An algebraic analysis approach to mathematical system theory

NETCA Workshop:
 Verification and Theorem Proving for Continuous Systems
 Oxford, 26/08/05

Abstract

Alban Quadrat

INRIA Sophia Antipolis, CAFE Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr www-sop.inria.fr/cafe/Alban.Quadrat/index.html

Synthesis problems

Transfer functions

Finite-dimensional system:

$$
\dot{x}(t)=x(t)+u(t), x(0)=0 \Rightarrow \widehat{x}(s)=\frac{1}{(s-1)} \widehat{u}(s) .
$$

- Differential time-delay system:

$$
\left\{\begin{aligned}
& \dot{x}(t)=x(t)+u(t), \\
& y(0)=0, \\
& y(t)= \begin{cases}0, & 0 \leq t \leq 1, \\
x(t-1), & t \geq 1,\end{cases} \\
& \Rightarrow \widehat{y}(s)=\frac{e^{-s}}{(s-1)} \widehat{u}(s) .
\end{aligned}\right.
$$

- System of partial differential equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial^{2} z}{\partial t^{2}}(x, t)-\frac{\partial^{2} z}{\partial x^{2}}(x, t)=0, \\
\frac{\partial z}{\partial x}(0, t)=0, \frac{\partial z}{\partial x}(1, t)=u(t), \\
y(t)=\frac{\partial z}{\partial t}(1, t), \\
\Rightarrow \widehat{y}(s)=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)} \widehat{u}(s) .
\end{array}\right. \\
& \quad,
\end{aligned}
$$

- The poles of the transfer functions $(1,1, k \pi i, k \in \mathbb{Z})$ belong to $\overline{\mathbb{C}_{+}}=\{s \in \mathbb{C} \mid \operatorname{Re}(s) \geq 0\} \Rightarrow$ unstability.

A module approach of synthesis problems

1. An integral domain A of SISO stable systems is chosen (e.g., $A=R H_{\infty}, H_{\infty}\left(\mathbb{C}_{+}\right), \widehat{\mathcal{A}} \ldots$).
2. The plant is defined by a transfer matrix:
$P \in K^{q \times r}, K=Q(A)=\{n / d \mid 0 \neq d, n \in A\}$.
3. We write P as:

(e.g., $D=d I_{q}, \quad N=d P, \quad \tilde{D}=d I_{r}, \tilde{N}=d P$).
4. $y=P u \Leftrightarrow\left\{\begin{array}{l}(D \quad-N)\binom{y}{u}=0, \\ \binom{y}{u}=\binom{\tilde{N}}{\tilde{D}} z .\end{array} \quad(\star)\right.$
5. Synthesis problems are reformulated in terms of the properties of (\star).

- Linear algebra over rings is module theory
\Rightarrow a module approach to synthesis problems.

Stable algebras A of SISO systems

$$
\left.\begin{array}{l}
\text { 1. } R H_{\infty}=\left\{\left.\frac{n(s)}{d(s)} \in \mathbb{R}(s) \right\rvert\, \operatorname{deg} n(s) \leq \operatorname{deg} d(s),\right. \\
d(s)=0 \Rightarrow \operatorname{Re}(s)<0\}
\end{array}\right\} \begin{aligned}
h_{1}=\frac{1}{s-1}=\frac{\left(\frac{1}{s+1}\right)}{\left(\frac{s-1}{s+1}\right)}, \quad \frac{1}{s+1}, \frac{s-1}{s+1} \in R H_{\infty} \\
\Rightarrow h_{1} \in Q\left(R H_{\infty}\right)=\mathbb{R}(s) .
\end{aligned} \begin{aligned}
& \text { 2. } \mathcal{A}=\left\{f(t)+\sum_{i=0}^{+\infty} a_{i} \delta_{t-t_{i}} \mid f \in L_{1}\left(\mathbb{R}_{+}\right),\right. \\
& \\
& \left.\left(a_{i}\right)_{i \geq 0} \in l_{1}\left(\mathbb{Z}_{+}\right), 0=t_{0} \leq t_{1} \leq t_{2} \cdots\right\}
\end{aligned}
$$

and $\hat{\mathcal{A}}=\{\hat{g} \mid g \in \mathcal{A}\}$ the Wiener algebras.

$$
h_{2}=\frac{e^{-s}}{s-1}=\frac{\left(\frac{e^{-s}}{s+1}\right)}{\left(\frac{s-1}{s+1}\right)}, \quad \frac{e^{-s}}{s+1}, \frac{s-1}{s+1} \in \widehat{\mathcal{A}} \Rightarrow h_{2} \in Q(\widehat{\mathcal{A}}) .
$$

3. $\mathbb{C}_{+}=\{s \in \mathbb{C} \mid \operatorname{Re} s>0\}$. The Hardy algebra $H_{\infty}\left(\mathbb{C}_{+}\right)=\left\{\right.$holomorphic functions f in $\mathbb{C}_{+} \mid$

$$
\left.\|f\|_{\infty}=\sup _{s \in \mathbb{C}_{+}}|f(s)|<+\infty\right\} .
$$

$$
h_{3}=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)}, 1+e^{-2 s}, 1-e^{-2 s} \in H_{\infty}\left(\mathbb{C}_{+}\right)
$$

$$
\Rightarrow h_{3} \in Q\left(H_{\infty}\left(\mathbb{C}_{+}\right)\right)
$$

Example

- We consider the transfer matrix:

$$
P=\binom{\frac{e^{-s}}{s-1}}{\frac{e^{-s}}{(s-1)^{2}}} .
$$

- Let us consider $A=H_{\infty}\left(\mathbb{C}_{+}\right)$and $K=Q(A)$.
- We have:

$$
\begin{gathered}
\left\{\begin{array} { l }
{ y _ { 1 } = \frac { e ^ { - s } } { (s - 1) } u , } \\
{ y _ { 2 } = \frac { e ^ { - s } } { (s - 1) ^ { 2 } } u }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{(s-1)}{(s+1)} y_{1}-\frac{e^{-s}}{(s+1)} u=0, \\
\left(\frac{s-1}{s+1}\right)^{2} y_{2}-\frac{e^{-s}}{(s+1)^{2}} u=0,
\end{array}\right.\right. \\
\Rightarrow R\binom{y}{u}=0, \\
\underbrace{}_{D} \begin{array}{l}
\text { with } R=\left(\begin{array}{cc}
\frac{s-1}{s+1} \begin{array}{c}
0 \\
0 \\
\left(\frac{s-1}{s+1}\right)^{2}
\end{array} & \begin{array}{c}
-\frac{e^{-s}}{s+1} \\
-\frac{e^{-s}}{(s+1)^{2}}
\end{array}
\end{array}\right) \in A^{2 \times 3} .
\end{array}
\end{gathered}
$$

- We have:

$$
P=D^{-1} N \in K^{2} .
$$

- Properties of P can be studied by means of the matrix R with entries in the Banach algebra A.

Doubly coprime factorizations

$$
\left\{\begin{array}{l}
P=D^{-1} N=\tilde{N} \tilde{D}^{-1} \in K^{q \times r} \\
R=(D-N) \in A^{q \times p} \\
\tilde{R}=\left(\begin{array}{ll}
\tilde{N}^{T} & \tilde{D}^{T}
\end{array}\right)^{T} \in A^{p \times r}
\end{array}\right.
$$

- Definition: P admits a doubly coprime factorization if there exist

$$
\begin{aligned}
& \left\{\begin{array}{l}
R^{\prime}=\left(\begin{array}{ll}
D^{\prime} & -N^{\prime}
\end{array}\right) \in A^{q \times p}, \\
\tilde{R}^{\prime}=\left(\tilde{N}^{T}\right. \\
S=\left(\tilde{D}^{\prime}\right.
\end{array}\right)^{T} \in A^{p \times r}, \quad \text { such that: } \\
& \tilde{S}=\left(\begin{array}{ll}
X^{T} & Y^{T}
\end{array}\right)^{T} \in A^{p \times q}, \\
& \left(\begin{array}{ll}
-\tilde{X} & \tilde{X}
\end{array}\right) \in A^{r \times p}, \\
& \binom{R^{\prime}}{\tilde{S}}\left(\begin{array}{ll}
S & \tilde{R}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
I_{q} & 0 \\
0 & I_{r}
\end{array}\right)=I_{p} .
\end{aligned}
$$

- Theorem: Let us define the A-modules:

$$
M=A^{1 \times p} /\left(A^{1 \times q} R\right), \quad N=A^{1 \times p} /\left(A^{1 \times r} \tilde{R}^{T}\right) .
$$

Then, we have the following equivalences:

1. P admits a doubly coprime factorization.
2. The A-modules $M / t(M)$ and $N / t(N)$ are free of rank respectively q and r.
3. The A-modules $A^{1 \times p} R^{T}$ and $A^{1 \times p} \tilde{R}$ are free of rank respectively q and r.

Internal stabilizability

- Let A be an integral domain of SISO stable plants.
- $K=\{n / d \mid 0 \neq d, n \in A\}$ field of fractions of A.
- $P \in K^{q \times r}$ a plant.
- $C \in K^{r \times q}$ a controller.
- The closed-loop system is defined by:

u_{1}, u_{2} : external inputs, e_{1}, e_{2} : internal inputs, y_{1}, y_{2} : outputs.

$$
\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
I_{q} & -P \\
-C & I_{r}
\end{array}\right)\binom{e_{1}}{e_{2}},\left\{\begin{array}{l}
y_{1}=e_{2}-u_{2} \\
y_{2}=e_{1}-u_{1}
\end{array}\right.
$$

- Definition: C internally stabilizes P if the transfer matrix $T=\left(\begin{array}{cc}I_{r} & -P \\ -C & I_{r}\end{array}\right)^{-1}$ satisfies:
$T=\left(\begin{array}{cc}\left(I_{q}-P C\right)^{-1} & \left(I-P_{q} C\right)^{-1} P \\ C\left(I_{q}-P C\right)^{-1} & I_{r}+C\left(I_{q}-P C\right)^{-1} P\end{array}\right) \in A^{(q+r) \times(q+r)}$.
- Internal stability $\Leftrightarrow\left\{\begin{array}{l}L_{2}-L_{2} \text { stability if } A=H_{\infty}\left(\mathbb{C}_{+}\right),\end{array}\right.$ $L_{\infty}-L_{\infty}$ stability if $A=\hat{\mathcal{A}}$.

Internal stabilizability

$$
\left\{\begin{array}{l}
P=D^{-1} N=\tilde{N} \tilde{D}^{-1} \in K^{q \times r}, \\
R=(D-N) \in A^{q \times p}, \\
\tilde{R}=\left(\tilde{N}^{T} \tilde{D}^{T}\right)^{T} \in A^{r \times p} .
\end{array}\right.
$$

- Theorem: Let us define the A-modules:

$$
M=A^{1 \times p} /\left(A^{1 \times q} R\right), \quad N=A^{1 \times p} /\left(A^{1 \times r} \tilde{R}^{T}\right) .
$$

Then, we have the following equivalences:

1. P is internally stabilizable.
2. The A-modules $M / t(M)$ and $N / t(N)$ are projective of rank respectively q and r.
3. The A-modules $A^{1 \times p} R^{T}$ and $A^{1 \times p} \tilde{R}$ are projective of rank respectively q and r.

- Corollary: $P=D^{-1} N$ is internally stabilizable iff $\exists S=\binom{X^{T}}{Y^{T}}^{T} \in K^{p \times q}$ such that:

1. $S R=\left(\begin{array}{cc}X D & -X N \\ Y D & -Y N\end{array}\right) \in A^{p \times p}$,
2. $R S=D X-N Y=I_{q}$.

The controller $C=Y X^{-1}$ internally stabilizes P.

Example

- We consider the transfer matrix $\left(A=H_{\infty}\left(\mathbb{C}_{+}\right)\right)$:

$$
P=\binom{\frac{e^{-s}}{(s-1)}}{\frac{e^{-s}}{(s-1)^{2}}} \in K^{2}, \quad K=Q(A) .
$$

- We have $P=D^{-1} N$ where R is defined by:

$$
R=\left(\begin{array}{ccc}
\frac{s-1}{s+1} & 0 & -\frac{e^{-s}}{s+1} \\
0 & \left(\frac{s-1}{s+1}\right)^{2} & -\frac{e^{-s}}{(s+1)^{2}}
\end{array}\right) \in A^{2 \times 3} .
$$

- The matrix $S=\left(\begin{array}{ll}X^{T} & Y^{T}\end{array}\right)^{T} \in K^{3 \times 2}$ defined by

$$
S=\left(\begin{array}{cc}
b\left(\frac{s-1}{s+1}\right)^{2}+\frac{2}{s-1} & 2(b-1) \frac{(s-1)}{(s+1)} \\
b \frac{(s-1)}{(s+1)^{2}}-\frac{1}{s-1} & \frac{2 b}{s+1}+\frac{s+1}{s-1} \\
-a \frac{(s-1)}{(s+1)^{2}} & -\frac{2 a}{s+1}
\end{array}\right),
$$

$a=\frac{4 e(5 s-3)}{(s+1)}, \quad b=\frac{(s+1)^{3}-4(5 s-3) e^{-(s-1)}}{(s+1)(s-1)^{2}} \in A$,
satisfies $S R \in A^{3 \times 3}$ and $R S=D X-N Y=I_{2}$.
$\Rightarrow P$ is internally stabilized by $C=Y X^{-1}$, i.e.:

$$
C=\frac{-4(5 s-3) e(s-1)^{2}}{(s+1)\left((s+1)^{3}-4(5 s-3) e^{-(s-1)}\right)}(1 \quad 2) .
$$

