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Introduction
Our goal is to provide an algebraic framework to compute with operators having matrix coef-
ficients of generic size. For example, consider a system of homogeneous LODE

Y ′ − AY = 0 where A ∈ C∞(R)n×n.
Let L = ∂ − A where ∂ denotes the derivation operator and A denotes the multiplication
operator F 7→ AF induced by the matrix A. If Φ is a fundamental matrix of Ly = 0, then
by the Leibniz rule, independently of the size n, the following identity holds

L ◦ Φ = Φ ◦ ∂ + ∂Φ− AΦ = Φ ◦ ∂.
In what follows, let (R, ∂) be a differential ring with ring of constants

K = {c ∈ R | ∂c = 0}.
Considering the coefficient ring R and its ring of constants K, we have two cases.
Scalars: R and K are commutative and hence R and R〈∂〉 are K-algebras.
Matrices: R and K are noncommutative and rc 6= cr, so R and R〈∂〉 are only K-rings.

Tensor ring

We use the tensor ring for modelling additive operators and interpret ⊗ as composition
of operators. The tensor product of K-bimodules M ⊗K N over an arbitrary ring K satisfies
(m+m′)⊗n = m⊗n+m′⊗n, m⊗ (n+n′) = m⊗n+m⊗n′, mk⊗n = m⊗ kn.
Note that in general km ⊗ n 6= m ⊗ kn. The n-fold tensor product of a K-bimodule M
is denoted by M⊗n = M ⊗K · · · ⊗K M such that M⊗0 = Kε, where ε denotes the empty
tensor. Then the K-tensor ring over the K-bimodule M is defined as a K-bimodule by

K〈M〉 =
∞⊕
n=0

M⊗n.

Every t ∈ K〈M〉 can be written in the form

t = kε +
p∑
i=1

mi,1 ⊗ · · · ⊗mi,ni.

The K-tensor ring over the free K-bimodule on a set X is generated as an additive group by
{k1x1 ⊗ k2x2 ⊗ · · · ⊗ knxnkn+1 | n ∈ N0, xi ∈ X, kj ∈ K}

and elements of the tensor ring do not have a unique representation. In contrast, if K is com-
mutative and M is a free left K-module over some set X , elements of the K-tensor algebra
K〈M〉 have a unique representation as K-linear combinations of products x1⊗x2⊗· · ·⊗xn.

Tensor reduction systems

Identities of operators which cannot be covered by the tensor ring are modelled by tensor
reduction rules rW = (W,h) where h : MW → K〈M〉 is a K-bimodule homomorphism.

Example: Differential operators
Let (R, ∂) be a differential ring with ring of constants K. We consider the K-bimodules

M = R⊕K∂, MK = K, MR = R, MD = K∂

and reduction rules acting on MK, MR ⊗MR, MD ⊗MR defined by

(K, 1 7→ ε), (RR, f ⊗ g 7→ fg), (DR, ∂ ⊗ f 7→ f ⊗ ∂ + ∂f ).

These rules induce the two-sided reduction ideal

J = (1− ε, f ⊗ g − fg, ∂ ⊗ f − f ⊗ ∂ − ∂f | f, g ∈ R),

which is used to define the K-ring of differential operators as R〈∂〉 = K〈M〉/J .

More formally, the framework for tensor reduction systems is the following. Let (Mz)z∈Z be a
family of aK-subbimodules ofM and letX ⊆ Z be sets whereM =

⊕
x∈XMx =

∑
z∈ZMz.

To a word W = w1 . . . wn ∈ 〈Z〉 we associate the K-bimodule MW := Mw1⊗ · · ·⊗Mwn. So

K〈M〉 =
∞⊕
n=0

M⊗n =
⊕
W∈〈X〉

MW =
∑
W∈〈Z〉

MW .

Theorem (confluence criterion, [2, 4]):
Given a tensor reduction system, every tensor t ∈ K〈M〉 has a unique normal form t↓ iff
all ambiguities are resolvable. In that case, the tensor ring factored by the reduction
ideal is isomorphic to the ring of irreducible tensors with multiplication s · t := (s⊗ t) ↓.

Integro-differential operators with linear substitutions

Recall the fundamental theorem of calculus and the definition of linear substitution operators:
d

dx

∫ x

a

f (s)ds = f (x), f (a) = f (x)−
∫ x

a

f ′(s)ds, σa,b(f (x)) = f (ax− b).

Based on these identities we have the following general definition.

Definition:
An integro-differential ring with linear substitutions (R, ∂,

∫
, S) is a differential

ring (R, ∂) with the ring of constants K where
∫

is a K-bimodule homomorphism of R
such that ∂

∫
f = f , the evaluation Ef := f −

∫
∂f is multiplicative, i.e. Efg = (Ef )Eg,

and S is a group of multiplicative K-bimodule homomorphisms σa,b : R→ R on R fixing
the constants K and satisfying ∂σa,bf = aσa,b∂f .

Let (R, ∂,
∫
, S) be an integro-differential ring with linear substitutions and

M = R⊕K∂ ⊕K
∫
⊕KE⊕KS.

Let MK, MR, MD as before, MI = K
∫
, ME = KE, MG = KS, and MN = Kσ1,0. Then we

call R〈∂,
∫
,E, S〉 := K〈M〉/J the ring of integro-differential operators with linear

substitutions, where J is the two-sided reduction ideal induced by the reduction system:

K 1 7→ ε IRE
∫
⊗ f ⊗ E 7→

∫
f ⊗ E

RR f ⊗ g 7→ fg IRD
∫
⊗ f ⊗ ∂ 7→ f −

∫
⊗ ∂f − (Ef )E

DR ∂ ⊗ f 7→ f ⊗ ∂ + ∂f IRI
∫
⊗ f ⊗

∫
7→
∫
f ⊗

∫
−
∫
⊗
∫
f

ER E⊗ f 7→ (Ef )E N σ1,0 7→ ε
EE E⊗ E 7→ E GG σa,b ⊗ σc,d 7→ σac,bc+d
EI E⊗

∫
7→ 0 GR σa,b ⊗ f 7→ σa,bf ⊗ σa,b

DE ∂ ⊗ E 7→ 0 GE σa,b ⊗ E 7→ E
DI ∂ ⊗

∫
7→ ε DG ∂ ⊗ σa,b 7→ aσa,b ⊗ ∂

IE
∫
⊗ E 7→

∫
1⊗ E IG

∫
⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
ID

∫
⊗ ∂ 7→ ε− E IRG

∫
⊗ f ⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
⊗ σ−1

a,bf

II
∫
⊗
∫
7→
∫

1⊗
∫
−
∫
⊗
∫

1

Checking confluence, reducing S-polynomials, and computing with operators are supported by
our Mathematica package TenReS [3]. Using the above reduction system, every t ∈ K〈M〉
has a unique normal form given by a sum of pure tensors

f ⊗ E⊗ σa,b ⊗ ∂⊗j and f ⊗ E⊗ σa,b ⊗
∫
⊗ g

where j ∈ N0, each of f, g ∈
∫
R and σa,b ∈ S \ {σ1,0} may be absent.

Example: Variation of constants
Identities in R〈∂,

∫
,E, S〉 can be proven using the reduction system. Let R = C∞(R)n×n,

L = ∂ − A ∈ R〈∂,
∫
,E, S〉, and let Φ ∈ R be an invertible solution of Ly = 0. Then

H := Φ⊗
∫
⊗ Φ−1 is a right inverse of L since independent of the size n we have

L⊗H = (∂−A)⊗Φ⊗
∫
⊗Φ−1 →rDR Φ⊗∂⊗

∫
⊗Φ−1 →rDI Φ⊗Φ−1 →rRR ΦΦ−1 →rK ε.

Artstein’s reduction of DTD control systems

Aim [5]: Algebraically find Artstein’s reduction [1] of a differential time-delay control system

x′(t) = A1(t)x(t) + A2(t)u(t) + A3(t)u(t− h)

to a differential control system

z′(t) = B1(t)z(t) + B2(t)v(t).

We use our tensor setting to find an invertible transformation
(
z
v

)
=
(
P11 P12
0 P22

)(
x
u

)
,

where P11 and P22 are arbitrary invertible multiplication operators, and make an ansatz for

P12 = C0 ⊗ σ1,h ⊗
∫
⊗ C1 + C2 ⊗

∫
⊗ C3 + C4 ⊗ σ1,h + C5 ∈ R〈∂,

∫
,E, S〉.

We consider the ring R generated by the symbols Ai, Bi, Ci, Pii and we can check that only
expressions occur in computations that are valid as operators. By plugging the ansatz into

(∂ −B1)⊗ P12 −B2 ⊗ P22 = P11 ⊗ (−A2 − A3 ⊗ σ1,h)

and reducing both sides to normal form using TenReS, we obtain conditions for the multipli-
cation operators Ci. Solving these conditions with partial support by our package, we obtain
the following transformation

v = P22u, z = P11x +
(
Φ⊗ (ε− σ1,h)⊗

∫
⊗ (σ1,−hΦ−1)σ1,−hA3

)
u,

where P−1
11 Φ is a fundamental matrix of y′(t) = A1(t)y(t).
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