—

Baer's extension problem for multidimensional linear systems

 $Alban \ Quadrat^* \ and \ Daniel \ Robertz^\dagger$

Abstract. Within an algebraic analysis approach, the purpose of this paper is to constructively solve the following problem: given two fixed multidimensional linear systems \mathcal{B}_1 and \mathcal{B}_2 , parametrize the multidimensional linear systems \mathcal{B} which contain \mathcal{B}_1 as a subsystem and satisfy that $\mathcal{B}/\mathcal{B}_1$ is isomorphic to \mathcal{B}_2 . In particular, we parametrize the equivalence classes of multidimensional linear systems \mathcal{B} which admit a fixed parametrizable subsystem \mathcal{B}_p and satisfy that $\mathcal{B}/\mathcal{B}_p$ is isomorphic to a fixed autonomous system \mathcal{B}_a .

Keywords. Multidimensional linear systems, behavioural approach, Baer extensions, differential time-delay systems, constructive algebra, module theory.

1 Introduction

A well-known result due to R. E. Kalman states that any time-invariant 1-D linear system defined by a state-space representation can be decomposed into the direct sum of its controllable (i.e., parametrizable) and autonomous subsystems ([11]). Within the behavioural approach, this result was extended by J. C. Willems to time-invariant polynomial linear systems ([16]). Using an algebraic analysis approach, M. Fliess generalized this result in [10] to time-varying linear systems of ordinary differential equations whose coefficients belong to a differential field. However, it is well-known that this result does not admit a generalization for multidimensional linear systems.

In the recent works [20, 21], we constructively characterized when a multidi-

^{*}INRIA Sophia Antipolis, APICS project, 2004 Route des Lucioles BP 93, 06902 Sophia Antipolis Cedex, France, Alban.Quadrat@sophia.inria.fr.

[†]Lehrstuhl B für Mathematik, RWTH - Aachen, Templergraben 64, 52056 Aachen, Germany, daniel@momo.math.rwth-aachen.de.

mensional linear system can be decomposed into a direct sum of its parametrizable subsystem and the system formed by its autonomous elements. The corresponding algorithm was implemented in the library OREMODULES ([6, 7]) and illustrated by different explicit examples. Moreover, we applied these results to the *Monge problem* which questions the existence of parametrizations of the solutions of multidimensional linear systems and to optimal control and variational problems ([20, 21]).

Within an algebraic analysis approach, we constructively solve here the more general problem consisting in parametrizing all the multidimensional linear systems \mathcal{C} whose parametrizable subsystems are isomorphic to a given parametrizable system \mathcal{B}_p and such that $\mathcal{C}/\mathcal{B}_p$ are isomorphic to a given autonomous system \mathcal{B}_a , i.e., $\mathcal{C}/\mathcal{B}_p \cong \mathcal{B}_a$. In particular, \mathcal{B}_p (resp., \mathcal{B}_a) can be chosen as the parametrizable subsystem (resp., the system formed by the autonomous elements) of a multidimensional linear system \mathcal{B} . Solving this last problem allows us to parametrize all the multidimensional linear systems which have the same parametrizable subsystem and autonomous system as \mathcal{B} . We then show how that result allows us to find again those obtained in [20, 21]. Our results are based on the important concept of Baer extensions developed in homological algebra and its connections with the extension abelian group $\operatorname{ext}_D^1(M,N)$ ([5, 12, 23]). This problem was pointed out to us by S. Shankar (Chennai Mathematical Institute) ([24]). We would like to thank him.

The plan of the paper is the following one: In Section 2, we recall Baer's interpretation of the elements of the abelian group $\operatorname{ext}^1_D(M,N)$ in terms of equivalence classes of extensions of N by M. In Section 3, we explicitly characterize $\operatorname{ext}^1_D(M,N)$ as an abelian group, which allows us in Section 4 to parametrize the equivalence classes of multidimensional linear systems \mathcal{B} which admit as a subsystem the system \mathcal{B}_1 defined by M and satisfy that $\mathcal{B}/\mathcal{B}_1$ are isomorphic to the system \mathcal{B}_2 defined by N. In Section 5, the previous results are applied to the particular situation where N = t(P) is the torsion left D-submodule of a given finitely presented left D-module P and M = P/t(P). We finally explain how to find again the results of [20, 21].

In what follows, we refer to [6, 13, 15, 18, 19, 25] and the references therein for the concepts relevant to the module-theoretic approach to systems theory.

2 Baer extensions and Baer sums

We refer to [5, 12, 23] for the classical definitions of a complex and an exact sequence.

Let us first introduce the concept of $Baer\ extensions$ which will play an important role in what follows.

Definition 1 ([5, 12, 23]). We have the following definitions:

1. Let M and N be two left D-modules. An extension of N by M is an exact sequence e of left D-modules of the form:

$$e: 0 \longrightarrow N \stackrel{f}{\longrightarrow} E \stackrel{g}{\longrightarrow} M \longrightarrow 0. \tag{1}$$

2. Two extensions of N by M, $e_i: 0 \longrightarrow N \xrightarrow{f_i} E_i \xrightarrow{g_i} M \longrightarrow 0$, i=1,2, are said to be *equivalent*, denoted by $e_1 \sim e_2$, if there exists a D-isomorphism $\phi: E_1 \longrightarrow E_2$ such that we have the commutative exact diagram

or, equivalently, such that $f_2 = \phi \circ f_1$ and $g_1 = g_2 \circ \phi$ hold.

- 3. We denote by [e] the equivalence class of the extension e for the equivalence relation \sim . The set of all equivalence classes of extensions of N by M is denoted by $e_D(M, N)$.
- 4. A short exact sequence of the form (1) is said to *split* if $E \cong M \oplus N$, where \oplus (resp., \cong) denotes the direct sum (resp., that two modules are isomorphic).

Let us introduce the concept of Baer sum of two extensions ([5, 12, 23]).

Definition 2 ([5]). Let $e_i: 0 \longrightarrow N \xrightarrow{f_i} E_i \xrightarrow{g_i} M \longrightarrow 0$, i = 1, 2, be two extensions of N by M and let us define the following two D-morphisms:

$$-f_1 \oplus f_2 : N \longrightarrow E_1 \oplus E_2 \qquad (g_1, -g_2) : E_1 \oplus E_2 \longrightarrow M$$

$$n \longmapsto (-f_1(n), f_2(n)) \qquad (a_1, a_2) \longmapsto g_1(a_1) - g_2(a_2).$$

Then, the *Baer sum* of the extensions e_1 and e_2 , denoted by $e_1 + e_2$, is defined by the left *D*-module $E_3 = \ker(g_1, -g_2)/\operatorname{im}(-f_1 \oplus f_2)$, i.e., by the short exact sequence

e left
$$D$$
-module $E_3 = \ker(g_1, -g_2)/ \inf(-J_1 \oplus J_2)$, i.e., by the short exact seque $0 \longrightarrow N \xrightarrow{f_3} E_3 \xrightarrow{g_3} M \longrightarrow 0$, $n \longmapsto \varpi(f_1(n), 0) = \varpi(0, f_2(n)) \longrightarrow g_1(a_1) = g_2(a_2)$

where $\varpi : \ker(g_1, -g_2) \longrightarrow E_3$ denotes the canonical projection onto E_3 .

We have the following classical but important result on extensions.

Theorem 3 ([5, 12, 23]). The set $e_D(M, N)$ equipped with the *Baer sum* forms an abelian group: the equivalence class of the split short exact sequence

$$0 \longrightarrow N \xrightarrow{i_2} M \oplus N \xrightarrow{p_1} M \longrightarrow 0$$

defines the zero element of $e_D(M, N)$ and the inverse of the equivalence class [e] of (1) is defined by the equivalence class of the following two equivalent extensions:

$$0 \longrightarrow N \xrightarrow{-f} E \xrightarrow{g} M \longrightarrow 0, \qquad 0 \longrightarrow N \xrightarrow{f} E \xrightarrow{-g} M \longrightarrow 0.$$

3 Computing extensions of finitely presented modules

In this section, we show how to compute the abelian group $\operatorname{ext}_D^1(M, N)$, when M and N are two finitely generated left D-modules over a noetherian domain D ([23]).

By assumption, the left D-module M admits the finite free resolution

$$\dots \xrightarrow{.R_3} D^{1 \times p_2} \xrightarrow{.R_2} D^{1 \times p_1} \xrightarrow{.R_1} D^{1 \times p_0} \xrightarrow{\pi} M \longrightarrow 0, \tag{2}$$

namely, (2) is an exact sequence of left D-modules where $R_i \in D^{p_i \times p_{i-1}}$ and $(R_i)(\lambda) = \lambda R_i$, for all $\lambda \in D^{1 \times p_i}$. Applying the contravariant left exact functor $\hom_D(\cdot, N)$ to the complex ... $\stackrel{\cdot R_3}{\longrightarrow} D^{1 \times p_2} \stackrel{\cdot R_2}{\longrightarrow} D^{1 \times p_1} \stackrel{\cdot R_1}{\longrightarrow} D^{1 \times p_0} \longrightarrow 0$, we obtain the following complex of abelian groups

$$\dots \stackrel{R_3.}{\longleftarrow} N^{p_2} \stackrel{R_2.}{\longleftarrow} N^{p_1} \stackrel{R_1.}{\longleftarrow} N^{p_0} \longleftarrow 0, \tag{3}$$

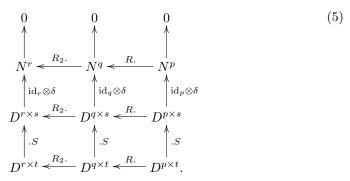
where $(R_i)(\eta) = R_i \eta$, for all $\eta \in N^{p_{i-1}}$. For more details, see, e.g., [5, 12, 19, 23].

Applying the covariant right exact functor $D^m \otimes_D \cdot$ to the finite presentation (i.e., to the exact sequence) $D^{1 \times t} \xrightarrow{.S} D^{1 \times s} \xrightarrow{\delta} N \longrightarrow 0$ of the left D-module N, and using the fact that D^m is a free right D-module, and thus, a flat right D-module, we obtain the following exact sequence:

$$D^{m \times t} \xrightarrow{.S} D^{m \times s} \xrightarrow{\mathrm{id}_m \otimes \delta} N^m \longrightarrow 0.$$
 (4)

For more details, see, e.g., [5, 12, 19, 23].

Using the notations $p = p_0$, $q = p_1$, $r = p_2$, $R = R_1$ and combining (3) and (4), we obtain the following commutative diagram of abelian groups with exact columns:



Let us now introduce the abelian group $\operatorname{ext}_D^1(M,N) = \ker_N(R_2)/\operatorname{im}_N(R_*)$, where:

$$\ker_N(R_2.) = \{ \eta \in N^q \mid R_2 \, \eta = 0 \} = \{ \eta = (\mathrm{id}_q \otimes \delta)(A) \mid A \in D^{q \times s} : R_2 \, \eta = 0 \},$$

$$\operatorname{im}_N(R.) = R N^p = \{ \eta = (\operatorname{id}_q \otimes \delta)(A) \mid \exists B \in D^{p \times s} : \eta = R ((\operatorname{id}_p \otimes \delta)(B)) \}.$$

From (5), we get $(R_2.)\circ(\mathrm{id}_q\otimes\delta)=(\mathrm{id}_r\otimes\delta)\circ(R_2.)$ and $(R_*)\circ(\mathrm{id}_p\otimes\delta)=(\mathrm{id}_q\otimes\delta)\circ(R_*)$. Hence, using the exactness of the columns of (5), we obtain:

$$R_2((\mathrm{id}_q \otimes \delta)(A)) = (\mathrm{id}_r \otimes \delta)(R_2 A) = 0 \iff \exists B \in D^{r \times t} : R_2 A = B S.$$

$$(\mathrm{id}_q \otimes \delta)(A) = R\left((\mathrm{id}_p \otimes \delta)(X)\right) = (\mathrm{id}_q \otimes \delta)(RX)$$

$$\Leftrightarrow (\mathrm{id}_q \otimes \delta)(A - RX) = 0 \Leftrightarrow \exists Y \in D^{q \times t} : A = RX + YS.$$

Hence, we obtain the following results.

Lemma 4. With the previous notations, we have:

$$\ker_N(R_2.) = \{ (\operatorname{id}_q \otimes \delta)(A) \mid A \in D^{q \times s}, \ \exists \ B \in D^{r \times t} : \ R_2 A = B S \},$$

$$\operatorname{im}_N(R.) = \{ (\operatorname{id}_q \otimes \delta)(A) \mid \exists \ X \in D^{p \times s}, \ \exists \ Y \in D^{q \times t} : \ A = R X + Y S \}$$

$$= (R D^{p \times s} + D^{q \times t} S) / (D^{q \times t} S).$$

$$(7)$$

Moreover, if we define the abelian group

$$\Omega = \{ A \in D^{q \times s} \mid \exists B \in D^{r \times t} : R_2 A = B S \}, \tag{8}$$

then we have the following isomorphism of abelian groups

$$\operatorname{ext}_{D}^{1}(M, N) = \ker_{N}(R_{2}.) / \operatorname{im}_{N}(R.) \xrightarrow{\iota} \Omega / (R D^{p \times s} + D^{q \times t} S), \\ \rho((\operatorname{id}_{q} \otimes \delta)(A)) \longmapsto \varepsilon(A),$$

$$(9)$$

where $\rho: \ker_N(R_2.) \longrightarrow \operatorname{ext}^1_D(M,N)$ (resp., $\varepsilon: \Omega \longrightarrow \Omega/(RD^{p\times s} + D^{q\times t}S)$) denotes the canonical projection onto $\operatorname{ext}^1_D(M,N)$ (resp., $\Omega/(RD^{p\times s} + D^{q\times t}S)$).

We let the reader check that ι is well-defined and bijective ([22]).

We recall that the abelian group $\operatorname{ext}^1_D(M,N)$ characterizes the obstructions for the existence of $\xi \in N^p$ satisfying the inhomogeneous linear system $R \xi = \zeta$, where $\zeta \in N^q$ satisfies the compatibility condition $R_2 \zeta = 0$. In particular, the vanishing of $\operatorname{ext}^1_D(M,N)$ implies that $R_2 \zeta = 0$ is a necessary and sufficient condition for the existence of $\xi \in N^p$ satisfying $R \xi = \zeta$. For more details, see [6, 7, 18, 19].

If $\ker_D(.R)=0$, i.e., $R_2=0$, we then get $\Omega=D^{q\times s}$. Another simple case is $N=D^{1\times s}$, i.e., S=0, for which we have $\Omega=\{A\in D^{q\times s}\mid R_2\,A=0\}$ (see [4]).

If D is a commutative ring and \otimes denotes the Kronecker product, then using the identity UVW = row(V) ($U^T \otimes W$), where row(V) is obtained by concatenating the rows of V, we have $\Omega/(RD^{p\times s} + D^{q\times t}S) \cong D^{1\times u}Z/(D^{1\times (p s + q t)}X)$, where

$$X = \begin{pmatrix} R^T \otimes I_s \\ I_q \otimes S \end{pmatrix} \in D^{(p\, s + q\, t) \times q\, s}, \quad Y = \begin{pmatrix} R_2^T \otimes I_s \\ I_r \otimes S \end{pmatrix} \in D^{(q\, s + r\, t) \times r\, s},$$

and $Z \in D^{u \times q \, s}$ is defined by $\ker_D(X) = D^{1 \times u} (Z - T)$ and $T \in D^{u \times r \, t}$. Moreover, if D is a polynomial ring over a computable field k (e.g., $k = \mathbb{Q}$, \mathbb{F}_p), then, using Gröbner or Janet bases, we can explicitly describe the D-module $\operatorname{ext}_D^1(M, N)$ by means of generators and relations ([2, 8]). For the implementations of the corresponding algorithms, see the packages homalg ([3, 2]) and OREMORPHISMS ([9]).

Example 5. Let us consider the commutative polynomial ring $D = \mathbb{Q}(\alpha) [\partial, \delta]$ of differential time-delay operators, where $\alpha \in \mathbb{R}$, and the following two matrices:

$$R = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 + \delta^2 & -\alpha \partial \delta \end{pmatrix} \in D^{2\times 3}, \quad S = \begin{pmatrix} \partial & -\partial \\ \partial \delta^2 & -\partial \end{pmatrix} \in D^{2\times 2}. \tag{10}$$

Let us define the *D*-modules $M = D^{1\times 3}/(D^{1\times 2}R)$ and $N = D^{1\times 2}/(D^{1\times 2}S)$. We have $R_2 = 0$, and thus, $\Omega = D^{2\times 2}$, $\text{ext}_D^1(M, N) \cong D^{2\times 2}/(RD^{3\times 2} + D^{2\times 2}S)$ and:

$$\operatorname{ext}_{D}^{1}(M,N) \cong D^{1\times 4} / \left(D^{1\times 10} \left(\begin{array}{c} R^{T} \otimes I_{2} \\ I_{2} \otimes S \end{array} \right) \right). \tag{11}$$

We denote by L the matrix appearing in (11) and $\epsilon: D^{1\times 4} \longrightarrow P = D^{1\times 4}/(D^{1\times 10}L)$ the canonical projection onto P. Denoting by $v_i = \epsilon(g_i)$ the residue class in P of the i^{th} vector of the standard basis $\{g_i\}_{1\leq i\leq 4}$ of $D^{1\times 4}$, we obtain:

$$v_i = 0$$
, $i = 1, 2$, $(1 + \delta^2) v_i = 0$, $i = 3, 4$, $\partial v_i = 0$, $i = 3, 4$.

Hence, the *D*-module *P* is generated by $v_3 = \epsilon((0,0,1,0))$ and $v_4 = \epsilon((0,0,0,1))$. Transforming back the row vectors g_3 and g_4 into 2×2 matrices, we obtain that the *D*-module $D^{2\times 2}/(RD^{3\times 2} + D^{2\times 2}S)$ is generated by $\varepsilon(A_1)$ and $\varepsilon(A_2)$, where:

$$A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \tag{12}$$

It is a torsion *D*-module as we have $(1+\delta^2) \varepsilon(A_i) = 0$ and $\partial \varepsilon(A_i) = 0$, i = 1, 2. Using (9), we obtain that the $\rho((\mathrm{id}_2 \otimes \delta)(A_i))$'s generate the *D*-module $\mathrm{ext}_D^1(M, N) = N^2/(RN^3)$ and satisfy $(1+\delta^2) \rho((\mathrm{id}_2 \otimes \delta)(A_i)) = 0$, $\partial \rho((\mathrm{id}_2 \otimes \delta)(A_i)) = 0$, i = 1, 2.

If D is a non-commutative ring, then $\operatorname{ext}^1_D(M,N)$ is an abelian group, but not a left D-module. If D is a k-algebra, where k is a field contained in the center of D, then $\operatorname{ext}^1_D(M,N)$ is a k-vector space. If M and N are two finite-dimensional k-vector spaces or two holonomic left modules over the k-algebra of differential operators with k-polynomial (resp., k-rational) coefficients (the so-called Weyl algebras $A_n(k)$ and $B_n(k)$), then we can compute a k-basis of $\operatorname{ext}^1_D(M,N)$ (see [8] and the references therein). However, $\operatorname{ext}^1_D(M,N)$ is generally an infinite-dimensional k-vector space. If D is a non-commutative polynomial ring over which Gröbner or Janet bases exist (e.g., the Weyl algebras, certain classes of Ore algebras [6]), then we can compute the k-vector space formed by the matrices $A \in D^{q \times s}$ with a fixed order in the functional operators and a fixed degree (resp., fixed degrees) in the polynomial (resp., rational) coefficients which satisfy R_2 $A \in D^{r \times t} S$. See [8] for more details and the package OREMORPHISMS ([9]) for an implementation.

4 An explicit description of $\operatorname{ext}_D^1(M,N)$

The following theorem is an important result in homological algebra which can be traced back to the pioneering work of R. Baer ([1]).

Theorem 6 ([5, 12, 23]). Let M and N be two left D-modules. Then, the abelian groups $\operatorname{ext}^1_D(M,N)$ and $\operatorname{e}_D(M,N)$ are isomorphic.

The explicit description of $\operatorname{ext}^1_D(M,N)$ – being proved by making Theorem 6 constructive for the interesting class of modules in systems theory – can be given now. For the sake of brevity, we refer to [22, Theorem 3] for the proof.

Theorem 7. Let $R \in D^{q \times p}$ and $S \in D^{t \times s}$ be two matrices with entries in D and $M = D^{1 \times p}/(D^{1 \times q}R)$ and $N = D^{1 \times s}/(D^{1 \times t}S)$ the left D-modules finitely presented by R resp. S. Let us denote by $R_2 \in D^{r \times q}$ a matrix satisfying $\ker_D(R) = D^{1 \times r}R_2$. Then, every equivalence class of extensions of N by M is represented by

$$e: 0 \longrightarrow N \xrightarrow{\alpha} E \xrightarrow{\beta} M \longrightarrow 0,$$
 (13)

where the left D-module E is defined by

$$D^{1\times (q+t)} \xrightarrow{\cdot Q} D^{1\times (p+s)} \xrightarrow{\varrho} E \longrightarrow 0, \quad Q = \begin{pmatrix} R & -T \\ 0 & S \end{pmatrix} \in D^{(q+t)\times (p+s)}, \quad (14)$$

and T is a certain element of $\Omega = \{A \in D^{q \times s} \mid \exists B \in D^{r \times t} : R_2 A = B S\}.$

Finally, the equivalence class [e] only depends on the residue class $\varepsilon(T)$ of $T \in \Omega$ in $\Omega/(R D^{p \times s} + D^{q \times t} S) = \iota(\operatorname{ext}^1_D(M, N))$, where ι is defined in (9).

Example 8. Let us consider again Example 5. Theorem 7 says there exist two non-trivial equivalence classes of extensions of N by M respectively defined by $E_i = D^{1\times 5} / \left(D^{1\times 4} \begin{pmatrix} R & -T_i \\ 0 & S \end{pmatrix}\right)$, where the matrices R and S are given by (10) and the matrices $T_1 = A_1$ and $T_2 = A_2$ by (12). Finally, the trivial extension of N by M (i.e., the split extension) is defined by the D-module E_0 where $T_0 = 0$.

Let \mathcal{F} be a left D-module. Applying the contravariant left exact functor $\hom_D(\cdot, \mathcal{F})$ to (13), we obtain the following results [22, Corollary 1].

Corollary 9. With the previous notations, we have the following results:

- 1. $\ker_{\mathcal{F}}(S.) \stackrel{\alpha^{\star}}{\longleftarrow} \ker_{\mathcal{F}}(Q.) \stackrel{\beta^{\star}}{\longleftarrow} \ker_{\mathcal{F}}(R.) \longleftarrow 0$ is an exact sequence, where the D-morphism β^{\star} (resp., α^{\star}) is defined by $\beta^{\star}(\xi) = (\xi^{T} \ 0^{T})^{T}$, for all $\xi \in \ker_{\mathcal{F}}(R.)$ (resp., $\alpha^{\star}(\eta) = \eta_{2}$, for all $\eta = (\eta_{1}^{T} \ \eta_{2}^{T})^{T}$, $\eta_{1} \in \mathcal{F}^{p}$ and $\eta_{2} \in \mathcal{F}^{s}$).
- 2. If \mathcal{F} is an injective left D-module ([23]), then we have the exact sequence:

$$0 \longleftarrow \ker_{\mathcal{F}}(S.) \stackrel{\alpha^{\star}}{\longleftarrow} \ker_{\mathcal{F}}(Q.) \stackrel{\beta^{\star}}{\longleftarrow} \ker_{\mathcal{F}}(R.) \longleftarrow 0. \tag{15}$$

Moreover, if \mathcal{F} is cogenerator ([23]), then (15) is exact if and only if (13) is.

5 Applications to multidimensional systems theory

The purpose of this section is to parametrize all equivalence classes of multidimensional linear systems which have a fixed parametrizable subsystem and a fixed autonomous system. Let $R \in D^{q \times p}$ be a matrix with entries in a noetherian domain D. If $M = D^{1 \times p}/(D^{1 \times q} R)$ denotes the left D-module finitely presented by R, then $t(M) = \{m \in M \mid \exists \ 0 \neq a \in D : a m = 0\}$ is a left D-submodule of M and we have the following canonical short exact sequence (see, e.g., [5, 12, 23]):

$$0 \longrightarrow t(M) \stackrel{\iota}{\longrightarrow} M \stackrel{\tau}{\longrightarrow} M/t(M) \longrightarrow 0. \tag{16}$$

An element of t(M) is called a torsion element of M and M is said to be torsion-free if t(M) = 0 and torsion if t(M) = M (see, e.g., [23]). Constructive results developed in [6, 7, 17] show that there exists a matrix $R' \in D^{q' \times p}$ satisfying:

$$t(M) = (D^{1 \times q'} R')/(D^{1 \times q} R), \quad M/t(M) = D^{1 \times p}/(D^{1 \times q'} R').$$

If \mathcal{F} is an injective left D-module, applying the exact functor $\hom_D(\cdot, \mathcal{F})$ to the exact sequence (16), we then get the exact sequence of abelian groups:

$$0 \longleftarrow \hom_D(t(M), \mathcal{F}) \stackrel{\iota^*}{\longleftarrow} \hom_D(M, \mathcal{F}) \stackrel{\tau^*}{\longleftarrow} \hom_D(M/t(M), \mathcal{F}) \longleftarrow 0.$$

The linear system $\ker_{\mathcal{F}}(R'.) = \{\zeta \in \mathcal{F}^p \mid R' \zeta = 0\} \cong \hom_D(M/t(M), \mathcal{F})$ is the parametrizable subsystem of $\ker_{\mathcal{F}}(R.) = \{\eta \in \mathcal{F}^p \mid R \eta = 0\} \cong \hom_D(M, \mathcal{F})$ as there always exists a matrix $Q' \in D^{p \times m}$ such that $\ker_{\mathcal{F}}(R'.) = Q' \mathcal{F}^m$, i.e., any solution $\eta \in \mathcal{F}^p$ of the system $R' \eta = 0$ has the form $\eta = Q' \xi$ for a certain $\xi \in \mathcal{F}^m$. For more details, see [6, 15, 17, 25]. For certain classes of multidimensional systems, $\ker_{\mathcal{F}}(R'.)$ is also called the *controllable subsystem* of $\ker_{\mathcal{F}}(R.)$ (see, e.g., [6, 15, 17, 18, 25]).

If we denote by $R'' \in D^{q \times q'}$ (resp., $R_2' \in D^{r' \times q'}$) a matrix satisfying R = R'' R' (resp., $\ker_D(.R') = D^{1 \times r'} R_2'$), then we have the following D-isomorphism ([8, 21]):

$$t(M) \cong D^{1 \times q'} / \left(D^{1 \times (q+r')} \begin{pmatrix} R'' \\ R'_2 \end{pmatrix} \right). \tag{17}$$

The autonomous system defined by $\ker_{\mathcal{F}}((R''^T R_2'^T)^T) \cong \hom_D(t(M), \mathcal{F})$ satisfies:

$$\ker_{\mathcal{F}}((R''^T R_2'^T)^T) \cong \ker_{\mathcal{F}}(R)/\tau^*(\ker_{\mathcal{F}}(R')).$$

This last system will be called the *autonomous quotient* of the system $\ker_{\mathcal{F}}(R.)$.

If M and N are respectively a torsion-free and a torsion left D-module defined by two finite presentations, Theorem 7 parametrizes the equivalence classes of extensions of N by M. Moreover, if \mathcal{F} is an injective left D-module, by Corollary 9, we then obtain the equivalence classes of systems admitting $\hom_D(M,\mathcal{F})$ as a parametrizable subsystem and $\hom_D(N,\mathcal{F})$ as autonomous quotient. If we consider the left D-module $P = M \oplus N$, we then have $t(P) \cong N$ and $P/t(P) \cong M$ and the previous problem can be reduced to the case where we only consider the extensions of t(P) by P/t(P) for a finitely presented left D-module P.

Let $L \in D^{m \times l}$ be a matrix with entries in a noetherian domain D and let us consider the finitely presented left D-module $P = D^{1 \times l}/(D^{1 \times m} L)$. As shown in [6, 18] and implemented in [7], computing the left D-module $\text{ext}_D^1(N, D)$, where $N = D^m/(L D^l)$, gives us a matrix $L' \in D^{m' \times l}$ satisfying:

$$\begin{cases} t(P) = (D^{1 \times m'} L')/(D^{1 \times m} L), \\ P/t(P) = D^{1 \times l}/(D^{1 \times m'} L'). \end{cases}$$
 (18)

We denote by $\epsilon: D^{1\times m} \longrightarrow P$ (resp., $\epsilon': D^{1\times m} \longrightarrow P/t(P)$) the canonical projection onto P (resp., P/t(P)). In particular, we have the relation $\epsilon' = \tau \circ \epsilon$, where τ denotes the canonical projection $P \longrightarrow P/t(P)$ (see (16) with M = P).

Corollary 10. Every class of extensions of t(P) by P/t(P) is defined by means of the left D-module $E = D^{1\times(l+m')}/(D^{1\times(m'+m+n')}Q)$, where Q has the form

$$Q = \begin{pmatrix} L' & -T \\ 0 & L'' \\ 0 & L'_2 \end{pmatrix} \in D^{(m'+m+n')\times(l+m')}$$
(19)

(with L'' (resp., L'_2) playing the role of R'' (resp., R'_2) in (17)) and T is an element of the abelian group:

$$\Omega = \left\{ A \in D^{m' \times m'} \mid \exists B \in D^{n' \times (m+n')} : L_2' A = B \begin{pmatrix} L'' \\ L_2' \end{pmatrix} \right\}. \tag{20}$$

Finally, the equivalence classes of the extensions of t(P) by P/t(P) only depend on the residue classes $\varepsilon(T)$ in the following abelian group where ι as defined in (9):

$$\Omega/\left(L'D^{l\times m'} + D^{m'\times(m+n')}\begin{pmatrix} L''\\ L'_2 \end{pmatrix}\right) = \iota(\operatorname{ext}_D^1(P/t(P), t(P))). \tag{21}$$

If \mathcal{F} is an injective left D-module and $\ker_{\mathcal{F}}(L.) \cong \hom_D(P, \mathcal{F})$, then Corollaries 9 and 10 give a parametrization of the equivalence classes of linear systems $\ker_{\mathcal{F}}(Q.) \cong \hom_D(E, \mathcal{F})$ which admit $\ker_{\mathcal{F}}(L'.)$ as a parametrizable subsystem and $\ker_{\mathcal{F}}(L''^T L_2'^T)^T$.) as an autonomous quotient.

Example 11. Let us consider the differential time-delay system ([14])

$$\begin{cases} \dot{y}_1(t) - \dot{y}_2(t - 2h) + \alpha \, \ddot{y}_3(t - h) = 0, \\ \dot{y}_1(t - 2h) - \dot{y}_2(t) + \alpha \, \ddot{y}_3(t - h) = 0, \end{cases}$$
(22)

where $\alpha \in \mathbb{R}$ and h is a strictly positive real number. We denote by $D = \mathbb{Q}(\alpha) [\partial, \delta]$ the commutative polynomial ring of differential time-delay operators, the matrix

$$L = \left(\begin{array}{ccc} \partial & -\partial \, \delta^2 & \alpha \, \partial^2 \, \delta \\ \partial \, \delta^2 & -\partial & \alpha \, \partial^2 \, \delta \end{array} \right) \in D^{2 \times 3},$$

and the D-module $P=D^{1\times 3}/(D^{1\times 2}L)$. Using a constructive algorithm developed in [6, 17] and implemented in [7], we get $L'=R\in D^{2\times 3}$ defined by (10). We can check that $\ker_D(.L')=0$ and L=L''L', where $L''=S\in D^{2\times 2}$ is defined by (10). Hence, we obtain $t(P)\cong D^{1\times 2}/(D^{1\times 2}L'')$. Now, the equivalence classes of extensions of t(P) by P/t(P) are in 1-1 correspondence with the elements of the D-module $\operatorname{ext}_D^1(P/t(P),t(P))$. Using Examples 5 and 8, we obtain that the two non-trivial equivalence classes of extensions are defined by the D-modules E_1 and E_2 given in Example 8. They respectively correspond to the following systems:

$$\begin{cases} z_1(t) + z_2(t) = 0, \\ z_2(t) + z_2(t - 2h) \\ -(\alpha \dot{z}_3(t - h) + z_4(t)) = 0, \\ \dot{z}_4(t) - \dot{z}_5(t) = 0, \\ \dot{z}_4(t - 2h) - \dot{z}_5(t) = 0, \end{cases} \begin{cases} z_1(t) + z_2(t) = 0, \\ z_2(t) + z_2(t - 2h) \\ -(\alpha \dot{z}_3(t - h) + z_5(t)) = 0, \\ \dot{z}_4(t) - \dot{z}_5(t) = 0, \\ \dot{z}_4(t - 2h) - \dot{z}_5(t) = 0. \end{cases}$$

The trivial class of extensions of t(P) by P/t(P) can be defined by the system:

$$\begin{cases} z_1(t) + z_2(t) = 0, \\ z_2(t) + z_2(t - 2h) - \alpha \dot{z}_3(t - h) = 0, \\ \dot{z}_4(t) - \dot{z}_5(t) = 0, \\ \dot{z}_4(t - 2h) - \dot{z}_5(t) = 0. \end{cases}$$

Hence, the three systems admit the same parametrizable subsystem and the same autonomous quotient as (22).

Remark 12. The matrix Q defined by (19) with $T = I_{m'} \in \Omega$ was used in [20, 21] to parametrize the \mathcal{F} -solutions of the system $\ker_{\mathcal{F}}(L)$ in terms of the \mathcal{F} -solutions of $\ker_{\mathcal{F}}(L')$ and $\ker_{\mathcal{F}}(L''^T L_2'^T)^T$.) We first need to solve the following autonomous homogeneous linear system $\ker_{\mathcal{F}}((L''^T L_2'^T)^T)$ corresponding to $\hom_D(t(P), \mathcal{F})$:

$$\begin{cases}
L'' \theta = 0, \\
L'_2 \theta = 0.
\end{cases}$$
(23)

Then, we need to solve the inhomogeneous system $L' \eta = \theta$, i.e., find a particular solution $\eta^* \in \mathcal{F}^l$ of $L' \eta^* = \theta$ and the general solution of the homogeneous system $L' \eta = 0$ associated with $\hom_D(P/t(P), \mathcal{F})$. As the subsystem $\hom_D(P/t(P), \mathcal{F})$ of $\hom_D(P, \mathcal{F})$ is parametrizable, we can compute a matrix $Q' \in D^{l \times k'}$ satisfying $\ker_{\mathcal{F}}(L') = Q' \mathcal{F}^{k'}$ whenever \mathcal{F} is an injective left D-module ([6, 15, 19, 25]). Then, the solution of $L \eta = 0$ has the form $\eta = \eta^* + Q' \xi$, for arbitrary $\xi \in \mathcal{F}^{k'}$. We refer to [21] for applications to variational and optimal control problems.

Next, we have a direct consequence of Remark 12. For more details, see [22].

Proposition 13. The exact sequence $0 \longrightarrow t(P) \stackrel{\iota}{\longrightarrow} P \stackrel{\tau}{\longrightarrow} P/t(P) \longrightarrow 0$ splits iff $\varepsilon(I_{m'}) = 0$, i.e., iff there exist $X \in D^{l \times m'}$, $Y \in D^{m' \times m}$ and $Z \in D^{m' \times n'}$ satisfying:

$$I_{m'} = L'X + YL'' + ZL'_2 \Leftrightarrow L' - L'XL' = YL.$$
 (24)

Remark 14. As shown in [20, 21], Proposition 13 gives a particular solution $\eta^* \in \mathcal{F}^l$ of the inhomogeneous system $L' \eta = \theta$, where $\theta \in \mathcal{F}^{q'}$ is a general solution of the system (23): using (24), we get $\theta = L' X \theta + Y L'' \theta + Z' L'_2 \theta = L' (X \theta)$ as θ satisfies (23). If \mathcal{F} is an injective left D-module, using Remark 12, we then obtain that the elements of $\ker_{\mathcal{F}}(L)$ have the form $\eta = X \theta + Q' \xi$, for all $\xi \in \mathcal{F}^{k'}$.

The left D-module $P/t(P) = D^{1\times l}/(D^{1\times m'}L')$ is stably free, i.e., satisfies $P/t(P) \oplus D^{1\times s} \cong D^{1\times r}$ for non-negative integers r and s ([23]), iff there exists $X \in D^{l\times m'}$ such that L'XL' = L' ([17]). Hence, if P/t(P) is stably free, then (24) holds with Y = 0. In particular, if $D = k[t][\partial]$ is the Weyl algebra (k a field of characteristic 0) or a left principal ideal domain (e.g., $K[\partial]$, K a differential field), then every torsion-free left D-module is stably free and, in particular, P/t(P) for any finitely presented left D-module P. Hence, we find again Kalman's result ([11]) and its different generalizations ([10, 16]) described in the introduction.

Bibliography

- [1] R. Baer. Erweiterung von Gruppen und ihren Isomorphismen. *Mathematische Zeitschrift*, 38(1):375–416, 1934.
- [2] M. Barakat and D. Robertz. Computing invariants of multidimensional linear systems on an abstract homological level. In *Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto (Japan)*, 2006, http://wwwb.math.rwth-aachen.de/homalg/.
- [3] M. Barakat and D. Robertz. homalg: A meta-package for homological algebra. *To appear in Journal of Algebra and its Applications*, 2008. http://arxiv.org/abs/math/0701146.
- [4] M. S. Boudellioua and A. Quadrat. Reduction of linear systems based on Serre's theorem. In *Proceedings of MTNS 2008*, Virginia (USA), 2008.
- [5] H. Cartan and S. Eilenberg. Homological Algebra. Princeton Univ. Press, 1956.
- [6] F. Chyzak, A. Quadrat, and D. Robertz. Effective algorithms for parametrizing linear control systems over Ore algebras. *Applicable Algebra in Engineering*, Communications and Computing, 16(5):319–376, 2005.
- [7] F. Chyzak, A. Quadrat, and D. Robertz. OREMODULES: A symbolic package for the study of multidimensional linear systems. In J. Chiasson and J.-J. Loiseau, editors, *Applications of Time-Delay Systems*, LNCIS 352, pages 233–264. Springer, 2007, http://wwwb.math.rwth-aachen.de/OreModules/.
- [8] T. Cluzeau and A. Quadrat. Factoring and decomposing a class of linear functional systems. *Linear Algebra and Its Applications*, 428(1):324–381, 2008.
- [9] T. Cluzeau and A. Quadrat. OREMORPHISMS: A homological algebraic package for factoring and decomposing linear functional systems. In J.-J. Loiseau, W. Michiels, S.-I. Niculescu, and R. Sipahi, editors, *Topics in Time-Delay Systems: Analysis, Algorithms and Control*, LNCIS. Springer, 2008. http://www-sop.inria.fr/members/Alban.Quadrat/OreMorphisms/index.html.
- [10] M. Fliess. Some basic structural properties of generalized linear systems. Systems & Control Letters, 15:391–396, 1990.

—

- [11] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System Theory. McGraw-Hill, 1969.
- [12] S. MacLane. Homology. Springer-Verlag, 1995.
- [13] U. Oberst. Multidimensional constant linear systems. Acta Applicandæ Mathematicæ, 20:1–175, 1990.
- [14] N. Petit and P. Rouchon. Dynamics and solutions to some control problems for water-tank systems. *IEEE Trans. Autom. Contr.*, 47(4):594–609, 2002.
- [15] H. Pillai and S. Shankar. A behavioral approach to control of distributed systems. SIAM Journal on Control and Optimization, 37:388–408, 1999.
- [16] J. W. Polderman and J. C. Willems. *Introduction to Mathematical Systems Theory: A Behavioral Approach*, volume 26 of *Texts in Applied Mathematics*. Springer-Verlag, 1998.
- [17] J.-F. Pommaret and A. Quadrat. Generalized Bezout identity. *Applicable Algebra in Engineering, Communications and Computing*, 9:91–116, 1998.
- [18] J.-F. Pommaret and A. Quadrat. Algebraic analysis of linear multidimensional control systems. *IMA Journal of Control and Information*, 16(3):275–297, 1999.
- [19] J.-F. Pommaret and A. Quadrat. A functorial approach to the behaviour of multidimensional control systems. *Applied Mathematics and Computer Science*, 13:7–13, 2003.
- [20] A. Quadrat and D. Robertz. Parametrizing all solutions of uncontrollable multidimensional linear systems. In 16th IFAC World Congress, Prague (Czech Republic), 2005.
- [21] A. Quadrat and D. Robertz. On the Monge problem and multidimensional optimal control. In 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto (Japan), 2006.
- [22] A. Quadrat and D. Robertz. On the Baer extension problem for multidimensional linear systems. Technical report, INRIA Report 6307, 2007. https://hal.inria.fr/inria-00175272.
- [23] J. J. Rotman. An Introduction to Homological Algebra. Academic Press, 1979.
- [24] S. Shankar. Synthesis of behaviours. In preparation, 2007.
- [25] J. Wood. Modules and behaviours in nD systems theory. Multidimensional Systems and Signal Processing, 11:11–48, 2000.