Symbolic computation for operators with matrix coefficients

JOHANNES KEPLER UNIVERSITÄT LINZ

Université

Thomas Cluzeau, Jamal Hossein Poor, Alban Quadrat,

Clemens G. Raab, and Georg Regensburger

Introduction

Our goal is to provide an algebraic framework to compute with operators having matrix coefficients of generic size. For example, consider a system of homogeneous LODE

$$
Y^{\prime}-A Y=0 \quad \text { where } \quad A \in C^{\infty}(\mathbb{R})^{n \times n}
$$

Let $L=\partial-A$ where ∂ denotes the derivation operator and A denotes the multiplication operator $F \mapsto A F$ induced by the matrix A. If Φ is a fundamental matrix of $L y=0$, then by the Leibniz rule, independently of the size n, the following identity holds

$$
L \circ \Phi=\Phi \circ \partial+\partial \Phi-A \Phi=\Phi \circ \partial .
$$

In what follows, let (R, ∂) be a differential ring with ring of constants

$$
K=\{c \in R \mid \partial c=0\} .
$$

Considering the coefficient ring R and its ring of constants K, we have two cases.
Scalars: R and K are commutative and hence R and $R\langle\partial\rangle$ are K-algebras.
Matrices: R and K are noncommutative and $r c \neq c r$, so R and $R\langle\partial\rangle$ are only K-rings.

Tensor ring

We use the tensor ring for modelling additive operators and interpret \otimes as composition of operators. The tensor product of K-bimodules $M \otimes_{K} N$ over an arbitrary ring K satisfies $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n, \quad m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}, \quad m k \otimes n=m \otimes k n$. Note that in general $k m \otimes n \neq m \otimes k n$. The n-fold tensor product of a K-bimodule M is denoted by $M^{\otimes n}=M \otimes_{K} \cdots \otimes_{K} M$ such that $M^{\otimes 0}=K \varepsilon$, where ε denotes the empty tensor. Then the K-tensor ring over the K-bimodule M is defined as a K-bimodule by

$$
K\langle M\rangle=\bigoplus^{\infty} M^{\otimes n}
$$

Every $t \in K\langle M\rangle$ can be written in the form

$$
t=k \varepsilon+\sum_{i=1}^{p} m_{i, 1} \otimes \cdots \otimes m_{i, n_{i}}
$$

The K-tensor ring over the free K-bimodule on a set X is generated as an additive group by $\left\{k_{1} x_{1} \otimes k_{2} x_{2} \otimes \cdots \otimes k_{n} x_{n} k_{n+1} \mid n \in \mathbb{N}_{0}, x_{i} \in X, k_{j} \in K\right\}$
and elements of the tensor ring do not have a unique representation. In contrast, if K is commutative and M is a free left K-module over some set X, elements of the K-tensor algebra $K\langle M\rangle$ have a unique representation as K-linear combinations of products $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}$.

Tensor reduction systems

Identities of operators which cannot be covered by the tensor ring are modelled by tensor reduction rules $r_{W}=(W, h)$ where $h: M_{W} \rightarrow K\langle M\rangle$ is a K-bimodule homomorphism.

Example: Differential operators

Let (R, ∂) be a differential ring with ring of constants K. We consider the K-bimodules

$$
M=R \oplus K \partial, \quad M_{\mathrm{K}}=K, \quad M_{\mathrm{R}}=R, \quad M_{\mathrm{D}}=K \partial
$$

and reduction rules acting on $M_{\mathrm{K}}, M_{\mathrm{R}} \otimes M_{\mathrm{R}}, M_{\mathrm{D}} \otimes M_{\mathrm{R}}$ defined by

$$
(\mathrm{K}, 1 \mapsto \varepsilon), \quad(\mathrm{RR}, f \otimes g \mapsto f g), \quad(\mathrm{DR}, \partial \otimes f \mapsto f \otimes \partial+\partial f)
$$

These rules induce the two-sided reduction ideal

$$
J=(1-\varepsilon, f \otimes g-f g, \partial \otimes f-f \otimes \partial-\partial f \mid f, g \in R),
$$

which is used to define the K-ring of differential operators as $R\langle\partial\rangle=K\langle M\rangle / J$.
More formally, the framework for tensor reduction systems is the following. Let $\left(M_{z}\right)_{z \in Z}$ be a family of a K-subbimodules of M and let $X \subseteq Z$ be sets where $M=\bigoplus_{x \in X} M_{x}=\sum_{z \in Z} M_{z}$. To a word $W=w_{1} \ldots w_{n} \in\langle Z\rangle$ we associate the K-bimodule $M_{W}:=M_{w_{1}} \otimes \cdots \otimes M_{w_{n}}$. So

$$
K\langle M\rangle=\bigoplus_{n=0}^{\infty} M^{\otimes n}=\bigoplus_{W \in\langle X\rangle} M_{W}=\sum_{W \in\langle Z\rangle} M_{W}
$$

Theorem (confluence criterion, [2, 4]):

Given a tensor reduction system, every tensor $t \in K\langle M\rangle$ has a unique normal form $t \downarrow$ iff all ambiguities are resolvable. In that case, the tensor ring factored by the reduction ideal is isomorphic to the ring of irreducible tensors with multiplication $s \cdot t:=(s \otimes t) \downarrow$.

Integro-differential operators with linear substitutions

Recall the fundamental theorem of calculus and the definition of linear substitution operators: $\frac{d}{d x} \int_{a}^{x} f(s) d s=f(x), \quad f(a)=f(x)-\int_{a}^{x} f^{\prime}(s) d s, \quad \sigma_{a, b}(f(x))=f(a x-b)$.

Based on these identities we have the following general definition.

Definition:

An integro-differential ring with linear substitutions $\left(R, \partial, \int, S\right)$ is a differential ring (R, ∂) with the ring of constants K where \int is a K-bimodule homomorphism of R such that $\partial \int f=f$, the evaluation $\mathrm{E} f:=f-\int \partial f$ is multiplicative, i.e. $\mathrm{E} f g=(\mathrm{E} f) \mathrm{E} g$, and S is a group of multiplicative K-bimodule homomorphisms $\sigma_{a, b}: R \rightarrow R$ on R fixing the constants K and satisfying $\partial \sigma_{a, b} f=a \sigma_{a, b} \partial f$.

Let $\left(R, \partial, \int, S\right)$ be an integro-differential ring with linear substitutions and

$$
M=R \oplus K \partial \oplus K \int \oplus K \mathrm{E} \oplus K S
$$

Let $M_{\mathrm{K}}, M_{\mathrm{R}}, M_{\mathrm{D}}$ as before, $M_{\mathrm{I}}=K \int, M_{\mathrm{E}}=K \mathrm{E}, M_{\mathrm{G}}=K S$, and $M_{\mathrm{N}}=K \sigma_{1,0}$. Then we call $R\left\langle\partial, \int, \mathrm{E}, S\right\rangle:=K\langle M\rangle / J$ the ring of integro-differential operators with linear substitutions, where J is the two-sided reduction ideal induced by the reduction system:
$\begin{array}{ccc}\text { K } & & 1 \\ \text { RR } & f \otimes g & \mapsto f g\end{array}$
$\mathrm{RR} \quad f \otimes g \mapsto f g$
$\mathrm{DR} \partial \otimes f \mapsto f \otimes \partial+\partial f$
ER $\mathrm{E} \otimes f \mapsto(\mathrm{E} f) \mathrm{E}$
$\mathrm{EE} \mathrm{E} \otimes \mathrm{E} \mapsto \mathrm{E}$
$\mathrm{EI} \mathrm{E} \otimes \int \mapsto 0$
IRE $\quad \int \otimes f \otimes \mathrm{E} \mapsto \int f \otimes \mathrm{E}$
DE $\partial \otimes E \mapsto 0$
DI $\partial \otimes \int \mapsto \varepsilon$
IE $\int \otimes \mathrm{E} \mapsto \int 1 \otimes \mathrm{E} \quad$ IG $\quad \int \otimes \sigma_{a, b} \mapsto a^{-1}(\varepsilon-\mathrm{E}) \otimes \sigma_{a, b} \otimes \int$
IRD $\int \otimes f \otimes \partial \mapsto f-\int \otimes \partial f-(\mathrm{E} f) \mathrm{E}$
IRI $\quad \int \otimes f \otimes \int \mapsto \int f \otimes \int-\int \otimes \int f$
$\begin{aligned} & \sigma_{1,0} \mapsto \varepsilon \\ & \sigma_{0,1} \\ & \sigma_{b,}\end{aligned}$
$\sigma_{a, b} \otimes \sigma_{c, d} \mapsto \sigma_{a c, b c+d}$
$\sigma_{a, b} \otimes f \mapsto \sigma_{a, b} f \otimes \sigma_{a, b}$
$\begin{array}{ll}\mathrm{GR} & \\ \text { GE,b} & \sigma_{a, b} \otimes \mathrm{E} \mapsto \mathrm{E}_{a, b} \\ \text { DG } & \partial \otimes \sigma_{a, b} \mapsto a \sigma_{a, b} \otimes \partial\end{array}$
ID $\int \otimes \partial \mapsto \varepsilon-\mathrm{E} \quad$ IRG $\int \otimes f \otimes \sigma_{a, b} \mapsto a^{-1}(\varepsilon-\mathrm{E}) \otimes \sigma_{a, b} \otimes \int \otimes \sigma_{a, b}^{-1} f$
II $\int \otimes \int \mapsto \int 1 \otimes \int-\int \otimes \int 1$

Checking confluence, reducing S-polynomials, and computing with operators are supported by our Mathematica package TenReS [3]. Using the above reduction system, every $t \in K\langle M\rangle$ has a unique normal form given by a sum of pure tensors

$$
f \otimes \mathrm{E} \otimes \sigma_{a, b} \otimes \partial^{\otimes j} \quad \text { and } \quad f \otimes \mathrm{E} \otimes \sigma_{a, b} \otimes \int \otimes g
$$

where $j \in \mathbb{N}_{0}$, each of $f, g \in \int R$ and $\sigma_{a, b} \in S \backslash\left\{\sigma_{1,0}\right\}$ may be absent.

Example: Variation of constants

Identities in $R\left\langle\partial, \int, \mathrm{E}, S\right\rangle$ can be proven using the reduction system. Let $R=C^{\infty}(\mathbb{R})^{n \times n}$ $L=\partial-A \in R\left\langle\partial, \int, \mathrm{E}, S\right\rangle$, and let $\Phi \in R$ be an invertible solution of $L y=0$. Then $H:=\Phi \otimes \int \otimes \Phi^{-1}$ is a right inverse of L since independent of the size n we have
$L \otimes H=(\partial-A) \otimes \Phi \otimes \int \otimes \Phi^{-1} \rightarrow_{r_{\mathrm{DR}}} \Phi \otimes \partial \otimes \int \otimes \Phi^{-1} \rightarrow_{r_{\mathrm{DI}}} \Phi \otimes \Phi^{-1} \rightarrow_{r_{\mathrm{RR}}} \Phi \Phi^{-1} \rightarrow_{r_{\mathrm{K}}} \varepsilon$.

Artstein's reduction of DTD control systems

Aim [5]: Algebraically find Artstein's reduction [1] of a differential time-delay control system

$$
x^{\prime}(t)=A_{1}(t) x(t)+A_{2}(t) u(t)+A_{3}(t) u(t-h)
$$

to a differential control system

$$
z^{\prime}(t)=B_{1}(t) z(t)+B_{2}(t) v(t) .
$$

We use our tensor setting to find an invertible transformation $\binom{z}{v}=\left(\begin{array}{cc}P_{11} & P_{12} \\ 0 & P_{22}\end{array}\right)\binom{x}{u}$, where P_{11} and P_{22} are arbitrary invertible multiplication operators, and make an ansatz for

$$
P_{12}=C_{0} \otimes \sigma_{1, h} \otimes \int \otimes C_{1}+C_{2} \otimes \int \otimes C_{3}+C_{4} \otimes \sigma_{1, h}+C_{5} \in R\left\langle\partial, \int, \mathrm{E}, S\right\rangle
$$

We consider the ring R generated by the symbols $A_{i}, B_{i}, C_{i}, P_{i i}$ and we can check that only expressions occur in computations that are valid as operators. By plugging the ansatz into

$$
\left(\partial-B_{1}\right) \otimes P_{12}-B_{2} \otimes P_{22}=P_{11} \otimes\left(-A_{2}-A_{3} \otimes \sigma_{1, h}\right)
$$

and reducing both sides to normal form using TenReS, we obtain conditions for the multiplication operators C_{i}. Solving these conditions with partial support by our package, we obtain the following transformation

$$
v=P_{22} u, \quad z=P_{11} x+\left(\Phi \otimes\left(\varepsilon-\sigma_{1, h}\right) \otimes \int \otimes\left(\sigma_{1,-h} \Phi^{-1}\right) \sigma_{1,-h} A_{3}\right) u
$$

where $P_{11}^{-1} \Phi$ is a fundamental matrix of $y^{\prime}(t)=A_{1}(t) y(t)$.

References

[1] Zvi Artstein. Linear systems with delayed controls: A reduction. IEEE Trans. Autom. Control 27, pp. 869-879, 1982 [2] George M. Bergman. The Diamond Lemma for Ring Theory. Adv. Math. 29, pp. 178-218, 1978
[3] Jamal Hossein Poor, Clemens G. Raab, Georg Regensburger. Normal forms for operators via G
[3] Jamal Hossein Poor, Clemens G. Raab, Georg Regensburger. Norm
Proceedings of ICMS 2016, Vol. 9725 of LNCS, pp. 505-513, 2016.
[4] Jamal Hossein Poor, Clemens G. Raab, Georg Regensburger. Algorithmic operator algebras via normal form ind J. Symbolic Computation. Accepted.
[5] Alban Quadrat. A constructive algebraic analysis approach to Artstein's reduction of linear time-delay systems. Proceedings of 12th IFAC Workshop on Time Delay Systems, IFAC-PapersOnline 48 (12), pp. 209-214, 2015.

