An elementary proof of the general Q-parametrization of all stabilizing controllers

\author{
Alban Quadrat
 INRIA Sophia Antipolis, CAFE Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.
 ```
Alban.Quadrat@sophia.inria.fr

``` \\ www-sop.inria.fr/cafe/Alban.Quadrat/index.html
}
- For more details, see:
^ A. Q., "On a generalization of the Youla-Kučera parametrization. Part I: The fractional ideal approach to SISO systems", Systems \& Control Letters, vol. 50 (2003), no. 2, 135-148.
\(\star\) A. Q., "On a generalization of the Youla-Kučera parametrization. Part II: The lattice approach to MIMO systems", to appear in Mathematics of Control, Signals, and Systems.

\section*{The fractional representation approach}
- (Vidyasagar) Let \(A\) be an algebra of stable SISO plants having the structure of an integral domain, namely, \(a b=0, a \neq 0 \Rightarrow b=0\).
- Let \(K=Q(A)\) be the field of fractions of \(A\), i.e.:
\[
K=\{n / d \mid 0 \neq d, n \in A\} .
\]

\section*{\(K\) corresponds to the class of systems.}
- Example: We can consider \(A\) to be:
\(\star R H_{\infty}=\{n / d \mid 0 \neq d, n \in \mathbb{R}[s], \operatorname{deg} n \leq \operatorname{deg} d\),
\[
\left.d\left(s_{*}\right)=0 \Rightarrow \operatorname{Re}\left(s_{*}\right)<0\right\},
\]
\(\star H_{\infty}\left(\mathbb{C}_{+}\right)=\{f\) holomorphic function in
\(\mathbb{C}_{+}=\{s \in \mathbb{C} \mid \operatorname{Re} s>0\}\) bounded w.r.t. \(\left.\|\cdot\|_{\infty}\right\}\),
\(\star \hat{\mathcal{A}}=\left\{\mathcal{L}(f)(s)+\sum_{i=0}^{+\infty} a_{i} e^{-t_{i} s} \mid f \in L_{1}\left(\mathbb{R}_{+}\right)\right.\)
\[
\left.\left(a_{i}\right)_{i \geq 0} \in l_{1}\left(\mathbb{Z}_{+}\right), 0=t_{0} \leq t_{1} \leq t_{2} \leq \ldots\right\},
\]
\(\star W_{+}=\left\{\sum_{i=0}^{\infty} a_{i} z^{i}\left|\sum_{i=0}^{+\infty}\right| a_{i} \mid<+\infty\right\} \ldots\)
- Example: \(p=\frac{e^{-s}}{s-1} \in Q\left(H_{\infty}\left(\mathbb{C}_{+}\right)\right)\)as we have:
\(p=\frac{n}{d}, \quad n=\frac{e^{-s}}{(s+1)}, d=\frac{(s-1)}{(s+1)} \in H_{\infty}\left(\mathbb{C}_{+}\right)\).

\section*{Analysis and synthesis problems}
- Let \(A\) and \(K=Q(A)\) be defined as above.
- Definition: 1. A transfer matrix \(P \in K^{q \times r}\) is said to admit a left-coprime factorization if there exist
\[
D \in A^{q \times q}, N \in A^{q \times r}, X \in A^{q \times q}, Y \in A^{r \times q}
\]
such that \(P=D^{-1} N\) and \(D X-N Y=I_{q}\).
2. A transfer matrix \(P \in K^{q \times r}\) is said to admit a right-coprime factorization if there exist
\[
\tilde{D} \in A^{r \times r}, \tilde{N} \in A^{q \times r}, \tilde{X} \in A^{r \times r}, \tilde{Y} \in A^{r \times q}
\]
such that \(P=\tilde{N} \tilde{D}^{-1}\) and \(-\tilde{Y} \tilde{N}+\tilde{X} \tilde{D}=I_{r}\).
3. A transfer matrix \(P \in K^{q \times r}\) is said to admit a doubly coprime factorization if \(P\) admits a leftand a right-coprime factorization.
4. A plant \(P \in K^{q \times r}\) is said to be internally stabilizable if there exists a controller \(C \in K^{r \times q}\) such that all the entries of the closed-loop transfer matrix
\[
\begin{gathered}
\left(\begin{array}{cc}
I_{q} & -P \\
-C & I_{r}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(I_{q}-P C\right)^{-1} & \left(I_{q}-P C\right)^{-1} P \\
\left(I_{r}-C P\right)^{-1} C & \left(I_{r}-C P\right)^{-1}
\end{array}\right) \\
=\left(\begin{array}{cc}
I_{q}+P\left(I_{r}-C P\right)^{-1} C & P\left(I_{r}-C P\right)^{-1} \\
\left(I_{r}-C P\right)^{-1} & \left(I_{r}-C P\right)^{-1}
\end{array}\right)
\end{gathered}
\]
belong to \(A\).

\section*{Internal stabilizability}
- Proposition 1: \(P \in K^{q \times r}\) is internally stabilizable iff one of the following conditions is satisfied:
1. \(\exists L=\left(U^{T} \quad V^{T}\right)^{T} \in A^{(q+r) \times q}\) such that:
\[
\begin{array}{ll}
\text { a. } & L P=\left(\begin{array}{cc}
U & P \\
V & P
\end{array}\right) \in A^{(q+r) \times r}, \\
\text { b. } & \left(I_{q}-P\right) L=U-P V=I_{q}, \\
\text { c. } & \operatorname{det} U \neq 0 .
\end{array}
\]

Then, \(C=V U^{-1}\) is a stabilizing controller of \(P\),
\[
U=\left(I_{q}-P C\right)^{-1}, \quad V=C\left(I_{q}-P C\right)^{-1} .
\]
2. \(\exists \tilde{L}=\left(\begin{array}{ll}-\tilde{V} & \tilde{U}\end{array}\right) \in A^{r \times(q+r)}\) such that:
\[
\begin{aligned}
& \text { a. } \quad P \tilde{L}=(-P \tilde{V} \quad P \tilde{U}) \in A^{q \times(q+r),} \\
& \text { b. } \\
& \text { c. }\binom{P}{I_{r}}=-\tilde{V} P+\tilde{U}=I_{r}, \\
& \text { c. } \quad \operatorname{det} \tilde{U} \neq 0 .
\end{aligned}
\]

Then, \(C=\tilde{U}^{-1} \tilde{V}\) is a stabilizing controller of \(P\),
\[
\tilde{U}=\left(I_{r}-C P\right)^{-1}, \quad \tilde{V}=\left(I_{r}-C P\right)^{-1} C .
\]

\section*{Internal stabilizability}
- Corollary 1: \(P\) is internally stabilizable iff there exists \(V \in A^{r \times q}\) such that we have:
\[
\left\{\begin{array}{l}
V P \in A^{r \times r}, \\
P V \in A^{q \times q}, \\
\left(P V+I_{q}\right) P=P\left(V P+I_{r}\right) \in A^{q \times r} .
\end{array}\right.
\]

Then, the controller \(C \in K^{r \times q}\) defined by
\[
C=V\left(P V+I_{q}\right)^{-1}=\left(V P+I_{r}\right)^{-1} V
\]
internally stabilizes \(P\) and we have:
\[
V=C\left(I_{q}-P C\right)^{-1}=\left(I_{r}-C P\right)^{-1} C .
\]
- Corollary 2: We have:
1. If \(P \in K^{q \times r}\) admits a left-coprime factorization \(P=D^{-1} N, D X-N Y=I_{q}\), \(\operatorname{det} X \neq 0\), then \(L=\left(\begin{array}{ll}(X D)^{T} & (Y D)^{T}\end{array}\right)^{T}\) satisfies 1 of Proposition 1 and \(C=Y X^{-1}\) internally stabilizes \(P\).
2. If \(P \in K^{q \times r}\) admits a right-coprime factorization \(P=\tilde{N} \tilde{D}^{-1},-\tilde{Y} \tilde{N}+\tilde{X} \tilde{D}=I_{r}\), \(\operatorname{det} \tilde{X} \neq 0\), then \(\tilde{L}=\left(\begin{array}{ll}-\tilde{D} \tilde{Y} & \tilde{D} \tilde{X}\end{array}\right)\) satisfies 2 of Proposition 1 and \(C=\tilde{X}^{-1} \tilde{Y}\) internally stabilizes \(P\).

\section*{Open questions}
- The existence of a left-/right-coprime factorization is a necessary but not generally a sufficient condition for internal stabilizability.
- These two concepts are known to be equivalent for the rings \(R H_{\infty}\) and \(H_{\infty}\left(\mathbb{C}_{+}\right)\).
- But, does internal stabilizability imply the existence of doubly coprime factorizations over the rings
\[
\begin{aligned}
& \hat{\mathcal{A}}=\left\{\mathcal{L}(f)(s)+\sum_{i=0}^{+\infty} a_{i} e^{-t_{i} s} \mid f \in L_{1}\left(\mathbb{R}_{+}\right)\right. \\
& \left.\quad\left(a_{i}\right)_{i \geq 0} \in l_{1}\left(\mathbb{Z}_{+}\right), 0=t_{0} \leq t_{1} \leq t_{2} \leq \ldots\right\},
\end{aligned}
\]
(ring of BIBO-stable time-invariant systems)
\(W_{+}=\left\{\sum_{i=0}^{\infty} a_{i} z^{i}\left|\sum_{i=0}^{+\infty}\right| a_{i} \mid<+\infty\right\}\),
(ring of BIBO-stable causal digital filters)?
- If it is not the case:

Is it possible to parametrize all stabilizing controllers of a stabilizable plant which does not admit doubly coprime factorizations?
- We now solve this last question.

\section*{General \(Q\)-parametrization}
- Theorem: Let \(P \in K^{q \times r}\) be a stabilizable plant. All stabilizing controllers of \(P\) have the form
\[
\begin{aligned}
C(Q) & =(V+Q)(U+P Q)^{-1} \\
& =(\widetilde{U}+Q P)^{-1}(\tilde{V}+Q),
\end{aligned}
\]
where \(C_{*}\) is a stabilizing controller of \(P\),
\[
\left\{\begin{array}{l}
U=\left(I_{q}-P C_{*}\right)^{-1} \in A^{q \times q}, \\
V=C_{*}\left(I_{q}-P C_{*}\right)^{-1} \in A^{r \times q}, \\
\tilde{U}=\left(I_{r}-C_{*} P\right)^{-1} \in A^{r \times q}, \\
\tilde{V}=\left(I_{r}-C_{*} P\right)^{-1} C_{*} \in A^{r \times r} .
\end{array}\right.
\]
and \(Q\) is any matrix which belongs to
\[
\Omega=\left\{L \in A^{r \times q} \left\lvert\, \begin{array}{l}
L P \in A^{r \times r}, P L \in A^{q \times q}, \\
\\
\left.P L P \in A^{q \times r}\right\}
\end{array}\right.\right.
\]
satisfying \(\operatorname{det}(U+P Q) \neq 0, \operatorname{det}(\tilde{U}+Q P) \neq 0\).
- The general \(Q\)-parametrization is a linear fractional transformation in the free parameter \(Q \in \Omega\).
- We only need the knowledge of a stabilizing contoller \(C_{\star}\) of \(P\). The existence of a doubly coprime factorization is not required.

\section*{Set of free parameters}
- Proposition: Let \(P \in K^{q \times r}\) be a internally stabilizable plant, \(C_{\star} \in K^{r \times q}\) a stabilizing controller and:
\[
\left\{\begin{array}{l}
L=\binom{\left(I_{q}-P C\right)^{-1}}{C_{\star}\left(I_{q}-P C_{\star}\right)^{-1}} \in A^{(q+r) \times q}, \\
\tilde{L}=\left(-\left(I_{r}-C_{\star} P\right)^{-1} C_{\star}\left(I_{r}-C_{\star} P\right)^{-1}\right) \in A^{r \times(q+r)} .
\end{array}\right.
\]

The set of free parameters of the parametrization ( \(\star\) )
\[
\Omega=\left\{L \in A^{r \times q} \mid L P \in A^{r \times r}, P L \in A^{q \times q}, P L P \in A^{q \times r}\right\}
\]
then satisfies:
\[
\Omega=\tilde{L} A^{(q+r) \times(q+r)} L .
\]

Equivalently, if we denote by \(\tilde{L}_{i}\) the \(i^{\text {th }}\) column of \(\tilde{L}\) and \(L^{j}\) the \(j^{\text {th }}\) row of \(L\), we then have
\[
\Omega=\sum_{i, j=1}^{q+r} A\left(\tilde{L}_{i} L^{j}\right)
\]
showing that \(\left\{\tilde{L}_{i} L^{j}\right\}_{i, j=1, \ldots, q+r}\) is a set of generators of the \(A\)-module \(\Omega\).

\section*{Youla-Kučera parametrization}
- Corollary: Let \(P \in Q(A)^{q \times r}\) be a plant which admits a doubly coprime factorization:
\[
\left\{\begin{array}{l}
P=D^{-1} N=\tilde{N} \tilde{D}^{-1}, \\
\left(\begin{array}{cc}
D & -N \\
-\tilde{Y} & \tilde{X}
\end{array}\right)\left(\begin{array}{cc}
X & \tilde{N} \\
Y & \tilde{D}
\end{array}\right)=I_{q+r} .
\end{array}\right.
\]

Then, the set \(\Omega\) of free parameters of ( \(\star\) ) satisfies:
\[
\Omega=\widetilde{D} A^{r \times q} D .
\]

Hence, subsituting \(Q=\tilde{D} \wedge D\) and (see Corollary 2)
\[
U=X D, \quad V=Y D, \quad \tilde{V}=\tilde{D} \tilde{Y}, \quad \tilde{U}=\tilde{D} \tilde{X}
\]
into the general \(Q\)-parametrization ( \(\star\) ), we obtain that all stabilizing controllers of \(P\) have the form
\[
\begin{aligned}
C(Q) & =(Y+\tilde{D} \wedge)(X+\tilde{N} \wedge)^{-1} \\
& =(\tilde{X}+\wedge N)^{-1}(\tilde{Y}+\wedge D),
\end{aligned}
\]
where \(\Lambda\) is any element of \(A^{r \times q}\) satisfying: \(\operatorname{det}(X+\tilde{N} \wedge) \neq 0, \quad \operatorname{det}(\tilde{X}+\wedge N) \neq 0\).```

