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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Towards an effective study of the algebraic
parameter estimation problem

Alban Quadrat ∗

∗ Inria Lille - Nord Europe, Non-A project, Parc Scientifique de la
Haute Borne, 40 Avenue Halley, Bat. A - Park Plaza, 59650
Villeneuve d’Ascq, France (e-mail: alban.quadrat@inria.fr).

Abstract: The paper aims at developing the first steps toward a symbolic computation
approach to the algebraic parameter estimation problem defined by Fliess and Sira-Ramirez and
their coauthors. In this paper, within the algebraic analysis approach, we first give a general
formulation of the algebraic parameter estimation for signals which are defined by ordinary
differential equations with polynomial coefficients such as the standard orthogonal polynomials
(Chebyshev, Jacobi, Legendre, Laguerre, Hermite, . . . polynomials). Based on a result on
holonomic functions, we show that the algebraic parameter estimation problem for a truncated
expansion of a function into an orthogonal basis of L2 defined by orthogonal polynomials can be
studied similarly. Then, using symbolic computation methods such as Gröbner basis techniques
for (noncommutative) polynomial rings, we first show how to compute ordinary differential
operators which annihilate a given polynomial and which contain only certain parameters in
their coefficients. Then, we explain how to compute the intersection of the annihilator ideals
of two polynomials and characterize the ordinary differential operators which annihilate a first
polynomial but not a second one. These results, which are at the core of the algebraic parameter
estimation, are implemented in the Non-A package built upon the OreModules software.

Keywords: Parameter estimation problem, algebraic systems theory, symbolic computation,
annihilators, orthogonal polynomials, expansion into a basis, ring of differential operators.

1. INTRODUCTION

In this paper, we consider the problem of estimating
constant parameters θ of a signal x when the signal

y(t) = x(θ, t) + γ(t) +$(t) (1)

is observed, and where γ is a perturbation and $ a
zero-mean noise. Many different approaches have been
developed for this problem in the literature of signal
processing and control theory. In this paper, we follow
the algebraic approach developed by Fliess, Sira-Ramirez,
Mboup, and their coauthors. See Fliess et al. (2003); Sira-
Ramı́rez et al. (2014); Mboup et al. (2009); Ushirobira
et al. (2012, 2013), and the references therein. In the
absence of noise, i.e., $ = 0, the algebraic approach
provides explicit and exact formulas for the constant
parameters θ in terms of integrals of the observed signal
y. The use of integrals helps to filter the noise $. The
explicit expressions of the parameters θ can then be used
to do real-time estimation.

In the algebraic approach to parameter estimation, the
dynamics of the signal x is defined by a time-invariant
ordinary differential (OD) system (Fliess et al. (2003);
Sira-Ramı́rez et al. (2014); Mboup et al. (2009); Ushiro-
bira et al. (2012, 2013)). In Fliess et al. (2010), there is
a remark about the possibility to extend this framework
to ODEs with polynomial coefficients (see Remark 1 in
page 133). Being not aware of this remark but inspired by
works developed in the symbolic computation community
(Chyzak et al. (2005)), in Ushirobira et al. (2016), we

show that the algebraic approach can be extended to
signal x which is defined by an OD system with poly-
nomial coefficients. Indeed, within the algebraic approach
to parameter estimation, the signal is studied in the fre-
quency domain by means of the operational calculus. The
Laplace transform can still be used for OD systems with
polynomial coefficients since the time variable t is then
transformed into −∂s, where ∂s = d

ds is the derivation
with respect to the Laplace variable s. Within the algebraic
analysis approach (Kashiwara et al. (1986); Chyzak et al.
(2005)), the Laplace transform is an automorphism of
the Weyl algebra A1(k) = k〈t, ∂t | ∂t t = t ∂t + 1〉 of OD
operators with polynomial coefficients in t over a field k
of characteristic zero (e.g., k = Q, R), i.e., the k-linear
map L : A1(k) −→ A1(k) defined by L (t) = −∂s and
L (∂t) = s is an automorphism of k-algebras, where the
target Weyl algebra is in the complex variable s, i.e.,
A1(k) = k〈s, ∂s | ∂s s = s ∂s + 1〉. The algebraic approach
to parameter estimation can then be developed similarly to
the linear time-invariant OD systems. In Ushirobira et al.
(2016), we initiated the study of signals x which are de-
fined by dynamical systems with polynomial coefficients or
signals which can be expanded into orthogonal bases of L2

defined by orthogonal polynomials such as Hermite, Jacobi,
Laguerre, . . . , polynomials (Abramowitz et al. (1964);
Chyzak et al. (2005)). Note that the algebraic parameter
estimation problem was studied for Taylor expansion series
(Mboup et al. (2009)) and initiated for Fourier expansions,
i.e., expansions into the orthogonal basis {ei n θ}n∈Z of



L2(T), where T = {z ∈ C | |z| = 1} is the unit torus
of C (Ushirobira et al. (2012, 2013)).

The first goal of this paper is to give a formulation of the
algebraic parameter estimation for signals x which satisfy
an OD equation with polynomial coefficients. Then, we
show that the case of a signal x which is a truncated
expansion of a function into a basis defined by a family of
orthogonal polynomials can similarly be studied. Finally,
using computer algebra techniques (e.g., Gröbner basis
techniques), we initiate an effective study of the compu-
tations of annihilators of polynomials, a problem which
plays a key role in the algebraic parameter estimation.

2. ALGEBRAIC PARAMETER ESTIMATION

2.1 Classes of signals x under study

Let a signal x satisfy the following OD equations (ODE)
n∑
i=0

ai(t)x
(i)(t) = 0, (2)

where the ai’s are polynomials in t and with coefficients
in a commutative ring K of constants (namely, ċ = 0 for
c ∈ K), i.e., ai ∈ K[t] for i = 0, . . . , n. Using the following
standard results on the Laplace transform L

• L
(
f (n)

)
(s) = sn L (f) (s)−

∑n−1
i=0 s

n−i−1 f (i)(0),

• L (tn f) (s) = (−1)n ∂ns (L (f) (s)),

with the notation x̂ = L (x), we obtain:

n∑
i=0

ai(−∂s)

si x̂(s)−
i−1∑
j=0

si−j−1 x(j)(0)

 = 0.

The above identity can be rewritten as:
n∑
i=0

(
ai(−∂s) si

)
x̂(s)−

n∑
i=0

i−1∑
j=0

(
ai(−∂s) si−j−1

)
x(j)(0) = 0.

Expending the second term of the above identity, we get
n∑
i=0

i−1∑
j=0

(
ai(−∂s) si−j−1

)
x(j)(0)

=

n∑
j=1

 n∑
i=j

ai(−∂s) si−j
 x(j−1)(0)

=

n−1∑
k=0

(
n∑

i=k+1

ai(−∂s) si−k−1
)
x(k)(0),

and thus, we obtain:
n∑
i=0

(
ai(−∂s) si

)
x̂(s)

−
n−1∑
k=0

(
n∑

i=k+1

ai(−∂s) si−k−1
)
x(k)(0) = 0.

If we note

R =

n∑
i=0

ai(−∂s) si, Sk = −
n∑

i=k+1

ai(−∂s) si−k−1,

for k = 0, . . . , n− 1, then the above identity becomes:

R(s, ∂s) x̂(s) +

n−1∑
k=0

Sk(s)x(k)(0) = 0. (3)

Let D = K[s]〈∂s〉 be the noncommutative polynomial
ring of OD operators with coefficients in the commutative
ring A = K[s], namely, the ring of noncommutative
polynomials of the form

∑n
i=0 ai ∂

i
s, where ai ∈ A for

i = 0, . . . , n, which satisfy the following relation:

∀ a ∈ A, ∂s a = a ∂s +
da

ds
.

Now, using the operator identity ∂s s = s ∂s + 1 in D,
which corresponds to the standard Leibniz identity, i.e.,

(∂s s)(z(s)) =
d

ds
(s z(s)) = s

d

ds
z(s)+z(s) = (s ∂s+1) z(s),

the terms ai(−∂s) sk can be rewritten as an OD operator
of the form

∑m
l=0 bl(s) ∂

l
s, i.e., as an element of D. For more

details, see, e.g., Kashiwara et al. (1986); McConnell et al.
(2000).

Remark 1. Within the framework developed in Fliess et al.
(2003), the algebraic estimation problem is stated for a
general time-invariant linear control system defined by:

n∑
i=0

ai x
(i)(t) =

n−1∑
j=0

bj u
(j)(t).

The presence of an input u does not bring substantial
differences from the input free case (u = 0). Indeed, an
extra term coming from the contribution of u has to be
added. To simplify, in this paper, we shall only consider
the case u = 0 as well as the single-output case. For the
general case, we refer the reader to Quadrat (2017).

Let us now consider the signal z = x + γ, where γ is a
perturbation which admits a Laplace transform γ̂ = L (γ).
Then, combining ẑ = x̂+ γ̂ with (3), we obtain:

R(s, ∂s) ẑ(s) +

n−1∑
k=0

Sk(s)x(k)(0)−R(s, ∂s) γ̂(s) = 0.

To simplify the notation, let ϑk = x(k)(0), k = 0, . . . , n−1,

and S =
∑n−1
k=0 Sk(s)ϑk ∈ K[s]. Hence, we obtain:

R(s, ∂s) ẑ(s) + S(s)−R(s, ∂s) γ̂(s) = 0. (4)

When γ satisfies an ODE, then the perturbation γ is
called structured (see Fliess et al. (2003)). If γ satisfies
an ODE of order m with polynomial coefficients, i.e.,∑m
i=0 a

′
i(t) γ

(i)(t) = 0, where a′i ∈ K[t] for i = 0, . . . ,m,
then, similarly as above, γ̂ satisfies the following equation

R′(s, ∂s) γ̂(s) + S′(s) = 0, (5)

where R′ =
∑m
i=0 a

′
i(−∂s) si and:

S′k = −
m∑

i=k+1

a′i(−∂s) si−k−1, S′ =

m−1∑
k=0

S′k(s) γ(k)(0).

Example 1. If γ is a constant biais, i.e., γ(t) = γ H(t),
where H is the Heaviside distribution (i.e., H(t) = 1 for
t > 0 and 0 for t < 0) and γ is a real constant, then, within
algebraic analysis, it is well-known that this distribution
is the solution of the ODE with polynomial coefficients
t ∂t (γ(t)) = 0. This can be checked again by using the
Laplace transform which yields ∂s (s γ̂(s)) = 0 and its
solution γ̂(s) = γ/s is the Laplace transform of γ(t).
Similarly, if γ(t) is an impulse, i.e., γ(t) = γ δ(t), where
δ is the Dirac distribution and γ is a real constant, then,
within algebraic analysis, it is known that this distribution
satisfies the equation t γ(t) = 0. This can be checked again



since, using the Laplace transform, we get ∂s γ̂(s) = 0, i.e.,
γ̂(s) = γ, which is the Laplace transform of γ(t) = γ δ(t).

To simplify, in this paper, we shall only consider the
perturbation γ to be a constant biais (see Example 1). For
the general case, see Quadrat (2017). Using the Laplace
transform of γ, i.e., γ̂(s) = γ/s, and (4), we then get:

R(s, ∂s) ẑ(s) + S(s)−R(s, ∂s)
γ

s
= 0. (6)

We can clean the denominator of (6) to obtain an OD
operator with polynomial coefficients in s, i.e., an element
of the ring D. We first have:

R(s, ∂s)
γ

s
= γ

(
n∑
i=1

ai(−∂s) si−1 + a0(−∂s)
1

s

)
.

If the degree of a0(−∂s) in ∂s is n0, then using the identity

dn0

dsn0
s−1 = −n0! s−(n0+1),

we get that a0(−∂s) s−1 = d0(s)/sn0+1, where d0 ∈ k[s].
Therefore, multiplying (6) by sn0+1, we obtain:

sn0+1R(s, ∂s) ẑ(s) + sn0+1 S(s)

−γ

(
sn0+1

n∑
i=0

ai(−∂s) si−1
)

= 0.

If we note

P = sn0+1R(s, ∂s) ∈ D = K[s]〈∂s〉,

Q = sn0+1 S(s) = sn0+1
n−1∑
k=0

Sk(s)ϑk ∈ K[ϑ1, . . . , ϑn−1, s],

Q = −sn0+1
n∑
i=0

ai(−∂s) si−1 γ ∈ K[γ, s],

(7)
then we finally obtain that the signal z satisfies:

P (s, ∂s) ẑ(s) +Q(s) +Q(s) = 0. (8)

Example 2. If x =
∑m
k=0

ak
k! t

k is a polynomial of degree m,

then we have x(m+1)(t) = 0, and thus n = m+ 1, an = 1,
ai = 0 for i = 0, . . . , n−1, ϑk = x(k)(0) for k = 0, . . . , n−1,
n0 = 0, and:

P = sm+2, Q = −s
m∑
k=0

sm−k ϑk, Q = −γ sm+1.

Example 3. If x = e−i
2π
T n t is an element of the Fourier

orthogonal basis {e−i 2π
T n t}n∈Z of L2(R), then x satisfies

the first order ODE ẋ+ i ν n x = 0, where ν = 2π/T , i.e.,
a1 = ∂s, a0 = i ν n and n0 = 0. Thus, we get (8), where:

ϑ0 = x(0),

P = s (s+ i ν n) ,

Q = −s ϑ0,
Q = −γ (s+ i ν n) .

Example 4. Let x be a signal satisfying a second ODE

a2(t) ẍ(t) + a1(t) ẋ(t) + a0(t)x(t) = 0, (9)

where ai ∈ K[t], i = 0, 1, 2. If degt a0 = n0, then (7) gives:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = sn0+1
(
a0(−∂s) 1 + a1(−∂s) s+ a2(−∂s) s2

)
,

Q = −sn0+1 (Q0(s)ϑ0 +Q1(s)ϑ1) ,

= −sn0+1 ((a1(−∂) 1 + a2(−∂s) s)ϑ0 + a2(−∂s)ϑ1) ,

Q = −γ sn0+1 (a0(−∂s) s−1 + a1(−∂s) 1 + a2(−∂s) s).

Now, let us consider the following case
a2(t) = a22 t

2 + a21 t+ a20,

a1(t) = a11 t+ a10,

a0(t) = a00,

where a22, a21, a20, a11, a10, a00 ∈ K. Then, we have
n0 = degt a0 = 0 and:

P = s (a22 s
2 ∂2s + s (−a21 s+ 4 a22 − a11) ∂s

+ a20 s
2 + (a10 − 2 a21) s+ (a00 − a11 + 2 a22),

Q = −s ((a20 s+ a10 − a21)ϑ0 + a20 ϑ1),

Q = −(a20 s
2 + (a10 − a21) s+ a00) γ.

(1) If x = A sin(ω t+φ), then a2 = 1, a1 = 0 and a0 = ω2,
and thus we obtain (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = s (s2 + ω2),

Q = −s (s ϑ0 + ϑ1) ,

Q = −(s2 + ω2) γ.

(2) If x = Tn is the nth Chebyshev polynomial of the first
kind, then we have a2 = −t2+1, a1 = −t and a0 = n2,
and thus we get (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = −s
(
s2 ∂2s + 3 s ∂s − s2 − n2 + 1

)
,

Q = −s (s ϑ0 + ϑ1) ,

Q = −(s2 + n2) γ.

If x = Un is the nth Chebyshev polynomial of the
second kind, then we have a2 = −t2 + 1, a1 = −3 t
and a0 = n (n+ 2), and thus we get (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = −s
(
s2 ∂2s + s ∂s − s2 − (n+ 1)2

)
,

Q = −s (s ϑ0 + ϑ1) ,

Q = −(s2 + n (n+ 2)) γ.

(3) If x = Pα,βn is the nth Jacobi polynomial which
depends on the parameters α and β, then we have
a2 = −t2 + 1, a1 = − (α+ β + 2) t + β − α and
a0 = n (n+ α+ β + 1), and thus we get (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = s (−s2 ∂2s + (β + α− 2) s ∂s + s2 + (β − α) s

+ (n+ 1) (n+ α+ β)),

Q = −s (ϑ0 (s+ β − α) + ϑ1),

Q = −
(
s2 + (β − α) s+ n (n+ α+ β + 1)

)
γ.

The nth Legendre polynomial is a particular case of
the nth Jacobi polynomial for which α = β = 0, i.e.:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = s
(
−s2 ∂2s − 2 s ∂s + s2 + (n+ 1)n

)
,

Q = −s (ϑ0 s+ ϑ1) ,

Q = −
(
s2 + n (n+ 1)

)
γ.

(4) If x = L
(α)
n is the nth Laguerre polynomial which

depends on α, then we have a2 = t, a1 = −t+ α + 1
and a0 = n, and thus we get (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = s (s (1− s) ∂s + (α− 1) s+ n+ 1),

Q = −s αϑ0,
Q = −(α s+ n) γ.



(5) If x = Hn is the nth Hermite polynomial, then a2 = 1,
a1 = −2 t, a0 = 2n, and we get (8), where:

ϑ0 = x(0), ϑ1 = ẋ(0),

P = s (2 s ∂s + s2 + 2 (n+ 1))

Q = −s (s ϑ0 + ϑ1)

Q = −(s2 + 2n) γ.

Remark 2. The signal x in (1) could also be a wavelet.
This case will be studied in a future publication. Wavelets
satisfy functional equations such as dilation equations.
Classes of functional equations can be studied by means
of the so-called Ore algebras. For more details, see Chyzak
et al. (2005) and the references therein.

2.2 Estimation of an expansion of x into a basis

Till now, we have consider x to be the solution of an ODE
with polynomial coefficients. More generally, x can be the
output of a linear OD system with polynomial coefficients.

An intermediate case is a signal x =
∑N
k=0 λk xk which is a

linear combination of signals xk which satisfy ODEs of the
form (2) and the λk’s are constants. This case corresponds
to the case of uncoupled linear OD system since the
xk’s are independent from one another. For instance,
{xk}k=0,...,N can be the first N terms of the Taylor basis,
i.e., xk = tk/k!. They can also be the first generators
of a basis of L2 such as the Fourier orthogonal basis or
an orthogonal basis defined by a family of orthogonal
polynomials. In this case, x is an approximation of the
expansion of a function into an orthogonal basis. An
important remark is that x then satisfies an ODE of the
form of (2). This result a consequence of the concept
of holonomic functions developed in algebraic analysis
(Kashiwara et al. (1986)). See the next paragraph for a
simple explanation in the particular of ODEs with rational
functions coefficients. As a consequence for the algebraic
parameter estimation problem, we can always assume that
x is defined by (2), i.e., we do not have to make a
distinction between the case of a single signal x and of
a finite linear combination of signals xk, when each signal
xk satisfies an ODE with polynomial coefficients.

Let us suppose that K is a field and let D = K(t)〈∂〉
be the noncommutative ring of OD operators in ∂t with
coefficients in the field K(t) of rational functions in t
with coefficients in K. An element of D is of the form∑n
i=0 ai(t) ∂

i
t , where ai ∈ K(t) for i = 0, . . . , n. A function

x is said to be D-finite if the left D-module defined by x,
namely, D x = {d x | d ∈ D}, is a finite-dimensional K(t)-
vector space (Chyzak et al. (2005)). If x is a D-finite
function, then the set

{
∂it x = x(i)

}
i=0,...,n

of cardinality

n+1 admits at least one relation over K(t), i.e., there exist
ai ∈ K(t) for i = 0, . . . , n such that

∑n
i=0 ai(t) ∂

i
t x(t) = 0,

i.e., x satisfies an ODE with rational function coefficients,
and thus an ODE of the form (2). Conversely, if x satisfies

an ODE of the form (2), then we get x(n) =
∑n−1
i=0

ai
an
x(i),

which shows that Dx is a K(t)-vector space of dimension
n with the basis

{
x(i)
}
i=0,...,n−1. If x1 and x2 are two

D-finite functions and λ1 and λ2 two constants, then we
clearly have

I = D (λ1 x1 + λ2 x2) ⊆ Dx1 +Dx2,

which shows that I is a finite-dimensional K(t)-vector
space since Dx1 and Dx2 are both finite-dimensional over
K(t), which implies that λ1 x1 + λ2 x2 satisfies an ODE
with rational function coefficients, and thus an ODE of the
form of (2). For more details, see (Chyzak et al. (2005)).
Note that the order n of the ODE for λ1 x1 +λ2 x2, which
is equal to the dimension of I, is at most n1 + n2, where
ni is the order of the ODE defining xi for i = 1, 2.

A natural problem is then to compute the ODEs that x
satisfies when the ODEs for the xi’s are known. This can
be easily done by considering the successive derivatives of

x =
∑N
i=0 λi xi and to search for K(t)-linear combinations

among them (Chyzak et al. (2005)).

Example 5. Let xj = ei (ωj t+φj) for j = 1, 2, 3. Clearly,
xj satisfies ∂t xj − i ωj xj = 0, i.e., xj is annihilated by
∂t − i ωj . Let us compute the annihilator of the linear
combination x = λ1 x1 + λ2 x2 + λ3 x3, where the λi’s are
constants. Differentiating x with respect of t, we get

x

ẋ

ẍ

x(3)

...

 =



λ1 λ2 λ3
i ω1 λ1 i ω2 λ2 i ω3 λ3

−ω2
1 λ1 −ω2

2 λ2 −ω2
3 λ3

−i ω3
1 λ1 −i ω3

2 λ2 −i ω3
3 λ3

...
...

...


 x1
x2
x3

 .

Let L be the second matrix appearing in the above
equation. Linear relations between the rows of L yield OD
operators annihilating x. Indeed, if J = (1 ∂t ∂2t . . .)T

and r is a row vector with entries in K satisfying r L = 0,
then the above equation can be rewritten as J x = Lx,
and thus we then get (r J)x = (r L)x = 0, i.e., the OD
operator r J annihilates x. We can check that there are no
relations between the first three rows of L but

r = (i ω1 ω2 ω3 −(ω1 ω2+ω1 ω3+ω2 ω3) −i (ω1+ω2+ω3) 1)

is in the left kernel of L, which yields that the OD operator

∂3t−i (ω1+ω2+ω3) ∂2t−(ω1 ω2+ω1 ω3+ω2 ω3) ∂t+i ω1 ω2 ω3

annihilates x = λ1 x1 + λ2 x2 + λ3 x3.

Example 6. Let x1 (resp., x2) be the nth (resp., mth)
Hermite polynomial, λ1 and λ2 two constants, and the
signal x = λ1 x1 + λ2 x2. The functions x1 and x2 are
respectively defined by the following ODE:

ẍ1(t)− 2 t ẋ1(t) + 2mx1(t) = 0,

ẍ2(t)− 2 t ẋ2(t) + 2nx2(t) = 0.

Let us compute the ODE satisfies by x. To do that, we
differentiate 2 + 2 = 4 times x and we get

(z ż z̈ z(3) z(4))T = L (x1 x2 ẋ1 ẋ2)T ,

where the matrix L is defined by:

L =
λ1 λ2 0 0

0 0 λ1 λ2

−2mλ1 −2nλ1 2 t λ1 2 t λ2

−4m (2 t2 −m)λ1 −4n (2 t2 − n)λ2 8 t (t2 −m)λ1 8 t (t2 −m)λ2

 .

The left kernel of L is generated by the row vector:

r =
(
4mn − 4 (m+ n) t 4 t2 + 2 (m+ n) − 4 t 1

)
.

Therefore, we get d(t, ∂t) z(t) = 0, where d is the OD

operator defined by d = r
(
1 ∂t ∂2t ∂3t ∂4t

)T
, i.e.:

∂4t − 4 t ∂3t + (4 t2 + 2 (m+ n)) ∂2t − 4 (m+ n) t ∂t + 4mn.



2.3 Statement of the parameter estimation problem

To do study the algebraic parameter estimation problem,
we start with (8), i.e., P (s, ∂s) ẑ(s) + Q(s) + Q(s) = 0.
Let θ = {θ1, . . . , θr} be a set of independent variables and
let us suppose that K = k[θ1, . . . , θr], simply denoted by
K = k[θ], where k is a subfield of K. In other words,
we suppose that the polynomials ai’s which define the
dynamics of the signal x, i.e., (2), depend on certain
constant parameters θ. Similarly, let ϑ = {ϑ1, . . . , ϑs} be
another set of independent variables and Θ = θ ∪ ϑ. We
simply denote k[θ1, . . . , θr, ϑ1, . . . , ϑs] by k[Θ]. Now, using
(7), we obtain that:

P ∈ k[θ]〈∂〉, Q ∈ k[θ, ϑ, s] = k[Θ, s], Q ∈ k[θ, γ, s].

Note that the ϑi’s (resp., γ) appear linearly inQ (resp.,Q).
Since P = sn0+1

∑n
i=0 ai(−∂s) si (see (7)), the coefficients

of the polynomials ai’s appear linearly in P . Hence, if the
parameters θi’s appear linearly in the aj ’s, then they also
appear linearly in P and Q. In what follows, as usually
done in the literature, we assume that this condition holds.

The parameter estimation problem aims at “estimating”
the parameters Θ (or a given subset of Θ) from the
observation of y = z + $. In the algebraic parameter
estimation problem, “estimating” means, in the noiseless
case, i.e., when $ = 0, exactly and explicitly determine the
parameters Θ in terms of y and of its integrals. For more
details, see Fliess et al. (2003); Sira-Ramı́rez et al. (2014);
Mboup et al. (2009); Ushirobira et al. (2012, 2013) and
the references therein. The use of integrals of y is made to
filter the effects of the noise $.

Example 7. If we consider again Example 2, then we
can take ϑ = {ϑk}k=0,...,n−1 and Θ = ϑ. Hence, the
algebraic estimation problem aims at estimating the ϑk’s
or equivalently the ak’s from the measure of y = z +$.

Example 8. If we consider again 1 (resp., 2, resp. 3) of
Example 4, then, for instance, we can take θ = {ω}, ϑ =
{ϑ0, ϑ1}, and thus Θ = {ω, ϑ0, ϑ1} (resp., Θ = {n, ϑ0, ϑ1},
Θ = {α, β, ϑ0, ϑ1}). The algebraic estimation problem
aims at estimating Θ from y = z +$.

To get rid off γ, we have to find annihilators of Q, namely
OD operators Π(s, ∂s) satisfying Π(s, ∂s)Q = 0, so that:

Π(s, ∂s)P (s, ∂s) ẑ(s) + Π(s, ∂s)Q(s) = 0. (10)

In particular, we want to find annihilators Π of Q such
that the parameters Θ can be obtained explicitly in terms
of ẑ and its derivatives. In another words, we want to find
annihilators Πj ofQ, j = 1, . . . , r, such that the OD system

Πj(s, ∂s)P (s, ∂s) ẑ(s) + Πj(s, ∂s)Q(s) = 0, j = 1, . . . , r,
(11)

yields R1 Θ = R2, where{
R1 = R11(s, ∂s) ẑ(s) +R10(s),

R2 = R21(s, ∂s) ẑ(s) +R20(s),

and R1 is generically a non-singular matrix so that we get:

Θ = R−11 R2.

We can divise the both R1 and R2 by sN for a large
enough integer N so that R′1 = s−N R1 and R′2 = s−N R2

are polynomials only in s−1. Doing that (i.e., adding
integrators in the corresponding expressions) helps to filter
the noise $ while coming back to the time domain by

means of the inverse Laplace transform. Thus, we can

consider Θ = R′1
−1
R′2. Note also that the coefficients of

the annihilators Πj ’s cannot depend on the parameters to
be estimated till they are unknown. For more details, see
Fliess et al. (2003); Sira-Ramı́rez et al. (2014); Mboup
et al. (2009); Ushirobira et al. (2012, 2013).

Remark 3. If the parameters θi’s are not assumed to
appear linearly in the aj ’s, i.e., in P and Q, then, from
(11), algebraic equations have to be solved to get the θi’s.

To initiate an effective study of the algebraic estimation
parameter problem, we propose to investigate the following
three problems by means of computer algebra methods:

(1) Let Q ∈ k[θ, γ, s] be the polynomial defined in (7)
and let us note q = Q/γ ∈ k[θ, s]. Compute a set of
generators of the following left ideal of D = k[θ, s]〈∂s〉

annD(.q) = {d ∈ D | d q(s) = 0}.
(2) If θ′ is a subset of θ (e.g., if θ′ = ∅ or θ′ = θ) and

E = k[θ′, s]〈∂s〉, from Point 1, deduce the left ideal
annD(.q) ∩ E of E.

(3) If Q ∈ k[θ, ϑ, s] is the polynomial defined in (7), then
compute annE(.q) ∩ annE(.Q) and:

annE(.q)/ (annE(.q) ∩ annE(.Q)) .

The first problem aims at computing the annihilators of
the polynomial Q to get (11). Note that the annihilators of
Q that we can be used do only have to contain parameters
that are already estimated. Thus, the second problem
solves this point by controlling the coefficients that can
appear in the annihilators. Finally, the last problem solves
the problem of recognizing whether or not an annihilator
of Q also annihilates the polynomial Q which contains
the parameters ϑ, i.e., the initial conditions of (2). For
instance, if all annihilators of Q are also annihilators of Q,
then no parameters ϑ can algebraically be estimated.

3. COMPUTATION OF ANNIHILATORS

Let K be a noetherian ring, namely, every ideal of K can
be generated by a finite set of generators (see, e.g., Rotman
(2009)), and p ∈ A = K[s] a polynomial of degree q − 1
(q ≥ 1) in s with coefficients in K. Let D = A〈∂s〉 be the
ring of OD operators in ∂s = d

ds with coefficients in A. Let
us also consider the following column vector:

Jq = (1 ∂s . . . ∂qs )
T ∈ Dq×1. (12)

Applying Jq to p, we get the following polynomial vector:

R = Jq p ∈ Aq×1.
Since A is a noetherian ring, the following A-module

kerA(.R) = {µ ∈ A1×q | µR = 0}
formed by all the A-linear relations among of the rows of
R is noetherian, and thus is finitely generated, i.e., can be
generated by a finite generating set (see Rotman (2009)).
Let {Si•}i=1,...,r be a set of generators of kerA(.R), where
Si• ∈ A1×q for i = 1, . . . , r, and S = (ST1• . . . STr•)

T ∈
Ar×q the matrix whose rows are the Si•’s. Let us consider
the following A-homomorphisms (i.e., A-linear maps):

.R : A1×q −→ A

µ 7−→ µR,

.S : A1×r −→ A1×q

ν 7−→ ν S.

Then, we obtain kerA(.R) = imA(.S). If M = A/(A1×q R)
is the A-module finitely presented by R, i.e., the factor



module of A by the ideal of A generated by the entries of
the column vector R, and π the A-homomorphism which
maps 1 to its residue class π(1), then we have the following
exact sequence of A-modules (see, e.g., Rotman (2009))

A1×r .S //A1×q .R //A π //M // 0,

namely, π is surjective and kerA(.R) = imA(.S).

Remark 4. If K = k[x1, . . . , xn] is a polynomial ring over
a computable field k (e.g., k = Q, Q(y1, . . . , ym)), then
Gröbner basis techniques can be used to explicitly compute
the matrix S (see, e.g., Becker et al. (1993)). For instance,
it can be computed by the SyzygyModule command of
the OreModules package (Chyzak et al. (2007)).

We have (S Jq) p = S R = 0, i.e., Q = S Jq ∈ Dr×1 is a
column of OD operators which annihilates p, i.e., Qp = 0.

Since the degree of p is q−1, we get ∂qs p = 0, which shows
that the last entry of R is 0, and thus that the vector
(0 . . . 0 1) ∈ kerA(.R) = imA(.S). Thus, there exists
ω ∈ A1×r such that (0 . . . 0 1) = ω S, and thus we obtain
that ∂qs = (0 . . . 0 1) Jq = ω S Jq = ωQ.

Let us introduce the left ideal of D defined by all the OD
operators which annihilate p, i.e., its annihilator over D:

annD(.p) = {d ∈ D | d p = 0}.
If we write Q = (q1 . . . qr)

T , where qi ∈ D, then we
obtain that qi ∈ annD(p.), i.e.,

∑r
i=1D qi ⊆ annD(p.).

Let us prove that we have annD(.p) =
∑r
i=1D qi. If

d ∈ annD(.p), then d =
∑t
i=0 ai ∂

i
s, where ai ∈ A. We

can write d = c ∂qs + d′, where d′ ∈ D is of degree strictly

less than q and c ∈ D. Let us write d′ =
∑q−1
i=0 bi ∂

i
s and

let β = (b0 . . . bq−1) ∈ A1×q. Since the degree of the
polynomial p is q − 1, then ∂qs p = 0, and thus we get

q−1∑
i=0

bi ∂
i
s p = c ∂qs p+

q−1∑
i=0

bi ∂
i
s p = d p = 0,

which shows that β R = (β Jq) p = 0, i.e., β ∈ kerA(.R) =
imA(.S). Hence, there exists γ ∈ A1×r such that β = γ S,
which yields β Jq = γ S Jq = γ Q, and thus we obtain

d = c ∂qs + γ Q = (c ω + γ)Q,

where c ω + γ ∈ D1×r, which shows that d ∈
∑r
i=0D qi.

Lemma 1. With the above notations, we have:

annD(.p) = {d ∈ D | d p = 0} =

r∑
i=1

D qi.

In other words, the annihilator annD(.p) of p over D is
generated by the entries of the column vector Q.

Remark 5. If k is a field of characteristic 0 (e.g., k = Q,
R), then a classical result of J. T. Stafford asserts that any
left/right ideal of A1(k) can be generated by two elements
(see Stafford (1978)). For an implementation of this result
in the Stafford package, see Quadrat (2007). This result
extends to a polynomial extension of the Weyl algebra,
i.e., to A1(k)[y], where y is a commuting indeterminate.
If we consider B1(k), then B1(k) is a principal left/right
ideal domain, namely, every left/right ideal of B1(k) can
be generated by one element. This generator can simply
be computed by means of gcd computations.

Example 9. Let p = s2 + ω2 = −Q/γ ∈ A = Q(ω)[s],
where Q is defined in 1 of Example 4. The degree of p
being 2, q = 3, and we get kerA(.R) = imA(.S), where:

R = J3 p =

(
p

dp

ds

d2p

ds2
0

)T
= (s2 + ω2 2 s 2 0)T ,

S =

−2 s ω2 0

0 −1 s 0

0 0 0 1

 , Q = S J3 =

 ω2 ∂2s + s ∂s − 2

s ∂2s − ∂s
∂3s

 .

If D = A1(Q(ω)), then, we obtain:

annD(.p) = D (ω2 ∂2s+s ∂s−2)+D (s ∂2s−∂s)+D∂3s . (13)

The generators of annD(.p) do not form of Gröbner basis
(Becker et al. (1993)). Computing a Gröbner basis, we
get:

annD(.p) = D (ω2 ∂2s + s ∂s − 2) +D ((s2 + ω2) ∂s − 2 s).

If E = B1(Q(ω)), then we can easily check that

ω2 ∂2s +s ∂s−2 =
1

(s2 + ω2)
(ω2 ∂s+2) ((s2 +ω2) ∂s−2 s),

which shows that annE(.p) = E ((s2 + ω2) ∂s − 2 s).

Now, if we consider A = Q[ω, s], then we obtain

S =


−2 s ω2 0

−2 s s2 + ω2 0 0

0 −1 s 0

0 0 0 1

 , (14)

and thus annD(.p) is defined by the three generators of (13)
and (s2 + ω2) ∂s − 2 s, and a Gröbner basis then yields:

annD(.p) = D ((s2 + ω2) ∂s − 2 s) +D (s ∂2s − ∂s) +D∂3s .

Finally, we can check that

s ∂2s − ∂s =
1

2
∂2s (s2 + ω2) ∂s − 2 s)− 1

2
(s2 + ω2) ∂3s ,

which shows that annD(.p) = D ((s2 +ω2) ∂s−2 s)+D∂3s .

Example 10. Let us consider K = Q[λ0, λ1, λ2] and:

p = λ0 s
3 + 2λ1 s

2 − 2λ2 s (s2 − 4) ∈ A = K[s].

See Ushirobira et al. (2016). Since the degree of p is 3, we
have q = 4 and we get kerA(.R) = imA(.S), where the
matrix R is defined by

R = J4 p =

(
p

dp

ds

d2p

ds2
d3p

ds3
0

)T
,

and S is given in Figure 1. Then, annD(.p) is generated by
the entries of Q = S J4 ∈ D7×1. If Q = (q1 . . . q7)T , then,
e.g., q2 = s3 ∂3s − 3 s2 ∂2s + 6 s ∂s − 6 and q7 = ∂4s .

4. TOWERS OF ANNIHILATORS

Let θ′ be a subset of θ and K ′ = k[θ′] the subring of
K = k[θ]. From the computation of the annihilators of
p ∈ K[s] over the ring A = K[s] = k[θ, s] (see Section 3),
in this section, we show how to obtain the annihilators of
p with coefficients in the subring B = K ′[s] = k[θ′, s] of
A. In other words, if E = B〈∂s〉 (resp., D = A〈∂s〉), is the
ring of OD operators in ∂s with coefficients in B (resp.,
A), then, from the knowledge annD(.p), we explain how to
compute the left E-module annE(.p) = {e ∈ E | e p = 0}.
By Lemma 1, the annihilators of p over D are completely
determined by the left D-module D1×r Q =

∑r
i=1D qi.

In other words, the entries of Q generate annD(.p). Since
B ⊆ A, we get E ⊆ D, and thus we have:

annE(.p) = annD(.p) ∩ E.
Computing annD(.p) ∩ E can be obtained by means of
a noncommutative Gröbner basis computation with a



S =



−9λ0 + 18λ2 3λ0 s− 6λ2 s− 2λ1 2λ1 s+ 4λ2 4λ2 s 0

−6 6 s −3 s2 s3 0

6λ1 −4λ1 s s (λ1 s− 4λ2) 4λ2 s
2 0

0 −6λ0 + 12λ2 3 s (λ0 − 2λ2) 2λ1 s+ 8λ2 0

0 2λ1 −2λ1 s− 4λ2 s (λ1 s+ 4λ2) 0

0 0 −3λ0 + 6λ2 3λ0 s− 6λ2 s+ 2λ1 0

0 0 0 0 1


∈ A7×5.

Fig. 1. Matrix S for p = λ0 s
3 + 2λ1 s

2 − 2λ2 s (s2 − 4)

monomial order which eliminates the elements of θ \ θ′.
For more details, see, e.g., Chyzak et al. (2005).

Example 11. We consider again Example 9. LetK ′ = Q be
the subring of K = Q[ω] (i.e., θ′ = ∅, θ = {ω}), A = K[s],
B = K ′[s] = Q[s], D = A〈∂s〉 and E = B〈∂s〉. We obtain:

annE(.p) = annD(.p) ∩ E = E (s ∂2s − ∂s) + E ∂3s .

Example 12. We consider again Example 10. Let K ′ = Q
be the subring of K = Q[λ0, λ1, λ2] (i.e., θ = {λ0, λ1, λ2},
θ′ = ∅), A = K[s], B = K ′[s], D = A〈∂s〉 and E = B〈∂s〉.
We get that annE(.p) = E e1 + E e2, where e1 = ∂4s and
e2 = s3 ∂3s − 3 s2 ∂2s + 6 s ∂s − 6. Now, if θ′ = {λ0, λ2},
K ′ = Q[λ0, λ2], B = K ′[s] and E = B〈∂s〉, then we obtain
that annE(.p) = E e1 + E e2 + E e3, where:

e3 = −8λ2 s ∂
3
s + (λ0 − 2λ2) (3 s2 ∂2s − 12 s ∂s + 18).

5. INTERSECTION OF ANNIHILATORS

With the notations of Section 4, let p1, p2 ∈ B and
annE(.pi) for i = 1, 2. Let us show how to effectively
compute the left ideal I = annE(.p1) ∩ annE(.p2) of E.
As explained in Section 3 with the ring B instead of A,
let degs pi = qi − 1, Ji = (1 . . . ∂qis )T , Ri = Ji pi
and Si ∈ Bri×qi be such that kerB(.Ri) = imB(.Si). If
Qi = Si Ji = (q1,i . . . qri,i)

T , then, by Lemma 1, we have:

annE(.pi) =

ri∑
j=1

E qj,i, i = 1, 2.

An element p ∈ I is an element of E which satisfies
p =

∑ri
j=1 ej,i qj,i for i = 1, 2 and for certain qj,i’s in E. If

we note Q = (QT1 QT2 )T ∈ E(r1+r2)×1, then we have:

(e1,1 . . . e1,r1 − e1,2 . . . − er2,2)Q = 0.

Hence, if T ∈ Es×(r1+r2) is such that kerE(.Q) = imE(.T ),
and T = (T1 − T2), where T1 ∈ Es×r1 and T2 ∈ Es×r2 ,
then we have T1Q1 = T2Q2, and thus we obtain:

annE(.p1) ∩ annE(.p2) = E1×s (T1Q1) = E1×s (T2Q2).

The computation of the matrix T can be obtained by the
SyzygyModule command of OreModules.

Finally, let us explicit characterize the left E-module:

P = annE(.p1)/ (annE(.p1) ∩ annE(.p2)) .

Using Noether’s second isomorphism theorem (see, e.g.,
Rotman (2009)), we have:

P ∼= P ′ = (annE(.p1) + annE(.p2)) /annE(.p2)

=

 r1∑
j=1

E qj,1 +

r2∑
j=1

E qj,2

 /

 r2∑
j=1

E qj,2


=
(
E1×(r1+r2)Q

)
/
(
E1×r2 Q2

)
.

We note that e ∈ annE(.p1) is of the form of e = η Q1,
where η ∈ E1×r1 . If τ : annE(.p1) −→ P (resp., κ :
E1×(r1+r2)Q −→ P ′) is the left E-homomorphism defining
the canonical projection onto P (resp., P ′), then the above
isomorphism ψ : P −→ P ′ is defined by:

ψ (τ(η Q1)) = κ(η Q1).

Now, using Lemma 3.1 on pages 349-350 of Cluzeau et al.
(2008), we obtain the following isomorphism:

P ′ ∼= E1×(r1+r2)/

(
E1×(r1+s)

(
0 Ir2
T1 −T2

))
∼= P ′′ = E1×r1/

(
E1×s T1

)
.

More precisely, if σ : E1×r1 −→ P ′′ is the isomorphism
defining the canonical projection onto P ′′, then we have:

φ : P ′ −→ P ′′

κ((η ζ)Q) 7−→ σ(η),

φ−1 : P ′′ −→ P ′

σ(η) 7−→ κ(η Q1).

We obtain the isomorphism φ ◦ ψ : P −→ P ′′ defined by:

∀ η ∈ E1×r1 , (φ ◦ ψ)(τ(η Q1)) = σ(η).

Using the isomorphism φ ◦ ψ, testing if e = η Q1 ∈
annE(.p1) belongs to annE(.p2), i.e., if τ(e) = 0, is
equivalent to testing if σ(η) = 0, i.e., if η = λT1 for a
certain λ ∈ E1×r1 . This condition can be checked by means
of the Factorize command of the OreModulespackage.
We also note that P ∼= P ′′ = 0 iff the matrix T1 admits a
left inverse U1 ∈ Er1×s, i.e., U1 T1 = Ir1 . This condition
can be checked by means of the LeftInverse command
of the OreModules package. If P = 0, then we have
annE(.p1) ⊆ annE(.p2), i.e., we cannot find an annihilator
of p1 which is not an annihilator of p2.

Example 13. Let us consider again Example 9. If p = Q/γ,
D = Q[ω, ϑ0, ϑ1]〈∂s〉 and E = A1(Q), then we have:

annD(.p) = D ((s2 + ω2) ∂s − 2 s) +D (s ∂2s − ∂s) +D∂3s ,

annE(.p) = E (s ∂2s − ∂s) + E ∂3s ,

annD(.Q) = D (s2 ∂2s − 2 s ∂s + 2)

+D (ϑ1 s ∂
2
s + 2ϑ0 s ∂s − 4ϑ0)

+D ((2ϑ0 s+ ϑ1) ∂2s − 2ϑ0 ∂s) +D∂3s ,

annE(.Q) = E (s2 ∂2s − 2 s ∂s + 2) + E ∂3s .

Using the OreModules package, we obtain:

annE(.p) ∩ annE(.Q) = E ∂3s ,

annE(.p)/ (annE(.p) ∩ annE(.Q))

∼= P ′′ = E1×2/

(
D1×2

(
∂s 0

0 1

))
.

Let us show how to use the above results to solve the
parameter estimation problem for x = A sin(ω t + φ)



defined in 1 of Example 4 (Ushirobira et al. (2012)).
Applying d1 = ∂3s ∈ annE(.p) ∩ annE(.Q) to (8) to get
rid off of both Q and Q, we obtain d1(∂s)P (s) ẑ(s) = 0,
i.e., c1 θ1 = c2, where θ1 = ω2 and: c1 = s ẑ(3)(s) + 3 ẑ(2)(s),

c2 = −
(
s3 ẑ(3)(s) + 9 s2 ẑ(2)(s) + 18 s ẑ(1)(s) + 6 ẑ(s)

)
.

Let Q1 = (s ∂2s − ∂s ∂3s )T be the column vector formed
by the two generators of annE(.p). Since the residue class
of η = (1 0) in P ′′ is not zero, i.e., η /∈ D1×2 T1, we
get d2 = η Q1 = s ∂2s − ∂s ∈ annE(.p) \ annE(.Q). Hence,
applying d2 to (8), we get c3 θ1 + ϑ1 = c4, where: c3 = s2 ẑ(2)(s) + s ẑ(1)(s)− ẑ(s),

c4 = −
(
s4 ẑ(2)(s) + 5 s3 ẑ(1)(s) + 3 s2 ẑ(s)

)
.

We can easily solve these two linear equations to get:
θ1 =

c2
c1

=
s−4 c2
s−4 c1

,

ϑ1 =
c1 c4 − c2 c3

c1
=
s−5 (c1 c4 − c2 c3)

s−5 c1
.

We are now left with the identification of the last param-
eter ϑ0 appearing in Q as the coefficient of s2. Using the
results of Section 4, we obtain annD(.p) ∩ annD(.s2) =
D (s ∂2s −∂s)+D∂3s . Hence, considering the first generator
d3 = (s2 + ω2) ∂s − 2 s of annD(.p) and apply it to (8), we
get 2 θ1 ϑ0 = s ϑ1 + c5 θ

2
1 + c6 θ1 + c7, with the notations:

c5 = s ẑ(2)(s) + 2 ẑ(1)(s),

c6 = s4 ẑ(2)(s) + 7 s2 ẑ(1)(s) + 5 s ẑ(s),

c7 = s4 ẑ(1)(s) + s3 ẑ(s).

Therefore, we obtain:

ϑ0 =
s ϑ1 + c5 θ

2
1 + c6 θ1 + c7
2 θ1

.

Rewriting the above fraction as a quotient of polynomials
in s−1 and coming to the time domain by means of the
inverse Laplace transform, we obtain explicit formulas for
the parameters θ1, ϑ0 and ϑ1 (see Ushirobira et al. (2012)).

The algorithms for solving the three problems are imple-
mented in the Non-A package dedicated to the algebraic
estimation problem built upon the OreModules package.

It is well-known that the ring D = A〈∂s〉 of OD operators
is a left Ore domain, namely, for all d1, d2 ∈ D \ {0},
there exist e1, e2 ∈ D \ {0} such that e1 d1 = e2 d2 (see,
e.g., McConnell et al. (2000)). With the notations of
Section 2.1, if d1 = R and d2 = R′, then there exist T, T ′ ∈
D \ {0} such that T R = T ′R′. A set of generators of the
OD operators T and T ′ satisfying the above equality can
be computed by means of the SyzygyModule command
of the OreModules package. Using (4) and (5), we get

T (s, ∂s)R(s, ∂s) ẑ(s) + T (s, ∂s)S(s) + T ′(s, ∂s)S
′(s) = 0,

(15)
i.e., γ̂ has been eliminated from (4) and (5). The algebraic
estimation problem can then be directly studied by means
of (15). The main advantage of this approach is that it
does not require the integration in closed-form solutions
of the dynamics of the perturbation γ, which allows us
to consider general type of structured perturbation γ. For
more details, See Quadrat (2017).
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