) ∼= D1×p Q.

5. If the parametrizable behaviour B is π -free, then, using 4, there exist Q ∈
Dp×m, T ∈ Dm×p and α ∈ Z+ such that M ∼= D1×p Q and T Q = πα Im. Let
us define the ring Dπ = {b/a | b ∈ D, a = πn, n ∈ Z+}. Using the fact that Dπ

is a flat D-module [4,36], we obtain Dπ ⊗D M ∼= D
1×p
π Q. Moreover, (1/πα) T

is a left-inverse of Q over the ring Dπ which easily implies that Dπ ⊗D M ∼=
D

1×p
π Q = D1×m

π .
Conversely, let us suppose that there exists 0 �= π ∈ D such that we have

Dπ ⊗D M ∼= D1×m
π . Using the fact that B is parametrizable, by 4, we obtain that

there exists Q ∈ Dp×m such that M ∼= D1×p Q. Since Dπ is a flat D-module
[4,36], we obtain Dπ ⊗D M ∼= D

1×p
π Q, and thus, D1×p

π Q ∼= D1×m
π . Therefore,

there exists S ∈ Dm×p
π such that S Q = Im. Finally, writing S = (1/πα) T , where

T ∈ Dm×p, we obtain T Q = πα Im.
6. A behaviour B is flat iff there exist Q ∈ Dp×m and T ∈ Dm×p such that

B = QFm and T Q = Im, i.e., iff we have the split exact sequence:

0 ←− RFp R.←− Fp Q.←− Fm ←− 0. (16)

Now, the injective cogenerator property of F implies that (16) is a split exact
sequence iff we have the split exact sequence

0 −→ D1×q R −→ D1×p .Q−→ D1×m −→ 0,

and thus, iff M ∼= D1×p Q = D1×m, i.e., iff M is a free left D-module. ��
We refer to [33] for a new characterization of controllability in the time-varying

case: An analytic time-varying controllable linear system is a projection of a flat
system.
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We recall the following well-known concepts of primeness developed in the
literature of multidimensional systems [40]. These concepts allow us to classify
the multidimensional linear systems with constant coefficients.

Definition 15 [12,18,27,40] Let D = R[x1, . . . , xn] be a commutative polyno-
mial ring, R a full row rank matrix (namely, its rows are D-linearly independent)
in Dq×p, J the ideal generated by the q × q minors of R and

V (J ) = {ξ ∈ C
n | ∀P ∈ J : P(ξ) = 0}

the algebraic variety defined by J . Then, we have the following definitions:

– R is called minor left-prime if dimCV (J ) ≤ n − 1, i.e., the greatest common
divisor of all the q × q minors of R is 1.

– R is called weakly zero left-prime if dimCV (J ) ≤ 0, i.e., all the q × q minors
of R may only vanish simultaneously in a finite number of points of C

n.
– R is called zero left-prime if dimCV (J ) = −1, i.e., all the q × q minors of R

do not vanish simultaneously in C
n.

Theorem 4 [12,18,27] Let D = R[x1, . . . , xn] be a commutative polynomial
ring, R ∈ Dq×p a full row rank matrix and M = D1×p/(D1×q R). Then,

1. R is minor left-prime iff the D-module M is torsion-free.
2. If n = 3, then R is weakly zero left-prime iff the D-module M is reflexive.
3. R is zero left-prime iff the D-module M is projective, i.e., free by the Quillen-

Suslin theorem (see 3 of Theorem 2).

Hence, some of the concepts defined in Definition 8 generalize to
non-commutative polynomial rings and non-full row rank matrices the well-known
concepts of primeness developed for multidimensional systems [27]. Moreover,
Theorem 3 shows that they play fundamental roles in control theory. Therefore, the
next sections are dedicated to giving effective algorithms which check the module
properties and compute parametrizations and flat outputs.

6 Constructive computation of exti
D(M, D)

In the previous section, we have shown how some structural properties of linear
systems (behaviours) are translated into module properties via a dictionary devel-
oped in Theorem 3. In Section 7, we shall prove that these module properties can
be checked by computing certain extension modules of the form extiD(N,D), i≥1.
Hence, we focus in this section on the constructive computation of such extension
modules.

6.1 Involutions

Definition 16 Let k be a field andD a (non-commutative) k-algebra.An involution
θ of D is a k-linear map θ : D → D satisfying

∀ a1, a2 ∈ D, θ(a1 · a2) = θ(a2) · θ(a1), (17)

θ ◦ θ = idD,

i.e., θ is an anti-automorphism of order two of the k-algebra D.
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Proposition 11 By means of an involution θ of D, left D-modules can be turned
into right D-modules and vice versa: Let D be a k-algebra, M a right D-module
and θ an involution of D, then we can define the left D-module M̃ , which is equal
to M as a set and which is endowed with the same addition as M , but with the
following left action of D:

a m = mθ(a), m ∈ M̃, a ∈ D.
Property (17) of θ ensures that M̃ is a well-defined left D-module.

Example 10 1. Let D be a commutative ring (e.g., D = k[x1, . . . , xn]). Then,
θ = idD is a trivial involution of D.

2. Let An(k) = k[x1, . . . , xn][∂1; σ1, δ1] . . . [∂n; σn, δn] be the Weyl algebra (see
Example 1). An involution θ of An(k) can be defined by:

xi 
−→ xi, ∂i 
−→ −∂i, 1 ≤ i ≤ n.

3. Let Sh = k[t][δh; σh, δ] be the shift Ore algebra (see Example 2).An involution
θ of Sh can be defined by t 
−→ −t, δh 
−→ δh.

4. Let Hh = k[t][∂; σ1, δ1][δh; σ2, δ2][τh; σ3, δ3] be the k-algebra of differen-
tial time-delay and advance operators (see Example 3 for more details). An
involution θ of Hh can be defined by

t 
−→ t, ∂ 
−→ −∂, δh 
−→ τh, τh 
−→ δh.

5. We can prove that there is no non-trivial involution for the Ore algebra Dh of
differential time-delay operators (see Example 3). Therefore, we need to embed
Dh into the k-algebra Hh of differential time-delay and advance operators and
use the involution defined in 4.

Definition 17 Let D be an Ore algebra with an involution θ , R ∈ Dq×p and
M = D1×p/(D1×q R) a left D-module.

– The dual M∗ of M is the right D-module defined by homD(M,D).
– The transposed module of M is the right D-module defined by:

N = Dq/(R Dp).

If D is a commutative ring, then we have N = D1×q/(D1×p RT ), which ex-
plains the terminology.

– The adjoint module of M is the left D-module defined by

Ñ = D1×q/(D1×p θ(R)),

where θ(R) is the transpose of the matrix obtained by applying θ to each of its
entries, i.e.:

θ(R) = (θ(Rij ))
T
1≤i≤q,1≤j≤p.

Hence, the left D-module Ñ = D1×q/(D1×p θ(R)) corresponds to the linear
system θ(R) z = 0, where z = (z1 : . . . : zq)T is the set of generators of Ñ
obtained by taking the residue classes of the standard basis vectors of D1×q in Ñ .
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Example 11 1. If D is a commutative ring, then θ(R) is just the transposed
matrix, namely θ(R) = RT , and the transposed D-module is defined by
Ñ = D1×q/(D1×p RT ) = Dq/(R Dp) = N .

2. Let us consider the k-algebraHh = k[t][∂; σ1, δ1][δh; σ2, δ2][τh; σ3, δ3] defined
in Example 3 and R = (t ∂ : −t2 δh) ∈ H 1×2

h . Then, using 4 of Example 10,
we obtain:

θ(R) =
( −∂ t
−τh t2

)

=
( −t ∂ − 1
−(t + h)2 τh

)

∈ H 2×1
h .

Finally, it is proved in [28] that N is uniquely defined by M up to a projective
equivalence [4,36]. In particular, this result shows that extiD(N,F), i ≥ 1, only de-
pends onM and on the rightD-module F and not on a particular presentation ofM .

6.2 Computation of extension modules

We only consider here extension modules of the form extiD(M,D), i ∈ Z+. It is
important to notice that extiD(M,D), i ∈ Z+, inherit a right module structure from
the right action of D.

The next algorithm gives a description of the leftD-module ˜ext1
D(M,D), which

corresponds to the right D-module ext1
D(M,D) (see Proposition 11).

Algorithm 2
Input: Ore algebra D satisfying (2) with an involution θ and

R = (RT1 : . . . : RTq )
T ∈ Dq×p.

Output: A list L = (L1, L2) of two matrices such that:

L1 ∈ Dm×q is such that ˜ext1
D(M,D) = (D1×m L1)/(D

1×p θ(R)),
where M = D1×p/(D1×q R),
L2 ∈ Dq×r is such that L1 = Syzygies (L2).

AdjExt1(R)
R2 ← Syzygies (R),
L2 ← θ(R2),
L1 ← Syzygies (L2),
L← (L1, L2).

Proof The moduleM is given as the cokernelD1×p/(D1×q R) of theD-morphism

D1×q .R−→ D1×p. Computing the second syzygy left D-module of M , we obtain a
matrix R2 ∈ Dr×q such that the sequence

D1×r .R2−→ D1×q .R−→ D1×p

is exact. Upon dualization, we get the complex

Dr R2.←− Dq R.←− Dp

with defect of exactness ext1
D(M,D) = ker(R2.)/(R D

p) at Dq . Taking adjoints
and writing L2 = θ(R2) ∈ Dq×r , we obtain the complex
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D1×r .L2←− D1×q .θ(R)←−−− D1×p

with defect of exactness ˜ext1
D(M,D). Computing the syzygy left D-module of

D1×q L2 yields the exact sequence

D1×r .L2←− D1×q .L1←− D1×m

such that ˜ext1
D(M,D) = ker(.L2)/(D

1×p θ(R)) = (D1×m L1)/(D
1×p θ(R)). ��

Example 12 We compute the extension Dh-modules extiDh(N,Dh), i = 1, 2, of
the Dh-module N = D1×3

h /(D1×4
h RT ) defined in Example 7. In Example 7, we

have already computed the free resolution (12) of N . Thus, we have ker(.RT ) =
DhQ

T , where QT is defined in Example 7. Then, using the fact that Dh =
R(a, k, ζ, ω)[∂; σ1, δ1][δh; σ2, δ2] is a commutative polynomial ring, we obtain
that θ(QT ) = Q (see 1 of Example 11). Hence, we have the following complex

0 ←− Dh

.Q←− D1×4
h

.R←− D1×3
h ←− 0 and its defects of exactness are defined by:

ext1Dh(N,Dh) = ker(.Q)/(D1×3
h R), (18)

ext2Dh(N,Dh) = Dh/(D
1×4
h Q). (19)

Following Algorithm 2, we need to compute the syzygy module of D1×4
h Q. The

Gröbner basis of

P = {(ω2 k a δh) λ− µ1, (ω2 ∂ + ω2 a) λ− µ2, (ω2 ∂2 + ω2 a ∂) λ− µ3,

(∂3 + 2 ζ ω ∂2 + a ∂2 + ω2 ∂ + 2 a ζ ω ∂ + a ω2) λ− µ4}
with respect to the elimination order induced by the degree reverse lexicographical
orders on λ and µ1 > µ2 > µ3 > µ4 > δh > ∂ respectively is:

G = {(∂ + a)µ1 − k a δ µ2, ω2 µ2 + (∂ + 2 ζ ω)µ3 − ω2 µ4, ∂ µ2 − µ3,

ω2 (∂ + a) λ− µ2, ω2 k a δ λ− µ1}.
See Appendix 10.3. Therefore, we obtain that the syzygy module of D1×4

h Q is
defined by the matrix

L =




∂ + a −k a δh 0 0

0 ω2 ∂ + 2 ζ ω −ω2

0 ∂ −1 0



 ∈ D3×4
h , (20)

and thus, we have ext1Dh(N,Dh) = (D1×3
h L)/(D1×3

h R). Finally, using (19), the
Dh-module ext2Dh(N,Dh) corresponds to the linear system defined by Qz = 0,
namely:






(ω2 k a δh) z = 0,

(ω2 ∂ + ω2 a) z = 0,

(ω2 ∂2 + ω2 a ∂) z = 0,

(∂3 + (2 ζ ω + a) ∂2 + (ω2 + 2 a ζ ω) ∂ + a ω2) z = 0.

(21)

We note that ext2Dh(N,Dh) �= 0 because, otherwise, in G, we would have had

λ−∑4
i=1 Pi µi , for some Pi ∈ Dh.
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The quotient module ˜ext1
D(M,D) = (D1×m L1)/(D

1×p θ(R)) can be com-
puted using elimination techniques similar to Algorithm 1.

Algorithm 3
Input: T ∈ Da×b, S = (ST1 : . . . : STc )

T ∈ Dc×b s.t. D1×a T ⊆ D1×c S
Output: A set C of generating equations satisfied by the residue class

zi of Si = (Si1 : . . . :Sib) in the left module (D1×c S)/(D1×a T ).
Quotient(S, T )

Introduce the indeterminates λ1, . . . , λb and µ1, . . . , µc over D.
for i = 1, . . . , c do

L←
{

b∑

j=1
Sij λj − µi

}

∪
{

b∑

j=1
Tkj λj | k = 1, . . . , a

}

Compute the Gröbner basis Gi of L in
⊕b

j=1D λj ⊕Dµi
with respect to an order which eliminates the λj ’s.

endfor
C ←⋃c

i=1(Gi ∩Dµi).
Remark 4 In the result of the preceding algorithm, eachGi ∩Dµi is a generating
set of the relations fulfilled by zi . Let us notice that every polynomial inGi ∩Dµi
has the form P µi , for a certain P ∈ D.

Example 13 In Example 12, we proved that

ext1Dh(N,Dh) = (D1×3
h L)/(D1×3

h R),

whereR (resp.,L) is defined by (5) (resp., (20)),N = D1×3
h /(D1×4

h RT ) andDh =
R(a, k, ζ, ω)[∂; σ1, δ1][δh; σ2, δ2]. In order to check whether or not ext1

Dh
(N,Dh)

is equal to 0, we apply Quotient(L,R) described in Algorithm 3. If we denote
R = (RT1 : RT2 : RT3 )

T , L = (lT1 : lT2 : lT3 )
T , then we easily check that we

have Gi ∩ Dh µi = {µi}, for i = 1, . . . , 3, because we have l1 = R1, l2 = R3,
l3 = R2. Hence, we have D1×3

h L = D1×3
h R, which shows that ext1Dh(N,Dh) =

(D1×3
h L)/(D1×3

h R) = 0.

The next algorithm gives a description of ˜ext1
D(M,D) in which the quotient is

explicitly computed.

Algorithm 4
Input: An Ore algebra D satisfying (2) with an involution θ and

R = (RT1 : . . . : RTq )
T ∈ Dq×p, M = D1×p/(D1×q R).

Output: A tuple L = (L0, L1, L2) such that
˜ext1
D(M,D) = (D1×m L1)/(D

1×p θ(R)),
L2 ∈ Dq×r , L1 = (lT1 : . . . : lTm)

T = Syzygies(L2) ∈ Dm×q and
L0 is a generating set for the relations satisfied by the residue
class zi of li in the left D-module (D1×m L1)/(D

1×p θ(R)).
Ext1(R)

(L1, L2)← AdjExt(R),
L0 ← Quotient(L1, θ (R)),
L← (L0, L1, L2).
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Remark 5 In our implementation of Ext1 in OreModules [8], the first matrix L0
is actually a matrix in block diagonal form, where each block consists of only one
column and possibly several rows. The entries of the i th block form a Gröbner basis

of the annihilator of the i th row of L1 in the left D-module ˜ext1
D(M,D). Hence,

L0 is an identity matrix iff ext1
D(M,D) = 0.

Finally, let us notice that while using Ext1, we start to compute a free resolu-
tion of the left D-module M (see Algorithm 2). If we denote this free resolution
by

. . .
.R3−→ D1×p2

.R2−→ D1×p1
.R1−→ D1×p0

κ−→ M −→ 0,

p0 = p, p1 = q and R1 = R, then Ext1(Ri) computes ˜extiD(M,D), i ≥ 1.

7 Characterization of module properties

The main motivation for introducing the concept of extension functor is explained
in the next theorems which give an effective way to check the module properties
defined in Section 3, and thus, the structural properties of the corresponding linear
system (see Section 5).

Definition 18 LetA andB be two rings andM an abelian group. Then,M is said to
be an A-B-bimodule, denoted AMB , ifM is a left A-module and a right B-module
and the two actions satisfy the following associative law:

∀ a ∈ A, ∀ b ∈ B, ∀m ∈ M, a (mb) = (a m) b.

In this section,D is supposed to be a left and a right noetherian domain. Then,
by Proposition 1, we know that D satisfies the left and right Ore properties. We
recall a classical result in homological algebra saying that a short exact sequence
of bimodules gives rise to a long exact sequence of the cohomology right modules.

Lemma 1 [4,36] Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence
of D-D-bimodules and N a left D-module. Then, we have the following exact
sequence of right D-modules:

0 −→ homD(N,A) −→ homD(N,B) −→ homD(N,C)

−→ ext1
D(N,A) −→ ext1

D(N,B) −→ ext1
D(N,C)

−→ ext2
D(N,A) −→ . . .

Let us state the first main result of this section.

Theorem 5 [29] Let M be a left D-module defined by the finite presentation

F1
d1−→ F0

κ−→ M −→ 0, (22)

and N the transposed right D-module of M (see Definition 17) defined by:

0 ←− N ←− F ∗
1

d∗1←− F ∗
0 ←− M∗ ←− 0. (23)

Then, we have t (M) ∼= ext1
D(N,D). In particular,M is a torsion-free leftD-module

iff ext1
D(N,D) = 0.
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Proof Let X be a D-D-bimodule. Then, applying the right exact functor X ⊗D ·
[4,36] to the exact sequence (22) gives the exact sequence

X ⊗D F1
idX⊗d1−−−→ X ⊗D F0

idX⊗κ−−−→ X ⊗D M −→ 0,

whereas applying the left exact functor hom(·, X) to the exact sequence (23) yields
the exact sequence:

0 −→ homD(N,X) −→ homD(F
∗
1 , X) −→ homD(F

∗
0 , X).

Using that the Fi are finitely generated free left D-modules, we have [4,36]

homD(F
∗
i , X)

∼= X ⊗D Fi, i = 1, 2,

and thus, we finally obtain the following exact sequence:

0 −→ homD(N,X) −→ X ⊗D F1 −→ X ⊗D F0 −→ X ⊗D M −→ 0. (24)

Now, let K = Q(D) be the left and right quotient field of D [17] with its
bimodule structure and consider the exact sequence of D-D-bimodules:

0 −→ D −→ K −→ K/D −→ 0. (25)

Using Lemma 1 with A = D, B = K , C = K/D, we get the exact sequence
of right D-modules

0 −→ homD(N,D) −→ homD(N,K) −→ homD(N,K/D)

−→ ext1
D(N,D) −→ 0, (26)

because ext1
D(N,K) = 0 since K is a left injective D-module [4,36].

Moreover, by applying the right exact functor ·⊗DM to the short exact sequence
(25), we obtain the exact sequence of left D-modules

M
iK−→ K ⊗D M −→ (K/D)⊗D M −→ 0,

which extends to the following exact sequence

0 −→ t (M) −→ M
iK−→ K ⊗D M −→ (K/D)⊗D M −→ 0, (27)

where the kernel of the D-morphism iK , defined by

ker iK = {m ∈ M | iK(m) = 1 ⊗m = 0},
is the left submodule of M formed by all elements m ∈ M for which there exists
0 �= d ∈ D such that d m = 0, i.e., the torsion submodule t (M) of M .

Using the fact that the Fi are finitely generated free left D-modules, and thus,
flat left D-modules [4,36], by applying · ⊗D Fi to the exact sequence (25), we
obtain the exact sequence:

0 −→ Fi −→ K ⊗D Fi −→ (K/D)⊗D Fi −→ 0. (28)
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Finally, combining the exact sequences (24) for X = D, K and K/D, (26),
(27) and (28) yields the commutative exact diagram:

0
↓

0 0 0 t (M)
↓ ↓ ↓ ↓

0 −→ homD(N,D) −→ F1 −→ F0 −→ M −→ 0
↓ ↓ ↓ ↓

0 −→ homD(N,K) −→ K ⊗D F1 −→ K ⊗D F0 −→ K ⊗D M −→ 0
↓ ↓ ↓ ↓

0 −→ homD(N,K/D) −→ (K/D)⊗D F1 −→ (K/D)⊗D F0 −→ (K/D)⊗D M −→ 0.
↓ ↓ ↓ ↓

ext1D(N,D) 0 0 0
↓
0

Then, an easy chase in the previous commutative exact diagram proves that:

t (M) ∼= ext1
D(N,D).

��
Lemma 2 [4] If M1

α1−→ M2
α2−→ M3

α3−→ M4 is a complex of (left/right)
D-modules, then we have an exact sequence

0 −→ H(M2) −→ coker α1 −→ ker α3 −→ H(M3) −→ 0,

where H(Mi) denotes the defect of exactness of the complex at Mi , namely,
H(Mi) = ker αi/im αi−1, i = 2, 3, and coker α1 = M2/im α1.

We are now in position to state the second main result.

Theorem 6 Let M be a finitely presented left D-module, i.e., defined by the finite
presentation (22), and N the transposed module ofM defined by the finite presen-
tation (23). Then, we have the following exact sequence:

0 −→ ext1
D(N,D) −→ M

εM−→ M∗∗ −→ ext2
D(N,D) −→ 0. (29)

Hence, M is a reflexive left D-module iff extiD(N,D) = 0 for i = 1, 2.

Proof Let (22) be a finite presentation ofM . Then, its transposed module is defined
by N = coker d∗1 . We extend this finite presentation to an exact sequence by com-
puting the second and the third syzygy module ofN . We obtain the following exact
sequence:

0 ←− N ←− F ∗
1

d∗1←− F ∗
0

d∗0←− F ∗
−1

d∗−1←−− F ∗
−2. (30)

Dualizing the exact sequence (30) and using the fact that Fi is canonically isomor-
phic to F ∗∗

i because the Fi are finitely generated free left D-modules, we obtain
the following complex:

F1
d1−→ F0

d0−→ F−1
d−1−→ F−2. (31)
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Now, by applying Lemma 2 to the complex (31) and using the definitions of
ext1

D(N,D) and ext2
D(N,D), we get the exact sequence:

0 −→ ext1
D(N,D) −→ coker d1 −→ ker d−1 −→ ext2

D(N,D) −→ 0.

According to the presentation of M , we have M = coker d1. Now, using the
exact sequences (23) and (30), we obtain the following exact sequence:

0 ←− M∗ = ker d∗1 ←− F ∗
−1

d∗−1←−− F ∗
−2. (32)

Applying the left exact functor homD(·,D) to (32) [4,36] yields the following
exact sequence

0 −→ M∗∗ −→ F−1
d−1−→ F−2,

proving that M∗∗ = ker d−1. Finally, we have the exact sequence (29), which
proves that M ∼= M∗∗ iff extiD(N,D) = 0 for i = 1, 2. ��
Corollary 1 LetM be a finitely generated leftD-module. ThenM is a torsion left
D-module iff homD(M,D) = 0.

Proof ⇒ If M is a torsion left D-module, then, for every m ∈ M , there exists
0 �= P ∈ D such that P m = 0. Therefore, for every f ∈ homD(M,D), we
have P f (m) = f (P m) = 0. Hence, using the fact that f (m) ∈ D, we obtain
f (m) = 0, i.e., f = 0, and thus, homD(M,D) = 0.

⇐ If M∗ = homD(M,D) = 0, then M∗∗ = homD(M
∗,D) = 0. Then, using

the exact sequence (29), we obtain that ext1
D(N,D) = ker εM = M . Finally, using

Theorem 5, we conclude that t (M) = ext1
D(N,D) = M , i.e., M is a torsion left

D-module. ��
Finally, we give the last important result of this section.

Theorem 7 Let us suppose that rgldD = n < ∞ and let M be a left D-module
defined by the finite presentation (22) and N its transposed module defined by the
finite presentation (23). Then,M is a projective leftD-module iff extiD(N,D) = 0,
i = 1, . . . , rgldD.

Proof ⇒ Let us suppose that M is a projective left D-module. In particular, M is
reflexive, and thus, by Theorem 6, we have extiD(N,D) = 0, i = 1, 2.

From the exact sequence (23), we deduce [4,36]:

exti+2
D (N,D) ∼= extiD(M

∗,D), i ≥ 1.

Now, using the fact that M is a projective left D-module, we obtain that M∗ is a
projective right D-module [4,36]. Therefore, we have extiD(M

∗,D) = 0, i ≥ 1
[4,36] which implies that extiD(N,D) = 0, i ≥ 3, and finally proves the first
implication.

⇐ Let us suppose that extiD(N,D) = 0, i = 1, . . . , rgldD. We consider a
projective resolution of length rgldD of the right D-module N :

0 ←− N ←− P0
r1←− P1

r2←− P2
r3←− . . .

rrgldD←−−− PrgldD ←− 0. (33)
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Dualizing (33) and using the fact that extiD(N,D) = 0, i = 1, . . . , rgldD, we
obtain that the following complex

0 −→ N∗ −→ P ∗
0

r∗1−→ P ∗
1

r∗2−→ P ∗
2

r∗3−→ . . .
r∗rgldD−−→ P ∗

rgldD −→ 0 (34)

is an exact sequence. The dual of a projective D-module is also a projective
D-module [4,36], and thus, P ∗

i is a projective leftD-module for i = 0, . . . , rrgldD .
Moreover, the exact sequence (34) ends with a projective left D-module P ∗

rgldD ,
and thus, (34) is a split exact sequence (see Proposition 6). Therefore, by induction,
we deduce that im r∗i is a projective leftD-module for i = 1, . . . , rgldD, and thus,
we obtain the split exact sequence

0 −→ N∗ −→ P ∗
0 −→ im r∗1 −→ 0,

which shows that P ∗
0
∼= N∗ ⊕ im r∗1 , i.e.,N∗ is a projective leftD-module. Hence,

the rightD-moduleN∗∗ is also projective. Dualizing again the split exact sequence
(34) and using the fact that the Pi are projective D-modules, and thus, reflexive,
namely P ∗∗

i
∼= Pi , we obtain the split exact sequence

0 ←− N∗∗ ←− P0
r1←− P1

r2←− P2
r3←− . . .

rrgldD←−−− PrgldD ←− 0,

from which we deduce that N ∼= N∗∗, and thus, N is a projective rightD-module.
The exact sequence (23) ends with the projective rightD-moduleN , and thus, (23)
is a split exact sequence. Thus, we deduce thatM∗ is a projective rightD-module,
which implies that M∗∗ is a projective left D-module. Finally, using the fact that
extiD(N,D) = 0, i = 1, 2, by Theorem 6, we obtain that M ∼= M∗∗, and thus, M
is a projective left D-module. ��

If D satisfies the properties stated in 2 of Theorem 2, then Theorem 7 gives a
constructive way to check stably freeness.

Corollary 2 Let M = D1×p/(D1×q R) be a finitely presented left D-module, F
an injective cogenerator leftD-module and B = kerF (R.). Then, B is parametriz-
able iff t (M) = 0, i.e., iff B is controllable. In this case, the matrix L2 in Ext1(R)
is a parametrization of B.

Proof ⇒ Let us suppose that B is parametrizable. By 4 of Theorem 3, there exists
Q ∈ Dp×m such that M = D1×p/(D1×q R) ∼= D1×p Q ⊆ D1×m. Therefore, the
leftD-moduleM is isomorphic to a left submodule φ(M) ofD1×m, where φ is the
isomorphism fromM toD1×p Q. Let us suppose that there exists a non-zero torsion
element z ∈ M satisfying d z = 0, where 0 �= d ∈ D. Then, we have φ(d z) = 0,
and thus, using the fact that φ is a D-morphism, then we obtain d φ(z) = 0, i.e.,
φ(z) is a torsion element of D1×m. But, D1×m is a free left D-module, and thus,
t (D1×m) = 0, which proves that t (M) = 0. By 3 of Theorem 3, we conclude that
B is controllable.

⇐ If B is controllable, then, by 3 of Theorem 3, we obtain that t (M) = 0. Let
us consider the following finite free resolution of N = Dq/(RDp):

0 ←− N ←− Dq R.←− Dp Q.←− Dm.



348 F. Chyzak et al.

Using Theorem 5 and t (M) = 0, we obtain t (M) ∼= ext1
D(N,D) = 0, and thus, we

have the following exact sequenceD1×q .R−→ D1×p .Q−→ D1×m. Therefore, we have
M = D1×p/(D1×q R) ∼= D1×p Q, i.e., by 4 of Theorem 3, B is parametrizable. ��
Example 14 Let us check whether or not the differential time-delay system defined
by (4) is controllable and parametrizable. By 3 of Theorem 3, we know that (4)
is controllable iff the Dh-module M = D1×4

h /(D1×3
h R) is torsion-free, where R

is defined by (5). By Theorem 5, this is equivalent to ext1
Dh
(N,Dh) = 0, where

N = D1×3
h /(D1×4

h RT ) (see 1 of Example 11). Using Example 13, we find that (4)
is controllable and, by Corollary 2, we deduce that a parametrization of (4) is given
by Q defined in Example 7:






x1(t) = (ω2 k a δh) z(t),

x2(t) = (ω2 ∂ + ω2 a) z(t),

x3(t) = (ω2 ∂2 + ω2 a ∂) z(t),

u(t) = (∂3 + (2 ζ ω + a) ∂2 + (ω2 + 2 a ζ ω) ∂ + a ω2) z(t).

(35)

Finally, the fact that ext2
Dh
(N,Dh) �= 0 implies that M = D1×4

h /(D1×3
h R) is not a

projective, and thus, is not a freeDh-module (see 3 of Theorem 2). The obstruction
forM to be free is given by (21): the fact that system (21) is not equivalent to z = 0
means that it is not possible to express z in terms of aDh-linear combination of x1,
x2, x3 and u. Therefore, by 6 of Theorem 3, (4) is not a flat differential time-delay
system.

A more general concept of parametrizability can be defined if we allow the
integration of autonomous observables. For more details, we refer to [32].

8 π -freeness, minimal parametrizations and flatness

8.1 Left-inverses & π -freeness

Projectiveness is a necessary condition for flatness. Therefore, by Theorem 7, we
need to compute extiD(N,D) for i = 1, . . . , rgldD. However, if the system is
defined by a full row rank matrix R, then it is easy to see that the left D-module
M = D1×p/(D1×q R) is projective iffM is stably free. Then, the next proposition
gives a more economic way to check stably freeness.

Proposition 12 IfR has full row rank, namely, S(D1×q R) = 0, then the following
assertions are equivalent:

1. M is a stably free left D-module,
2. ∃ S ∈ Dp×q : R S = Iq ,
3. N = ext1

D(M,D) = 0.

Proof Using the fact thatM is defined by a full row rank matrix, we have the exact
sequence:

0 −→ D1×q .R−→ D1×p −→ M −→ 0. (36)
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Dualizing this exact sequence, we obtain the following exact sequence

0 ←− N ←− Dq R.←− Dp ←− M∗ ←− 0, (37)

where we easily check that N = ext1
D(M,D).

1 ⇒ 2. Let us suppose that M is a stably free left D-module. Therefore, (36)
is a split exact sequence because it ends with a projective left D-module (see
Proposition 6), i.e., there exists S ∈ Dp×q such that R S = Iq .

2 ⇒ 3. Let us suppose that there exists S ∈ Dp×q such that R S = Iq . Hence,
for allλ ∈ Dq , we haveλ = Rµwhereµ = S λ ∈ Dp. Therefore, theD-morphism
R. : Dp → Dq is surjective, and thus, N = coker(R.) = 0.

3 ⇒ 1. Let us suppose thatN = 0. Then, (37) ends with a freeD-module, and
thus, (37) splits (see Proposition 6), i.e., there exists S ∈ Dp×q such thatR S = Iq .
Therefore, (36) is also a split exact sequence, and thus, we haveD1×p ∼= D1×q⊕M ,
which proves that M is a stably free left D-module. ��

Hence, an effective test of stably freeness checks whether or not there exists a
right-inverse of R. If Gröbner bases for left modules are available, then the com-
putation of left-inverses is more convenient.

Algorithm 5
Input: An Ore algebra D satisfying (2) and a matrix R ∈ Dq×p.
Output: A matrix S ∈ Dp×q satisfying SR = Ip if it exists and [ ] else.
Left-Inverse(R)

Introduce indeterminates λj , j = 1, . . . , p and µi, i = 1, . . . , q, over D.
P ← {∑p

j=1 Rij λj − µi | i = 1, . . . , q}.
Compute the Gröbner basis G of P in

⊕p

i=1D λi ⊕
⊕q

i=1Dµi
with respect to an order which eliminates the λi’s.

Remove from G the elements which do not contain any λi
and call G′ this new set.

Write G′ in the form Q1 · (λ1 : . . . : λp)T −Q2 · (µ1 : . . . : µq)T .
If Q1 is invertible over D, return S = Q−1

1 Q2 ∈ Dp×q , else return [ ].

Now, using an involution θ ofD, we can compute a right-inverse S ∈ Dp×q of
R ∈ Dq×p (R S = Iq), when such an inverse exists, by defining

Right-Inverse(R) = θ(Left-Inverse(θ(R))).

Therefore, ifR ∈ Dq×p has full row rank, by 2 of Proposition 12, the leftD-module
M = D1×p/(D1×q R) is stably free iff Right-Inverse(R) �= [ ].

Example 15 Let us consider again the differential time-delay system defined by
(4). Applying Algorithm 5 to θ(R) = RT , where R is defined by (5), we are led to
the Gröbner basis G given in Example 7. We easily check that G does not contain
any relation of the form λi −

∑4
j=1 Sij µj , where Sij ∈ Dh, for i = 1, 2, 3. There-

fore, M = D1×4
h /(D1×3

h R) is not a projective Dh-module, and thus, (4) is not a
flat system [20] (see also Example 14).
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IfD = k[x1, . . . , xn] is a commutative polynomial ring over a field k, then we
can study the obstructions for a system to be free (i.e., projective by the Quillen-Sus-
lin theorem stated in 3 of Theorem 2). In this case, they are given by polynomials
containing a certain number of variables xi which depends on the properties of the
corresponding D-module M .

Definition 19 Let D = k[x1, . . . , xn], R ∈ Dq×p be a full row rank matrix,
M = D1×p/(D1×q R) and N = D1×9/(D1×pRT ). Then, we define:

i(M) = min
i≥1

{i − 1 | extiD(N,D) �= 0}.

If no such integer exists, then we set i(M) = ∞. The index i(M) is called the
torsion-free degree of M .

We note that the torsion-free degree of the moduleM = D1×p/(D1×q R) over
D = k[x1, . . . , xn] measures how far M is from being projective. In particular,
i(M) = 0 means thatM has some torsion elements, whereas i(M) = 1 means that
M is a torsion-free but not reflexive D-module, . . . , and i(M) = ∞ means that
for all i ≥ 1, we have extiD(N,D) = 0, i.e.,M is a projective, i.e., freeD-module
(see Theorem 7).

In the next proposition, we shall need the following lemma.

Lemma 3 [4,36] LetD be a commutative noetherian ring,M a finitely generated
D-module and S a multiplicatively closed subset of D (namely, 1 ∈ S and for all
s1, s2 ∈ S, we have s1 s2 ∈ S). Let us introduce the commutative noetherian ring
S−1D = {a/s | a ∈ D, s ∈ S} and the S−1D-module

S−1D ⊗D M = {m/s |m ∈ M, s ∈ S}.
Then, we have:

S−1D ⊗D extjD(M,D) ∼= extj
S−1 D

(S−1D ⊗D M, S
−1D), j ≥ 0.

Proposition 13 [31] LetD = k[x1, . . . , xn], R ∈ Dq×p be a full row rank matrix
and theD-modules,M = D1×p/(D1×q R) and N = D1×q/(D1×p RT ). For every
partition ofX = {x1, . . . , xn} into two disjoint subsetsX1 andX2 with respectively
n− i(M) elements and i(M) elements, there exists

{
πn−i(M) ∈ k[X1], if 0 ≤ i(M) ≤ n− 1,

πn−i(M) ∈ k, if i(M) = ∞,

such that the module over Dπn−i(M) = {d/a | d ∈ D, a = π
j

n−i(M), j ∈ Z+}

Dπn−i(M) ⊗D M =
{
m/a | m ∈ M, a = π

j

n−i(M), j ∈ Z+
}

is free. Hence, there exist Q ∈ Dp×(p−q), S ∈ Dp×q , T ∈ D(p−q)×p and ν ∈ Z+
such that:

(S : Q)

(
R
T

)

= πνn−i(M) Ip,
(
R
T

)

(S : Q) = πνn−i(M) Ip. (38)
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Proof If i(M) = ∞, then, using 2 of Proposition 7, we have:

extiD(N,D) = 0, i = 1, . . . , gldD = n.

So, by Proposition 7, M is a projective D-module, and thus, by 3 of Theorem 2,
M is a free D-module. Hence, we can choose πn−∞ = 1 ∈ k \ {0} and we have
Dπn−∞ = D. Using the fact that R has full row rank, then we have the following
exact sequence:

0 −→ D1×q .R−→ D1×p −→ M −→ 0. (39)

We apply the functorK⊗D · to the exact sequence (39), whereK = Q(D) denotes
the quotient field of D. Using the fact that K is a flat D-module [4,36], then we
obtain the exact sequence

0 −→ K1×q .R−→ K1×p −→ K ⊗D M −→ 0,

which shows that:

rankD(M) = dimK(K ⊗D M) = dimKK
1×p − dimKK

1×q = p − q.
Hence, since M is free, it is then isomorphic to Dp−q . We obtain the following
split exact sequence

0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0,
.S←− .T←−

which gives identities (38).
Now, let us suppose that we have 0 ≤ i(M) ≤ n− 1. Then, we have:

extjD(N,D) = 0, 0 ≤ j ≤ i(M).

Let us consider the multiplicatively closed subset S = k[X1] \ {0} of D and
S−1D = k(X1)[X2]. By 2 of Proposition 7, we have gld S−1D = i(M), and thus,
for the S−1D-module S−1D ⊗D N , we have [35]:

∀ j ≥ i(M)+ 1, extj
S−1 D

(S−1D ⊗D N, S
−1D) = 0.

Then, by Lemma 3, we conclude that, for all j ≥ i(M)+ 1, we have:

S−1D ⊗D extjD(N,D) ∼= extj
S−1 D

(S−1D ⊗D N, S
−1D) = 0,

Let us consider i(M)+1 ≤ j ≤ n. One can prove that a non-zero extjD(N,D) is
a torsionD-module for j ≥ 1 (see [25,29] for more details). So, if extjD(N,D) �= 0,
then:

ann(extjD(N,D)) = {P ∈ D | ∀m ∈ extjD(N,D), P m = 0} �= 0.

If iS−1D : extjD(N,D)→ S−1D⊗extjD(N,D) denotes the canonicalD-morphism
(see (27)), then, for 0 �= z ∈ extjD(N,D), we have:

iS−1D(z) = 0 ⇔ {P ∈ D |P z = 0} ∩ S �= ∅.
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Therefore, using the fact that we have S−1D ⊗ extjD(N,D) = 0, we obtain:

ann(extjD(N,D)) ∩ (k[X1] \ {0}) �= ∅.

For i(M) + 1 ≤ j ≤ n, if extjD(N,D) �= 0, then we can take any element
pj ∈ ann(extjD(N,D)) ∩ (k[X1] \ {0}), else, we take pj = 1. Let us denote by
πn−i(M) the product of the pj for i(M) + 1 ≤ j ≤ n. By construction, we have
πn−i(M) ∈ k[X1] and:

πn−i(M) extjD(N,D) = 0, 0 ≤ j ≤ n.

If we denote by Sπn−i(M) = {1, πn−i(M), π2
n−i(M), . . . } the multiplicatively closed

subset of D defined by πn−i(M) and

Dπn−i(M) � S−1
πn−i(M) D = {d/a | d ∈ D, a = (πn−i(M))m, m ∈ Z+},

then, using Lemma 3, fromDπn−i(M)⊗D extjD(N,D) = 0, 0 ≤ j ≤ n,we conclude
that:

extjDπn−i(M) (Dπn−i(M) ⊗D N,Dπn−i(M) ) = 0, 0 ≤ j ≤ n.

Since the transposed module of M ′ � Dπn−i(M) ⊗D M is Dπn−i(M) ⊗D N (see [31]
for more details), by Theorem 7, it follows thatM ′ is a projectiveDπn−i(M)-module,
and thus, by 3 of Theorem 2, M ′ is a free Dπn−i(M)-module.

Finally, using the fact thatM ′ is a freeDπn−i(M)-module of rankp−q, there exist

Q ∈ Dp×(p−q)
πn−i(M) , S ∈ Dp×q

πn−i(M) and T ∈ D(p−q)×p
πn−i(M) such that we have the following

split exact sequence

0 −→ D
1×q
πn−i(M)

.R−→ D
1×p
πn−i(M)

.Q−→ D
1×(p−q)
πn−i(M) −→ 0,

.S←− .T←−
or, equivalently, the following Bézout identities:

(S : Q)

(
R

T

)

= Ip,

(
R

T

)

(S : Q) = Ip.

Let us writeQ = π−α
n−i(M) Q

′,S = π
−β
n−i(M) S

′ andT = π
−γ
n−i(M) T

′, where the entries
ofQ′, S ′ and T ′ belong toD and α, β, γ ∈ Z+. Let us define ν = max(α+ γ, β),
θ = ν − (α + γ ) ∈ Z+, σ = ν − β ∈ Z+, and the following matrices:

Q = πθn−i(M) Q
′ ∈ Dp×(p−q), T = T ′ ∈ D(p−q)×p, S = πσn−i(M) S

′ ∈ Dp×q .

Then, using the previous Bézout identities, we finally obtain (38). ��
In order to compute such a polynomial πn−i(M), we can follow the next algo-

rithm.
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Algorithm 6
Input: A commutative polynomial ring D = k[x1, . . . , xn], where k is

a field, a left D-module M = D1×p/(D1×q R), i(M) the torsion-
free degree of M , a partition of X = {x1, . . . , xn} into disjoint
subsets X1 and X2 with resp. n− i(M) and i(M) elements.

Output: An ideal J of k[X1] such that any element π ∈ J satisfies
that Dπ ⊗D M is a free Dπ -module.

π -polynomial(R,X1)
R1 ← RT .
for i = i(M)+ 1, . . . , n do
Li = [Li0, Li1, Li2] ← Ext1 (Ri).
Introduce the indeterminates µj , j = 1, . . . , rowdim(Li1) over D.
Pij ← {d ∈ D | d · µj ∈ Li0}, j = 1, . . . , rowdim(Li1).
Ri+1 ← Syzygies (Ri).

endfor
I ←⋂

i,j 〈Pij 〉.
J ← I ∩ k[X1].

In π -polynomial, the set {d ∈ D | d · µj ∈ Li0} is obtained in the step
Quotient of Ext1(Ri). See Remark 4 for more details. Moreover, in the last step
of π -polynomial, the intersection of a left ideal with k[X1] can be computed by
means of elimination techniques (see [2] and Example 5).

Example 16 In Examples 14 and 15, we proved that the system defined by (4)
is not flat, i.e., the associated Dh-module M = D1×4

h /(D1×3
h R) is not free. Let

us find a polynomial π ∈ R(a, k, ζ, ω)[δh; σ2, δ2] such that the (Dh)π -module
(Dh)π ⊗Dh M is free. In Examples 12 and 13, we saw that ext1

Dh
(N,Dh) = 0 and

ext2
Dh
(N,Dh) �= 0. Therefore, the torsion-free degree i(M) of M is 1. Applying

Algorithm 6 and using (21), we find that:

I = (ω2 k a δh, ω
2 ∂ + ω2 a, ω2 ∂2 + ω2 a ∂, ∂3 + (2 ζ ω + a) ∂2

+(ω2 + 2 a ζ ω)+ a ω2).

Thus, we have I∩R(a, k, ζ, ω)[δh; σ2, δ2] = (δh), which shows that (4) is δh-free.
See [20] for applications to the motion planning problem.

See [31] for an extension of Proposition 13 to non-full row rank matrices.

8.2 Minimal parametrizations and flatness

The next theorem generalizes a result of [26] obtained for systems of partial differ-
ential equations. We assume that D is a left/right noetherian domain.

Theorem 8 [30] Let M be a torsion-free left D-module defined by the finite pre-
sentation (22). Then, there exists a left D-morphism d ′0 : F0 −→ F ′

−1, where F ′
−1

is a finitely generated free left D-module, such that we have the exact sequence

F1
d1−→ F0

d ′0−→ F ′
−1 and M ′

−1 = coker d ′0 is either 0 or a torsion left D-module.
Such a morphism d ′0 is then called a minimal parametrization.
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Proof Let us consider the beginning of a free resolution of the transposed right
D-module N of M , i.e., we have the following exact sequence

0 ←− N ←− F ∗
1

d∗1←− F ∗
0

d∗0←− F ∗
−1 ←− L←− 0,

where F ∗
−1 is a finitely generated free right D-module and L = ker d∗0 .

If we haveL = 0, dualizing the previous exact sequence and using the fact that
M is a torsion-free left D-module, and thus, ext1

D(N,D) = 0 by Theorem 5, then
the following complex

F1
d1−→ F0

d0−→ F−1 −→ 0

is exact in F0. Then, we have ext2
D(N,D) = coker d0. Hence, ext2

D(N,D) is either
0 if M is a reflexive left D-module (and thus, M ∼= im d0 = F−1 is a free left
D-module) or, by Corollary 1, ext2

D(N,D) is a non-zero torsion left D-module
because we have homD(ext2

D(N,D),D) = 0. Hence, d ′0 = d0 and F ′
0 = F0

satisfy the assertions and d0 is a minimal parametrization of M .
Now, let us suppose that L �= 0. Then, we have the following exact sequence

0 ←− im d∗0 ←− F ∗
−1 ←− L←− 0, from which we deduce that:

l′ � rankD im d∗0 = rankD F
∗
−1 − rankD L ≥ 1. (40)

Indeed, if rankD im d∗0 = dimK(K ⊗D im d∗0 ) = 0, then K ⊗D im d∗0 = 0, i.e.,
im d∗0 is a torsion right D-module. But, im d∗0 ⊆ F ∗

0 and F ∗
0 is a free, and thus,

torsion-free right D-module. Hence, im d∗0 = 0, and thus, ker d∗1 = im d∗0 = 0,
i.e., F ∗

−1 = 0 which contradicts the hypothesis that L �= 0.
From the matrix R0 which represents d∗0 in the standard bases of F ∗

−1 and F ∗
0 ,

let us extract a ((rankD F ∗
0 )× l′)-submatrixR′

0 composed byD-linear independent
columns of R0, which, in turn, defines a right D-morphism d ′∗0 : F ′∗

−1 −→ F ∗
0 in

the standard bases, where F ′∗
−1 is a free right D-module of rank l′. Using the fact

that R′
0 has full column rank, then d ′∗0 is injective. Thus, we have the following

commutative exact diagram

0
↑

0 coker φ
↑ ↑

0 ←− N1 ←− F ∗
0

d∗0←− F ∗
−1 ←− L ←− 0

‖ ↑ φ

0 ←− N ′
1 ←− F ∗

0

d ′∗0←− F ′∗
−1 ←− 0,

↑ ↑
0 0

(41)

where d ′∗0 = d∗0 ◦ φ, N1 = coker d∗−1 and N ′
1 = coker d ′∗−1. Using the snake lemma

[4,36], we obtain the following exact sequence:

0 ←− N1
ψ←− N ′

1 ←− coker φ ←− L←− 0.
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Using (40), we have:

rankD N1 − rankD N
′
1 = rankD L− rankD cokerφ

= rankD L− rankD F
∗
−1 + rankD F

′∗
−1

= −rankD im d∗0 + rankD F
′∗
−1 = 0.

Therefore, we obtain rankD N1 = rankD N ′
1, and thus, rankD kerψ = 0 because

0 ←− N1
ψ←− N ′

1 ←− ker ψ ←− 0 is an exact sequence. Hence, kerψ is a tor-
sion rightD-module. This fact implies that homD(kerψ,D) = 0 (see Corollary 1)
and, dualizing the previous exact sequence, we obtain

ψ∗(N∗
1 ) = N ′∗

1 ,

with the notations N∗
1 = homD(N1,D) and N ′∗

1 = homD(N
′
1,D). Dualizing the

commutative exact diagram (41), we obtain the commutative exact diagram:

0 0
↓ ↓

0 −→ N∗
1

σ−→ F0
d0−→ F−1

↓ ψ∗ ‖ ↓ φ∗

0 −→ N ′∗
1

τ−→ F0
d ′0−→ F ′

−1.↓ ↓
0 0

Therefore, we have σ = τ ◦ ψ∗, ker d0 = σ(N∗
1 ) = τ(ψ∗(N∗

1 )) = τ(N ′∗
1 ) and

ker d ′0 = τ(N ′∗
1 ). Hence, we obtain ker d0 = ker d ′0. Finally, the defect of exactness

of the following complex

F1
d1−→ F0

d ′0−→ F ′
−1 (42)

at F0 is defined by H(F0) = ker d ′0/ im d1 = ker d ′0/ ker d0, because we have
ext1

D(N,D) = 0, i.e., ker d0 = im d1. Therefore, we obtain that H(F0) = 0, and
thus, (42) is an exact sequence and d ′0 is a parametrization of M . Finally, we have
homD(coker d ′0,D) = ker d ′∗0 = 0, and thus, by Corollary 1, coker d ′0 is a torsion
left D-module. ��
Algorithm 7
Input: An Ore algebra D satisfying (2) with an involution θ ,

a torsion-free left D-module M = D1×p/(D1×q R).
Output: A minimal parametrization Q′ ∈ Dp×m of M .
Minimal-Parametrization(R)

L← Syzygies(θ(R)).
m← rankD(L).
Select m D-linearly independent rows of L and

form a (m× p)-matrix L′ with them.
Q′ ← θ(L′).
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Example 17 Let us consider the first set of Maxwell equations [15], namely,





∂B
∂t

+ ∇ ∧ E = 0,

∇.B = 0,
(43)

where B (resp., E) denotes the magnetic (resp., electric) field. We shall only con-
sider smooth fields on an open convex subset of R

4 (see 1 of Example 9). In
electromagnetism, it is well-known that (43) is parametrized by






∇ ∧ A = B,

−∇V − ∂A
∂t

= E,
(44)

where (A, V ) is called quadri-potential [15]. In terms of module theory, this
result means that the D-module M = D1×6/(D1×4 R) is torsion-free, where
D = R[∂1; id, δ1] · · · [∂4; id, δ4], δi = ∂

ρxi
, x4 = t the time variable, and R

is the matrix of differential operators defining (43), namely:

R =






∂4 0 0 0 −∂3 ∂2
0 ∂4 0 ∂3 0 −∂1
0 0 ∂4 −∂2 ∂1 0
∂1 ∂2 ∂3 0 0 0




 ∈ D4×6.

We easily check that a free resolution of the D-module M is defined by

0 −→ D
.R2−→ D1×4 .R−→ D1×6 κ−→ M −→ 0, (45)

where R2 = (∂1 : ∂2 : ∂3 : −∂4) ∈ D1×4. Hence, we obtain rankD(M) =
6 − 4 + 1 = 3 or, in other words, system (43) is defined by 4 − 1 = 3 D-linearly
independent equations in 6 unknowns (B, E), and thus, its solutions depend on 3
arbitrary functions of x1, x2, x3, x4. But, the parametrization (44) of the torsion-
free D-module M depends on 4 arbitrary potentials, namely (A, V ). Hence, by
Theorem 8, we know that system (43) admits some parametrizations with only 3
arbitrary potentials. Let us compute such parametrizations following Algorithm 7.
Using Algorithm 1, the D-module N = D1×4/(D1×6 RT ) admits the following
free resolution

0 ←− N ←− D1×4 .RT←−− D1×6 .RT−1←−− D1×4 .RT−2←−− D ←− 0, (46)

where:

RT−1 =






0 −∂3 ∂2 ∂4 0 0
∂3 0 −∂1 0 ∂4 0
−∂2 ∂1 0 0 0 ∂4

0 0 0 −∂1 −∂2 −∂3




 , RT−2 = (∂1 : ∂2 : ∂3 : ∂4).

Let us point out that

RT−1

(
H
−D

)

=
(

ρ

)

⇔
{

∇ ∧ H − ∂ D
∂t

= ,

∇.D = ρ,
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is exactly the second set of Maxwell equations, where  denotes the density of cur-
rent, ρ the density of electric charge, H the magnetic induction and D the electric
induction [15]. Then, the conservation of current is given by:

RT−2

(

ρ

)

= 0 ⇔ ∇.  + ∂ρ

∂t
= 0.

If we denote by S(RT ) the syzygy module ofRT , from the free resolution (46) ofN ,
we obtain that rankD S(RT ) = rankD D1×4 RT−1 = 4−1 = 3. Hence, if we select 3
distinct rows ofRT−1 and transpose the corresponding matrix, we obtain a parametri-
zation of (43) with only 3 potentials. In particular, we have the following 4 minimal
parametrizations of (43) with only 3 arbitrary potentials ξ = (ξ1 : ξ2 : ξ3)

T :





∂3 ξ2 = B1,

−∂3 ξ1 = B2,

∂2 ξ1 − ∂1 ξ2 = B3,

∂4 ξ1 − ∂1 ξ3 = E1,

∂4 ξ2 − ∂2 ξ3 = E2,

−∂3 ξ3 = E3,






−∂2 ξ2 = B1,

−∂3 ξ1 + ∂1 ξ2 = B2,

∂2 ξ1 = B3,

∂4 ξ1 − ∂1 ξ3 = E1,

−∂2 ξ3 = E2,

∂4 ξ2 − ∂3 ξ3 = E3,






∂3 ξ1 − ∂2 ξ2 = B1,

∂1 ξ2 = B2,

−∂1 ξ1 = B3,

−∂1 ξ3 = E1,

∂4 ξ1 − ∂2 ξ3 = E2,

∂4 ξ2 − ∂3 ξ3 = E3,






−∇ ∧ ξ = B,
∂ ξ

∂t
= E.

Equivalently, these minimal parametrizations can be obtained by setting one
component of the quadri-potential (A,V) to 0.

To finish, let us state a result which will allow us to compute some bases of a
π -free linear system with constant coefficients.

Proposition 14 Let D = k[x1, . . . , xn] be a commutative polynomial ring over
a field k and M = D1×p/(D1×q R) a torsion-free D-module. By Theorem 8,
there exists a minimal parametrization Q ∈ Dp×m of M , i.e., a parametrization
Q of M such that L = D1×m/(D1×p Q) is a torsion D-module. Then, for all
0 �= π ∈ ann(L) = {P ∈ D | ∀ l ∈ L : P l = 0}, the Dπ -module Dπ ⊗D M is
free. In particular, there exists S ∈ Dm×p

π such that S Q = Im and {κ(Si)}1≤i≤m is
a basis of the Dπ -module Dπ ⊗D M , where Si denotes the i th row of S and κ the
canonical projection D1×p → M .

Proof By hypothesis, we have the following exact sequence:

D1×q .R−→ D1×p .Q−→ D1×m −→ L −→ 0. (47)

Moreover, the fact that the D-module L is torsion implies that ann(L) �= 0. If
0 �= π ∈ ann(L), then the following sequence obtained by applying the right exact
functorDπ ⊗D · to the exact sequence (47) is exact becauseDπ is a flatD-module
[36]:

D1×q
π

.R−→ D1×p
π

.Q−→ D1×m
π −→ Dπ ⊗D L −→ 0. (48)
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But, by definition of π , we have Dπ ⊗D L = 0, and thus, we obtain

Dπ ⊗D M = D1×p
π /(D1×q

π R) ∼= D1×p
π Q = D1×m

π ,

i.e., the Dπ -module Dπ ⊗D M is free of rank m. Moreover, by Proposition 6, the
exact sequence (48) splits, and thus, there exists S ∈ Dm×p

π such that S Q = Im.
Finally, if we denote by {fi}1≤i≤m the standard basis ofD1×m

π , then we obtain that
{κ(fiS)}1≤i≤m is a basis of Dπ ⊗D M . ��

From Proposition 14, we obtain the following algorithm: usingAlgorithm 7, we
compute a minimal parametrization Q of the torsion-free D-module M and then
find ann(D1×m/(D1×p Q)). After choosing a non-zero polynomial π ∈ ann(L),
using Algorithm 5 over Dπ , we obtain a left-inverse S = (ST1 : · · · : STm)

T of Q,
which gives the basis {κ(Si)}1≤i≤m of the Dπ -module Dπ ⊗D M .

Example 18 In Example 14, we proved that (35) is a parametrization of system
(4). We easily check that (35) is also a minimal parametrization of system (4) as
the Dh-module L = Dh/(D

1×4
h Q) = ext2

Dh
(N,Dh) is torsion. From the defini-

tion (21) of ext2
Dh
(N,Dh), we obtain ann(L) = (δh, ∂ + a). Hence, if we choose

π = δh, then we easily check that

S = (π−1/(ω2 k a) : 0 : 0 : 0) ∈ D1×4
π

is a left-inverse of the parametrization Q defined in Example 7. Hence, we obtain
that z = π−1 x1, and thus, x1 are bases of the (Dh)π -module (Dh)π ⊗D M .

If the characteristic of the field k is 0, then we refer to [34] and the refer-
ences therein for constructive algorithms which compute bases of a stably free left
An(k)-module M with rankAn(k)M ≥ 2.

9 Conclusion

We hope that we have convinced the reader that the simultaneous use of module
theory, homological algebra, effective algebra and computational methods allows
us to study effectively the structural properties of linear multidimensional systems
(systems of ODEs, systems of PDEs, (differential) time-delay systems, discrete sys-
tems, convolutional codes . . . with constant or variable coefficients). In particular,
in this unified mathematical framework, we presented effective algorithms which
check controllability/parametrizability/flatness/π -freeness. . . and computed (min-
imal) parametrizations/autonomous elements/flat outputs/π -polynomials. Certain
of these problems were still open for some classes of linear multidimensional sys-
tems [12,20,39,40].

The Maple package OreModules, based on Mgfun [6], as well as Maple work-
sheets containing the explicit examples of the appendix are available at

http://wwwb.math.rwth-aachen.de/OreModules.
We hope that OreModules will become in the future a platform for the imple-

mentation of different algorithms obtained in the literature of multidimensional
linear systems (see e.g., [11,23,25–27,30,35,39,40] and the references therein).
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10 Appendix: Examples

In this appendix, we give some Maple worksheets which decide controllability,
parametrizability, flatness and π -freeness of some linear time-invariant/
time-varying OD systems, differential time-delay systems and systems of PDE
with constant or variable coefficients. These results have been obtained using the
Maple package OreModules [8] which is based on the library Mgfun [6] (e.g. Ore
algebras and non-commutative Gröbner bases are developed in Mgfun). In these
examples, the most time-consuming computation is that of the extiD(N,D). We
give some timings for these operations. All examples were run on a Pentium II,
450 MHz with 512 MB RAM using Maple 8 (OreModules is available for Maple V
release 5, Maple 6, Maple 8, and Maple 9). Finally, we refer the reader to [8,10] for
a description of OreModules and a library of examples illustrating other functions.

10.1 Two pendula mounted on a cart

The first example that we consider is a time-invariant OD system describing the
linearization around the vertical of a system formed by two pendula mounted on a
cart. See for more details Examples 5.2.1 and 5.2.12 in [23].

> with(OreModules):
After loading the Maple package OreModules, the first step is to define the Ore
algebra

D = Q(m1,m2,M,L1, L2, g)[t][∂; σ, δ],

where σ = idR(m1,m2,M,L1,L2,g)[t] and δ = d
dt

. This algebra is also denoted by Alg.

> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom=[t],
> comm=[m1,m2,M, L1, L2,g]):

In Alg, we need to declare the constants m1, m2, M , L1, L2 and g which occur in
the system. Then, we define the matrix R ∈ D3×4 corresponding to the system.

> R:=evalm([[m1*L1*Dtˆ2, m2*L2*Dtˆ2, -1, (M+m1+m2)*Dtˆ2],
> [m1*L1ˆ2*Dtˆ2-m1*L1*g, 0, 0, m1*L1*Dtˆ2],
> [0, m2*L2ˆ2*Dtˆ2-m2*L2*g, 0, m2*L2*Dtˆ2]]);

R :=



m1 L1 Dt2 m2 L2 Dt2 −1

m1 L1 2 Dt2 − m1 L1 g 0
0 m2 L2 2 Dt2 − m2 L2 g 0

(M + m1 + m2 )Dt2

m1 L1 Dt2

0
m2 L2 Dt2







Then, we define Radj = θ(R) ∈ D4×3 using the involution θ given in 2 of Exam-
ple 10.
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> R_adj:=Involution(R, Alg);

R adj :=







m1 L1 Dt2 m1 L1 2 Dt2 − m1 L1 g
m2 L2 Dt2 0

−1 0
Dt2M + Dt2 m1 + Dt2 m2 m1 L1 Dt2

0
m2 L2 2 Dt2 − m2 L2 g

0
m2 L2 Dt2






Let us compute ext1
D(N,D), where N = D1×4/(D1×3 Radj), using the procedure

Ext1(Radj).
> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time()-st;

1.220
The computation of ext1

D(N,D) only takes 1.220 s. Let us notice that all the com-
putations are done generically. In other words, the results are valid for almost all
values of the parameters (e.g., outside an algebraic hypersurface).
> Ext1[1];




1 0 0
0 1 0
0 0 1





Ext1[1] gives the matrixL0 returned by Ext1(R) and defined inAlgorithm 4. In our
case, L0 is the identity matrix which shows that ext1

D(N,D) = 0 (see Remark 5).
Therefore, the system is controllable, and thus, parametrizable (see Theorems 3
and 5). A parametrization of the system is given by the matrix L2 =Ext1[3] of
Ext1(R) (see Algorithm 4).
> map(collect, Ext1[3], Dt);

[−L2 Dt4 + Dt2 g]

[−Dt4 L1 + Dt2 g]

[L2 Dt6 L1 M + (−L2 gm1 − L2 gM − g L1 M − L1 gm2 )Dt4

+ (g2M + g2 m1 + m2 g2)Dt2]

[L2 Dt4 L1 + (−L2 g − g L1 )Dt2 + g2]
Therefore, we obtain the parametrization (x1 : x2 : x3 : u)T = L2 z of the system
R (x1 : x2 : x3 : u)T = 0. Since the system is time-invariant, then, by 1 of
Theorem 2, we know that the D-module M = D1×4/(D1×3 R) is free, and thus,
the system defined by R is flat.
> LeftInverse(Ext1[3], Alg);

[
L1 2

g2 (L1 − L2 )
− L2 2

g2 (L1 − L2 )
0 − L2 − L1

g2 (L1 − L2 )

]

Left-Inverse(Ext1[3], Alg) computes a left-inverse of L2 = Ext1[3]. We de-
duce that z = (L2

1 x1 −L2
2 x2 + (L1 −L2) u)/(g

2 (L1 −L2)) is a flat output of the
system.
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Let us notice that the difference of the pendula lengths L1 −L2 appears in the
denominator of the flat output of the system. Thus, we need to study the non-generic
case where L1 = L2.

> Rmod:=subs(L2=L1, evalm(R));

Rmod :=



m1 L1 Dt2 m2 L1 Dt2 −1

m1 L1 2 Dt2 − m1 L1 g 0
0 m2 L1 2 Dt2 − m2 L1 g 0

(M + m1 + m2 )Dt2

m1 L1 Dt2

0
m2 L1 Dt2







> st:=time(): Ext1mod:=Exti(Involution(Rmod, Alg),
Alg, 1): time()-st;

0.959

> Ext1mod;







L1 Dt2 − g 0 0

0 L1 Dt2 − g 0
0 0 L1 Dt2 − g



 ,




1 −1 0 0
0 m1 g + m2 g −1 Dt2M

0 M L1 Dt2 − gM − m1 g − m2 g 1 0



 ,







−Dt2

−Dt2

L1 Dt4M − Dt2 m1 g − gM Dt2 − Dt2 m2 g
L1 Dt2 − g











The first matrix of Ext1mod is not an identity matrix, and thus, we know that
ext1

D(Nmod,D) �= 0, where Nmod = D1×3/(D1×4 θ(Rmod)) and Rmod corresponds
to R where L2 = L1 (see Remark 5). Thus, the system is not controllable (see
Theorems 3 and 5). The second matrix of Ext1mod gives a family of generators of
the torsion elements of Mmod = D1×4/(D1×3 Rmod), i.e., of the non-controllable
elements (autonomous observables) of the system. The initial rows in the first
two matrices of Ext1mod show that d = x1 − x2 satisfies (L1 ∂

2 − g) d = 0
(non-controllable element). The third matrix of Ext1mod gives a parametrization
of the torsion-free left D-module Mmod/t (Mmod), i.e., of the controllable part of
the system [32]. We note that it has only taken 0.959 s to obtain all this information.

Finally, using the integration of the autonomous observables, we can express
all solutions of the system defined by Rmod in terms of these integrals and one
arbitrary function. See [8,32] for more details.
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10.2 Linear differential algebraic equations

Let us consider the following example of a time-varying linear OD system which
corresponds to a linear system of differential algebraic equations (DAEs) studied
in [16]. Therefore, we introduce the Weyl algebra D = A1(Q) (see Example 1).
> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom=[t]):

The time-varying linear system is defined by means of the following matrix.
> R:=evalm([[-t*Dt+1, tˆ2*Dt, -1, 0],
> [-Dt, t*Dt+1, 0, -1]]);

R :=
[ −t Dt + 1 t2 Dt −1 0

−Dt t Dt + 1 0 −1

]

Then, the system is described by R (x1 : x2 : u1 : u2)
T = 0 and we introduce the

finitely presented left D-module M = D1×4/(D1×2 R).
> R_adj:=Involution(R, Alg);

R adj :=






t Dt + 2 Dt
−t2 Dt − 2 t −t Dt

−1 0
0 −1






Using the procedure Exti, we compute ˜ext1
D(N,D), whereN = D1×2/(D1×4 Radj)

is the finitely presented left D-module associated with Radj = θ(R) ∈ D4×2.

> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time()-st;
> Ext1[1];

0.301
[

1 0
0 1

]

This shows that the left D-module M = D1×4/(D1×2 R) is torsion-free (see
Remark 5), and thus, a projective left D-module (see 1 of Theorem 2). Then, a
parametrization L2 of the system is given by the following matrix of operators.

> Ext1[3];





t 1
1 0
0 −t Dt + 1
0 −Dt






Therefore, (x1 : x2 : x3 : u)T = L2 z is a (minimal) parametrization of the system
R (x1 : x2 : x3 : u)T = 0.

Now, if the parametrization L2 admits a left-inverse, then the left D-module
M = D1×4/(D1×2 R) is free, i.e., the system defined by R is flat. Let us check
whether or not L2 admits a left-inverse.

> LeftInverse(Ext1[3], Alg);

P :=
[

0 1 0 0
0 0 1 −t

]
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Hence, we obtain that the system defined by R is flat and a flat output (i.e., a basis
of the left D-module M) is defined by (z1 : z2)

T = P (x1 : x2 : x3 : u)T .

10.3 Wind tunnel model

In this example, we consider the linear differential time-delay system (4) defined
in Example 6. We first define the algebra Dh = Q(a, k, ζ, ω)[t, s][∂; σ1, δ1]
[δh; σ2, δ2] of differential time-delay operators.
> Alg:=DefineOreAlgebra(diff=[Dt,t],
> dual_shift=[delta,s], polynom=[t,s],
> comm=[a,omega,zeta,k]):

The linear differential time-delay system is defined by matrix (5).

> R:=evalm([[Dt+a, -k*a*delta, 0, 0],
> [0, Dt, -1, 0],
> [0, omegaˆ2, Dt+2*zeta*omega, -omegaˆ2]]);

R :=



Dt + a −k a δ 0 0

0 Dt −1 0
0 ω2 Dt + 2 ζ ω −ω2





> R_adj:=linalg[transpose](R);

R adj :=






Dt + a 0 0
−k a δ Dt ω2

0 −1 Dt + 2 ζ ω
0 0 −ω2






The Gröbner basis G defined in Example 7 can be computed as follows.

> Integrability(R_adj, Alg);

[ω2 k a δ µ1 + ω2 Dt µ2 + ω2 a µ2 + ω2 Dt2 µ3 + ω2 aDt µ3 + Dt3 µ4

+ 2 Dt2 ζ ω µ4 + aDt2 µ4 + Dt ω2 µ4 + 2 aDt ζ ω µ4 + a ω2 µ4,

λ3 ω
2 + µ4, ω

2 λ2 + Dt µ4 + ω2 µ3 + 2 ζ ω µ4, λ1 Dt + λ1 a − µ1,

ω2 λ1 k a δ + Dt2 µ4 + ω2 Dt µ3 + 2 Dt ζ ω µ4 + ω2 µ2 + ω2 µ4]

The syzygy module of D1×4
h RT is obtained by Syzygies(Radj) (see Example 7).

> Q_transp:=SyzygyModule(R_adj, Alg);

Q transp :=
[
ω2 k a δ , Dt ω2 + a ω2 , ω2 Dt2 + ω2 aDt

Dt ω2 + a ω2 + Dt3 + 2 Dt2 ζ ω + aDt2 + 2 aDt ζ ω
]

The Gröbner basis G defined in Example 12 can be computed as follows.

> Integrability(linalg[transpose](Q_transp), Alg);

[−ω2 µ4 + ω2 µ2 + Dt µ3 + 2 ζ ω µ3, −µ3 + Dt µ2, −k a δ µ2

+Dt µ1 + a µ1, λ1 ω
2 k a δ − µ1, λ1 Dt ω2 + λ1 a ω

2 − µ2]
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The syzygy module D1×4
h L is given by Syzygies(Q) (see Example 12).

> L:=SyzygyModule(linalg[transpose](Q_transp), Alg);

L :=



Dt + a −k a δ 0 0

0 ω2 Dt + 2 ζ ω −ω2

0 Dt −1 0





Finally, we compute Quotient(L,R) (see Example 13) as follows.

> Quotient(L, R, Alg);



1 0 0
0 1 0
0 0 1





We deduce that ext1
Dh
(N,Dh) = 0, where N = D1×3

h /(D1×4
h RT ) (see Remark 5),

and thus, system (4) is controllable and parametrizable (see Theorems 3 and 5).
We can directly compute ext1

Dh
(N,Dh) using Ext1(Radj) defined in Algorithm 4.

> st:=time(): Ext1:=Exti(Involution(R, Alg), Alg, 1);
> time()-st;

Ext1 :=







1 0 0
0 1 0
0 0 1



 ,




Dt + a −k a δ 0 0

0 ω2 Dt + 2 ζ ω −ω2

0 Dt −1 0



 ,







−ω2 k a δ

−Dt ω2 − a ω2

−ω2 Dt2 − ω2 aDt
−Dt3 − 2 Dt2 ζ ω − aDt2 − Dt ω2 − 2 aDt ζ ω − a ω2











0.819

The first two matrices in Ext1 are the identity matrix and L. Moreover, Ext1[3]
gives (up to the sign) the parametrization (35) of system (4), i.e., we have

(x1 : x2 : x3 : u)T = Ext1[3] z,

where z is an arbitrary function of t .
We compute ext2

Dh
(N,Dh) in order to check whether or not system (4) is flat.

> Ext2:=Exti(Involution(R, Alg), Alg, 2);

Ext2 := [

[
δ

Dt + a
]

,
[

1
]
, SURJ(1), INJ(1)]

Since Ext2[1] is not an identity matrix, we know that ext2
Dh
(N,Dh) �= 0 (see

Remark 5). Hence, the Dh-module M = D1×4
h /(D1×3

h R) is a torsion-free but not
a free Dh-module, and thus, (4) is not a flat system. Finally, let us notice that (21)
is equivalent to the reduced system:

(∂ + a) y = 0, δh y = 0.
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The formal obstructions of flatness are defined byπ -polynomial(Radj, {∂, δh}).

> PiPolynomial(R, Alg);

[δ, Dt + a]

The π -polynomial, such that (Dh)π ⊗Dh M is a free (Dh)π -module, is defined by
the generator of the principal ideal π -polynomial(Radj, {δh}) of R(a, k, ζ, ω)
[δh; σ2, δ2].

> PiPolynomial(R, Alg, [delta]);

[δ]

Therefore, we find that π = δh and system (4) is π -free (see Example 16) [20].

> PiPolynomial(R, Alg, [Dt]);

[Dt + a]

The fact that (4) is not a flat system is coherent with the fact that the full row-rank
matrix R, defined by (5), does not admit a right-inverse (R admits a right-inverse
iff the Dh-module M is projective, and thus, free by 3 of Theorem 2).

> RightInverse(R, Alg);

[]

The fact that (4) is not a flat system is also coherent with the fact that its parametri-
zation (35) does not admit a left-inverse (if a linear system is parametrizable and
its parametrization admits a left-inverse, then the system is flat).

> LeftInverse(Ext1[3], Alg);

[]

However, we have shown that system (4) is δh-flat, and thus, the (Dh)π -module
(Dh)π ⊗Dh M is free. Let us compute a basis of the free (Dh)π -module. In order
to do that, we compute a left-inverse S of the parametrization Ext1[3] in the com-
mutative polynomial ring (Dh)π .

> S:=LocalLeftInverse(Ext1[3], [delta], Alg);

S :=
[

− 1

δ ω2 k a
0 0 0

]

By construction, we have S Ext1[3] = 1.

> Mult(S, Ext1[3], Alg);
[

1
]

Hence, we obtain that z = S (x1 : x2 : x3 : u)T = −δ−1
h x1/(ω

2 k a) is a basis of
the (Dh)π -module (Dh)π⊗DhM because we have (x1 : x2 : x3 : u)T = Ext1[3] z
and z = −δ−1

h x1/(ω
2 k a) ∈ (Dh)π ⊗Dh M .
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Let us finally point out that we can also substitute z = −δ−1
h x1/(ω

2 k a) into
the parametrization (x1 : x2 : x3 : u)T = Ext1[3] z of system (4) in order to
express the system variables in terms of x1.

> T:=Mult(Ext1[3], S, Alg);

T :=













1 0 0 0
Dt + a
k a δ

0 0 0

Dt (Dt + a)
k a δ

0 0 0

Dt ω2 + a ω2 + Dt3 + 2 Dt2 ζ ω + aDt2 + 2 aDt ζ ω
ω2 k a δ

0 0 0













We obtain (x1 : x2 : x3 : u)T = T1 x1, where T1 denotes the first column of T ,
and thus, x1 is also a basis of the module (Dh)π ⊗Dh M over (Dh)π , and thus, a flat
output of system (4) over (Dh)π . To finish, let us notice that, by imposing x1 to be
a desired trajectory x1d(t), we obtain the corresponding open-loop input (motion
planning problem) [8,20]:

ud(t) = 1

ω2 a k

((
d

dt

2

+ 2 ζ ω
d

dt
+ ω2

) (
d

dt
+ a

))

x1d(t + h).

10.4 An electric transmission line

To finish with linear differential time-delay systems, we study the example of an
electric transmission line [37]. We exhibit an explict parametrization of this system.
It seems that no parametrization for such a system was previously known [20].

We first introduceDh = Q(a0, a1, a2, a3, a4, a5, b0)[t, s][∂; σ1, δ1][δh; σ2, δ2],
the Ore algebra of differential time-delay operators.

> Alg:=DefineOreAlgebra(diff=[Dt,t],
> dual_shift=[delta,s], polynom=[t,s],
> comm=[a[0],a[1],a[2],a[3],a[4],a[5],b[0]]):

The electric transmission line is defined by means of the following matrix:

> R:=evalm([[Dt+a[0], -(a[4]*Dt+a[0])*delta, -a[0],
> 0, -b[0]*Dt],
> [-delta*(a[5]*Dt+a[1]), Dt+a[1], 0, a[1], 0],
> [a[2], -a[2]*a[4]*delta, Dt, 0, -a[2]*b[0]],
> [a[3]*a[5]*delta, -a[3], 0, Dt, 0]]);

R :=






Dt + a0 −(a4 Dt + a0) δ −a0 0 −b0 Dt
−δ (a5 Dt + a1) Dt + a1 0 a1 0

a2 −a2 a4 δ Dt 0 −a2 b0
a3 a5 δ −a3 0 Dt 0






> R_adj:=Involution(R, Alg):
> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time()-st;
> Ext1[1];
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10.351




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





Therefore, by Remark 5 and Theorems 3 and 5, we find that the electric transmission
line is controllable and parametrizable and a parametrization is given by:
> Ext1[3];
[−b0 Dt4 − Dt2 b0 a1 a3 − a0 a2 b0 Dt2 − a1 a0 a2 b0 a3 − a0 a1 a2 b0 Dt

]

[
− a1 b0 Dt3 − a5 b0 δDt4 − a5 δDt2 b0 a1 a3 − a1 b0 δDt3

− a0 a2 a5 b0 δDt2 − a0 a1 a2 a5 a3 δ b0 − a0 a1 a2 b0 δDt
]

[
a0 a2 a1 b0 a3 a5 δ

2 − a0 a2 b0 Dt2 − a1 a0 a2 b0 a3 + a0 a1 a2 b0 δ
2 Dt

− a0 a1 a2 b0 Dt + a0 a2 a5 δ
2 b0 Dt2

]

[
a0 a1 a2 a5 a3 δ b0 − δDt2 b0 a1 a3 + a5 δDt2 b0 a1 a3 − a0 a1 a2 a3 δ b0

]

[
− Dt4 − a1 Dt3 − a0 a1 Dt2 − a0 Dt3 + a5 Dt4 δ2 a4 + a1 a5 Dt2 a3 a4 δ

2

+ a1 Dt3 a4 δ
2 + a0 a2 a5 Dt2 a4 δ

2 + a0 Dt3 δ2 a5 − a1 a3 a0 a2−a0 a1 a2 Dt
− a0 a1 a3 Dt + a0 a1 Dt2 δ2 + a0 a1 a2 a5 a3 a4 δ

2 + a0 a1 a2 Dt a4 δ
2

+ a0 a1 a3 δ
2 Dt a5 − a1 Dt2 a3 − a0 a2 Dt2

]

> st:=time(): Ext2:=Exti(R_adj, Alg, 2): time()-st;
> Ext2[1];

6.990
[
− δ a1

2 a5 a3
2 + 2 a0 a1 a2 a5 a3 δ − Dt δ a2 a1 a0 + δDt a1

2 a3

+ δ a5 a2 a0 Dt a1 − δ a1
2 a5 a3 Dt + δ3 a1

2 a2 a0 − 2 a5
2 a2 a0 a1 a3 δ

3

+ a5
2 a2

2 a0
2 δ3 + a1

2 a5
2 a3

2 δ3 − a5 a2
2 a0

2 δ − a1
2 δ a2 a0

]

[
Dt δ2 a1 − Dt2 + a1 a3 a5 δ

2 − Dt a1 − a1 a3 − a5 δ
2 a2 a0

]

[
δ a2 a0 + δDt2

]

[
a1 Dt3 + Dt2 a1

2 + a0 a2 a5 Dt2 − a5 Dt2 a1 a3 + δ2 a1
2 a2 a0

− 2 a5
2 a2 a0 a1 a3 δ

2 + a5
2 a2

2 a0
2 δ2 + a1

2 a5
2 a3

2 δ2 + Dt a1
2 a3

+ a5 a2 a0 Dt a1 − a1
2 a5 a3 Dt + a1 a5 a3 a2 a0 − a1

2 a5 a3
2
]

Since we have ext2
Dh
(N,Dh) �= 0, where N = D1×4

h /(D1×5
h RT ), the transmission

line is not a flat system. Thus, we have i(M) = 1, and we can find a polynomial
π that contains only Dt or δ such that (Dh)π ⊗Dh M is a free (Dh)π -module. The
third argument for π -polynomial selects the variable for the π -polynomial:
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> pi:=PiPolynomial(R, Alg, [delta]): factor(pi);

[δ(a5
2 a2

2 a0
2 δ4 − 2 δ2 a5 a2

2 a0
2 + a2

2 a0
2 − 2 a5

2 a2 a0 a1 a3 δ
4

+ 4 δ2 a1 a5 a3 a2 a0 + a1
2 a2 a0 − 2 δ2 a1

2 a2 a0 − 2 a1 a3 a0 a2 + δ4 a1
2 a2 a0

+ a1
2 a5

2 a3
2 δ4 − 2 δ2 a1

2 a5 a3
2 + a1

2 a3
2)]

We conclude that the system is π -free, where π is the previous polynomial in δh,
and thus, the (Dh)π -module (Dh)π ⊗Dh M is free. Let us compute a basis of the
(Dh)π -module (Dh)π ⊗Dh M .

> S:=LocalLeftInverse(Ext1[3], pi, Alg):
> T:=map(collect, S, delta);

T :=
[

− δ (δ4 a0 a5
2 + (−a5 a0 − a0 a5

2 + a1 − a1 a5) δ
2 − a1 + a1 a5 + a5 a0)

%2 a0 b0 (−1 + a5)
,

(a5 a0 − a1 a5 a4 + a1 a4) δ
4 + (−a5 a0 + a1 a5 a4 − a1 a4 − a0) δ

2 + a0

%2 a0 b0 (−1 + a5)
,

−δ ((−a1 a5 a3 + a5 a2 a0) δ
2 − a0 a2 + a1 a3)

%2 a0 a2 b0
,

(a0 a5
2 a2 − a5

2 a1 a3 + a1
2) δ4 + (2 a1 a5 a3 − 2 a5 a2 a0 − 2 a1

2) δ2

%2 a1 a3 b0 (−1 + a5)

+ a1
2 + a0 a2 − a1 a3

%2 a1 a3 b0 (−1 + a5)
, −δ a1 (δ

2 − 1)

%2 a0

]

%1 := a1
2 a2 a0

%2 := (a0
2 a2

2 a5
2 + %1 − 2 a5

2 a1 a3 a2 a0 + a5
2 a1

2 a3
2) δ5

+ (−2 a5 a1
2 a3

2 + 4 a0 a1 a2 a5 a3 − 2 a1
2 a2 a0 − 2 a0

2 a5 a2
2) δ3

+ (%1 − 2 a1 a3 a2 a0 + a2
2 a0

2 + a1
2 a3

2) δ

We check that T ∈ (Dh)
1×5
π is a left-inverse of Ext1[3], i.e., T Ext1[3] = 1.

> Mult(T, Ext1[3], Alg);
[

1
]

Hence, z = T (x1 : . . . : x4 : u)T is a basis of the (Dh)π -module (Dh)π ⊗Dh M
which satisfies (x1 : . . . : x4 : u)T = Ext1[3] z.

10.5 Einstein equations

Let us show that the results exposed in this paper can also be interesting for the
study of underdetermined systems of PDEs coming from mathematical physics.
We shall study the parametrizability of the Einstein equations using the linearized
Ricci equations in the vacuum [24] (see also [40]).

Let us introduce the Weyl algebra D = A4(Q) (x1, x2, and x3 stand for the
three space components and x4 = c t for the time component t up to the speed of
light factor c).
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> Alg:=DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2],
> diff=[D3,x3], diff=[D4,x4], polynom=[x1,x2,x3,x4]):

The linearized Ricci equations in the vacuum are defined by the following 10× 10
matrix of partial differential operators.

> R:=evalm(
> [[D2ˆ2+D3ˆ2-D4ˆ2,D1ˆ2,D1ˆ2,-D1ˆ2,-2*D1*D2,0,0,-2*D1*D3,0,2*D1*D4],
> [D2ˆ2,D1ˆ2+D3ˆ2-D4ˆ2,D2ˆ2,-D2ˆ2,-2*D1*D2,-2*D2*D3,0,0,2*D2*D4,0],
> [D3ˆ2,D3ˆ2,D1ˆ2+D2ˆ2-D4ˆ2,-D3ˆ2,0,-2*D2*D3,2*D3*D4,-2*D1*D3,0,0],
> [D4ˆ2,D4ˆ2,D4ˆ2,D1ˆ2+D2ˆ2+D3ˆ2,0,0,-2*D3*D4,0,-2*D2*D4,-2*D1*D4],
> [0,0,D1*D2,-D1*D2,D3ˆ2-D4ˆ2,-D1*D3,0,-D2*D3,D1*D4,D2*D4],
> [D2*D3,0,0,-D2*D3,-D1*D3,D1ˆ2-D4ˆ2,D2*D4,-D1*D2,D3*D4,0],
> [D3*D4,D3*D4,0,0,0,-D2*D4,D1ˆ2+D2ˆ2,-D1*D4,-D2*D3,-D1*D3],
> [0,D1*D3,0,-D1*D3,-D2*D3,-D1*D2,D1*D4,D2ˆ2-D4ˆ2,0,D3*D4],
> [D2*D4,0,D2*D4,0,-D1*D4,-D3*D4,-D2*D3,0,D1ˆ2+D3ˆ2,-D1*D2],
> [0,D1*D4,D1*D4,0,-D2*D4,0,-D1*D3,-D3*D4,-D1*D2,D2ˆ2+D3ˆ2]]);

R :=


















D22 + D32 − D42 , D12 , D12 , −D12 , −2 D1 D2 , 0 , 0 , −2 D1 D3 , 0 , 2 D1 D4
D22 , D12 + D32 − D42 , D22 , −D22 , −2 D1 D2 , −2 D2 D3 , 0 , 0 , 2 D2 D4 , 0
D32 , D32 , D12 + D22 − D42 , −D32 , 0 , −2 D2 D3 , 2 D3 D4 , −2 D1 D3 , 0 , 0
D42 , D42 , D42 , D12 + D22 + D32 , 0 , 0 , −2 D3 D4 , 0 , −2 D2 D4 , −2 D1 D4

0 , 0 , D1 D2 , −D1 D2 , D32 − D42 , −D1 D3 , 0 , −D2 D3 , D1 D4 , D2 D4
D2 D3 , 0 , 0 , −D2 D3 , −D1 D3 , D12 − D42 , D2 D4 , −D1 D2 , D3 D4 , 0

D3 D4 , D3 D4 , 0 , 0 , 0 , −D2 D4 , D12 + D22 , −D1 D4 , −D2 D3 , −D1 D3
0 , D1 D3 , 0 , −D1 D3 , −D2 D3 , −D1 D2 , D1 D4 , D22 − D42 , 0 , D3 D4

D2 D4 , 0 , D2 D4 , 0 , −D1 D4 , −D3 D4 , −D2 D3 , 0 , D12 + D32 , −D1 D2
0 , D1 D4 , D1 D4 , 0 , −D2 D4 , 0 , −D1 D3 , −D3 D4 , −D1 D2 , D22 + D32


















> R_adj:=Involution(R, Alg):

Let us study whether or not the linearized Ricci equations are parametrizable. Let
us notice that this problem is related to a question posed by J. Wheeler on the
existence of potentials for the Einstein equations [24].

> st:=time(): Ext1:=Exti(R_adj, Alg, 1): time()-st;
> Ext1[1];

86.810

































%1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1 , 0
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , %1


































%1 := D32 + D22 − D42 + D12
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Therefore, we see that the linearized Ricci equations are not parametrizable because
the system, defined by R ∈ D10×10, admits a family of 20 torsion elements which
generate the torsion submodule of the D-module M = D1×10/(D1×10 R). Let us
notice that every torsion element of the system satisfies the Dalembertian equation,

namely
(
#− c2 ∂2

∂t2

)
y = 0 (travelling wave in space-time).

The list of 20 torsion elements of the system is given by the following matrix.

> Ext1[2];





































D2 D4 , 0 , 0 , 0 , −D1 D4 , 0 , 0 , 0 , D12 , −D1 D2
D3 D4 , 0 , 0 , 0 , 0 , 0 , D12 , −D1 D4 , 0 , −D1 D3
D2 D3 , 0 , 0 , 0 , −D1 D3 , D12 , 0 , −D1 D2 , 0 , 0

D42 , 0 , 0 , D12 , 0 , 0 , 0 , 0 , 0 , −2 D1 D4
D32 , 0 , D12 , 0 , 0 , 0 , 0 , −2 D1 D3 , 0 , 0
D22 , D12 , 0 , 0 , −2 D1 D2 , 0 , 0 , 0 , 0 , 0

0 , D3 D4 , 0 , 0 , 0 , −D2 D4 , D22 , 0 , −D2 D3 , 0
0 , D42 , 0 , D22 , 0 , 0 , 0 , 0 , −2 D2 D4 , 0
0 , D32 , D22 , 0 , 0 , −2 D2 D3 , 0 , 0 , 0 , 0

0 , −D1 D4 , 0 , 0 , D2 D4 , 0 , 0 , 0 , D1 D2 , −D22

0 , −D1 D3 , 0 , 0 , D2 D3 , D1 D2 , 0 , −D22 , 0 , 0
0 , 0 , D42 , D32 , 0 , 0 , −2 D3 D4 , 0 , 0 , 0

0 , 0 , −D2 D4 , 0 , 0 , D3 D4 , D2 D3 , 0 , −D32 , 0
0 , 0 , −D1 D4 , 0 , 0 , 0 , D1 D3 , D3 D4 , 0 , −D32

0 , 0 , D1 D2 , 0 , D32 , −D1 D3 , 0 , −D2 D3 , 0 , 0
0 , 0 , 0 , D2 D3 , 0 , D42 , −D2 D4 , 0 , −D3 D4 , 0
0 , 0 , 0 , D1 D3 , 0 , 0 , −D1 D4 , D42 , 0 , −D3 D4
0 , 0 , 0 , D1 D2 , D42 , 0 , 0 , 0 , −D1 D4 , −D2 D4

0 , 0 , 0 , 0 , D3 D4 , −D1 D4 , D1 D2 , 0 , 0 , −D2 D3
0 , 0 , 0 , 0 , 0 , −D1 D4 , 0 , D2 D4 , D1 D3 , −D2 D3






































In fact, we can prove that t (M) can be generated by 10 torsion elements. See [32]
for more details.

A parametrization of M/t(M) = D1×10/(D1×20 Ext1[2]) is defined by:

> Ext1[3];
















−2 D1 0 0 0
0 −2 D2 0 0
0 0 −2 D3 0
0 0 0 −2 D4

−D2 −D1 0 0
0 −D3 −D2 0
0 0 −D4 −D3

−D3 0 −D1 0
0 −D4 0 −D2

−D4 0 0 −D1

















Therefore, the underdetermined linear system of PDEs Ext1[2] y = 0, which is
associated with theD-moduleM/t(M) = D1×10/(D1×20 Ext1[2]), is parametrized
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by Ext1[3], i.e., we have y = Ext1[3] z, where z = (z1 : z2 : z3 : z4)
T are four

potentials. Let us check whether or not M/t(M) is a reflexive left D-module.

> st:=time(): Ext2:=Exti(R_adj, Alg, 2): time()-st;
> Ext2[1];

5.529



















































D1 0 0 0
D42 0 0 0

D3 D4 0 0 0
D2 D4 0 0 0
D32 0 0 0

D2 D3 0 0 0
D22 0 0 0

0 D2 0 0
0 D42 0 0
0 D3 D4 0 0
0 D1 D4 0 0
0 D32 0 0
0 D1 D3 0 0
0 D12 0 0
0 0 D3 0
0 0 D42 0
0 0 D2 D4 0
0 0 D1 D4 0
0 0 D22 0
0 0 D1 D2 0
0 0 D12 0
0 0 0 D4
0 0 0 D32

0 0 0 D2 D3
0 0 0 D1 D3
0 0 0 D22

0 0 0 D1 D2
0 0 0 D12




















































Therefore, we obtain thatM/t(M) is a torsion-free but not a reflexive leftD-module.
Now, let us compute a free resolution of the linearized Ricci equations.

> st:=time(): Resolution(R, Alg, 4); time()-st;

table([1 = R,

2 =






−D4 −D4 −D4 −D4 0 0 2 D3 0 2 D2 2 D1
−D3 −D3 D3 D3 0 2 D2 −2 D4 2 D1 0 0
−D2 D2 −D2 D2 2 D1 2 D3 0 0 −2 D4 0
D1 −D1 −D1 D1 2 D2 0 0 2 D3 0 −2 D4




 ,

3 = INJ(4),
4 = ZERO
])
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7.540

Hence, we obtain that rankDM = 10 − 10 + 4 = 4. Then, using the fact that
rankDM = rankD(M/t(M)), we obtain that Ext1[3] is a minimal parametriza-
tion of M/t(M).

We now compute a free resolution of the leftD-module Ñ = D1×10/(D1×10 Radj).

> st:=time(): Resolution(R_adj, Alg, 4); time()-st;

table([1 = R adj , 2 =






2 D1 0 0 0 D2 0 0 D3 0 D4
0 2 D2 0 0 D1 D3 0 0 D4 0
0 0 2 D3 0 0 D2 D4 D1 0 0
0 0 0 2 D4 0 0 D3 0 D2 D1




 ,

3 = INJ(4),
4 = ZERO
])

3.360

From the previous free resolution of the D-module N = D1×10/(D1×10 Radj), we
deduce that ext2

D(N,D) = D1×4/(D1×10 Ext1[3]) and extiD(N,D) = 0 for i ≥ 3.

10.6 Lie-Poisson structures

Finally, we apply OreModules to another underdetermined linear system of PDEs
with variable coefficients that appears in mathematical physics. Let us give an
example coming from the study of Lie-Poisson structures [3,38].

> Alg:=DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2],
> diff=[D3,x3], polynom=[x1,x2,x3]):

The following example appears in the study of the E2 algebra [3]. The authors
of [3] investigated the possibility to parametrize all the solutions of the system of
PDEs defined by the following matrix.

> R:=evalm([[x1*D3, x2*D3, 0],
> [-x1*D2+x2*D1, -1, x2*D3],
> [-1, -x2*D1+x1*D2, x1*D3]]);

R :=



x1 D3 x2 D3 0

−x1 D2 + x2 D1 −1 x2 D3
−1 −x2 D1 + x1 D2 x1 D3





Let D = A3(Q) be the Weyl algebra (see Example 1) and M = D1×3/(D1×3 R)
be the left D-module associated with R. The previous problem can be solved by

computing ˜ext1
D(N,D), where Ñ = D1×3/(D1×3 θ(R)) is a left D-module and θ

is the involution defined in 2 of Example 10.
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> Ext1:=Exti(Involution(R, Alg), Alg, 1);

Ext1 :=
















D3 0 0
−x2 D1 + x1 D2 0 0

0 x2 D3 0
0 x1 D3 0
0 −x2 D1 + x1 D2 0
0 0 1










,




x1 x2 0
D1 D2 D3
−1 −x2 D1 + x1 D2 x1 D3



 ,




−x2 D3
x1 D3

−x1 D2 + x2 D1











We find that the system R (F : G : H)T = 0 is not parametrizable because there
exist two torsion elements in the left D-module M

{
�1 = x1 F + x2G,

�2 = ∂1 F + ∂2G+ ∂3H,

which satisfy the following equations:

{
∂3�1 = 0,
(−x2 ∂1 + x1 ∂2)�1 = 0,






x2 ∂3�2 = 0,
x1 ∂3�2 = 0,
(−x2 ∂1 + x1 ∂2)�2 = 0.

However, the system of PDEsExt1[2] y = 0 is parametrized byy = Ext1[3] z.
Up to the mistake underlined in [38] concerning the existence of the torsion ele-
ments, we recover the parametrization exhibited in [3].

The previous computation shows thatM is not a torsion leftD-module even ifR
is a square matrix. Hence,R does not have full row rank. This result can be checked
by computing a free resolution of the left D-module M = D1×3/(D1×3 R).

> Free:=FreeResolution(R, Alg);

Free := table([1 =



x1 D3 x2 D3 0

−x1 D2 + x2 D1 −1 x2 D3
−1 −x2 D1 + x1 D2 x1 D3



 ,

2 = [ −x2 D1 + x1 D2 x1 D3 −x2 D3
]
,

3 = INJ(1)
])

In particular, the leftD-moduleL = D1×3/(D Free[2]) is torsion-free as we have
L ∼= D1×3 R ⊂ D1×3 and D1×3 is a torsion-free left D-module.

> ext:=Exti(Involution(Free[2], Alg), Alg, 1);
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ext := [
[

1
]
,
[ −x2 D1 + x1 D2 x1 D3 −x2 D3

]
,




D3 x1 D3 0
−D2 −x1 D2 + x2 D1 x2
−D1 −1 x1



]

Therefore, the matrices R ∈ D3×3 and ext[3] are two parametrizations of the left
D-module L = D1×3/(D Free[2]). Let us compute rankD L.

> OreRank(Free[2], Alg);

2

Hence, we conclude that y = R z and y = ext[3] z are not minimal parametri-
zations of Free[2] (F : G : H)T = 0 because they depend on three arbitrary
functions of x1, x2, x3. Let us compute minimal parametrizations of the system
Free[2] (F : G : H)T = 0.

> P:=MinimalParametrizations(Free[2], Alg);

P :=







D3 x1 D3
−D2 −x1 D2 + x2 D1
−D1 −1



,




D3 0
−D2 x2
−D1 x1



,




x1 D3 0

−x1 D2 + x2 D1 x2
−1 x1









Then, we can check that y = P [1] z, y = P [2] z and y = P [3] z are three minimal
parametrizations of the system Free[2] (F : G : H)T = 0, where z = (z1 : z2)

T ,
and z1 and z2 are two arbitrary functions of x1, x2 and x3.

> seq(SyzygyModule(P[i], Alg), i=1..3);

%1, %1, %1

%1 := [ −x2 D1 + x1 D2 x1 D3 −x2 D3
]

To finish, we consider B3(Q) = Q(x1, x2, x3)[∂1; σ1, δ1][∂2; σ2, δ2][∂3; σ3, δ3],
where σi and δi are defined as in the last part of Example 1 and we define the left
B3(Q)-moduleM ′ = B1×3

3 (Q)/(B1×3
3 (Q) R) associated withR. Since the domain

of coefficients ofB3(Q) is the quotient field of Q[x1, x2, x3], we are going to use the
Weyl algebra D = A3(Q) (see Example 1) and allow our algorithms to divide by
non-zero polynomials in x1, x2, x3. This is taken into account by ExtiRat below.

> st:=time(): ExtiRat(Involution(R, Alg), Alg, 1);
> time()-st;










D3 0
−x1 D2 + x2 D1 0

0 D3
0 −x1 D2 + x2 D1




 ,

[
x1 x2 0
0 −x1 2 D2 + x1 x2 D1 − x2 −x1 2 D3

]

,




x2 D3
−x1 D3

−x2 D1 + x1 D2









0.670
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We find that the system R (F : G : H)T = 0 is not parametrizable because there
exist two torsion elements

{
�1 = x1 F + x2G,

�2 = (−x2
1 ∂2 + x1 x2 ∂1 − x2)G− x3

1 ∂3H,

which both satisfy the system:
{
∂3�i = 0,
(−x1 ∂2 + x2 ∂1)�i = 0,

i = 1, 2.

We recover the torsion element�1 exhibited in [38] as well as the parametrization
of the torsion-free left B3(Q)-module M ′/t (M ′) given in [3].
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thesis. Ecole Nationale des Ponts et Chaussées (France) (23/09/1999)
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