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Abstract— Many important problems in signal processing
and control engineering concern the reconstitution of a noisy
biased signal. For this issue, in this paper, we consider the signal
written as an orthogonal polynomial series expansion and we
provide an algebraic estimation of its coefficients. We specialize
in Hermite polynomials. On the other hand, the dynamical
system described by the noisy biased signal may be given
by an ordinary differential equation associated with classical
orthogonal polynomials. The signal may be recovered through
the coefficients identification. As an example, we illustrate our
algebraic method on the parameter estimation in the case of
Hermite polynomials.

I. INTRODUCTION

Is is a widely known fact that parameter estimation is
an important topic in various practical domains, such as
in control engineering and signal processing. The list of
applications concerning this question is extensively long.

Most traditional methods for solving this problem concern
statistical approaches. From the last 10 years, an algebraic
framework started to become more popular in the study of
parameter identification. Algebraic approaches are mainly
based on differential algebra concepts, operational calculus
and module theory. An important paper in this subject is
[3] where a closed-loop parametric identification procedure
for continuous-time constant linear systems is introduced. A
very complete survey on algebraic identification can be found
in [12]. Interesting applications within the algebraic context
were provided in [7], [6], [11], [2], [10].

A longstanding essential problem in signal processing and
control engineering consists in recovering a signal from
a noisy biased measurement. One way to approach this
question is to use a Taylor series expansion of the signal
or, in a practical manner, to approximate the signal by a
truncation of its Taylor series. It is in this way that numerical
differentiation, i.e. the derivative estimation of the signal, has
been the center of attention in countless papers. A worth-
to-mention work is the algebraic framework started with
[8]. More details on this algebraic numerical differentiation
technique can be found, for instance, in [4], [5], [6].

It seems of interest to study an alternative to numerical
differentiation by considering the signal in another functional
basis. A common signal decomposition, notably used in
signal processing, originates from an orthogonal polynomial
basis. In other words, the signal is written as an infinite
sum of orthogonal polynomials with coefficients given by its
respective basis projections which must then be identified.
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Hence, the question of the reconstitution of the original
signal fits in the category of parameter estimation issues.

In some problems, the dynamical system described by
the signal x can be defined by a second-order ordinary
differential equation (ODE). In particular, the coefficients
can be given by low-order polynomials in the time t. In this
case, the identification of the ODE coefficients will allow
the reconstitution of the noisy signal. Classical orthogonal
polynomials, such as Jacobi, Legendre, Laguerre and Her-
mite polynomials, do satisfy such ODEs. For more details on
orthogonal polynomials, see [1] and the references therein.

The algebraic method considered here is strongly based
on Weyl algebra structural properties and one of its main
advantages is to provide closed formulas for the parameter
estimates. The reader may refer to works in [13], [14].

II. GENERAL APPROACH

In this section, we present the generic approaches afore-
mentioned in the introduction. More precisely, the recon-
stitution of the signal via an orthogonal polynomial basis
extension and the particular case of second-order time-
varying systems are studied in this paper.

Throughout the text, K denotes a field of characteristic
zero (e.g. K = Q, R or C). To formalize our problem, we
consider a signal x that has to be recovered form a noisy
biased signal y defined by

y(t) = x(t)+ γ +ϖ(t),

where γ is an unknown constant bias and ϖ(t) is a zero-mean
noise.

A. Orthogonal bases

The classical decomposition of a continuous signal y in
a basis of orthogonal polynomials P = {Pn(t)}n≥0 can be
described by

y(t) = ∑
n≥0

λn Pn(t),

where λn ∈ R corresponds to the projection of y onto
the orthogonal basis P. Remark that Pn might depend of
unknown parameters, such as, e.g. the Jacobi polynomials
P(α,β )

n (see Appendix).
Similar to the case of the Taylor expansion [8], an approx-

imation of y will be given by truncating the above series

y(t)≈ yN(t) =
N

∑
n=0

λn Pn(t), (1)

for some N > 0. We wish to identify the coefficients λ0, . . . ,
λN . The algebraic method proposed in this paper involves
computations in the operational domain, so we apply the



Laplace transform L. First, recall that the action of L on a
continuous function f with a positive support is given by

L( f )(s) =
∫ +∞

0
e−st f (t)dt,

where s denotes the Laplace variable. Applying L on (1)
yields

YN(s) =
N

∑
n=0

λnL(Pn)(s),

where YN denotes the Laplace transform of yN . Then the
idea is to individually estimate the constants λi, i = 0, . . . ,N.
Our algebraic method proposes the elimination of all other
coefficients except the one to be estimated. This elimination
is realized through the action of differential operators called
annihilators. After the elimination, the resulting equation in
the time domain obtained with the action of the inverse
Laplace transform provides closed formulas for estimating
the λi’s.

B. Second-order time-varying systems

Now, we consider that the signal x satisfies the following
differential equation

A(t) ẍ(t)+B(t) ẋ(t)+C(t)x(t) = 0, (2)

where A, B and C are elements of the polynomial ring K[t]
in t with coefficients in K. Consider a signal z by setting

z(t) = x(t)+ γ,

then using (2), z satisfies:

A(t) z̈(t)+B(t) ż(t)+C(t)z(t)−C(t)γ = 0. (3)

Our goal is to identify parameters appearing as the unknown
coefficients of A, B and C in (3), since the bias will not
be estimated. As before, we will then compute the Laplace
transform of (3).

Prior to applying L to the above equation, few properties
of the Laplace transform L of a signal f are reviewed in the
proposition below. We use the notation ∂s := d

ds .

Proposition 1:

1) L
(

f (n)
)
(s) = snL( f )(s)−

n−1

∑
i=0

sn−i−1 f (i)(0).

2) L(tn . f )(s) = (−1)n ∂ n
s (L( f )(s)).

3) L(γ) =
γ

s
, for all γ ∈K.

An immediate corollary can be derived from the above
proposition.

Corollary 2: Let R = ∑
n
k=0 ak tk ∈ K[t] and f ∈ C∞(R+).

Then, we have:

L(R . f )(s) = R(−∂s)(L( f )(s)) =
n

∑
k=0

(−1)k ak ∂
k
s (L( f )(s)) .

Hence, taking the Laplace transform of (3) and using the
above properties, we obtain

A(−∂s)
(
s2 Z(s)− sz(0)− ż(0)

)
+B(−∂s) (sZ(s)− z(0))

+C (−∂s) Z(s)−C (−∂s)
γ

s
= 0,

where Z denotes the Laplace transform L(z) of z. Using the
following notation

θ1 :=−x(0) =−z(0)+ γ,

θ2 :=−ẋ(0) =−ż(0),
θ3 :=−γ,

and thus −z(0) = θ1 +θ3, we obtain:(
A(−∂s) s2 +B(−∂s) s+C (−∂s)

)
Z(s)

+(A(−∂s) s+B(−∂s)) (θ1 +θ3)

+A(−∂s) θ2 +C (−∂s)
θ3

s
= 0.

(4)

In this paper, we shall only consider the following case
A(t) = a2 t2 +a1 t +a0,

B(t) = b1 t +b0,

C(t) = c,

where a2, a1, a0, b1, b0, c ∈ K. Replacing these expressions
in (4) yields (

Ã(s)∂ 2
s + B̃(s)∂s +C̃(s)

)
Z(s)

+T1(s)θ1 +T2(s)θ2 +T3(s)θ3 = 0,
(5)

where



Ã(s) = a2 s3,

B̃(s) = s2 (−sa1 +(4a2−b1)) ,

C̃(s) = s
(
a0 s2 +(−2a1 +b0) s+(2a2−b1 + c)

)
,

T1(s) = a0 s2 +(−a1 +b0) s,
T2(s) = a0 s,
T3(s) = T1(s)+ c.

(6)
To estimate the coefficients of polynomials A, B and

C, algebraic manipulations are necessary to eliminate the
undesired terms in (5). For that, algebraic operators called
annihilators are then applied to (5). The resulting expressions
will contain only terms that are sought, allowing their iden-
tification in the time domain. To return to the time domain,
the inverse Laplace transform L−1 is then applied. Recall
that the inverse Laplace transform is given by

L−1
(

1
sm ∂

p
s Z(s)

)
=

(−1)p

(m−1)!

∫ t

0
vm−1,p(τ)z(τ)dτ, (7)

with the following notation:

∀ p,∈ N, m≥ 1, vm,p = vm,p(τ) = (t− τ)m
τ

p. (8)

Let us consider classical examples.
Example 1: 1) Assume that x(t) = A sin(ω t + φ), the

sinusoidal signal [13]. In this case, the polynomials A,
B and C are given by:

A(t) = 1, B(t) = 0, C(t) = ω
2.

Then using (6), we have (5), where:

Ã(s) = B̃(s) = 0, C̃(s) = s(s2 +ω2),

T1(s) = s2, T2(s) = s, T3(s) = s2 +ω2.
(9)



2) Assume that x(t) =Pα,β
n (t), the n-th Jacobi polynomial

depending on parameters α and β . In this case, the
polynomials A, B and C are given by:

A(t) =−t2 +1,
B(t) =−(α +β +2) t +β −α,

C(t) = n (n+α +β +1) .

Then using (6), we have (5), where:

Ã(s) =−s3,

B̃(s) = s2 (α +β −2),

C̃(s) = s
(
s2 +(β −α)) s+(n+1) (n+α +β )

)
,

T1(s) = s2 +(β −α) s,
T2(s) = s,

T3(s) = s2 +(β −α) s+n (n+α +β +1) .
(10)

3) Assume that x(t) = Pn(t), the n-th Legendre which is a
particular case of the n-th Jacobi polynomial for α =
β = 0. In this case, the A, B and C are given by:

A(t) =−t2 +1, B(t) =−2 t, C(t) = n (n+1) .

Then using (6), we have (5), where:

Ã(s) =−s3,

B̃(s) =−2s2,

C̃(s) = s(s2 +n (n+1)),
T1(s) = s2,

T2(s) = s,

T3(s) = s2 +n (n+1) .

(11)

4) Assume that x(t) = L(α)
n (t), the n-th Laguerre polyno-

mial depending on the parameter α . Polynomials A, B
and C in (3) are given by:

A(t) = t, B(t) =−t +α +1, C(t) = n.

Then using (6), we have (5), where:

Ã(s) = 0,

B̃(s) = s2 (−s+1),

C̃(s) = s((α−1)s+(n+1)),
T1(s) = α s,
T2(s) = 0,
T3(s) = α s+n.

(12)

5) Assume that x(t)=Hn(t), the n-th Hermite polynomial.
Polynomials A, B and C in (3) are given by:

A(t) = 1, B(t) =−2 t, C(t) = 2n.

Then, using (6), we have (5), where:

Ã(s) = 0,

B̃(s) = 2s2,

C̃(s) = s(s2 +2(n+1)),
T1(s) = s2,

T2(s) = s,

T3(s) = s2 +2n.

(13)

III. MOTIVATIONAL EXAMPLES

A. Hermite polynomials

In this work, to illustrate one application of our algebraic
estimation method, we will be particularly concerned with
the Hermite polynomial series expansion of a continuous
signal x. Hermite polynomials Hn form an orthogonal set for
t ∈R with respect to the weight function e−t2

(see Appendix).
So any continuous function y can be written as

y(t) = ∑
n≥0

λn Hn(t),

where:

λn =
1

2n n!
√

π

∫
∞

−∞

y(τ)Hn(τ) e−τ2
dτ.

An approximation of the function y is provided by selecting
a constant N > 0 such that:

y(t)≈
N

∑
n=0

λn Hn(t). (14)

We denote this polynomial approximation by yN(t).
The aim is to estimate the terms λn, for n = 0, . . . ,N.

Notice that y represents the measured signal from a signal x
with some negligible noise, hence we may consider only y.
As we mentioned in the above subsection, the first step is to
apply the Laplace transform on (14) and we obtain

YN(s) =
N

∑
n=0

λnL(Hn)(s), (15)

where YN denotes the Laplace transform of yN . From the
definition of Hermite polynomials (see Appendix), it follows

Hn(t) = 2ntn +hn(t) = 2ntn +ηn,n−2tn−2 + · · ·+ηn,mtm

with m = n mod 2 (i.e., m = 0 if n is even and m = 1 if n is
odd). So, denoting n = 2 j or n = 2 j+1, it results that

Pn(s) := L(Hn)(s) = 2n n!
sn+1 +

j

∑
k=1

ηn,n−2k
(n−2k)!
sn−2k+1 .

Multiplying (15) by the highest power of s to eliminate
denominators gives:

sN+1YN(s) = λN

(
2NN!+∑

j
k=1 ηN,N−2k(N−2k)!s2k

)
+∑

N−1
n=0 λnsN+1Pn(s).

(16)
The parameters λi up to order N will be estimated individ-
ually. Denote the set of parameters to be estimated by:

Θ = {λ1, . . . ,λN}.



We start with the dominant coefficient λN and use the
notation Θest = {λN}. Then, accordingly separate the terms
in (16) to rewrite the equation into the following relation

(R) P(s)YN(s)+Q(s)+Q(s) = 0, (17)

where P is a differential operator on the Laplace variable s
with coefficients in the field RΘ := R(Θ) (i.e. an algebraic
extension of R containing the set Θ), so P ∈ RΘ [s], Q is a
polynomial in s with coefficients in RΘest :=R(Θest), and Q
is a polynomial in s with coefficients in RΘ:

P(s) = sN+1,

Q(s) =−λN sN+1PN(s),

Q(s) =−∑
N−1
n=0 λn sN+1Pn(s).

To determine a closed formula for the estimation of λN , the
polynomial Q must be eliminated from (17). This elimination
is realized by the action of differential operators, providing
an expression containing only λN , YN and its derivatives.
A time-domain expression for λN can then be obtained by
applying the inverse Laplace transform. The same procedure
is applied to estimate all remaining λi.

For instance, if N = 3, then we obtain from (16) that:

s4 YN (s)− s3
λ0−2s2

λ1 +2s
(

s2−4
)

λ2 +12
(

s2−4
)

λ3 = 0. (18)

Starting with Θest = {λ3}, the relation obtained is:

P(s) = s4, Q(s) = 12
(
s2−4

)
λ3,

Q(s) =−s3
λ0−2s2

λ1 +2s
(
s2−4

)
λ2.

B. Second-order time-varying systems

Particular cases of time-varying second-order differential
equations are orthogonal polynomials as seen in Section II-B.

Let Θ be the set of all parameters in the operational
equations (9), (10), (11), (12) and (13). Since we do not wish
to identify the bias γ =−θ3, the parameters to be estimated
are then θ1 and θ2 and in some cases α and/or β and n.

In the next section, to illustrate our algebraic method
for parameter estimation, we will focus on Example 4 and
identify parameters in the case of Hermite polynomials.

After the passage from the time domain to the operational
domain via the Laplace transform, the next step in the
estimation procedure consists in rewriting (13) according to
the parameters to be identified. For instance, if we wish to
estimate θ1, and θ2, then we define a set Θest by:

Θest = {θ1,θ2}.

So Θest ⊂ Θ = {θ1,θ2,θ3}. From (13), we can rewrite the
relation (5) as follows

(R) P(s,∂s) Z(s)+Q(s)+Q(s) = 0, (19)

where: 
P(s,∂s) = 2s2 ∂s + s

(
s2 +2(n+1)

)
,

Q(s) = s2 θ1 + sθ2,

Q(s) =
(
s2 +2n

)
θ3.

Annihilators are then applied on the relation (19) to eliminate
Q. The remaining terms provide a system of equations in
Θest. A short description on the algebraic framework used to
design annihilators can be found in the next section.

IV. ANNIHILATORS

Algebraic concepts and some structural properties can be
found in the Appendix VII-B and [9].

For the sake of simplicity, from now on we consider K=Q
or R. We also set B := B1(K) =K(s) [∂s].

Definition 1: Let R∈KΘ[s]. A R-annihilator w.r.t. B is an
element of AnnB(R) = {F ∈ B | F (R) = 0}.

By Proposition 9, Appendix VII-B, B is a left principal
domain. Therefore AnnB(R) is a left principal ideal (i.e. it is
generated by a unique Πmin ∈ B, up to multiplication by a
nonzero polynomial in B). That means AnnB(R) = B Πmin.
We call Πmin a minimal Q-annihilator w.r.t. B. Remark that
AnnB(R) contains annihilators in finite integral form, i.e.
differential operators with coefficients in K

[ 1
s

]
. Indeed, we

can always multiply Πmin by p ∈ K[s] so that pΠmin is a
differential operator in ∂s with polynomial coefficients in s,
and then multiply pΠmin by s−N , where N is the maximal
degree of the polynomial in s of pΠmin. The following
lemmas are useful:

Lemma 3: Consider R = sn for n ∈ N. A minimal R-
annihilator is given by Πn = s∂s−n.

For m, n ∈ N, the operators Πm and Πn commute. Thus,
one has the following Lemma

Lemma 4: Let R1, R2 ∈KΘ[s]. Let Fi be a Ri-annihilator
for i = 1, 2, such that F1 F2 = F2 F1. Then F1 F2 is a (µ R1 +
η R2)-annihilator for all µ,η ∈KΘ.

Lemma 5: Let R ∈ KΘ[s]. Then, a minimal R-annihilator
w.r.t. BΘest is given by Πmin = R∂s−∂s (R) .

It may happen that a Q-annihilator eliminates all terms in
the relation R (see (17) and (19)) that contain the parameters
to be estimated. Hence, another important concept lies in the
definition of an estimator.

Definition 2: An estimator Π ∈ B is a Q-annihilator sat-
isfying coeffs(Π((R))∩KΘ = /0.
Now, from (19) we have:

Q(s) =
(
s2 +2n

)
θ3.

Since the degree of Q in s is equal to 2, then Π = ∂ 3
s is a

Q-annihilator. But the action of Π on the relation (R) defined
by (19) also eliminates the polynomial Q that contains the
parameters to be identified. So Π is not an estimator.

Lemma 3 gives a minimal Q-annihilator for s2:

π1 = s∂s−2.

To complete annihilate Q, it is enough to apply π2 = ∂s on
π1
(
Q
)
. That gives a Q-annihilator:

Π = π2 π1 = s∂
2
s −∂s.

Moreover, Lemma 5 provides a minimal Q-annihilator
w.r.t. B:

Φ =
(
s2 +2n

)
∂s−2s.



V. EXAMPLES

Example 1: Hermite expansion series of x

In this subsection, we work with a truncate series expan-
sion of order 3 and illustrate our method with (18) by giving
the estimation of λ3.

From (18), we have:

P(s) = s4, Q(s) =
(
12s2−48

)
λ3,

Q(s) =−λ0 s3−2λ1 s2 +
(
2s3−8s

)
λ2.

To annihilate Q, we begin by eliminating λ0. From Lemma 3,
we apply π1 = s∂s− 3 on Q and obtain π1

(
Q
)
= 2s2 λ1 +

16λ2 s. Using the same Lemma twice, we apply subsequently
π2 = s∂s−2 and π3 = s∂s−1 to completely annihilate Q.

The annihilator π = π3 π2 π1 can be rewritten in the
canonical as follows:

π = s3
∂

3
s −3s2

∂
2
s +6s∂s−6.

We apply π on (18) and it follows:

s4 (s3
∂

3
s +9s2

∂
2
s +18s∂s +6)Y (s)+288λ3 = 0.

Using the notation (8), the inverse Laplace transform (7)
helps to return to the time domain:

2λ3 t7

35
+
∫ t

0

(
−9v2,1 +9v1,2 + v3,0− v0,3

)
y(τ) dτ = 0.

Finally, solving (20) and changing variables, we then obtain:

λ3 =
35
∫ 1

0 y(t ν)
(
20ν3−30ν2 +12ν−1

)
dν

2 t3 .

Example 2: Hermite polynomial

We have seen in Section III-B that the parameters to be
estimated can be θ1 and θ2 and in some cases α and/or β and
n. In this paper, to illustrate our method we will focus on the
estimation of n since the closed formulas are simpler than
in the other cases. We consider the following time-varying
second-order differential equation:

z̈(t)−2 t ż(t)+2nz(t)−2nγ = 0. (20)

As seen in (13), Section II, the above equation yields in the
operational domain:

2s2 ∂s Z (s)+ s
(
s2 +2(n+1)

)
Z (s)+θ1 s2 +θ2 s

+
(
s2 +2n

)
θ3 = 0.

The aim is to identify the parameter n in (20). So the relation
R that will be considered is

P(s,∂s)Z(s)+Q(s)+Q(s) = 0,

with P(s,∂s) = 2s2 ∂s +
(
s3 +2 (n+1) s

)
, Q(s) = 0 and

Q(s) = s2 θ1 + sθ2 +
(
s2 +2n

)
θ3. Using Lemma 3 three

times, a Q-annihilator in the canonical form is given by

π = s∂
3
s ,

and provides in the operational domain:

(2s3 ∂ 4
s + s2 (s2 +14)∂ 3

s +9s(s2 +2)∂ 2
s +18s2 ∂s +6s)Z(s)

+n2s(s∂ 2
s +3)∂s Z(s) = 0.

Fig. 1. The result of the identification of n

The equation allowing the identification of n is provided by:

n =

∫ t
0 A z(τ) dτ∫ t
0 B z(τ) dτ

,

A= 9(v2,1− v1,2)+ v0,3− v3,0−2v1,4−3v3,2 +7v2,3,

B= v3,2− v2,3.

In the case of the second-order Hermite Polynomial H2(t),
we consider z(t)=H2(t)+ϖ(t), with ϖ(t) some noise. Fig. 1
shows the simulation using the above identification of n for
n = 2.

VI. CONCLUSION

In this paper, we addressed the problem of the reconstitu-
tion of a noisy biased signal that is involved in many impor-
tant problems in signal processing and control engineering.
Two approaches were studied for this issue. One of them was
the use of an orthogonal polynomial series expansion for the
signal. In this approach, thanks to an algebraic framework
we provided an estimation of its coefficients in the particular
case of Hermite polynomials. This choice was motivated
by the common use of these polynomials in the domain of
signal processing. Future work will include a broader study
of other classical polynomials, such as Jacobi, Legendre and
Laguerre. Errors arising from truncating the series expansion
should be also analyzed.

The second approach presented in this paper concerns the
case where the dynamical system described by the noisy
biased signal is given by a differential equation satisfied
by classical orthogonal polynomials. The ODE coefficients
identification allowed the signal to be recovered. An example
for second-degree Hermite polynomial was chosen to illus-
trate our algebraic methods. Further research will focus on
different choices of parameters to be estimated, as well as
on different orders for the ODE polynomial coefficients.

It should be stressed that the choice of differential op-
erators called annihilators is a crucial step in the algebraic
procedure allowing a better posed problem and consequently,
better estimates.



VII. APPENDIX

A. Classical orthogonal polynomials

Here, we recall the definition of some classical orthogonal
polynomials. In particular, properties of Jacobi and Hermite
polynomials are provided. For more details, we refer to [1].

1) Jacobi polynomials:
Jacobi polynomials can be defined by Rodrigues’ formula:

P(α,β )
n (z) =

(−1)n

2nn!
(1− z)−α (1+ z)−β .

dn

dzn

(
(1− z)α (1+ z)β

(
1− z2)n

)
.

2) Hermite polynomials: The definition of Hermite poly-
nomials is given by:

Hn(t) = (−1)n et2 dn

dtn e−t2
.

Hermite polynomials of even degree are even functions and
those of odd degree are odd functions. Thus we can write

Hn(t) = 2n tn +hn(t),

where hn(t) is a polynomial with non-zero coefficients for all
even powers of t smaller than n if n is even and for all odd
powers if n is odd. Hermite polynomials are orthogonal with
respect to the scalar product defined by the weight function
w(t) = e−t2

:

〈Hn(t),Hm(t)〉=
∫

∞

−∞

Hm(τ)Hn(τ)w(τ)dτ = 0, m 6= n.

B. The Weyl Algebra: basic notions

Definition 3: Let K be a field of characteristic zero. Let
k ∈ N \ {0}. The Weyl algebra Ak = Ak(K) is the free K-
algebra generated by p1, q1, . . . , pk, qk satisfying the relations

1≤ i, j ≤ k, [pi, q j] = δi j, [pi, p j] = [qi, q j] = 0,

where [·, ·] is the commutator defined by [u,v] := uv−vu for
all u, v∈Ak(K) and δi j is the Kronecker function, i.e. δi j = 1,
if i = j and 0, if i 6= j.

A useful realization of the Weyl algebra Ak is to consider
it as the K-algebra of polynomial differential operators on
K[s1, . . . ,sk] such that pi := ∂si =

∂

∂ si
is the derivative with

respect to si and qi := si is interpreted as the multiplication
operator p(s1, . . . ,sk) 7−→ si p(s1, . . . ,sk), for 1≤ i≤ k.

As a consequence, we can write:

Ak =K[q1, . . . ,qk][p1, . . . , pk] =K[s1, . . . ,sk]
[
∂s1 , . . . ,∂sk

]
.

Remark 6: The same notation is used for the variable si
and for the operator “multiplication by si”.

A closely related algebra to Ak(K) is defined as the
differential operators on K[s1, . . . ,sk] with coefficients in the
rational functions field K(s1, . . . ,sk). We denote it by Bk(K),
or Bk for short. We can write:

Bk :=K(q1, . . . ,qk)[p1, . . . , pk] =K(s1, . . . ,sk)
[
∂s1 , . . . ,∂sk

]
.

Proposition 7: A basis for Ak is given by{
qI pJ | I,J ∈ Nk

}
where qI := qi1

1 . . .qik
k and pJ := p j1

1 . . . p jk
k

if I = (i1, . . . , ik) and J = ( j1, . . . , jk). So an operator F ∈ Ak
can be written in a canonical form,

F = ∑
I,J

λIJqI pJ with λIJ ∈K.

Example 2: We need later the fallowing useful identity:

pnqm = qm pn +
n

∑
k=1

(
n
i

)(
m
i

)
i!qm−i pn−i

An element F ∈ Bk can be similarly written as

F = ∑
I

λIgI(s)pI , where gI(s) ∈K(s1, . . . ,sk).

The order of an element F ∈Bk, F = ∑I λIgI(s)pI is defined
as ord(F) := max{[I| | gI(s) 6= 0}. The same definition holds
for the Weyl algebra Ak since Ak ⊂ Bk. Some properties of
Ak and Bk are given by the following propositions:

Proposition 8: Ak and Bk are simple and Noetherian.
Furthermore, Ak is neither a principal right domain, nor a

principal left domain, while this is true for Bk:
Proposition 9: B1 admits a left division algorithm, that is,

if F , G∈B1, then there exists Q, R∈B1 such that F =QG+
R and ord(R)< ord(G). So B1 is a principal left domain.
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