An elementary proof of the general *Q*-parametrization of all stabilizing controllers

Alban Quadrat

INRIA Sophia Antipolis, CAFE Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr

www-sop.inria.fr/cafe/Alban.Quadrat/index.html

• For more details, see:

* A. Q., "On a generalization of the Youla-Kučera parametrization. Part I: The fractional ideal approach to SISO systems", Systems & Control Letters, vol. 50 (2003), no. 2, 135-148.

 * A. Q., "On a generalization of the Youla-Kučera parametrization. Part II: The lattice approach to MIMO systems", to appear in Mathematics of Control, Signals, and Systems.

The fractional representation approach

• (Vidyasagar) Let A be an algebra of stable SISO plants having the structure of an integral domain, namely, $a b = 0, a \neq 0 \Rightarrow b = 0$.

• Let K = Q(A) be the field of fractions of A, i.e.:

$$K = \{n/d \mid 0 \neq d, n \in A\}.$$

 \boldsymbol{K} corresponds to the class of systems.

• **Example**: We can consider A to be:

* $H_{\infty}(\mathbb{C}_{+}) = \{f \text{ holomorphic function in} \\ \mathbb{C}_{+} = \{s \in \mathbb{C} \mid \text{Re} \, s > 0\} \text{ bounded w.r.t. } \| \cdot \|_{\infty} \},\$

$$\widehat{\mathcal{A}} = \{ \mathcal{L}(f)(s) + \sum_{i=0}^{+\infty} a_i e^{-t_i s} | f \in L_1(\mathbb{R}_+) \\ (a_i)_{i \ge 0} \in l_1(\mathbb{Z}_+), \ 0 = t_0 \le t_1 \le t_2 \le \ldots \},$$

$$\star W_+ = \left\{ \sum_{i=0}^{\infty} a_i \, z^i \, | \, \sum_{i=0}^{+\infty} |a_i| < +\infty \right\} \dots$$

• Example: $p = \frac{e^{-s}}{s-1} \in Q(H_{\infty}(\mathbb{C}_+))$ as we have:

$$p = \frac{n}{d}, \quad n = \frac{e^{-s}}{(s+1)}, \ d = \frac{(s-1)}{(s+1)} \in H_{\infty}(\mathbb{C}_+).$$

Analysis and synthesis problems

• Let A and K = Q(A) be defined as above.

• **Definition**: 1. A transfer matrix $P \in K^{q \times r}$ is said to admit a **left-coprime factorization** if there exist

 $D \in A^{q \times q}, N \in A^{q \times r}, X \in A^{q \times q}, Y \in A^{r \times q}$ such that $P = D^{-1} N$ and $D X - N Y = I_q$.

2. A transfer matrix $P \in K^{q \times r}$ is said to admit a **right-coprime factorization** if there exist

 $\tilde{D} \in A^{r \times r}, \ \tilde{N} \in A^{q \times r}, \ \tilde{X} \in A^{r \times r}, \ \tilde{Y} \in A^{r \times q}$ such that $P = \tilde{N} \ \tilde{D}^{-1}$ and $-\tilde{Y} \ \tilde{N} + \tilde{X} \ \tilde{D} = I_r$.

3. A transfer matrix $P \in K^{q \times r}$ is said to admit a **doubly coprime factorization** if P admits a left-and a right-coprime factorization.

4. A plant $P \in K^{q \times r}$ is said to be **internally stabilizable** if there exists a controller $C \in K^{r \times q}$ such that **all the entries of** the closed-loop transfer matrix

$$\begin{pmatrix} I_q & -P \\ -C & I_r \end{pmatrix}^{-1} = \begin{pmatrix} (I_q - PC)^{-1} & (I_q - PC)^{-1}P \\ (I_r - CP)^{-1}C & (I_r - CP)^{-1}P \end{pmatrix}$$
$$= \begin{pmatrix} I_q + P(I_r - CP)^{-1}C & P(I_r - CP)^{-1} \\ (I_r - CP)^{-1} & (I_r - CP)^{-1} \end{pmatrix}$$

belong to A.

• Proposition 1: $P \in K^{q \times r}$ is internally stabilizable iff one of the following conditions is satisfied:

1. $\exists L = (U^T \quad V^T)^T \in A^{(q+r) \times q}$ such that:

a.
$$LP = \begin{pmatrix} UP \\ VP \end{pmatrix} \in A^{(q+r) \times r},$$

b. $(I_q - P)L = U - PV = I_q,$
c. $\det U \neq 0.$

Then, $C = V U^{-1}$ is a stabilizing controller of P, $U = (I_q - P C)^{-1}, \quad V = C (I_q - P C)^{-1}.$

2. $\exists \tilde{L} = (-\tilde{V} \quad \tilde{U}) \in A^{r \times (q+r)}$ such that:

a.
$$P \tilde{L} = (-P \tilde{V} \quad P \tilde{U}) \in A^{q \times (q+r)},$$

b. $\tilde{L} \begin{pmatrix} P \\ I_r \end{pmatrix} = -\tilde{V} P + \tilde{U} = I_r,$
c. $\det \tilde{U} \neq 0.$

Then, $C = \tilde{U}^{-1} \tilde{V}$ is a stabilizing controller of P,

$$\tilde{U} = (I_r - CP)^{-1}, \quad \tilde{V} = (I_r - CP)^{-1}C.$$

Internal stabilizability

• Corollary 1: *P* is internally stabilizable iff there exists $V \in A^{r \times q}$ such that we have:

$$\begin{cases} V P \in A^{r \times r}, \\ P V \in A^{q \times q}, \\ (P V + I_q) P = P (V P + I_r) \in A^{q \times r}. \end{cases}$$

Then, the controller $C \in K^{r \times q}$ defined by

$$C = V (PV + I_q)^{-1} = (VP + I_r)^{-1} V$$

internally stabilizes *P* and we have:

$$V = C (I_q - PC)^{-1} = (I_r - CP)^{-1} C.$$

• Corollary 2: We have:

1. If $P \in K^{q \times r}$ admits a left-coprime factorization $P = D^{-1}N, DX - NY = I_q, \text{ det } X \neq 0$, then $L = ((XD)^T (YD)^T)^T$ satisfies 1 of Proposition 1 and $C = YX^{-1}$ internally stabilizes P.

2. If $P \in K^{q \times r}$ admits a **right-coprime factoriza**tion $P = \tilde{N} \tilde{D}^{-1}$, $-\tilde{Y} \tilde{N} + \tilde{X} \tilde{D} = I_r$, det $\tilde{X} \neq 0$, then $\tilde{L} = (-\tilde{D} \tilde{Y} \quad \tilde{D} \tilde{X})$ satisfies 2 of Proposition 1 and $C = \tilde{X}^{-1} \tilde{Y}$ internally stabilizes P.

Open questions

• The existence of a left-/right-coprime factorization is a necessary but not generally a sufficient condition for internal stabilizability.

• These two concepts are known to be **equivalent** for the rings RH_{∞} and $H_{\infty}(\mathbb{C}_+)$.

• But, does internal stabilizability imply the existence of doubly coprime factorizations over the rings

$$\hat{\mathcal{A}} = \{\mathcal{L}(f)(s) + \sum_{i=0}^{+\infty} a_i e^{-t_i s} | f \in L_1(\mathbb{R}_+) \\ (a_i)_{i \ge 0} \in l_1(\mathbb{Z}_+), \ 0 = t_0 \le t_1 \le t_2 \le \ldots\},\$$
(ring of BIBO-stable time-invariant systems)
$$W_+ = \left\{\sum_{i=0}^{\infty} a_i z^i | \sum_{i=0}^{+\infty} |a_i| < +\infty\right\},\$$
(ring of BIBO-stable causal digital filters)?

• If it is not the case:

Is it possible to parametrize all stabilizing controllers of a stabilizable plant which does not admit doubly coprime factorizations?

• We now solve this last question.

General *Q*-parametrization

• Theorem: Let $P \in K^{q \times r}$ be a stabilizable plant. All stabilizing controllers of P have the form

$$C(Q) = (V + Q) (U + PQ)^{-1}$$

= $(\tilde{U} + QP)^{-1} (\tilde{V} + Q),$ (*)

where C_* is a stabilizing controller of P,

$$\begin{cases} U = (I_q - P C_*)^{-1} \in A^{q \times q}, \\ V = C_* (I_q - P C_*)^{-1} \in A^{r \times q}, \\ \tilde{U} = (I_r - C_* P)^{-1} \in A^{r \times q}, \\ \tilde{V} = (I_r - C_* P)^{-1} C_* \in A^{r \times r}. \end{cases}$$

and Q is any matrix which belongs to

$$\Omega = \{ L \in A^{r \times q} \mid L P \in A^{r \times r}, P L \in A^{q \times q}, \\ P L P \in A^{q \times r} \}$$

satisfying det $(U + PQ) \neq 0$, det $(\tilde{U} + QP) \neq 0$.

• The general Q-parametrization is a linear fractional transformation in the free parameter $Q \in \Omega$.

• We only need the knowledge of a stabilizing contoller C_{\star} of P. The existence of a doubly coprime factorization is not required.

Set of free parameters

• **Proposition**: Let $P \in K^{q \times r}$ be a internally stabilizable plant, $C_{\star} \in K^{r \times q}$ a stabilizing controller and:

$$\begin{cases} L = \begin{pmatrix} (I_q - PC)^{-1} \\ C_{\star} (I_q - PC_{\star})^{-1} \end{pmatrix} \in A^{(q+r) \times q}, \\ \tilde{L} = (-(I_r - C_{\star}P)^{-1}C_{\star} \quad (I_r - C_{\star}P)^{-1}) \in A^{r \times (q+r)}. \end{cases}$$

The set of free parameters of the parametrization (*) $\Omega = \{ L \in A^{r \times q} \mid L P \in A^{r \times r}, P L \in A^{q \times q}, P L P \in A^{q \times r} \}$ then satisfies:

$$\Omega = \tilde{L} A^{(q+r) \times (q+r)} L.$$

Equivalently, if we denote by \tilde{L}_i the *i*th column of \tilde{L} and L^j the *j*th row of *L*, we then have

$$\Omega = \sum_{i,j=1}^{q+r} A\left(\tilde{L}_i L^j\right)$$

showing that $\{\tilde{L}_i L^j\}_{i,j=1,...,q+r}$ is a set of generators of the *A*-module Ω .

• Corollary: Let $P \in Q(A)^{q \times r}$ be a plant which admits a doubly coprime factorization:

$$\begin{cases} P = D^{-1} N = \tilde{N} \tilde{D}^{-1}, \\ \begin{pmatrix} D & -N \\ -\tilde{Y} & \tilde{X} \end{pmatrix} \begin{pmatrix} X & \tilde{N} \\ Y & \tilde{D} \end{pmatrix} = I_{q+r}. \end{cases}$$

Then, the set Ω of free parameters of (\star) satisfies:

$$\Omega = \tilde{D} A^{r \times q} D.$$

Hence, subsituting $Q = \tilde{D} \wedge D$ and (see Corollary 2)

 $U = X D, \quad V = Y D, \quad \tilde{V} = \tilde{D} \, \tilde{Y}, \quad \tilde{U} = \tilde{D} \, \tilde{X},$

into the general Q-parametrization (\star), we obtain that **all stabilizing controllers of** P have the form

$$C(Q) = (Y + \tilde{D} \wedge) (X + \tilde{N} \wedge)^{-1}$$

= $(\tilde{X} + \wedge N)^{-1} (\tilde{Y} + \wedge D),$

where Λ is **any element of** $A^{r \times q}$ satisfying:

$$\det(X + \tilde{N} \wedge) \neq 0, \quad \det(\tilde{X} + \wedge N) \neq 0.$$