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Abstract—It is well-known that a time-varying controllable  of systems (e.g., systems of differential time-delay equa-
ordinary differential linear system is flat outside some singulari-  tjions/multidimensional discrete equations/partial differential
ties. In this paper, we prove _that every time-varying contro_llable equations (PDEs)) and is related to tMonge problem
linear system is a projection of a flat system. We give an . " oo in deciding whether or not it is possible to
explicit description of a flat system which projects onto a given . 8 9 ; p :
controllable one. This phenomenon is similar to a classical one Parametrize all solutions of an underdetermined (nonlinear)
largely studied in algebraic geometry and called theblowing- ~ system of ODEs or PDEs by means of free functions. See
up of a singularity. These results simplify the ones obtained in [16] for more details and historical developments obtained
[6] and generalize them to MIMO multidimensional systems. by J. Hadamard, D. Hilbert, E. Cartan, E. Goursat. When

Finally, we prove that every controllable multi-input ordinary the f functi in t b dint fth
differential linear system with polynomial coefficients is flat. € Iree tunctions can In turn be expressed in terms of the

Index Terms— Multidimensional linear systems with varying ~ System variables, then the system is called flat [4].

coefficients, controllability, flatness, singularity, behaviours. An analogon of the first problem in control theory is the
controllability problem[9], [10]: Is it possible to patch two
|. INTRODUCTION AND MOTIVATIONS sets of trajectories? The main application of flat systems is

A classical question in algebraic geometry is to recogniz&€ motion planning problenf4]: Is it possible to design
when it is possible to parametrize the points of a curve b§n input which gives a desired output in open-loop? In
means of rational functions. For instance, it is well-knowP0th cases, the problem is to find a free parameter of the
that the unit circler® +y2 — 1 = 0 can be parametrized by: Parametrization so that the corresponding trajectory satisfies

certain imposed conditions [4], [9], [10].
w(t) = (1—*)/(1+t%), y(t)=2t/(1+%), VteR. A control-theoretic version of Problem 2 is thmptimal
(1)  control problem Let us suppose that we want to minimize a
Such a parametrization may parametrize all but a finitguadratic cost under the differential constraint formed by the
number of points of the curver(= —1). We also note that control system. Then, by substituting the parametrization of
the parametelt can be obtained as a rational function Ofthe System into the Lagrangian, we obtain an optimization
the coordinates of the curve. For the unit circle, we havgroblem without differential constraint whose solutions can

t=y/(l1+z),z# -1 be obtained by integrating the corresponding Euler-Lagrange
Two historical problems were leading the study of suclquations and by substituting the result into the parametriza-
curves: tion of the system. We refer to [1], [13] for more details.
1) Study of Diophantine equationsi.e., finding the ra- In algebraic geometry, some curves aiagular in the

tional solutions of curves. For instance, all rationakense that their gradient vanishes at some particular points.
solutions ofz? 4+ y? = 1 are obtained by substituting For instance, the curve defined Bz, y) = y* — 23, called
t € Q into (1). cusp is singular at the origin(0, 0) as its gradient defined
2) Integral calculusi.e., integrating rational functions on by VF= (=322, 2y) vanishes at0, 0). We plot the graph
a curve. For instance, the integration of the differentiabf this curve (we are going to see why we use a 3D plot;

form w = (y/(1 + x)) dz on the unit circle gives: the cusp lies in the:-y-plane).
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A natural question is to understand if a class of systems
could play a similar role in control theory as the one played
by rational curves in algebraic geometry. Indeed, a curve
defines an underdetermined system (e.g., one equation in
two unknowns). In the nineties, the conceptfiaft systems
was introduced in [4] for non-linear control systems de-
fined by means of ordinary differential equations (ODEs). The blowing-up problem is roughly related to finding a
This concept has been extended since to different classgsn-singular curve in a bigger space which projects onto




the given singular curve. For the cusp, we consider thiellowing flat system
relationy = ¢tz with a new parametet. By substituting . :
into F(z,y) = 0, we obtainz = ¢2, and thusy = t3. If we { i(t) —tu(t) =0, 2(t) = é.g(t) +&),

g U(t) = —E(t),

v(t) = &(1),

where&(t) = x(t) + tv(t) is a flat output of the system.
For analytic time-varying single-input controllable linear
systems, a general algorithm is given in [6] in order to
construct the dynamic compensator which allows to obtain
a flat system.

Solving Problem B, we show that we can get rid of
the dynamic compensator used in [6] by giving a new
interpretation of controllability: a controllable time-varying
linear system is a projection of a flat system. Then, we give
a simple formula to compute a flat system that projects onto

We consider now thésehaviour B [2], [10] of a (OD, the controllable one. o
PD, differential time-delay...) linear system with variable Moreover, we generalize the previous result to multidi-
coefficients, namely, the set of solutions of a linear systefensional linear systems over Ore algebras with variable
over anOre algebraD [2] in a signal spaceF having a left coefficients [2] such as differential time-delay systems, mul-

consider the curve iiR? defined by(z, y, t) = (t2, 3, t),
we easily show that it is non-singular and its projection onto
the xz-y-plane is the cusp:

D-module structure. tidimensional discrete systems or PD systems.
Problem A Is it possible to find a flat linear system over Finally, K. B. Datta proposes in [3] that an interesting
D whose behaviour projects onto the behavisar problem is to extend the results of [6] to analytic time-

If we ask the projections to be of the form Vvarying controllable linear systems having multi-inputs. In

(e i) = (1,...,7,), then we can the case of polynomial coefficients, we prove that this
consider thg following new problem: P problem is theoretically solved as such linear systems are
Problem B Is it possible to findr, s € Z, such that we Shown to be flat.
have Il. A MODULE-THEORETIC APPROACH
BeF® =F", 2

Reformulating Problem B within module theory, we show
where 2 (resp.,®) denotes the isomorphism (resp., direchow we can solve it in the different situations we are
sum) of abelian groups? interested in.

In order to motivate Problems A and B, we consider \We recall that a ringD is said to be adomainif the
the analytic time-varying OD systeri(t) = (). As the Product of non-zero elements & is non-zero [14].

controllability matrixC/(¢) = (B(t) = t, A(t) B(t)—B(t) = Definition 1: _1) D is cglleq _aleft noetherian ringif
—1) has rank 1 att = 0, we know that the system is every left ideal lof'D is finitely generated namely,
controllable at: = 0 [15]. But, we shall prove in Example 3 generated by a finite number of elements/af

that it is not flat. This result is non-trivial as we must show 2) A domainD has theleft Ore propertyif for every pair
that there exists no injective parametrization of the system.  (a1,a2) in D, there exists a non-trivial paitb,, bs)

Intuitively, this result can be understood if we examine the N D? satisfyingby a; =byaz. _
following parametrization: In what follows, we shall only consider a left noetherian
) domainD. Then, D has the left Ore property [8].
a(t) =€), wu(t)=¢()/t, VEETF. Let us now consider a matriR € D7 and the left

But, ¢t = 0 is a singularity of this parametrization, Showng-morpmsm (i-e., leftD-linear map) defined by

that we cannot deduce the flatness of the system in theR: D'*? — DY (ay,...,a,) — (a1,...,a,) R.
neighbourhood ofl. We have the following parametrization

. . . . o\ Then, we define theokernelof the left D-morphism.R as
of all the system trajectories without singularities

the left D-module M = D'*?/(D'*4 R).

{ z(t) = 12, (¢) +t£2(t) — &(b), @) In terms of generators and relations, the I&ftmodule
R : M is generated by, ..., 2, wherez; denotes the class

u(t) = t&i(t) + 2&(¢) + &2(2), in M of the row vectore; defined by 1 in thei" entry

where¢; and¢&, are two arbitrary smooth functions [1], [2], and O elsewhere, and= (z1,...,2,) satisfies the system

[11]. However, we cannot obtaify and¢, in terms ofz, v Rz = 0 and all leftD-linear combinations of these equations
and their derivatives as it would imply that the rank of thd2], [12]. As the left D-module M is defined by means of
system, which is equal to the number of inputs, is 2, i.e., (3 finite linear system oveD, we say thatM is a finitely
is not injective. presentedeft D-module [14].

It was shown in [6] that a dynamic compensator of the If F is a left D-module andhomp (M, F) denotes the
form o(t) = —u(t) can be used in order to obtain theabelian group of leftD-morphisms (i.e., lefiD-linear maps)



from M to F, then we have the following standard isomor-

phism of abelian groups:
B=k%kerr(R.)={ne€ FP| Rn=0} = homp(M,F).

In other words, ifn = (m1,...,m,)7 is an element of the

behaviourB3, then we can define a unique Idft-morphism

f of homD(M, F) by f(Zl) =1 fori=1,....p [2], [12]
Now, using the following trivial isomorphisms [14]

homp(M @ P, F) = homp(M,F) @ homp (P, F),
homp (D'*7, F) = Fr,

we can write (2) as:
homp (M@ D', F)=homp (D", F).

Therefore, it is natural to consider the following problem:

Problem C Is it possible to findr, s € Z. such that:
M@DIXSngxr. (4)

Let us recall a few definitions of module theory [14].

A short exact sequende an exact sequence of the form

0— M Lom 2 m” — o, (6)

i.e., f is injective,ker g = im f andg is surjective.
Definition 3: [14] The short exact sequence (§)lits if
one of the following equivalent conditions holds:

1) There is a leftD-morphismh : M” — M such that

go h = idM//.
2) There is a leftD-morphism#k : M — M’ such that
ko f = Z.d]wr.

3) There are two leftD-morphismsh : M"” — M and
k: M — M’ suchthatf ok + hog=ridy.

4) M is isomorphic toM’ ¢ M", i.e., M = M' o M".

Using a classical result in homological algebra saying that
the functor homp (-, F) transforms split exact sequences of
left D-modules into split exact sequences of abelian groups
[14], we find the following relationship between Problems B
and C.

Lemma 2: Problem C implies Problem B, i.e., if the left
D-module M = D'*?/(D'*4 R) is stably free, then there

Definition 2: Let M be a finitely generated left module existr, s € Z such that we have (2).

over a left noetherian domaif. Then, M is said to be:

« freeif there existsr € Z, such thatM = D**",
« stably freeif there exist two integers, s € Z, such
that we haveM @ D> = pDlxr,
« projectiveif there existr € Z, and a leftD-module P
such thatM @ P = D7,
« torsion-freeif the left D-submodule (M) = {m € M |
30+# a € D, am =0} of M is the zero module.
« torsionif ¢(M) = M.
Therefore, we obtain the following lemma.
Lemma 1: Problem C is solvable iff the lef-module
M = D¥*?/(D'*1 R) is stably free.
It is clear that a free module is stably free (take= 0)
and a stably free module is projective (take= D'**).

Moreover, we can prove that a projective module is torsion-

free [14].
Theorem 1: 1) [14] If D = k[zy,...,z,] is a com-
mutative polynomial ring over a field, then every
projective D-module is free.

2) [8] If D is a (left) principal ideal domainnamely,

If M = D'*?/(D'*9R) is stably free, then we shall
say thatB = kerz(R.) is a stably free behaviourWe can
constructively parametrize [2], [11] all solutions of a stably
free behaviour in any signal spade which has a leftD-
module structure (see Example 5).

The free leftD-module D'*™ defines a flat behaviour as
we haveB = homp (D™ F) = F™ and F™ is a flat
behaviour (the identity map is an injective parametrization
of F). Conversely, let us consider a behaviour defined by
R € D™*?_ If B = homp(M,F) is flat, then there exist
Q € DP*™ andT € D™*P such that we have the following
exact sequence

Fo B & o,
Rn — M
QE — ¢

andT @ = I,,. Then, we obtain3 = kerz(R.) = Q F™ =

F™. showing that a flat behaviour is isomorphic 6.
Proposition 1: [4], [11] A behaviour3 = homp (M, F)

is flat iff the leftD-moduleM = D'*?/(D'*4 R) is free.

every (left) ideal ofD can be generated by means of Then, we have the following corollary.

one element, (e.gh) = R [4] R(t) [£]), then every
torsion-free (left)D-moduleM is free.
[8] If D is a (left) hereditary ring namely, every left
ideal of D is a projective (left)D-module, (e.g.D =
k[t] [4]), then every torsion-free (leftD-module is
projective.

A sequence of leftD-modules and leftD-morphisms of
the form

3)

dit1 d; di—1 di_2

diq2
i1 —— Py — Py —— Py —— ...

.

(®)

is calledexactat P; if the defect of exactness P; defined
by H(PZ) = ker dz/lm diJrl vanishes, i.ekerd; = im di+1.
By extension, we say that (5) exactif it is exact at every
P;. See [14] for more details.

Corollary 1: The condition thaf\/ is a free leftD-module
of the formD*™ is a sufficient condition for the existence
of a solution to Problem B of the form= m and s = 0.
Then, the projectionr can be chosen to bal.

By Lemma 2, it is important to check whether or not the
left D-module M = D'*?/(D*4 R) is stably free.

Proposition 2: [2], [11], [12] Let us consideR € D?*P
and the leftD-module M = D'*?/(D*9 R).

1) M is free iff there existp € DP*™ andT € D™*P

such thatT' Q = I,,, and:

kerp(.Q) = {\ € D'*P|AQ =0} = DX R.

2) M is stably free iff there existh € D**", B € D"**
such thatM = D'*"/(D'*¢ A) and A B = I;.



We recall that a matrixR € D9*P has full row rank Let @(t) = A(t)z(t) + B(t)u(t) be an analytic linear
matricesif its rows are leftD-linearly independent. system on an open intervél of R. Then, it is shown in
Proposition 3: [11] If R has full row rank, then we have: [15] that the system isontrollable on every non-trivial
1) M = D'*? /(D4 R) is a free leftD-module iff there Subinterval of2 iff, for any fixed, in €2, there exists: € Z,
existS € DPx4, Q € Dr*(»—9) and T ¢ p—ax»  such that the rank of the controllability matriX(k,t,) at

such that we have the followingeBout identities: to, defined by
R R C(k,to) = (Bo(to), Bi(to), - -, Bi(to)),
(F)6 @=n 6 @(7)-t ’ |
whereB; 1 = A B;— 4 B;, Bo = B, is equal to the number

2) M = D'*?/(D' 4 R) is a stably free leftD-module of statesn in the system. We have the following result.
iff there existsS € DP*? such thatR S = 1. Proposition 6: The analytic ordinary differential linear

Without loss of generality, we can assume in what followSYSteme (t) = A(#) z(t) + B(t) u(?) is cont[lollable on an
that every stably free lefb-modulelM is defined by a matrix OP€nN interval® of R iff the left D = H(Q2) [ 4] -module
R which admits a right-inversg, i.e., we haveR S = I,. 1 (nm) ixn [(d

A left D-module F is calledinjective cogeneratoif the M=D / (D (dt In — A(), —B(t)>)
functor homp (-, F) transforms exact sequences of &t ) )
modules into exact sequences of abelian groups [14] af®i Stably free, wheref/($2) denotes the ring of analytic

homp (M, F) = 0 implies M = 0 for all left D-modules# ~ functions inf2. _ _
2], [9], [12]. Proof: It is shown in [11] that the lefD-module M is

i N 1xn 1x(m+n) D
Proposition 4: IfF is an injective cogenerator, then Prob- Stably free iff the leftD-moduleN = D™= /(D xm .) R),
lem B is equivalent to Problem C. Therefore, Problem B j¥/here the matrix? is defined by {: is the number of inputs)
solvable iff M = D'*P/(D1*9R) is a stably free leftD- - d T
module. R= (_dt I, — AT(t), BT(t)) e pvtmxn,
Example 1:Let us consider the rind = R[dy, ..., d,] B
of partial differential operators id; = 9/0x; with constant is the zero module. As we have previously se®ns defined
coefficients and theD-module F = C*°(Q) (resp.,F = by the OD linear system

D’'(Q)) of smooth functions (resp., distributions) in an open 5= _AT () )
convex subsef? of R”. It is known thatF is an injective =-—AT(1) A (7
cogenerator [9]. Therefore, by Proposition 4, we obtain that BT (t)A =0,

Problems B and C are equivalent. Hence, there existd where \ denotes the time-derivative of Hence, we obtain
Z h th h 2) iff theD- le M i = . o T S
s € Z such that we have (2) iff theD-module 'S ﬁhatN = 0 iff (7) implies A = 0. Differentiating the zero-

stably free. But, by the Quillen-Suslin theorem (see 1 o ) e : .
Theorem 1), every stably free module over a commutativ%rder equation of (7) and substituting the result into the first

L . - L equation of (7), we find the new zero-order equation defined
polynomial ringk|zy, ..., z,] with coefficients ink is free. . . .
Hence, we have?\gl 1% Dtxr ]for a certainr € Z, equal to by (B*(¢) A (¢) — B(#)") A = 0. Repeating recursively the
the ran’k of M. We recall thatrank (M) is the dimension same procedure with the last zero-order equation obtained,

over the field of rational function®(dy,...,d,) of the we get . .
R(d,...,d,)-vector space generated By. Therefore 3 = VkeZ,, A=—AT(1) A,
F7 is a flat behaviour and Corollary 1 holds with= 0 and C(k,t)" X =0.

r = rankp (M), which solves Problem B with = 7d. Therefore, (7) implies\ = 0 on every non-trivial subinterval
Example 2:1f we consider an open intervdl of R, the

M of Q iff, for any fixed ¢y in €2, there exists: € Z, such that

ring D = K () [Z£] of OD operators with coefficients in rank C(k, fo) — n. -

K(Q)={n/deCt)|0#£d neCJt], VseQ,ds)#0} Us@ng 2. of Theorem 1 and Plroposition 6, we obtain that a
time-invariant Kalman system is controllable iff tiie[-%; |-
and the leftD-module 7 = B() of hyperfunctionsin Q@ module M is torsion-free [2], [4], [11]. More generally,
[5], then we know thatF is an injective cogenerator [5]. controllability of multidimensional systems with constant
By Proposition 4, this shows that Problems B and C areoefficients (see Example 1) in terms of the possibility to
equivalent. But, contrary to what happened®,,...,d,], patch two solutions on open subsets ®f with disjoint
stably free leftD-modules are not necessarily free ones [5]closures was proved to be equivalent to the torsion-freeness
An Ore algebra of OD/PD, time-delay or shift operatorspf the D-module M [9].
with polynomial or rational coefficients, satisfies that finitely We now prove that:(¢) = ¢t u(t) is not a flat system.
generated projective lefD-modules are stably free [2], [8]. Example 3:Let D = k[t [%] be the Weyl algebra and
Proposition 5: If D is any Ore algebra defined in Propo- R = (%, —t) € D'*2, Then,M = D'*2/(D R) corre-
sition 4.8 of [2] andF is an injective cogenerator lefD-  sponds toi(t) = tu(t). If we denote byS = (¢, %)T,
module, then Problem B is also equivalent to the problem dfien we check that we havB S = 1. Hence, the leftD-
findingr € Z, and a behaviou3’ such thatB @ B’ = F7.  morphism.S : D'*2 — D defined by(.S)(\) = A S



satisfies the relatio.S) o (.R) = idp. Thus, the following Equivalently, we have the followingéBout identities:

exact sequence R’ o o R’
R 1x32 (T/>(S»Q)p+qa(SaQ)<T/)p+q~
0— D >D —M-—0 (10)
splits (see Definition 3) and we obtailf & D = D'*2, Proof: We easily check that we hav& S’ = RS = I,
showing thatM is a stably-free leftD-module by Defini- TQ' =1, - SR+ SR =1, RRQ = R(I,—-SR) =
tion 2. R— RS R =0 and computings’ R’ + Q' T', we obtain
We can check that we have the following exact sequence ( SR+1,—-SR (I,—SR)S ) .
0o—DEp2 L p 1 o, -R+R RS

) p T Lo ) which prove the Bzout identities (10).
where P = (t*, t5+2) andL = D/(D"?P)isa  Now, if (8) splits, then we trivially obtain (10). Conversely,
torsion left D-module, i.e.,P is aminimal parametrization suppose that we have (10). In particul®,Q’ = 0 implies
of M. See [1], [2] for more details. Thus, we have (D'¥4 R} C kerp(.Q'). Moreover, if A € kerp(.Q'), we
then obtain\ = A\ (" R'+Q' T") = (AS") R’, which proves
thatkerp(.Q") C (D**9 R’), and thus, the exactness of (8).

d
M = cokerp(.R) = D> P =Dt*+D <tdt + 2> C D.
The other identities show that (8) is a split exact sequence.

Only principal left ideals ofD are free leftD-submodules.

. . : [
Hence, M is a free left D-module iff the left ideal ofD . .
defined byJ = D> + D (t< +2) is principal. Let us We easily check that we have:
study whether or nof is a principal left ideal ofD. M' = D'*pta) /(D14 R') = DI*P+a) /(D4 R 0))
We define byL(a) = a,,(t) # 0 (resp.,ord(a) = m) the = DYP/(D*1R) & D*9=M ¢ D9
. e &

leading term(resp.,order) of a = 3 ;= ai(t) 7= € D and  yging Proposition 7 and 1 of Proposition 3, we obtain that
we denote byJ,, the family of ideals ofk[t] given by: M is a free leftD-module isomorphic td)!*?.

Jm ={L(a)|a € J, ord(a) = m} U {0}. Theorem 2: LetF be a leftD-module,R € D?*? admit-

_ _ o ting a right-inverseS € DP*9 and let us define the stably
We easily check thaf,,, C Jy,+1. Now, if J were principal,  free behaviour3 = kerz(R.). Then, the behaviouB @ F4
then we would obtaiy,, = Ji,,41 for all m > 0 as we have s flat and we have the following injective parametrization:

L(%a) = L(a) and L(ta) = t L(a). But we easily check
that Jo = (t?) € J1 = (t3,t) = (t), which proves that/ is Rn =0, n= (I, = SR)E, (12)
not principal, and thus)/ is a stably free but not a free left nerFr, (eF ¢ =R,

D-module. In particularD is a left hereditary but not a left where ¢ is any arbitrary element ofF?. Moreover, a flat

principal ideal domain. Therefore, by Propositions 1 and ebutput of the behaviouB @ F9 is defined byt = 7 + S ¢C.
we obtain thati(t) = tu(t) is a controllable but not a flat |, particular, the behaviourB = w(B @ F9) is the

system. projection of the flat behaviour (11), where: FP+1 — FP

lIl. M AIN RESULTS is defined byr((1, .-, mp, C1s -5 Cg)) = (M1, - -, 71p)-
We now give an explicit construction of a free left Proof: Applylng homD("ﬂ to the split exact se-.
D-module which projects onto the stably free lef- guence (8), we obtain the following split exact sequence:

module M = DYP/(D*4R), and thus, a construc- 0e—r Fa B pota & o g

tion of a flat behaviour which projects onto the stably 5. T

free behaviourker-(R.) for the projection defined by — —

T((Ms 3Ny ptg) = (M- ) Therefore, we havker(R'.) = {Q' £ | £ € FP}. But, since

Proposition 7: LetR € D9%? be a full row rank matrix R (n?, ¢T)T = (R, 0)(n", ¢T)T = Rnand(is an
which admits a right-inverses € DP*? and let us define arbitrary element ofF?, we havekers(R'.) = B @® F{.
the matrix R = (R 0) € D9x(+4)  Then, we have the Then, using (9), we obtain (11). Now, applying the matrix

following split short exact sequence T' on the left of (n”, (¢T)T = Q'¢, we then obtain
B o T (n*, ¢MT =T'Q' ¢ and, using the identity” Q' = I,,
0 — Dlxa 2t plxet+e X, plxp __, 0, we geté = (Ip7 S) (nT7 CT)T =n+SC. m
S T Let us illustrate Theorem 2 on two examples.
(8) Example 4:We consider again Example 3 with =
with the following notations: C*(R). The embedding o8 = kerz(R.) into 72 allows
g us to “blow-up” the singularity at = 0 as we have
[ X ! __ X .
S = ( —Iq> € Drra)xa 7" = ([, S) e Dp*r+a), T 2(t) = —tE1() + E1(t) + 12 E6(0),
Q = (IP_SR> c D+ xp, { veF, Sy = .51(t)+t£2(t)+2£2(t)’
R v(t) =& (t) — t&(t),

9) (12)



where&; and & are two arbitrary functions i and we
have&;(t) = x(t) + to(t) and & (t) = u(t) + o(¢). Then,
the behaviourB = =n(B @ F) is the projection of the
flat behaviour (12), wherer : 73 — F? is defined by
m((x,u,v)) = (z,u).

Example 5:Consider the differential time-delay system:

() = tut) +ult — 1). (13)
We introduceD = R[t][£,6], R = (&, —(t+9)) €

D2 and the leftD-module M = D'*%/(D R). We can
check that the matrix§ = (§ +¢, <)7 is a right-inverse

dt
of R. Therefore, the finite free resolution 8f defined by

0— D -5 D2 M —0,

splits and we obtaim/ @ D = D'*2, i.e., M is a stably-

free left D-module. Using an algorithm developed in [2], we

obtain the following long split exact sequence
0D B pr2 L px2-Pop o (14)

whereP = (0 +1t, %)T € D? andQ is defined by:
—td 41 62+ (2t—1)6+ 12
d2

54
Q= dt c D2x2
_ & td 4§54 49 '
ez dt dt

Let 7 be a left D-module (e.g.,F C*(R)). As
(14) is a long split exact sequence, by applying the funct

homp (-, F), we then obtain the following exact sequence:

Ve FrFl 2 22 p
Thus, we obtainB = kerr(R.) = Q F?, i.e., we have the
following explicit parametrization of alF-solutions of (13)
2(t) = —t& () =&t — 1)+ &) +Ea(t - 2)
+(2t = 1) &(t— 1) + 2 &(1),

&1 (1) +tEx(t) + Ea(t — 1) + 265(1),
(15)

u(t)

where&; andé&; are two arbitrary functions idF.
Parametrization (15) is not injective since we have:

QRQE=0E=Po.

Therefore, it is not possible to obtaif(¢) as a D-linear
combination ofz(¢) and u(t). However, if we embed the
behaviour

B={(z, u)" € F*|a(t)=tu(t) +u(t—1)}

into 73, then, by Theorem 2, we obtain the following ;,

injective parametrization of alF-solutions of (13)

a(t)= —t&(t) —&t—1)+&(t) +&E—2)
+(2t = 1) &t — 1) + 12 &(2),

u(t) = —&i(t) +téa(t) + &t —1) +2&(),

v(t) = &(t) —t&() — &t —1),

whereé; (t) = z(t)+tv(t)+v(t—1) and&a(t) = u(t)+o0(t).
Hence,B is a projection ontaF? of the flat behaviour:

BaF={(x,u,v)l € F| i) —tu(t) —u(t—1) =0}

(6]

In his review [3] of the paper [6], K. B. Datta says “For
future research, one may extend the results given here to the
multi-input case”. Let us recall a result of algebra.

Theorem 3: [8] If k£ is a field containingQ, then any
stably free leftA, (k) = k[x1,...,z,][d,...,d,]-module
M satisfyingrank 4 ;) (M) > 2 is free.

We recall that the number of differentially independent
inputs of a linear system is given by the rank of the left
D-module M.

Corollary 2: Every controllable multi-input ordinary dif-
ferential linear system with polynomial coefficients is flat.

IV. CONCLUSION

It is interesting to notice that the authors of [6] acknowl-
edge B. Malgrange for motivating discussions [7] and for
pointing out to them that [6] is related to the concept of stably
free modules over the Weyl algebsg (k). We hope that we
have made it clear to the reader by giving a n#awing-up
interpretation for controllable time-varying linear systems.
Using such a geometric interpretation, we were able to
generalize the results of [6] to MIMO multidimensional
linear systems with varying coefficients. Finally, we proved
that every controllable multi-input OD linear system with
polynomial coefficients is flat. The extension of this result
to the analytic case will be studied in the future as well as
the developments of effective algorithms for the computation
Jf bases of finitely generated modules over the Weyl algebra
A, (k) and their implementations in KEMODULES.
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