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Abstract: Given a linear functional system (e.g., ordinary/partial differential system, differen-
tial time-delay system, difference system), the decomposition problem aims at studying when it
can be decomposed as a direct sum of subsystems. This problem was constructively studied in [4]
and the corresponding algorithms were implemented in the OreMorphisms package [5]. Using
the OreMorphisms package, many classical linear differential time-delay systems were proved
to be directly decomposable, which highly simplifies the study of their structural properties.
Serre’s reduction aims at finding an equivalent linear functional system which contains fewer
equations and fewer unknowns. It was constructively studied in [1, 6] and successfully applied
to different classical examples of differential time-delay systems. Serre’s reduction can be seen
as a particular case of the decomposition problem. The goal of the present paper is to explicitly
provide the links between these two problems. We illustrate the different results with an explicit
example of a differential time-delay system.

1. INTRODUCTION

Algebraic analysis is a mathematical framework initiated
in the sixties by Malgrange, Sato, Kashiwara, . . . for the
study of linear systems of partial differential equations
and of integro-differential equations [10]. In the nineties,
it was introduced in mathematical systems theory by
Oberst [14], Fliess, Pommaret, . . . It yields an intrinsic
characterization of structural properties of linear func-
tional systems (e.g., ordinary/partial differential systems,
differential time-delay systems, difference systems) and
gives a way to find again and extend Willems’ behavioural
approach. A constructive study of algebraic analysis based
on symbolic computation techniques (e.g., Gröbner bases)
was initiated in [2, 3, 4, 5] for the study of linear functional
systems appearing in engineering sciences and in mathe-
matical physics. For a survey, see [15].

A linear functional system can generally be rewritten as
Rη = 0, where R ∈ Dq×p is a q×p matrix with entries in a
noetherian domain D [16] (e.g., a non-commutative ring of
ordinary/partial differential operators, of differential time-
delay operators, of shift operators) and η ∈ Fp, where F
is a left D-module. Malgrange’s remark [12] asserts that
the linear system or behavior defined by

kerF (R.) := {η ∈ Fp := Fp×1 | Rη = 0}
is isomorphic to the abelian group homD(M,F) formed by
the left D-homomorphisms (linear maps) from the finitely
presented left D-module M := D1×p/(D1×q R) to F . This
isomorphism is the key for an intrinsic study of the linear
system kerF (R.) by means of the two left D-modules M
and F using module theory and homological algebra.

An important issue in symbolic computation and in
mathematical systems theory consists in simplifying lin-
ear functional systems by means of algebraic techniques
before investigating their symbolic/numerical integration
and studying their structural properties or synthesis prob-
lems. In [4], we study the so-called decomposition problem,
namely, the problem of finding (if they exist) V ∈ GLq(D)
and W ∈ GLp(D), where GLr(D) is defined by

GLr(D) := {U ∈ Dr×r | ∃ V ∈ Dr×r : U V = V U = Ir},
such that R is equivalent to a block-diagonal matrix
V RW = diag(R1, R2) formed by R1 ∈ Dq1×p1 and
R2 ∈ Dq2×p2 . Note that this problem yields the direct
sum decomposition M = M1 ⊕M2 of M , where
M1 := D1×p1/(D1×q1 R1), M2 := D1×p2/(D1×q2 R2),

and by Malgrange’s remark, the direct sum decomposition
kerF (R.) ∼= kerF (R1.) ⊕ kerF (R2.), where ∼= denotes iso-
morphic objects. The study of the linear system kerF (R.)
then reduces to the ones of its two independent subsystems
kerF (R1.) and kerF (R2.).

Moreover, in [1] (see also [6]), the authors consider the
so-called Serre’s reduction problem of linear functional
systems. It consists in finding an equivalent system which
contains fewer unknowns and fewer equations. In some
cases, this further provides two matrices V ∈ GLq(D)
and W ∈ GLp(D) such that V RW = diag(Ir, R) is a
block-diagonal matrix having the identity matrix Ir as its
first diagonal block. Consequently, kerF (R.) ∼= kerF (R.).
Serre’s reduction can be seen as a particular decomposition
(R1 = Ir) and the present paper aims at explicitly giving
the relations between these two problems.



2. DECOMPOSITION PROBLEM

In what follows, D is a left noetherian domain, namely,
the ring D has no zero divisors and is such that every left
ideal of D is finitely generated as a left D-module [16].

In this section, we review results obtained in [4].

The matrix R ∈ Dq×p induces the left D-homomorphism:
.R : D1×q −→ D1×p

λ 7−→ λR.

Then, the cokernel of .R is the factor left D-module
M := D1×p/(D1×q R),

i.e., the left D-module finitely presented by R. Now, if
π ∈ homD(D1×p,M) is defined by sending λ ∈ D1×p onto
its residue class π(λ) ∈M , and {fj}j=1,...,p is the standard
basis of D1×p (i.e., fj ∈ D1×p is the vector formed by 1
at the jth position and 0 elsewhere), then one can easily
prove that {yj := π(fj)}j=1,...,p is a family of generators
of M which satisfies the following left D-linear relations:

∀ i = 1, . . . , q,
p∑
j=1

Rij yj = 0.

For more details, see [2, 4, 15]. Let M ′, M , and M ′′ be left
D-modules, f ∈ homD(M ′,M) and g ∈ homD(M,M ′′).

If ker g = im f , then M ′
f−→ M

g−→ M ′′ is called a exact
sequence [16]. In particular, if g = 0, then im f = M , i.e., f
is surjective, and if f = 0, then ker g = 0, i.e., g is injective.
By definition of M , the following exact sequence holds:

D1×q .R−→ D1×p π−→M −→ 0.
Lemma 1. ([4], Lemma 4.1). Let M = D1×p/(D1×q R) be
the left D-module finitely presented by R ∈ Dq×p and
R2 ∈ Dr×q such that kerD(.R) := {λ ∈ D1×q | λR = 0} =
imD(.R2) := D1×r R2, i.e., such that the exact sequence
D1×r .R2−−→ D1×q .R−→ D1×p π−→M −→ 0 holds. Then:

(1) A left D-endomorphism f : M −→M is defined by
∀λ ∈ D1×p, f(π(λ)) = π(λP ),

where P ∈ Dp×p is a matrix such that the relation
RP = QR holds for a certain Q ∈ Dq×q. The matrix
P is uniquely defined by f up to homotopy, namely,{

P := P +H1R, ∀ H1 ∈ Dp×q,
Q := Q+RH1 +H2R2, ∀ H2 ∈ Dq×r,

(1)

satisfy RP = QR and f(π(λ)) = π(λP ) ∀ λ ∈ D1×p.
(2) A left D-endomorphism f of M is an idempotent of

the ring endD(M) := homD(M,M), namely, f2 = f ,
iff there exists a matrix Z ∈ Dp×q satisfying:

P 2 = P + Z R.

Then, there exists a matrix Z ′ ∈ Dq×r such that:
Q2 = Q+RZ + Z ′R2.

If R ∈ Dq×p has full row rank, namely, kerD(.R) = 0,
i.e., R2 = 0, then:

Q2 = Q+RZ.

Note that a left D-endomorphism f of M induces:
f? : kerF (R.) −→ kerF (R.)

η 7−→ P η.

Hence, the abelian group endomorphism f? is a Galois-like
transformation (i.e., an internal symmetry) of kerF (R.).

A well-known result in module theory (see, e.g., [16])
asserts that the existence of an idempotent endomorphism
of M is equivalent to the existence of a direct sum
decomposition M = M1 ⊕M2 of the left D-module M .

Using the degree of freedom in the choice of the matrix
P defining an idempotent f of M (see (1)), if R has full
row rank, i.e., kerD(.R) = 0, then the next lemma gives a
sufficient condition for f ∈ endD(M) to be defined by an
idempotent matrix P , namely, P

2
= P .

Lemma 2. ([4], Lemma 4.4). Let R ∈ Dq×p be a full row
rank matrix and M = D1×p/(D1×q R). Let us consider
an idempotent f ∈ endD(M) defined by two matrices
P ∈ Dp×p and Q ∈ Dq×q satisfying (see Lemma 1):

RP = QR, P 2 = P + Z R, Q2 = Q+RZ.

If there exists a solution ∆ ∈ Dp×q of the following
algebraic Riccati equation

∆R∆ + (P − Ip) ∆ + ∆Q+ Z = 0, (2)
then the matrices defined by

P := P + ∆R, Q := Q+R∆,

satisfy RP = QR, P
2

= P , Q
2

= Q, and:
∀ λ ∈ D1×p, f(π(λ)) = π(λP ).

The interest of defining an idempotent f ∈ endD(M)
by means of two idempotents matrices P and Q is that
the finitely generated left D-modules kerD(.P ), imD(.P ),
kerD(.Q), and imD(.Q) then satisfy{

D1×p ∼= kerD(.P )⊕ imD(.P ),
D1×q ∼= kerD(.Q)⊕ imD(.Q),

i.e., kerD(.P ) and imD(.P ) (resp., kerD(.Q) and imD(.Q))
are direct summands of the free left D-module D1×p (resp.,
D1×q), i.e., that they are finitely generated projective left
D-modules [16].
Theorem 3. ([1], Theorem 3.3). Let M be a finitely gener-
ated projective left D-module. Moreover, if

(1) D is a principal left ideal domain (e.g., k[s], where
k a field, the noncommutative polynomial ring of
ordinary differential operators with coefficients in a
differential field such as R(t)),

(2) D = k[x1, . . . , xn], where k is a field,
(3) D is the noncommutative polynomial ring of partial

differential operators with either polynomial or ratio-
nal function coefficients over a field of characteristic
0 (the so-called Weyl algebras) and rankD(M) ≥ 2,

(4) D is the noncommutative polynomial ring of ordinary
differential operators with either formal power series
or locally convergent power series (i.e., germs of real
analytic/holomorphic functions) and rankD(M) ≥ 2,

then M is a finitely generated free left D-module.

The next theorem studies when the presentation matrix R
of M is equivalent to a block-diagonal matrix.
Theorem 4. ([4], Theorem 4.2). Let M = D1×p/(D1×q R)
be the left D-module finitely presented by R ∈ Dq×p and
f ∈ endD(M) an idempotent defined by two idempotents
matrices P ∈ Dp×p and Q ∈ Dq×q, i.e.:

RP = QR, P 2 = P, Q2 = Q.

If the projective left D-modules kerD(.P ), imD(.P ) =
kerD(.(Ip−P )), kerD(.Q), and imD(.Q) = kerD(.(Iq−Q))



are free of rank respectively m, p−m, l, q − l, then there
exist full row rank matrices U1 ∈ Dm×p, U2 ∈ D(p−m)×p,
V1 ∈ Dl×q and V2 ∈ D(q−l)×q such that:

• U = (UT1 UT2 )T ∈ GLp(D),
• V = (V T1 V T2 )T ∈ GLq(D),
• If U−1 := W = (W1 W2), where W1 ∈ Dp×m and
W2 ∈ Dp×(p−m), then:

V RW =
(
V1RW1 0

0 V2RW2

)
∈ Dq×p. (3)

Moreover, the matrix U1 (resp., U2, V1, V2) defines a
basis of the free left D-module kerD(.P ), (resp., imD(.P ),
kerD(.Q), imD(.Q)) of rank m (resp., p−m, l, q − l), i.e.:{

kerD(.P ) = D1×m U1, imD(.P ) = D1×(p−m) U2,

kerD(.Q) = D1×l V1, imD(.Q) = D1×(q−l) V2.

Finally, if we note V −1 := (X1 X2), where X1 ∈ Dq×l

and X2 ∈ D(q−l)×q, then the following split commutative
exact diagram holds

0 // D1×l
.V1 //

.(V1 RW1)
��

D1×q
.X1

oo
.X2 //

.R
��

D1×(q−l)
.V2

oo //

.(V2 RW2)
��

0

0 // D1×m
.U1 //

τ
��

D1×p
.W1

oo
.W2 //

π
��

D1×(p−m)
.U2

oo //

σ
��

0

0 // ker f
i //

��

M
idM−f
oo

f //

��

im f
f|im f

oo //

��

0,

0 0 0

(4)

which shows M ∼= ker f ⊕ im f , where{
ker f ∼= D1×m/(D1×l (V1RW1)),

im f ∼= D1×(p−m)/(D1×(q−l) (V2RW2)),

i.e., up to isomorphism of left D-modules, ker f (resp.,
im f) is finitely presented by the first (resp., second)
diagonal block of the matrix V RW .

Conditions of Theorem 4 are fulfilled if D satisfies 1 or 2 of
Theorem 3, 3 or 4 of Theorem 3 with the rank conditions.

The matrices appearing in the above results can be com-
puted using the Maple package OreMorphisms [5] devel-
oped upon OreModules [3]. For more details, see [4].

3. SERRE’S REDUCTION PROBLEM

The following theorem gathers results of [1] that will be
used in what follows.
Theorem 5. ([1], Theorem 4.1, Corollary 4.10). Let M =
D1×p/(D1×q R), be a the left D-module finitely presented
by a full row rank matrix R ∈ Dq×p, 0 ≤ r ≤ q − 1, and
Λ ∈ Dq×(q−r) such that there exists U ∈ GLp+q−r(D)
satisfying:

(R − Λ)U = (Iq 0).

(1) If we note

U =
(
S1 Q1

S2 Q2

)
, U−1 =

(
R −Λ
T1 T2

)
,

where S1 ∈ Dp×q, S2 ∈ D(q−r)×q, Q1 ∈ Dp×(p−r),
Q2 ∈ D(q−r)×(p−r), T1 ∈ D(p−r)×p, T2 ∈ D(p−r)×(q−r),
then:
M = D1×p/(D1×q R) ∼= D1×(p−r)/(D1×(q−r)Q2).

(2) Moreover, if the matrix Λ ∈ Dq×(q−r) admits a left
inverse Γ ∈ D(q−r)×q, i.e., Γ Λ = Iq−r, then Q1

admits the left inverse T1 − T2 ΓR ∈ D(p−r)×p, the
left D-module kerD(.Q1) is such that

kerD(.Q1)⊕D1×(p−r) ∼= D1×p,

i.e., kerD(.Q1) is a stably free, and thus, a projective
left D-module of rank r, and Q2 = ΓRQ1.

(3) If the left D-module kerD(.Q1) is free of rank r, then
there exists a matrix Q3 ∈ Dp×r such that:

W = (Q3 Q1) ∈ GLp(D).

If we note W−1 = (Y T3 Y T1 )T , where Y3 ∈ Dr×p and
Y1 ∈ D(p−r)×p, then X = (RQ3 Λ) ∈ GLq(D),

V := X−1 =
(

Y3 S1

Q2 Y1 S1 − S2

)
,

and R = X diag(Ir, Q2)W−1, i.e., R is equivalent to:

V RW =
(
Ir 0
0 Q2

)
. (5)

Theorem 3 shows that the left D-module kerD(.Q1) is
free for different domains D (with the possible condition
r ≥ 2). For more details, see [1, 6]. An implementation
of Theorem 5 is under development in the Maple package
Serre [8] developed upon OreModules [3].

4. SERRE’S REDUCTION AS A PARTICULAR
DECOMPOSITION PROBLEM

The block-diagonal form (5) can be seen as a particular
form of (3) where the first diagonal block is an identity
matrix. Therefore, Serre’s reduction can be viewed as
a particular block-diagonal decomposition. This section
contains the contributions of this paper: we explain how
the results reviewed in Section 2, based on the resolution of
algebraic Riccati equations (2), are related to Theorem 5.

Lemma 2 can be applied to the two trivial idempotents of
endD(M), namely:

(1) f = idM defined by P = Ip and Q = Iq,
(2) f = 0 defined by P = 0p and Q = 0q.

Then, we respectively obtain the following facts:

(1) If ∆ ∈ Dp×q is a solution of ∆R∆ = −∆, then
P := Ip + ∆R and Q := Iq +R∆ satisfy

RP = QR, P
2

= P , Q
2

= Q, (6)

and f(π(λ)) = π(λP ) = π(λ) for all λ ∈ D1×p.
(2) If ∆ ∈ Dp×q is a solution of ∆R∆ = ∆, then

P := ∆R and Q := R∆ satisfy (6), and f(π(λ)) = 0
for all λ ∈ D1×p.

Note that, if ∆ ∈ Dp×q satisfies ∆R∆ = ∆, then
Θ := −∆ satisfies ΘRΘ = −Θ and conversely. Thus, the
idempotent matrices P 1 = ∆R and Q1 = R∆ define the
idempotent endomorphism 0M iff the idempotent matrices
P 2 = Ip −∆R and Q2 = Iq −R∆ define the idempotent
idM . Moreover, we have P 1 + P 2 = Ip, Q1 +Q2 = Iq.

Now, let us assume that R has full row rank and kerD(.P ),
imD(.P ), kerD(.Q), imD(.Q) are free of rank respectively
m, p−m, l, and q−l, where 1 ≤ m ≤ p and 1 ≤ l ≤ q. Then,



Theorem 4 holds with ker f = 0 (resp., im f = 0). Since R
has full row rank, so are V RU−1, V1RW1 and V2RW2,
i.e., kerD(.(V1RW1)) = 0 and kerD(.(V2RW2)) = 0.
Thus, (4) provides one of the following two results:

(1) The following short exact sequence holds

0 −→ D1×l .(V1 RW1)−−−−−−−→ D1×m −→ 0,
which yields m = l and V1RW1 ∈ GLm(D).

(2) The following short exact sequence holds

0 −→ D1×(q−l) .(V2 RW2)−−−−−−−→ D1×(p−m) −→ 0,
which yields p−m = q− l and V2RW2 ∈ GLp−m(D).

We obtain the following corollary of Theorem 4.
Corollary 6. (1) Let R ∈ Dq×p be a full row rank matrix,

∆ ∈ Dp×q satisfying ∆R∆ = −∆, P := Ip + ∆R

and Q := Iq + R∆. If the projective left D-modules
kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q) are free
of rank respectively m, p − m, l and q − l, where
1 ≤ m ≤ p and 1 ≤ l ≤ q, then m = l and there exist
V ∈ GLq(D) and W ∈ GLp(D) such that:

V RW =
(
Im 0
0 R2

)
, R2 ∈ D(q−m)×(p−m).

(2) Let R ∈ Dq×p be a full row rank matrix, ∆ ∈ Dp×q

satisfying ∆R∆ = ∆, P := ∆R and Q := R∆.
If the projective left D-modules kerD(.P ), imD(.P ),
kerD(.Q) and imD(.Q) are free of rank respectively
m, p−m, l and q− l, where 1 ≤ m ≤ p and 1 ≤ l ≤ q,
then p−m = q − l and there exist V ∈ GLq(D) and
W ∈ GLp(D) such that:

V RW =
(
R1 0
0 Iq−l

)
, R1 ∈ Dl×m.

Theorem 3 shows that Corollary 6 holds for different
domains D interesting in mathematical systems theory.
Example 1. Let us consider the wind tunnel model studied
in [13] described by a differential time-delay linear system
defined by the following matrix of functional operators

R =

 ∂ + a k a δ 0 0
0 ∂ −1 0
0 ω2 ∂ + 2 ζ ω −ω2

 ,

where ∂ y(t) = ẏ(t) is the ordinary differential operator,
δ y(t) = y(t− 1) is the time-delay operator, and ζ, k, ω, a
are constant parameters of the system. We then consider
the commutative polynomial ring D = Q(ζ, k, ω, a)[∂, δ]
of differential time-delay operators with coefficients in the
field Q(ζ, k, ω, a). We can check that the matrix

∆ =
1
ω2

 0 −ω2 0
0 0 0
0 ω2 0
1 2 ζ ω − a 1

 ∈ D4×3

satisfies the algebraic Riccati equation ∆R∆ = −∆.
Then, P := I4 + ∆R and Q := I3 +R∆ defined by

P =

 1 −∂ 1 0
0 1 0 0
0 ∂ 0 0

ω−2 (∂ + a) A ω−2 (∂ + a) 0

 ,

Q =

( 1 −∂ − a 0
0 0 0
−1 ∂ + a 1

)
,

where A = ω−2 ((2 ζ ω − a) ∂ + k a δ + ω2), satisfy the
identities (6), and thus they define the trivial idempotent
endomorphism f = idM of M = D1×4/(D1×3R). Using
2 of Theorem 3 (i.e., the Quillen-Suslin theorem [9, 16]),
the projective D-modules kerD(.P ), imD(.P ), kerD(.Q),
imD(.Q) are free. Using the QuillenSuslin package [9]
to compute a basis of these free D-modules, we obtain
kerD(.P ) = D1×2 U1, imD(.P ) = D1×2 U2, kerD(.Q) =
D1×2 V1, imD(.Q) = DV2, where:

U1 =
(
∂ + a k a δ + ω2 ∂ + 2 ζ ω −ω2

0 ∂ −1 0

)
∈ D2×4,

U2 =
(
−1 ∂ −1 0
0 −1 0 0

)
∈ D2×4,

V1 =
(

1 0 1
0 1 0

)
∈ D2×3, V2 = (−1 ∂ + a 0) ∈ D1×3.

Hence, we have
U = (UT1 UT2 )T ∈ GL4(D), V = (V T1 V T2 )T ∈ GL3(D),
and Corollary 6 shows that the matrix R is equivalent to:

V RU−1 =

( 1 0 0 0
0 1 0 0
0 0 ∂ + a k a δ

)
.

Lemma 7. (1) Let R ∈ Dq×p and ∆ ∈ Dp×q satisfy
∆R∆ = −∆, P := Ip + ∆R and Q := Iq + R∆.
Then, we have:

kerD(P .) := {η ∈ Dp | P η = 0} = imD(∆.),
imD(.P ) = kerD(.∆),
kerD(.Q) = imD(.∆),
imD(Q.) := QDq = kerD(∆.).

Hence, imD(.P ) (resp., kerD(.Q)) is a free left D-
module iff so is kerD(.∆) (resp., imD(.∆)).

(2) Let R ∈ Dq×p and ∆ ∈ Dp×q satisfy ∆R∆ = ∆,
P := ∆R and Q := R∆. Then, we have:

kerD(.P ) = kerD(.∆),
imD(P .) = imD(∆.),
kerD(Q.) = kerD(∆.),
imD(.Q) = imD(.∆).

Hence, kerD(.P ) (resp., imD(.Q)) is a free left D-
module iff so is kerD(.∆) (resp., imD(.∆)).

Proof. 1. Let us first prove kerD(P .) = imD(∆.). If
λ ∈ kerD(P .), then λ = ∆ (−Rλ) ∈ imD(∆.), which
proves kerD(P .) ⊆ imD(∆.). Conversely, if µ ∈ imD(∆.),
then there exists ν ∈ Dq such that µ = ∆ ν, and thus
P µ = (∆ + ∆R∆) ν = 0, i.e., µ ∈ kerD(P .), which
proves imD(∆.) ⊆ kerD(P .) and the result. The equality
kerD(.Q) = imD(.∆) can be proved similarly.

Let us prove imD(.P ) = kerD(.∆). If λ ∈ imD(.P ), then
there exists µ ∈ D1×p such that λ = µP , and thus
λ∆ = µ (∆ + ∆R∆) = 0, i.e., λ ∈ kerD(.∆), which
proves the inclusion imD(.P ) ⊆ kerD(.∆). Conversely, if
λ ∈ kerD(.∆), then λ = λ (Ip + ∆R) = λP ∈ imD(.P ),
which proves kerD(.∆) ⊆ imD(.P ) and the result. The
equality imD(Q.) = kerD(∆.) can be proved similarly.

2. Let us prove that kerD(.P ) = kerD(.∆). If we consider
λ ∈ kerD(.P ), then post-multiplying λP = 0 by ∆,



we get λ P ∆ = λ∆R∆ = λ∆ = 0, which proves
kerD(.P ) ⊆ kerD(.∆). Conversely, if µ ∈ kerD(.∆), then,
post-multiplying µ∆ = 0 by R, we get µP = 0, which
proves kerD(.∆) ⊆ kerD(.P ) and the result. The equality
kerD(Q.) = kerD(∆.) can be proved similarly.

Let us prove that imD(P .) = imD(∆.). If λ ∈ imD(P .),
then there exists µ ∈ Dp such that λ = P µ, i.e., λ =
∆ (Rµ), and thus λ ∈ imD(∆.), i.e., imD(P .) ⊆ imD(∆.).
Conversely, if µ ∈ imD(∆.), i.e., µ = ∆ ν with ν ∈ Dq,
then µ = (∆R) (∆ ν) = P (∆ ν), i.e., µ ∈ imD(P .), which
proves imD(∆.) ⊆ imD(P .) and the result. The identity
imD(.Q) = imD(.∆) can be proved similarly.
Remark 1. If we want to find a presentation matrix of
the left D-module M = D1×p/(D1×q R) of minimal size,
using the equality m = l (resp., p − m = q − l) of 1
(resp., 2) of Corollary 6, we then have to seek for the
solutions ∆ ∈ Dp×q of the equation ∆R∆ = −∆ (resp.,
∆R∆ = ∆) which are such that the projective left D-
modules imD(.∆) (resp., kerD(.∆)) are free with maximal
(resp., minimal) rank.
Lemma 8. With the notations of 1 of Lemma 7, if we note
Ω := R∆R ∈ Dq×p, then we have:

(1) The left D-homomorphism
φ : kerD(.Q) −→ kerD(.P ),

µ 7−→ µΩ,
is an isomorphism and:

φ−1 : kerD(.P ) −→ kerD(.Q),
λ 7−→ λ∆.

In particular, kerD(.P ) ∼= kerD(.Q) = imD(.∆).
(2) The projective left D-module kerD(.P ) is free iff the

projective left D-module kerD(.Q) is free. Moreover,
if V1 ∈ Dm×q (resp., U1 ∈ Dm×p) is a full row
rank matrix such that kerD(.Q) = D1×m V1 (resp.,
kerD(.P ) = D1×m U1), then kerD(.P ) = D1×m (V1 Ω)
(resp., kerD(.Q) = D1×m (U1 ∆)).

Proof. 1. Note first that φ is well-defined since:
ΩP = (R∆R) (Ip + ∆R) = R∆R+R∆R∆R

= R∆R−R∆R = 0.

Let us now prove that φ is injective: if µ ∈ kerD(.Q), i.e.,
µ = −µR∆, is such that µΩ = 0, i.e., µR∆R = 0, then
µR = −µR∆R = 0, which yields µ = −(µR) ∆ = 0.
Let us now prove that φ is surjective. If ν ∈ kerD(.P ), i.e.,
ν = −ν∆R, then ν = ν∆R∆R = (ν∆) Ω = φ(ν∆).
Now, (ν∆)Q = ν∆ + ν∆R∆ = ν∆ − ν∆ = 0, i.e.,
ν∆ ∈ kerD(.Q), which proves that φ is surjective, and
thus that φ is an isomorphism.

Now, let us consider the following left D-homomorphism:
ϕ : kerD(.P ) −→ kerD(.Q),

λ 7−→ λ∆.
Then, ϕ is well-defined since:

∆Q = ∆ (Iq +R∆) = ∆ + ∆R∆ = 0.
Using the identity Ω ∆ = R∆R∆ = −R∆, we get

(ϕ ◦ φ)(µ) = ϕ(µΩ) = µΩ ∆ = −µR∆
for all µ ∈ kerD(.Q), i.e., for all µ ∈ D1×q satisfying
−µR∆ = µ, which proves that ϕ ◦ φ = idkerD(.Q).

Finally, using the identity ∆ Ω = ∆R∆R = −∆R, we
get (φ ◦ ϕ)(λ) = φ(λ∆) = λ∆ Ω = −λ∆R for all
λ ∈ kerD(.P ), i.e., for all λ ∈ D1×p satisfying −λ∆R = λ,
which yields φ ◦ ϕ = idkerD(.P ) and proves φ−1 = ϕ.

2. By 1 of Corollary 6, if the full row rank matrices
U1 ∈ Dm×p and V1 ∈ Dm×q are such that kerD(.P ) =
D1×m U1 and kerD(.Q) = D1×m V1, then 1 shows that
kerD(.Q) = D1×m (U1 ∆) and kerD(.P ) = D1×m (V1 Ω),
and thus, there exist two matrices Z1 ∈ GLm(D) and
Z2 ∈ GLm(D) such that U1 = Z1 V1 Ω and V1 = Z2 U1 ∆.
Example 2. Let us consider again Example 1. Let:

Ω := R∆R

=

 0 −(∂ + a) ∂ ∂ + a 0
0 −∂ 1 0

−∂ − a ∂2 + a ∂ − k a δ − ω2 −2 ∂ − 2 ζ ω − a ω2

 .

Then, we can easily check that the matrices U1 and V1

defined in Example 1 satisfy U1 = −V1 Ω and V1 = −U1 ∆.

Similarly, we can prove the following lemma.
Lemma 9. With the notations of 1 of Lemma 7, if we note
Ω := R∆R ∈ Dq×q, then we have: The following right
D-homomorphism

γ : kerD(P .) −→ kerD(Q.),
ν 7−→ Ω ν,

is an isomorphism and:
γ−1 : kerD(Q.) −→ kerD(P .),

ω 7−→ ∆ω.

In particular, kerD(Q.) ∼= kerD(P .) = imD(∆.) so that
the finitely generated projective right D-module kerD(Q.)
is free iff the finitely generated projective right D-module
kerD(P .) is free.

We now state the main result of the paper providing the
relation between Corollary 6 and Theorem 5.
Theorem 10. Let R ∈ Dq×p be a full row rank matrix,
∆ ∈ Dp×q a matrix satisfying ∆R∆ = −∆ and such
that the projective left D-modules imD(.P ) = kerD(.∆),
kerD(.Q) = imD(.∆), and imD(.Q) are free of rank
respectively p − m, l = m, and q − l = q − m, with
1 ≤ m ≤ q, where P := Ip + ∆R and Q := Iq + R∆. Let
Ω := R∆R and the full row rank matrix U2 ∈ D(p−m)×p

(resp., V1 ∈ Dm×q and V2 ∈ D(q−m)×q) define a basis of
imD(.P ) (resp., kerD(.Q) and imD(.Q)), i.e., imD(.P ) = D1×(p−m) U2,

kerD(.Q) = D1×m V1,

imD(.Q) = D1×(q−m) V2,

and U1 = V1 Ω. Then, we have
U := (UT1 UT2 )T ∈ GLp(D), V := (V T1 V T2 )T ∈ GLq(D),
and if we denote by{
U−1 := W = (W1 W2), W1 ∈ Dp×m, W2 ∈ Dp×(p−m),

V −1 := X = (X1 X2), X1 ∈ Dq×m, X2 ∈ Dq×(q−m),
(7)

then V1RW1 ∈ GLm(D). Moreover, we have(
R −X2

U2 0

)(
W1 (V1RW1)−1 V1 W2

−V2 V2RW2

)
= Iq+p−m,

(8)



which shows that Theorem 5 holds with the matrix
Λ = X2 ∈ Dq×(q−m)

which admits the left inverse V2 ∈ D(q−m)×q, i.e.:

V RW =
(
Im 0
0 V2RW2

)
.

Proof. The fact that U := (UT1 UT2 )T ∈ GLp(D)
and V := (V T1 V T2 )T ∈ GLq(D) was proved in [4,
Proposition 4.3]. Now, using (7), Corollary 6 yields

V RW =
(
V1RW1 0

0 V2RW2

)
,

or equivalently,

RW = X

(
V1RW1 0

0 V2RW2

)
,

with V1RW1 ∈ GLm(D), which is equivalent to:
RW1 = X1 (V1RW1), RW2 = X2 (V2RW2). (9)

The first equation of (9) yields X1 = RW1 (V1RW1)−1,
which combined with the identity X1 V1+X2 V2 = Iq gives:

R (W1 (V1RW1)−1 V1)−X2 (−V2) = Iq. (10)
Moreover, the identity U W = Ip yields:

U2W1 = 0, U2W2 = Ip−m. (11)
Hence, combining (10), the second identity of (9) and (11),
we get (8). Now, since D is a noetherian domain, it is stably
finite, namely, for any r ∈ N and for all A, B ∈ Dr×r

satisfying AB = Ir, we have BA = Ir, i.e., A ∈ GLr(D)
and B = A−1 [11], and thus the second matrix in the left-
hand side of (8) belongs to GLq+p−m(D), which shows that
Theorem 5 holds with the matrix Λ = X2 ∈ Dq×(q−m) and
the identity V X = Iq yields V2X2 = V2 Λ = Iq−m.

A similar result holds for the idempotent 0M of endD(M)
defined by P := ∆R and Q := R∆, where ∆R∆ = ∆.
Example 3. Let us consider again Example 1. Computing
the inverses U−1 and V −1, we obtain:

W1 =

 0 1
0 0
0 −1

−ω−2 B

 , W2 =

 −1 0
0 −1
0 −∂

−ω−2 (∂ + a) C

 ,

B = ω−2 (a−2 ζ ω), C = −ω−2 (∂2+2 ζ ω ∂+k a δ+ω2),

X1 =

( 0 ∂ + a
0 1
1 −(∂ + a)

)
, X2 =

(−1
0
1

)
.

Then, (8) yields the following identity:
∂ + a k a δ 0 0 1

0 ∂ −1 0 0
0 ω2 ∂ + 2 ζ ω −ω2 −1
−1 ∂ −1 0 0
0 −1 0 0 0




0 1 0 −1 0
0 0 0 0 −1
0 −1 0 0 −∂

−ω−2 ω−2 (a− 2 ζ ω) −ω−2 −ω−2 (∂ + a) E
1 −(∂ + a) 0 ∂ + a k a δ

 = I5,

where E = −ω−2 (∂2 + 2ω ζ ∂ + k a δ + ω2).

All the computations can be performed using the packages
OreModules [3], OreMorphisms [5], and Serre [8].

Further results and applications of the decomposition
and Serre’s reduction problems for mathematical systems
theory will be developed in the forthcoming paper [7].
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