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The purpose of this paper is to show how to use the modern methods of algebraic analysis in
partial differential control theory, when the input-output relations are defined by systems of
partial differential equations in the continuous case or by multi-shift difference equations in
the discrete case. The essential tool is the duality existing between the theory of differential
modules or D-modules and the formal theory of systems of partial differential equations.
We reformulate and generalize many formal results that can be found in the extensive
literature on multidimensional systems (controtlability, primeness concepts, poles and
zeros,...). All the results are presented through effective algorithms.
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1. Introduction

In 1963, Kalman (Kalman et al. 1963) related the controllability of a linear ordinary
differential control system, with constant coefficients, of the form y = Ay + Bu, to the
full row rank of the controllability matrix [B, AB,.., A" ! B], where m is the number
of outputs y. Hautus (1969) showed this criterion to be equivalent to the full row rank
of the matrix [A — x I, B] for all values of the indeterminate x, in an attempt to study the
transfer matrix (x / —A)~! B. Then more general polynomial systems of the form D(x)y =
N(x)u, with D a nondegenerate square matrix, were considered in an attempt to study the
transfer matrix D(x)~ ! N( %). Inparticular, left-coprimeness conditions for the matrices D
and N were given for multi-input-multi-output (MIMO) systems generalizing the case of
single-input-single-cutput (SISO) systems where common factors of D (denominator) and
N (numerator) could disappear in the transfer function (Kailath 1980). One should notice
that the Kalman criterion came from an explicit integration by means of exponentials of
matrices, which are not easily available in the general case. Little by little, the preceding
separate conditions for I} and N have been reformulated for the full matrix {D, —~N]
in terms of a Bezout identity, a result showing that controllability is a built-in property

of the control system, not depending on the separation of the variables between inputs

and outputs. Meanwhile, a few people tried to extend these results to mairices over the
polynomial ring k{x] = k{x),.., xx] in n indeterminates over a field & of constants, or to
operator matrices with variable coefficients (Fornasini & Valcher 1997; Kleon & Oberst
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1998; Oberst 1990, 1996; Youla & Gnavi 1979; Youla & Pickel 1984; Wood et al. 1998;
Zerz 1996). It was soon discovered that the case n = 1, where k[ x1is a principal-ideal ring,
should be distinguished with care from the cases n = 2 and n 2 3 (Youla & Gnavi 1979;
Zerz 1996). It is only recently that people paid attention to algebraic analysis, pionneered
by Palamodov (1970) for the constant-coefficients case and by Kashiwara (1995) for the
general case. We quote in particular the work of Oberst (1990: Thm 21c, p. 142) showing,
in the first place, that a control system is controllable if and only if the corresponding
differential module is torsion-free. For the one-dimensional case, one may also refer to
Fliess (1989).

In this paper, the mathematical results are not new, and we provide all corresponding
references since their homological proofs are often very delicate. However, the applications
to control are quite new. In particular, the main purpose of this paper is to combine the
formal theory of differential operators with that of differential modules and a description
by extension functors in order to avoid the introduction of signal spaces, while recovering
and generalizing most of the results previously quoted. Since the two main ingredients are
(a) the construction of differential sequences, for which symbolic computer packages will
soon be available, and (b) the construction of a formal adjoint of an operator, we can say
that the techniques presented in this paper lead to effective algorithms. All these results
will be developed in a forthcoming book (Pommaret 2000).

In view of the amount of mathematical equipment needed in order to understand
algebraic analysis, we suppose that the reader has a basic familiarity with differential
sequences or resolutions and their use for defining the extension functor (Hu 1968,
Northcott 1966; Rotman 1979).

2. Algebraic analysis

Let us start by recalling and giving some algebraic results which will be useful for the rest
of the paper. For more details, we refer the reader to Hu (1968), Northcott (1966), Ritt
(1966), Rotman (1979), and Serre (1989).

2.1  D-modules

DEFINITION 1 A differential ring A with n commuting derivations 9,.., d, is a ring
which satisfies, foralla,b € A, and foralli, j=1,.,n:

. 3,‘06 A,

e di(a+b)=28ia+ b,
e 3;(ab) =(d;a)b+ad; b,
e 30 =89 = 0.

For applications, the differential ring A will either be a differential field K containing
Q or its subfield of constants & = cst(K) = {a € K|Vi = l,.,n : dia = 0} If
dl,.., d, are n commuting formal derivative operators, we shall introduce the noetherian
ring D = A[d] = Ald),.., d.] of differential operators. Any element of D has the form
P =3 4 @ dy, where o = (i, iby) is amulti-index with length |t] = )+ - -+,
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with a# € A and d), = (d|)*\..(d,)*". The ring D is a non-commutative integral domain
which satisfies '
Ya,be A:ad (bdj) =abd; dj +a(d; b)Y d;,

and possesses the left {right} Ore property:
Y(P, Q) e D?, (U, V) e (D\{0)? suchthat UP = VQ (PU = QV).

ExaMPLE 1 The field of rational functions R(t) is a differential field with derivation
d/dt. Indeed, for all a(¢) and nonzero b(t) in R(z), we have

da@ _ a@yb() ~ a@®) b()
de b(e) — b2(1)

e R{z).

. Let D = R{¢)[d/dt] be the non-commutative ring of linear operators with coefficients in
R(¢). Any element P € D has the form P = 3 ¢, .. a; (£)(d/de)', witha; € R(¢).

In tHe constant-coefficients case, one can identify the ring of multi-shift difference
operators and the ring of differential operators with the commutative ring of polynomials
in many indeterminates. This is the reason why we shall no longer refer to the multi-shift
difference situation.

In the general case, since D is a non-commutative ring, we define the notion of filtration
and gradation in order to pass from the non-commutative ring D to the commutative
ring gr(D) and thus to use all the results and techniques developed in the commutative
case for the non-commutative one (Bjork 1979; Maisonobe & Sabbah 1993; Pham 1980).
Moreover, the ring of differential operators D = A[d] looks like a polynomial ring, and
thus we may like to generalize the well-known notion of degree of a polynomial to a
differential operator in D. This can be done by introducing the notion of graded ring.
For more details, see Bjork (1979), Maisonobe & Sabah (1993), and Pham (1980).

Throughout the rest of the paper, we denote the A-module {0} by the abbreviation 0.

DEFINITION 2 A filtration of an A-algebra D is a sequence {D,},en of A-modules
satisfying: ' .

¢« 0=D_1CDyCDc.CD,

. 'Ur;() Dy =D,
hd DrDs g Dr+.\'-

The associated graded A-aigebra gr (D) of D is defined by:

. gl‘LD) = @rGN D::_{..Dr—ly L
O VPeD /D YO eD; /D5y : PQ=PQ € Drys/Dyyy.

D, /D, is called the homogeneous component of degree r of D.

EXAMPLE 2 The sequence {D,)},cn of A-modules, where D, = {ZOSIuISr atd, |
a* € A}, is a filtration of D = A[d},.., d,]. In particular, we have Dy = A C D, and
thus D, is a free left A-module with basis {d,, | 0 < |u] < r}.
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In the next sections,. D, will always refer to the filiration of Example 2, and we shali
endow T = D;/Dy with a bracket induced by the filtration of D, namely [P, @] "=
PO~ QP for P, Qe D.

PROPOSITION 1 The natural morphism

gr(D) —  Alxi. Xnl
D /D13 Ty @y > Xigi=r @ X

is an isomorphism of A-algebras.

DEFINITION 3 Let M be a D-module, where D admits the filtration {D, },cn. A family
{My)qen of A-modules is a filtration of M if

e 0=M_jCMyCM C.CM,
. quN Mq‘ =M,
o DM, C Myy,.
The associated graded gr (D)-module G= gr (M) is then defined by:

o G=@,cn G with Gy = My/Mg_1,
e VP & D /D, Nl € My/My_) : Pt = Pm € Myyr [Mytr—1.

We have the short exact sequence:
O—QMq_|—>Mq—>Gq—+O, (1

DEFINITION 4 A filtration {M,),en of a D-module M is called a good filtration if it
satisfies one of the following equivalent conditions:

(i) Forall g € N, M, is finitely generated over A, and there exists p € N such that
D:Mp =Mpy, forr 20,
(ii) G is a finitely generated gr (D)-module.

EXAMPLE 3 (i) Let M be a finitely generated D-module with the set of generators
{€l,.., em}. Then the filtration My, = 3 /| Dye; is good, since G = Yo gD e,
and thus G is finitely generated over gr(D) by {ey,..., €n).

(i) Let M = D be the left D-module and let {M, = Dy4},en be afiltration of M. Then,
we have D, M, = D, D3y © Dag4,, Which is in general only a strict submodule of
Dyy+r) = Myyy, and thus { D2y }4en 1 not a good filtration of D.

PROPOSITION 2 Let M be a left D-module. Then M admits a good filtration-if and oaly
if M is finitely generated over D. Moreover, if M has a good filtration, then:

(i) any submodule M’ of M has a good filtration, defined by M, = My N M’, and M’
’ is finitely generated over D; :
(i) any quotient M" of M has a good filtration, defined by the image of the filtration of
M under the projection M — M" — 0.
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(iii) if 0 —> M — M — M" — 0 is a short exact sequence of filtred modules,
then we have the short exact sequence 0 — G’ — G — G” — 0, where
the associated graded modules G’ = gr (M), G = gr(M), and G" = gr(M") are
defined with respect to the above induced filtrations.

Now, using the graded module gr(M) over the commutative ring gr(D), instead of the D-
module M, we can use the results of algebraic geometry to give an intrinsic definition of
the dimension of a module M.

DEFINITION 5 Let M be a finitely generated D-module with a good filtration, and let
G = gr(M) be its associated graded gr(D)-module; then the ideal I (M) = /ann(G) =
{a € gr(DYj3n € N : ¢"G = 0} does not depend on the filtration of M, and we introduce
the characteristic set char(M) = V{I(M)) = {p € spec{gr(D)) | /ann{G) € p}. where
spec(gr(D)) is the set of proper prime ideals of gr(D).

The previous definition and proposition lead to the following result (Bjork 1979;
Maisoncbe & Sabah 1993; Pham 1980).

PROPOSITION 3 Let M be a finitely generated left D-module admitting a good filtration.

(i) For r large enough, there exists a unique Hilbert polynomial Hjs such that
dim (M,) = Hu(r) = (m/d\)r? +.., where d is the degree of the polynomial.
The degree d = d(M), called the dimension of M, and the coefficient m = m(M),
called the multiplicity of M, do not depend on the good filtration.

i) f0 — M — M — M"” — (is an exact sequence of finitely generated
filtered modules, then

(a) char(M) = char(M") U char(M"),
(b) Hy = Hue + Hpye and thus d(M) = max{d(M"), d(M™)} and, if d(M") =
d(M"), then m(M) = m(M’) + m(M").

We shall see, in the next section, how to compute effectively the Hilbert polynormial and
thus the dimension and the multiplicity of a D-module M. Now, let us give some basic
definitions of properties of modules that will be at the core of this paper (Bjork 1993;
Kashiwara 1995).

DEFINITION 6 - e A D-module M is free if there are elements of M which generate

M and which are independent over D.

o A D-module M is projective if there exist a free D-module F and a D-module N
such that ¥ = M & N. Hence the medule N is also a projective D-module.

e A D-module M is reflexive if M = homp(homp(M, D), D).

e A D-module M is torsion-free if t(M) = {m e M|3P £ 0: Pm = 0} = 0.
We call t(M) the torsion submodule of M. In any case, M /(M) is a torsion-free
D-module.

If D is a principal ideal ring, then any torsion-free module is free and, if A = &, then the
Quillen—S8uslin theorem (Rotman 1979; Youla & Pickel 1984) shows that any projective
module is free. Moreover, it follows immediately from (1) that M is torsion-free (reflexive,
projective, free) whenever G is torsion-free (reflexive, projective, free). The converse is not
true.
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EXAMPLE 4 The SISO system y — y —u = 01s torsion-free, while the graded part y = 0
is not torsion-free. )

2.2 Differential operators

Let X be a differential manifold of dimension n with local coordinates x = (x',.., x")
and structural ring A = C®(X). We denote by T = T(X) the tangent bundle of X and
by T* = T*(X) the cotangent bundle of X. By S,7* and A" T* we shall mean the gth
symetric praduct of T* and the rth exterior product of T*. Let E be a vector bundle of
fibre dimension m over X, with local coordinates (x, y), where y = ( yl v Y71 we notice
that E is a left A-module. Following Malgrange (1966) and Spencer (1965), we shall use
the same notation E for a vector bundle and for its sheaf of germs of sections. We consider
the vector bundle J, (E} of g-jets of E. Its fibre at x € X is the quotient of the space of
germs of sections of E at x by the subspace of germs of sections which vanish up to order
gatx (fig € Jj(E)x & 0, f(x) = d,g(x) for 0 < ju| < q). We identify Jo(E) with E
and denote the projection of I, (E) onto X by x and the projection of J,(£) onto J,_ | (E)
by rr“'_l. If £ is a section of E, we denote by j,(£)(x) the equivalence class of germs of £
at x.%Ve have the following exact sequence {Goldschmidt 1968; Pommaret 1994; Spencer
1965):

n?
0— S,T*®E — I,(E) 5 J,_1(E) — 0. 2)

Let us recall a few definitions; for more details, see Goldschmidt (1968), Malgrange
(1566), Pommaret (1994), and Spencer (1965).

DEFINITION 7 Let F be a vector bundle over X, of fibre dimension /.

o A differential operator D = @ o j, : E — F of order g is given by a bundle
morphism @ : J,(E) — F, where we may suppose that & is surjective.

o The r-prolongation of @ is the unique bundle morphism o, (@) : Iy 4 (E) - J - (F)
such that p, (P)c jypr = jre D= jodo j,.

o If the kernel R, C I, (E) of @ is a vector bundle, we say that the system of partial
differential (PD) equations R, is defined by D and-a solution of Ry is a local section
& of E, over an open set U C X, such that },(£)(x) € R, forall x € U,

e The rth prolongation R, of R, is the kernel of p,(®).

e We denote by Rfflr the projection of Ryyris onto gy (E), ie. R(E,sl,
g+rts

Toytr (Rq+r+s)i

o Using the sequence (2) and the definition of the r-prolongation of &, we obtain the
induced map o,(P) : 5,4, T* @ E — 5. T*® F. We denote by g4+, the kernel of
o, (@) and call it the symbol of R ... We easily sec that ggyr = Ry4, NSy, T*QE.

To help the reader, we provide the local-coordinate expressians of the above concepts. The
bundle morphism @ defined by

®: I E) — F

(x, yﬁ) — (x, Zoglnlgq.!gkgm a;'u(x) yﬁ T = I,...,l) ,
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gives rise to the differential operator D defined by

D.E — F,

(x £ @) = (x0T = (Zogfmgq.lgk‘gm g @) ) e =1, t) :
The system R, defined by the differential operator D, is given by

Y a*@yk=0 forlg<rgL
0<Iul<g. 1<kSm

The map o, (@) is then defined by

o (P): S4,,T"®E — §T'®F,
&y lul =g +r) — (x- Llul=g.vi=r.1 k<m % O) Yoy 1T = Lo, 1)-

Now, the Spencer 8-sequence is defined by

8 *
AT ®gq+r+l — A'H-l T ®gq+ra

with (J(w))fl =dx' A "’ﬁ+1.' where w = vf‘, dx’ € A*T* ® gyir41: here we use the
summation convention with dx’ = dx' A.. A dx®, for I = {i|,... i} with i} <. < i,
and |u| = g + r; see Goldschmidt (1968), Pommaret (1994), and Spencer {1965) for more
details. We easily verify that § o § = 0. The resulting cohomology at A*T* & ggy, is

denoted by H;,(g,), since it depends only on g,.

DEFINITION 8 The symbol g, of R, is said to be s-acyclic if Hq]+, =.=Hj =0
for all r 2 0. The symbol g, is involutive if it is n-acyclic. In particular, every system R,
- of ordinary differential equations (ODE} has an involutive symbol. A symbol 8q is of finite

type if there exists r 2 0 such that gg4, = 0.

One can prove that the symbol g, of a system R, is such that g+, becomes involutive for
r large enough. If g, is an involutive symbol, we may define integers !, called characters
of g, such that

, L (ri— 1)
dlmgq.'_r.zZqu forr =0,

and the following relations are satisfied:

. dimgti:aé +.. + o,
. aé;aé;...)aa’;o,
. Oga('; < m.,

DEFINITION 9 A system Ry is said to be formally integrable if, for all r, 5 > 0, Ry is

a vector bundle and the projection rrgI: T Ryyrts = Ryyr is surjective. A system Ry

is involutive if R, is formally integrable and has an involutive symbol £y
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If & is sufficiently regular, then Rg4- is a vector bundle for any r 2 0 if furthermore R,
is formally integrable, then we have the exact sequences’

nq+:—l
0 — gg4r — Ryys Laen Rytr—1 — 0. (3)

COROLLARY 1 If the system R, is an involutive system, then

D%,
riit 1 nl o

R
dim (Ryg+r) = dim (Rg_1) + )
i=l

where Ry_1 is the projection of Ry onto Jo—1(E).

Accordingly, formal solutions of the system R, depend on oz[}, functions of x!, aé functions

of (x!, x%),.., and a, functions of (x!,.., x")—a result leading to the famous Cartan—
Khaler—Janet theorem in the analytic case (Janet 1921; Pommaret 1994).
If the system R, is not formally integrable, then by adding enough equations, we can

extend the system R, to a formally integrable system R;’L with the same solutions, by
means of a finite algorithm (Goldschmidt 1968; Pommaret 1994). Knowledge of the latter
system, which is the finite substitute for Roo = poo(Ry), is essential for studying the formal
properties of the given system and of the corresponding differential module.

DEFINITION 10 Let D : E - F be an involutive operator; then there exists n new
first-order involutive operators T; : Fi_) — F;, with Ffp = F, such that the sequence
D D Y2 D
ES RS> .. 5 F —0,
is stricly exact, i.e. the operator D; generates all the compatibility conditions of D;_),

and the sequence is exact at any order on the jet level. This sequence is called the Janet
sequence of D.

23 Duality

Using coordinates (x, y) for E, we may identify Dy = Dy! +..+ Dy™ with D™ We shall
denote by J, the bundle of g-jets of the trivial vector bundle X x R. Because the transition
laws of J, (E) are obtained from the coordinate changes y = a(x)y of E by differentiating
up to order ¢, in case of a single y and 4 € A, we may obtain a right A-module structure
on J,. Comparing now the two formal relations at first order, namely

yi =ay; + (8;a)y,
df®?=d;®ay=d.'a®y=(ad.--_|-8fa)®y=ad;®y+8fa®y,

we obtain therefore by prolongation the identification J,(E) = J4 ®a E, where E is
equipped with its left A-module structure, while J, is equipped with the above right
A-module structure (Malgrange 1966). The duality between differential geometry and
differentiat algebra is obtained by setting '

Jr=homa(ly, A) =D, = I (E) =Dy(E) =D, ®aE*,
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whenever (X, A) is a ringed space—see Malgrange (1966) and also Kashiwara (1995:
Introduction) and Goldschmidt (197(}). Such a result explains the multi-index contraction
> a*y, whenever the operator ) a*d,, is applied to the single differential indeterminate
y. Accordingly, we can define a differential module M by the cokernel in the exact
sequence of modules;

DRy FF — D@ E'— M — 0,

or simply
D'— D" > M-—0,

in the trivial case if dim(E) = m and dim(F) = [l. Hence, from the exactness of the
contravariant functor homa (-, 4), we obtain the exact sequence 0 = Ry — Joo(E) —
Joo(F), where Reo = poo(Ry) = homy(M, A) (Goldschmidt 1970; Malgrange 1966),
and the main difficulty is that certain properties of M, using injective limits, are not
easily interpreted as properties of Ry, using projective limits, and vice versa. When D
is involutive and sufficiently regular, we notice that a canonical finite resolution of the
sheaf @ of solutions of D is of the form of the Janet sequence with F = Fy, dim(F,) = {,,
and dim{E) = m:

D
O-—-'—->@ﬁ—-+E2>FOE>FE 2

Py g s, (4)
where D; represents all the compatibility conditions of T;_. The sequence (4) provides,
by duality, a finite free resolution of M (Hu 1968; Northcott 1966; Rotman 1979):

.D D D
&L ph &2 &8 ph

0«— M «— D™ <2 plo —0 (5)
The problem is to study the properties of an operator (m x !)-matrix, acting on column
vectors on the right, in the operator sense, or on row vectors on the left in the module sense.
Accordingly, a preliminary problem for being able to deal equivalently with D or with M is
to bring effectively D or R, to formal integrability or even to involutiveness, in such a way
that R, = M;,’ = homa(M,, A)and g, = Gy = homg(Gy, A). In that case, the sequence
(3} for r = Qis the dual with respect to homy (-, A} of the sequence (1) if D has coefficients
in A while £ and F are trivial bundles. This result provides an effective way for computing
the Hilbert polynomial and justifies the comment after Proposition 3. Indeed, we have
defined an algebraic set over £ or K, namely the characteristic set char(M) = supp(G) of
M, as the support of G, namely the set of prime ideals of gr(D), containing the annihilator
ann(G) of G = gr{M). Keeping the word variery for an irreductible algebraic set, we notice
that the dimension dim(M) = d(M) of the D-module M is the maximum dimension over
an algebraic closure of k& or X of the varieties corresponding to the minimum prime ideals
in char(M), i.e. the degree 4 of the Hitbert polynomial Huy . Equivalently, allowing us
to avoid dealing with many irreductible components, the- Hilbert-Serre theorem says that
d(M) is equal to the maximum number of non-zero characters aq (Serre 1989). We denote
by ed(M) = n ~ d(M) the codimension of char(M); cf. Bjork (1993).

It is important to notice that the dualities homa(-, A) and homp(-, D) that will be
systematically used in this paper can lead to effective computations and provide a formal
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interpretation of the behavioural approach used by Oberst (1990,1996) and Willems (1991)
thus aveiding any signal space in the definition of a system.

We present the extension functor in the operator language; see Hu ( 1968) Northcott
(1966), and Rotman (1979) for a module approach IfP: E — F is a differential
operator of order ¢, we denote by ad(D) = =AN"T*@ F* — E= N T QE*
the formal adjoint of D. The operator Dis of the same order as D, with coefficients in A.
The formal adjoint D : F — E can be easily computed by using the following three rules.

» The adjoint of a matrix (zeroth-order operator) is the transposed matrix.
o The adjoint of 3; is —9;.
¢ For two linear PD operators P and  that can be composed: PQ QP

Moreover, we have the following relation

with d the exterior derivative. We compute the adjoint of an operator P by multiplying
P by test functions on the left and integrating the result by parts, as we could do for
distributions.

It is important to notice firstly that D may not be formally integrable when D is, and
secondly that D, may not generate at all the compatibility conditions of D, 41 in the adjoint
of the Janet sequence (4). Let us give an example.

EXAMPLE 5 We take the operator D : & — n, defined on sections, by
3128 =n', k= n’,

and easily see that the compatibility condition of D is the operator Dy : 7+ {, defined by
31n? — 8an' = £, Then the adjoint Dy : A+ p of Dy is given by

A = i, —d1h = pa.

The compatibitity condition of P : i — v is defined by the operator ;141 + S22 = v,
which is not the adjoint D of the operator D (defined by 8)2 ) + 822 2 = v).

One can roughly say that extD(M D) measures the defect of exactness at Fr_y in the .
adjoint sequence. However, since ext,(M, D) does not depend on the presentation of M,
the previous definition by means of the Janet sequence is by far the best, though one could
use the second Spencer sequence too (another finite free resolution of the sheaf & of
solutions of D); see Malgrange (1966), Pommaret (1994), and Spencer (1965). Namely
one can use (do not confuse with standard notations)
Dy Dy
O—-ré-)—-—>Cg—>C1—> —-—->C,,-—>0 (6)

and measure the defect-of exactness at C, by dealing only with first-order operators D,—
though with many more unknowns (take for example E = T, F = A" T*, and for D the
divergence operator expressed as the Lie derivative of a given n-form).

The first key result of algebraic analysis is the following theorem relating the vanishing
of the extension functor to the codimension of the characteristic set (Kashiwara 1995;
Palamodov 1970).
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THEOREM | cd(M) = r if and only if ext'b(M, Dy = Ofori <r.

The second key result, instead of looking for the compatibility condition D) of a
differential operator D, deals with the converse problem of looking for a potential-like
expression of D, namely seeking to determine whether one can find an operator D_y .
E_| — Eg = E such that D generates all the compatibility conditions of D..,. For
example, one may keep in mind the Poincaré sequence for the exterior derivative. If there
exists such an operator D_ |, we say that the operator D is parametrized by D_).

THEOREM 2 There exists a sequence of differential operators

D_, D, D, Y2
Er =3 E o =3 . "3 E 3 B F,
where each operator generates all the compatibility conditions of the preceding one, if and
only if exté (N, D) =0fori =1,.,r whenever N is the differential module determined

by the operator D, exactly as M was determined by D.

Taking into account the fact that the ext modules do not depend on the chosen resolution,
the above conditions can be checked effectively, since we just need to construct the adjoint
operator, find a sequence of compatibility conditions with length r, dualize it, and check
whether the adjoint sequence is formally exact—i.e. whether each operator generates
exactly the compatibility conditions of the preceding one. The global dimension of D is n
because, using the Spencer sequence (6), we obtain at once: extl, (M, D) = 0fori > n.

EXAMPLE 6 Let us take the divergence operator D : £ — 7, in R, defined by
NE -+ RE+0E =1
- Dualizing the divergence operator, we obtain the operator D: u — v, defined by
—d 1= vy, =02 1 = vy, =y = vy,

which is nothing other than minus the gradient operator. We let the reader check that the
compatibility condition D_; of D is the curl operator, and the adjoint of D_, is still the
curl operator, i.e. the curl is a self-adjoint operator. The compatibility condition of the curl
operatdor T_| is the divergence, and thus D is parametrized by the curl operator D_,. In
other words, if M is the D-module defined by D, we have exth (N, D) = 0, where N is
the D-module defined by D. Moreover, we can check that the compatibility condition Dy
of D_ is minus the divergence operator, and thus its adjoint D_3 is the gradient which
parametrizes the curl, Le. ext%)(N, D) = 0. We shall see in the next section that, if D is
a formally surjective operator—that is, without any compatibility conditions—then N is a
torsion D-module and thus homp (N, D) = ext%(N D) = 0. Using Theorem 1, we obtain
cd(N)} > 2, orequivalently d{(N) = 0, i.e. al(’D) =0fori=1,2,3, and we find that the
solutions of the gradient operator depend only on constants.

It is essential to notice that the right D-module N, = A" T* @4 N, obtained from the left
D-module N = Nj by the side-changing functor (Bjork 1993; Maisonobe & Sabah 1993),
must not be confused with M = homp (M, D), since we have the exact sequence

0—M-—>E®D— F®4D— N, — 0, (7)
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and thus the relation: cxt‘b(N,, D)y = cxtgz(homD(M, Dy, DY for i = 3. Finally,
the result of subsection 3.1 below will prove that ext"D(N, D) depends only on M for '
i 2 1. In fact, as a much stronger (but delicate) result, one can prove that N and
ext%(N, D) = homp(N, D) = N are only determined up to a projective equivalence,
according 1o Schanuel’s lemma (Hu 1968; Northcott 1966; Rotman 1979) and the exact
sequence of left D-modules:

0— N, — D®F' — DQE* — M — 0. (8)

We shall now divide the properties of control systems into two categories, depending
on whether they do or do not depend on a separation of the variables of the control system
between input and output.

3. Applications to control theory (I): structural properties

We first study the properties that do not depend on such a separation.

3.1 Primeness

The key idea, not at all intuitively evident, is to use D or N instead of D or M in order to
achieve a classification of modules:

free C projective C... C reflexive < torsion-free,

First of all, we recall that M is torsion-free (reflexive) if and only if the central morphisn
in the long exact sequence of left D-modules

0 — exth (N, D) — M — homp(homp(M, D}, D) — ext4(N,, D) ~ 0,
m — e(m),

with e(m){(f) = f(m) for all f € homp{(M, D), is injective (bijective); see Kashiwara
(1995) and Palamodov (1970).

DEFINITION 11  We shall say that a control system, defined by an operator D, is
controllable, if one cannot find locally any autonomous elements, namely any scalar
differential combination { = AE, satisfying at least one PDE of the form B¢ = 0
whenever D& = 0. '

Then we have the following corollary.

COROLLARY 2.. The following assertions are equivalent (Kashiwara 1995, Palamodoy
1970; Pommaret 1994, 2000). o

(i) The control system defined by D is controllable.
(i1) ‘The operator T is parametrizable by a D_,.
(i11) The D-module M is torsion-free.
(iv) exthy(Ny, D) = A" T* ®4 exth(N, D) = 0.
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REMARK 1 Moreover, if D is formally surjective, i.e. Dy = 0, then homp(N, D) =
c‘xt% (N, D) = 0. By Theorem 1, this means cd(N} = 1 or equivalently d(N) < n — 1.
That is, a;,‘(N) = 0; namely N is a torsion module. Thus, if M is torsion-free, then
ext‘b(N, D)y = Ofori € 1. Hence cd(N) = 2, and thus d(N) < n — 2. We therefore
reestablish the concept of minor left-primeness (MLP: Fornasini & Valcher 1997; Oberst

. 1990; Youla & Gnavi 1979; Wood et al. 1998; Zerz 1996) for the operator matrix
representing D. Note that, in the variable-coefficient case, the matrix of D is not just the
transpose of the matrix of D. In the particular case n = 1, we obtain the Hautus test (Hautus
1969) and the fact that the system is controllable if and only if D is injective (Pommaret
1995). In that case, there is a lift operator P : £ — F suchthat Po D = id 7 and thus
Do P = idp, aresult amounting to the forward and reversed generalized Bezout identities
(Kailath 1980; Pommaret & Quadrat 1998). When P is not surjective, the above result
amounts to generalized factor left primeness (Oberst 1990; Youla & Gnavi 1979; Zerz
1996; Wood et al. 1998).

COROLLARY 3 M is reflexive if and only if ext’ H(N,D)=0fori =1,2

REMARK 2 Moreover, if D is surjective, reasoning as before, we get d(N) € n — 3. The
divergence operator provides a good example of a reflexive module which is nevertheless
not projective, since extp (N, D) =0

Setting r = n — 1 in Theorem 2 yields the case extt (N, D)y =0fori =1,.,n— 1; that
is, d(N) = 0 when D is surjective, and this is the concept of weakly zero left -primeness
(Oberst 1990; Wood et al. 1998, Zerz 1996). A particular example is provided by a system
of finite type, or holonomic module N such that I{N) = (x1,.., X»), implying that the
algebraic set char(N) is reduced to the origin and ext’, (N, D) = 0 for i # n. Since N is
a differential module too, we have ext! pN, D) =0 for i > n. We now consider the case
when exth, (N, D) fori 21

COROLLARY 4 M is projective if and only if ext’ p(N, Dy=0fori = 1.

Proof In general,.when D is not surjective, since the ext » (N, D) do not depend on the

resolution of N, we may bring D to involutiveness and use the corresponding Spencer
sequence {6) to construct inductively the lift operators P, of the Spencer operators D,
in such a way that D, P. D, = D,. More precisely, if D = D is involutive, it follows
from ext},(N, D) = 0 that D, is injective and admits therefore a left-inverse P, such
that B, D, = idg or DyPy = idc,. However, we have (idg - D,PYD, = 0

while D,_,D,, = 0, and D,, 1 represents all the compatibility condmons of D, because
ext'l') (N, D) = 0. Hence there is an operator P,_; such that DuP,+ By Dy = ld- o
or equivalently Py Dy + Dy, P | = idg,_,, leading to D,, [ Puc1Dyy = Dy and 50
on; see Pommaret & Quadrat {1998) for more details. Accordingly, N itself is projective

and M is projective in (7). Since M is already reflexive, we have M = M and M is
projective too. Conversely, if M is projective, the exact sequence (8) splits and thus,
applying homp(-, D}, it follows that the exact sequence (7) splits too; that is, N, and
N are projective D-modules, a fact leading to ext'b(N, D)y =0fori = 1. We notice that
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choosing A to be K or & is essential in the proof in order to allow for the existence of a
finite free resolution of length n. O

REMARK 3 Moreover, when D is surjective, we obtain extiD(N ,Dy=0fori 2 0, and
thus d(N) = —1. That is, char(N) = @, and this is only possible if N = 0. Hence D admits
alift, and M is a projective module (Pommaret & Quadrat 1998). We find a generalization
of zero left-primeness (Fornasini & Valcher 1997; Oberst 1990; Youla & Gnavi 1979; Zerz
1996; Wood et al. 1998), since we are now dealing with variable coefficients.

In the commutative case, one may use ann(M) instead of ann{G) (Oberst 1990,1996).
Finally, when D = k[d] is commutative, it is known that ann{M) and ann{G) define
algebraic sets with the same dimension, according to the Hilbert-Serre theorem (Serre
1989). Hence, such a generalization of all existing results explains the existence of a whole
range of ‘possible types of primeness’ conjectured by Wood et al. (1998).

EXAMPLE 7 When n = 1, only one type of primeness is left. Dealing with a formally
integrable Kalman system —y+ Ay + Bu = ( and multiplying it on the left by a row vector
of test functions A, we find for the kernel of D.

A+AA=0 and AB=0
= iB=0 = MB=0 = MB=0 =.= ia"1B=0,

and the Kalman test surprisingly amounts to the injectivity of the non-formally integrable
operator D—a result also equivalent to the lack of first integrals (Pommaret 1995;
Pommaret & Quadrat 1999); cf. Oberst (1990: Ex. 56, p. 152).

EXAMPLE 8 The system 8;&' + 362 = 0 defines a torsion-free D-module with a first-
order parametrization, which is nevertheless not projective, whereas 8, £ ' +-82¢ _x3l=0
defines a projective (but not free) and thus reflexive D-module which is automatically
torsion-free and admits a second-order parametrization.

EXAMPLE 9 The last operator D, in a Janet sequence always provides a projective
module. :

EXAMPLE 10 With n = 3, let us consider the second-order system
d33¢ — B136 — 935 =0, 836 — 32 — 026 =0, 8226 — 8128 =0,

with characters aé =3 oe% = 0, and ag = 0. The algebraic sets defined by ann(M) and
ann(G) are different, though they are both unions of three varieties of dimension 1, and
thus have the same dimension.

EXAMPLE 11 The case of a surjective operator D ;. E — F with dim(E) = dim(F)
" is standard in physics (wave equations in elasticity, electromagnetism, ..}. Indeed, M is
a torsion module, and thus ext%(M, D) = homp(M,D) = 0, so that cd(M) > 1. If
cd(M) = 1, then ext}_-)(M, D) # 0 and D is a determined operator which is thercfore
always formally integrable. A good example is the Cauchy-Riemann system defining
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holomorphic transformations. However, if cd(M} = 2, then extb(M , D) = 0, implying
that N = 0. It follows that D is invertible, showing that T is not formally integrable. This
result implies that M = (. We have thus obtained a simple proof of the conjecture of
Janet {1921) first solved by Johnson (1978), saying that, for a system of this kind, there
is a gap in the possible dimensions of the corresponding madules. The following second-
order system, with n = 2, dim(E) = dim(F) = 2, provides a good example (Janet 1929,
Pommaret 1994)

g ot -t =1ql, It + ot + £ =2,

and one can easily check that the square matrix of D is unimodular with determinant equal
to 1.

3.2  Pure modules

We end this section with a generalization of the torsion-free property of a module, and
follow Bjork (1993). In order to explain this useful new direction for applications, we first
provide a few examples.

EXAMPLE 12 Starting with the system
yn==0 yiz=0,

we notice that z = y| satisfies just zz = 0, while z = y, satisfies both z; = 0 and
z2 = 0. Therefore ¢cd(Dy|} = | while ¢d(Dyz) = 2. Hence we may distinguish the
torsion elements of a differential module according to the properties of the system of PDEs
they satisfy. Two examples from engineering science will particularly well illustrate the
different behaviour of various torsion elements.

EXAMPLE 13 In the lincarized system of Euler equations for an incompressible fluid
(Pommaret 1992), namely

-

dav
at

where 7 is the speed and p the pressure of the fluid, one notices that we have the PDE
system

.V"-ﬁ=0, +f7p=0,

3(AD)
=0
at

Similarly, the Boussinesq stationary system for the Benard problem (Pommaret 1992,
1994), namely

Ap =0,

Vi =0, aau9§~6n=o, A9 —F5 =0,

where g = (0,0, —g) is gravity while m and # are perturbations of pressure and
temperature, we obtain from vector analysis that

AAAG — g3y + 82)8 = O,

though, setting w = 8,v3 — davy, we only get Aw = 0, and thus cd(D8) = cd(Dw) = 1.
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Accordingly, among the elements of a differential module, one can find the elements
which are free, i.e. they do not satisfy any PDE, and the others (torsion elements) which
are constrained by at least one PDE.

DEFINITION 12 (i) We introduce the D-submodules t, (M) = {m € M | cd(Dm) > rl,
with tg(M) = t{(M), the torsion submodule of M.

(ii) A D-module is said to be r-pure if (M) = O and t,_ | (M) = M.
The chain of inclusions
0=, (M) St (M C..CuM StoM)=uM)c M,

will be particularly useful for studying the specific properties of engineering quanfities

that can be observed experimentally by decoupling them from other quantities. Of course,

t,_1(M)/t,(M) is r-pure, and one has the following delicate criterion for knowing whether
a differential module is r-pure or not (Bjork 1993}.

THEOREM 3 M is r-pure if and only if M C extp,(ext, (M, D), D), with cdM)=r.

COROLLARY 5 When M is r-pure, then char(M) is r-equidimensional; namely it can be
decomposed into irreductible components of the same dimension r.

We notice that the above criterion generalizes the situation of the torsion-free modules
described in Corollary 2 for the case r = 0.

EXAMPLE 14  Without the previous criterion, it is not evident that the differential module
provided by Example 10 is 2-pure and thus that the corresponding adjoint operator is
torsion-free. More generally, any differential module defined by a finite-type system
is automatically n-pure. This is particulary clear in 2-dimensional elasticity, with D :
(1, E) > D15 = en, 3(0E2 + 28) = €12, = en)and Dy : € > dnen +
d2€1| — 2012612 = 0, defining the strain tensor and its compatibility condition, while the
adjoint sequence allows us to parametrize the stress equation by D acting on the Airy
function, with o' = 32k, 012 = 02! = —8;34, and %% = 3.

To our knowledge, it does not seem that such a classification of systems/modules has ever
* been applied. The following nontrivial theorem (Kashiwara 1995; Palamodov 1970} is
particularly useful.

THEOREM 4 char(M) = |, char (ext, (M, D)).

EXAMPLE 15 If D) denotes the compatibility conditions of D, and D generates the
compatibility conditions of Dy, Jin such a way that both the module M determined by D and
the module N determined by D) are torsion modules, then both 7 and D are surjective
and char(M) = char(N). This result generalizes the equality of the primeness degrees of
left and right factor matrix descriptions of a given transfer matrix (Wood et al. 1998: p.
74). A typical example of this situation is provided by Examples 10 and 14.
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4. Applications to control theory (II}: input—output properties

We now turn to the properties involving inputs and outputs. First of all, contrary to
tradition, there is no especial reason for choosing the inputs as determining a maximum free
differential submodule of M, though it is a possible choice. Accordingly, many concepts
in control theory are based upon the two types of exact sequences that can be constructed
from M:

0—t(M)— M — M/t(M) — 0, %)
00— F—M— M/F -+, (10)

where t{M) is the torsion submodule of M, and F is a maximum free submodule of M. We
notice that M /t(M) is torsion-free while M/ F is a torsion module. Setting § = D\{0}, we
may construct the field Q(D) = §~'D = DS ! of quotients of D and tensor by Q(D) the
previous sequences in order to kill their torsion modules (Kashiwara 1995; Gberst 1990;
Pommaret & Quadrat 1999), Such a construction, which is basic in algebraic analysis,
gives the way to generalize the transfer-matrix approach, even for variable coefficients, by
considering the localization S~'M = Q(D) ®p M, without any reference to the Laplace
transform (Oberst 1990; Pommaret & Quadrat 1999). If we already know that M is torsion-
free, it may provide a parametrization of D generalizing the controller form in the OD case
(Kailath 1980). For more details, see Pommaret & Quadrat (1999). We notice that M /t{M)
and M/ F are two specializations of M giving rise to two subsystems R}, and R}, of Reo.
Taking into account that ¢(M) N F = 0, we obtain the following commutative and exact
diagram

0 0
\: \:

0 — F = F — 0

00— M) — M — MM — 0
[ 1 \

0— M) — M/F — M/WM)®F) — 0,
I \ 1
] 0 ' )]

and, dualizing it, we obtain the following commutative and exact diagram

0 0
) )
0 «— Re/R!Y, = Re/RI, <0
t r ! (12)
O0«— Ra/R, — Roo — R, — 0
I 0 T
0 «— Re/R, <+ R, «— R_ORL +—0,
) 1 )

0 0 0
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which provides at once the relation Reo = R+ RJ,. This very basic reason, hidden in
the possible underlying confusion concerning the choice of input and output, comes from
the fact that, when n = 1, any torsion-free module is free and the first of the two preceding
sequences splits. However, the resulting backward sequence should not be confused in
general with the second sequence, and the two sequences should be distinguished with
care. In particular, only the first one depends entirely on M and provides the so-called
minimum realization (Pommaret & Quadrat 1999); sce also Oberst (1990).

Because input and output always play a reciprocal role and are made by elements of
M, we shall consider two different differential submodules Min and Mgy of M such that
Min + Moy may be a strict differential submodule of M if there are latent variables.
There is no general reason for supposing that M/Mi, is a torsion module, because
M /Moy is not a torsion module in general. The main construction is to introduce t{M)
and set M, = Mi, + t(M) and M, = Mou + t(M) in M. Then, the idea of the
minimal realization is to replace Min, Mou, and M by M/ jt(M) = Min/(Min N (M),
My JU(M) = Mou/(Mou N t(M)), and M /t(M) in order to deal only with torsion-free
modules, always keeping in mind that the differential rank tkp (M) of M, namely the last
character, is intrinsically defined, does not depend on the presentation, and is additive; that
is to say, if 0 — M’ — M —> M" — Qs a short exact sequence of differential
modules, then rkp{M)=rkp(M")+tkp(M"). This is exactly the module analogue of the
differential transcendence degree in differential algebra (Kolchin 1973; Ritt 1966), and
one can prove that it is equal to the Euler characteristic of M. If one chooses Mj, = F as
already defined, then F Nt(M) = 0 and Mi’n/t(M ) & F can always be considered as a
submodule of M/t(M).

The final idea is to define poles and zeros for multidimensional systems (Oberst 1990,
1996; Wood et al. 1998, to appear). First of all, we have seen (Proposition 2) that, if

0—s M LME M —0

is a short exact sequence of modules, and if M is filtered, we can endow M’ and M “ with
the induced filtrations M; =M N M, and M(’{’ = g(M,) and obtain, for these filtrations,
the short exact sequence

00— G —w6G—0G —90

of associated graded modules. Taking the radicals of the respective annhililators, we get

Jann(G}) = Vann(G’) N /ann(G"),

and thus
char(M) = char(M’) U char(M"),

since the characteristic set does not depend on the filtration (see Proposition 3). Because we
are dealing with finitely generated modules, we also recall that, in the commutative case,
the support supp(M) of amodule M is the set of proper prime ideals, of the corresponding
ring, that contain the annihilator of M over the ring. The key point, in order to generalize
the concept of the transfer-matrix approach, is to localize the graded sequence with respect
to a prime ideal and get the short exact sequence '

O—>G;,——>Gp—->6g——>0_
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with p € spec(A[x}), but we can also localize the filtered sequence when D is
commutative. In the case of the SISO system defined in Example 4, we get (x — 1)y = u,
and we can divide by x — 1, provided that x # 1. Hence the trick is to notice that G;, =Gy
if and only if Gg =0, i.e. iff p ¢ supp(G"), the true reason for looking at char(M").

If N is any submodule of M, then setting N’ = N + t(M), we have the commutative
and exact diagram

0 0 0
{ 1 U
0— ttM)NN — N — NWMM —0
4 1 \’
00— (M) — M — M/t(M) —0
I 1 4
0— MY/QUMON) — M/N — M/N —0,
-4 ] S
0 0 0
with both the isomorphisms
t(M)/(t(M)NN)Y = N'/N, (13)
N/(tMYON) = N (M), (14)

Setting Min, Mo, and M, + My in place of N, we get similar commutative and exact
diagrams, both with short exact sequences of the type

0 — Min — Min + Moyt — (Min + Mou)/Min — 0, (135)
0_)Miln_>Mifn+M’ - (Mi’n+M(’)ul)/Milﬁ_)0’ (16)

out
and similar sequences with ‘in’ and *out’ interchanged.
Now, we have in general an exact sequence of the form

0—> N — N' —> t(M)/(t(M) N N) ~> 0, a7

and similar sequences with My, Moy, and M, 4+ Mgy in place of N. Combining the two
preceding sequences starting respectively with Miy and M, we obtain the short exact
sequence :

0 — (M) 1 (Min + Mou))/ (M) N Mip) —> (M + Mou )/ Min
- (Mifn + M(’)ut)/Mi’n — 0, (18)

which is not evident at first sight and where many of the previous modules appear.

We claim that all poles and zeros considered in classical conirol theory are only
examples of the characteristic sets of the modules introduced above, and all the relations
among poles and zeros come from the preceding exact diagrams/sequences, by using the
additive property of char(-) (see Proposition 3). Of course, it is essential to notice that the
identification of char(M) with supp(G), when G = gr{M), only allows the use of proper
prime ideals of A[x]—a reason for setting char(0)=8. Also, if A = k, then we can use
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supp(M) instead of supp(G), exactly as proposed by Bourlés & Fliess (1997) and Wood et
al. (to appear). The advantage of our definition is that it covers the variable-coefficient case
as well by introducing another types of algebraic sets having the same dimension as the one
that could be introduced in the constant-coefficient case. Hence both sets provide the same
dimension numbers in the constant-coefficient case, though only the characteristic sets
can be used in the variable-coefficient case. For this reason, we shall provide the following
definitions for the general situation but refer, for simplicity, between braces, to the standard
names that could be used with ‘supp’ instead of ‘char’:

{ observables poles } = char((Miy + Mou)/ Min),

{ transmission poles } = char((M} + M)/ M),

{ input decoupling zeros} = char(t(M)),

{ input-output decoupling zeros } = char(t{M)/(t(M) N (Min + Mou)3)-

We obtain from the last exact sequence with evident notations:

{obp.} U {i.0.d.z.} Uchar(t(M) N Miz) = {trp.} + {id.z.}.
If M, is identifed with F, we obtain therefore t(M) N M;, = 0 and recover the formula
(23) of Bourlés & Fliess (1997).

We may recapitulate the various modules involved on the following picture, explaining
all the situations that can be met in the range of applications,

M
t
Miln + M(;ut
a N
My, 1t Moy
N 7
T (M) t
Min ? Mout-
AN /
0]

Introducing also the sets

e {system poles} = char(M/Miz),
¢ {output decoupling zeros} = char(M /{Mi, + Moud)),

and using the short exact sequencé
0 — (Minp + Mow)/Min — M/ My — M/(Min + Mow) — 0,
we obtain, with evident notations, '

(sys.p.} = {ob.p.} + {o.d.z.].

However, in pratice, there is no loss of generality in supposing M = M, + Mou. In
such a simple situation, assuming moreover t{M) N M, = 0 and combining the preceding
results, we get

{syst.p.} = {ob.p} = {:p.} + {id.z.}.
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Also in general, we may thus introduce the set
{hidden modes} = char(M/(M + Mom)) U char(t(M) N (Mm + Mou)),
and obtain the relation (cf. Bourlés & Fliess 1997)
{hm.} U {i.odz) = {i.dz}U{odz}.

In particular, if M = M, + Mgy, then {i.o.d.z.} = {o.d.z.} = @, and we only get (h.m.} =
{i.d.z.} in a coherent way.

The preceding results prove that input and output play a similar role, and that it is thus
better to use only the words ‘zero’, ‘supp’, or ‘char’ for the corresponding modules and not
the word ‘pole’. Also, despite duality seeming to appear only in the diagrams {11) and (12},
it is in fact of constant use for constructing the characteristic sets of the various modules
involved by looking at the corresponding systems.

EXAMPLE 16 TIf we have a SISO system y —y = u with input  satisfying 4 +u = 0, we
obtain ¥ — y = 0 and thus supp(M) = {x — 1, x -+ 1} while supp(t{M) N M;p) = {x + 1},
and we find the hidden mode x + 1. Such a situation can happen in an electrical LCR
circuit if we suppose conditions on a voltage input.

5. Conclusion

We hope to have convinced the reader that, despite the difficulty of the underlying
mathematical tools, the formal methods of algebraic analysis allow us to clarify and
unify many existing results on muitidimensional control systems. In most cases, the
corresponding algorithms are effective and can easily be checked. Finally, this approach
is the only one which can separate the intrinsic/built-in properties of a control system, such
as torsion-freeness or pureness, from the other properties that depend on the choice of input
and output. Meanwhile, another essential aspect is the possibility of bringing the study of
modules over non-commutative rings to the simpler study of modules over commutative
rings. We believe that none of the results presented here could be obtained without the use
of the extension functor and/or duality, a fact explaining why it took such a long time to
‘estabish a link between algebraic analysis and control theory.
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