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Introduction

Our goal is to provide an algebraic framework to compute with operators having matrix coef-
ficients of generic size. For example, consider a system of homogeneous LODE

Y'— AY =0 where A€ C®(R)"™".

Let L = 0 — A where O denotes the derivation operator and A denotes the multiplication
operator F' +— AF induced by the matrix A. If ® is a fundamental matrix of Ly = 0, then
by the Leibniz rule, independently of the size n, the following identity holds

Lod=P0od+9P— AD =D o0.
In what follows, let (R, ) be a differential ring with ring of constants
K={ce R|0Jc=0}.

Considering the coefficient ring R and its ring of constants K, we have two cases.
Scalars: R and K are commutative and hence R and R(0) are K-algebras.
Matrices: R and K are noncommutative and ¢ # cr, so R and R{0) are only K-rings.

Tensor ring

We use the tensor ring for modelling additive operators and interpret ® as composition
of operators. The tensor product of K-bimodules M ®x N over an arbitrary ring K satisfies

(m+m)@n=mn+m'@n, mn+n)=men+men, mkn=maekn.

Note that in general km ® n #% m ® kn. The n-fold tensor product of a K-bimodule M
is denoted by M®" = M Q@ --- @k M such that M® = Ke, where € denotes the empty
tensor. Then the K-tensor ring over the K-bimodule M is defined as a K-bimodule by

K (M) =5 M.

n=0

Every t € K (M) can be written in the form

p
t=ket» M1 @ @My,
i=1
The K-tensor ring over the free K-bimodule on a set X is generated as an additive group by

{]{11'1 R koxo X - - - ®kn$nkn—|—1 ’ n < NQ,ZIZZ' - X, kj - K}

and elements of the tensor ring do not have a unique representation. In contrast, if K is com-
mutative and M is a free left K-module over some set X, elements of the K -tensor algebra
K (M) have a unique representation as K-linear combinations of products 1 Qs ® - - - @ x,,.

Tensor reduction systems

ldentities of operators which cannot be covered by the tensor ring are modelled by tensor
reduction rules ry = (W, h) where h: My — K (M) is a K-bimodule homomorphism.

Example: Differential operators
Let (R, 0) be a differential ring with ring of constants K. We consider the K-bimodules

M=R& KO, Mk = K, Mgr = R, Mp = KO

and reduction rules acting on My, Mr ® Mg, Mp ® Mg defined by
(K,1—=¢), (RR,f®gr~ fg), (DR,O®f— f®I+0If)

These rules induce the two-sided reduction ideal

J=(1-¢6f®g9g—f9,00f—-f®0—-0f]| f,g€R),
which is used to define the K-ring of differential operators as R(0) = K{(M)/J.

More formally, the framework for tensor reduction systems is the following. Let (M,).c, be a

family of a K-subbimodules of M and let X C Z besetswhere M = M, =>___,M..
Toaword W = wy...w, € (Z) we associate the K-bimodule My, := M, ® --- @M, . So

O

K(M)=M*" = 5 My= ) My
(X) We(z)

n=0 We

Theorem (confluence criterion, |2, 4]):

Given a tensor reduction system, every tensor t € K (M) has a unique normal form ¢ iff
all ambiguities are resolvable. In that case, the tensor ring factored by the reduction
ideal is isomorphic to the ring of irreducible tensors with multiplication s -t := (s ® 1) J.

Integro-differential operators with linear substitutions

Recall the fundamental theorem of calculus and the definition of linear substitution operators:

%/jﬂs)ds:ﬂx), fla) = flz) - /:f’<s)ds, ous(f(2)) = flaz —b).
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Based on these identities we have the following general definition.

Definition:

An integro-differential ring with linear substitutions (R, 0, [,5) is a differential
ring (R, 0) with the ring of constants K where [ is a K-bimodule homomorphism of R
such that 0 [ f = f, the evaluation Ef := f — [Jf is multiplicative, i.e. Efg = (Ef)Eg,
and S is a group of multiplicative K-bimodule homomorphisms o,;: R — R on R fixing
the constants K and satisfying 0o, = ao,,0f.

Let (R, 0, [,S) be an integro-differential ring with linear substitutions and
M=ReKI® K| e KE® KS.

Let My, Mgr, Mp as before, M, = Kf, Mg = KE, Mg = KS, and My = Koy. Then we
call R(0, [,E,S) := K(M)/J the ring of integro-differential operators with linear
substitutions, where J is the two-sided reduction ideal induced by the reduction system:

K 1 e IRE [®fQE— [f®E

RR f®g— fg RD [®@f®d— f— [®0f— (Ef)E

DR 0® fr— f®0+0f Rl [@fe[—= [fo[—[&[f

ER E® f — (Ef)E N 010 > €

EE EQE — E GG Oab Q Ocd F7 Ogebetd

El E® [ — 0 GR Oap @ f = Oupf @ 0uyp

DE O0QE — 0 GE Oap @ B — L

D] 8®f%5 DG 0R Tap > a0qp Q0

E [®@E— [1QE [e [@ouyrral(ce—E) @0, [

D [®9+—e—E IRG [® fR0p— a (e —E)®0p® [ @0

I [@[— 1 [-[® [l

Checking confluence, reducing S-polynomials, and computing with operators are supported by
our Mathematica package TenReS [3]. Using the above reduction system, every t € K (M)
has a unique normal form given by a sum of pure tensors

f@E@Ja,b@)@@j and f®E®Ja,b®f®g
where 7 € Ny, each of f, g € fR and 0, € S\ {010} may be absent.

Example: Variation of constants

dentities in R(0, [, E, S) can be proven using the reduction system. Let R = C*°(R)"*",

L=0—-A¢€ R0, |[,E,S), and let & € R be an invertible solution of Ly = 0. Then
H:=d® [ @ P! is a right inverse of L since independent of the size n we have

LRH=(0-A)0® [@0P™! -, P00® [@d~! -, dxd™' —, 0D — &

Artstein’s reduction of DTD control systems

Aim [5]: Algebraically find Artstein’s reduction [1] of a differential time-delay control system
2'(t) = Ai(t)z(t) + As(t)u(t) + As(t)u(t — h)
to a differential control system

2(t) = By(t)2(t) + Bo(t)o(t).

: . . . . 2 P, P x
We use our tensor setting to find an invertible transformation = L ,
U 0 P22 Uu

where P;; and P,y are arbitrary invertible multiplication operators, and make an ansatz for
Pry=Ci®01,® | @CI+C,® [ @C3+Cy®0,+Cs € RO, [,E,S5).

We consider the ring R generated by the symbols A;, B;, C;, P;; and we can check that only
expressions occur in computations that are valid as operators. By plugging the ansatz into

(0—=DB1) @ Pio—By®@ Py=P1®(—Ay— A3 Q@ 01

and reducing both sides to normal form using TenReS, we obtain conditions for the multipli-
cation operators C;. Solving these conditions with partial support by our package, we obtain
the following transformation

UV — PQQU, Z = Pﬂx + ((I) 0%y (8 — Ul,h) %Y f 029 (017_h<1>_1)017_hA3)u,
where P'® is a fundamental matrix of ¢/(t) = A (t)y(t).
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