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ABSTRACT

In this paper, we study the controllability
of ordinary and partial differential control
systems with variable coefficients. We recall
that controllability is a “built-in” property
of these systems and thus only depends on
its coefficients. On testing controllability,
we have to compute certain ranks and,
depending on the vanishing or non vanishing
of ‘the corresponding determinants, we are
dealing with different cases for the system
to be controllable or not. We represent all
these conditions by means of a “tree”. For
ordinary differential control systems with
variable coefficients, controllability can be
checked in one step by considering its formal
adjoint. Thus it only depends on a gingle
tree. Whereas, for partial differential control
system, it has to be done in two stages,
leading to the construction of a second tree.
Many explicit examples will illustrate this
new approach.
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1 Introduction

Controllability is one of the key-concepts of
control theory. Its earliest definition and test
for time-invariant linear systems go back to

Kalman’s pioneering work. Recent improve-
ments [1, 4, 5] have shown that it was a “built-
in” property of a control system and thus it
was not based on any separation of the con-
trol variables between inputs and outputs. As
a by-product, controllability will depend on
the coefficients of the control system. So, we
are led to investigate two interesting ques-
tions:

e What are the conditions for a control
system with variable coefficients to be
controllable or not?

e Does an arbitrary small change on the
coefficients have an effect on controlla-
bility as a structural property?

Recently in [4, 5, 6], it has been suggested to
revisit most of the concepts of ordinary dif-
ferential control theory (OD control theory)
within the framework of partial differential
contrgl theory (PD control theory), that is,
linear or nonlinear input/output relations de-
fined by systems of partial differential equa-
tions.

The first question is related to the existence
of a constructive test for checking control-
lability of OD or PD control systems with
variable coefficients. Such a test has been
found recently in [5]. The new formal in-
tegrabillity and duality methods involved in
[4, 5, 6] permit a better understanding of
the controllability concept. The second ques-
tion is to know whether controllability is a



generic property (almost always verified) for
OD and PD control systems with variable co-
efficients and leads to question about robust-
ness. The generic characterization of control-
lability property is a question quite developed
in the literature. In his book [8], Wonham
has demonstrated that it was true for Kalman
systems. Friedland gave in [3] some very in-
teresting examples. Let us adapt one of them.
Consider the following linear control system
describing the motion (y', ¥?) of a pair of
masses m; = 1, my = 1 coupled with a spring
of constant k = 1

P+ -y +ou=0
:‘9}2"‘?}2—3{1—'&:0,

where u is an external force and « is a con-
stant parameter. What are the conditions on
a for this system to be controllable or not?
This simple example may be treated through
usual tests. Depending on some determinants
wich are null or not, we are led to investigate
 different cases. The test developped in [5, 6],
that we shall recall, deals with a more gen-
eral situation which even allows to treat time-
varying linear systems obtained from nonlin-
ear system by means of linearization. In the
case of PD control systems, we have to con-
sider successively five PD operators, each de-
termining the next one. We shall see that the
two studies of formal integrability in the test
will give rise to a tree (PD equations and in-
equations on the coefficients of the system) of
various possibilities. Surprisingly, for linear
OD control systems with variable coeflicients,
controllability only depends on a single tree
whereas, strange though it may appear, for
PD control systems we have to build a sec-
ond one. Many examples will illustrate this
new approach.

2 Controllability

2.1 Recent Improvements

We will always consider OD or PD alge-
braic control system with coefficients in a
ground differential ring A with n derivations
A, ...,0,. We form the ring of linear partial

operators with coefficients in k£ and we denote
it by D = A[d,,...,8,). It is in general a non
commutative ring satisfying the Ore poperty
(Vp,g € D, 3a,b € D such that ap = bg).
We introduce the differential indeterminates
y* where | = 1,...,m. The left D-module
spanned by theset y = {3/ | [ = 1,...,m}
is written [y] and an element of [y] looks
like 3 g e 018,y where = (p1,..., 1) is
multi-index with length | g |= g1 + ... + pp.
We form the finitely generated left D-module
[R] of linear differential consequences of the
system generators and denote M = [y]/[R]
the differential residual module.

We call observable any linear combination
with coeflicients in &k of the system variables
(inputs and outputs) and their derivatives of
the control system or, in another words, any
element of M. A free observable is an ob-
servable which does not satisfy any PD or
OD equation. The following definition of the
controllability is proposed in [4]:

Definition 1 A system is controllable if and
only if every observable is free.

A characterization of the controllability in
terms of the differential algebraic closure is
also given in [4]. The equivalent notion of
torsion-free module is used in [1]. A torsion
element m of a module M over a integral do-
main D is an element which satisfies:

Ja#0€D:am=0,

and M is called torsion-free if it has no
torsion elements else 0. We denote 7(M)
the submodule of M made by all the tor-
sion elements and we recall that the module
M/T{M) is torsion-free, a result leading to
the concept of minimal realization.

Example 1 Let us consider again our exam-
ple
P +yl -y +ou=0,
{ Pyt —yl—u=0.

e For &« = —1, if we substract the first
equation from the second, we find an el-
ement of torsion 1 satisfying



{7"1=yl“y2

(%4‘2)7'1 =1

e In the case where o = 1, if we add the
first equation to the second, we find

{ ™=y +1
(:?)Tg =0.

If the ring D is principal (for example
k[4]), the module M is torsion-free if and
only if M is free, that is to say, if there ex-
its a basis of the module (recall that it is
not always true for a module). Some authors
call this basis flat outputs or linearizing out-
puts [2] and compute them by transforming
the system into its Brunosky canonical form.
However, for non principal rings (for example
k[d,...,8,],n > 2), we have the following
module inclusions:

free C projective C torsion-free.

Thus for non principal rings, a torsion-free
module is no more in general a free mod-
ule. An D-module M is projective if there ex-
ists an D-module M’ such as the direct sum
M & M is free. Quillen and Suslin have in-
dependently demonstrated in 1976 the Serre
conjecture of 1950 claiming that over a poly-
nomial ring k[x1,...,xa] where k& is a field,
any projective module is also a free module
[7].

Recently, we find in [6] a formal test per-
mitting to know if a finitely generated D-
module M is torsion-free (i.e. controllable).
The test automatically gives a parametriza-
tion if the system is controllable, otherwise
it exhibits torsion elements. From a geomet-
ric point of view, a linear PD control system
may be defined by a linear PD operator D,
acting on the control variables and we define
its set of solutions by Din = 0. We recall
the duality of differential operators [4, 5]. If
D is a linear differential operator, we denote
its formal adjoint by D and define it by the
following rules:

e The adjoint of a scalar matrix (zero order
operator) is the transposed matrix.

e The adjoint of &; is —&;.

e For a couple of linear PD operators
(P,@) that can be composed, then

PoQ=0QoP.
We have the relation _
WDE = (Du)'¢ + df),

with d the exterior derivative (divergence in
Stokes formula).

We call an operator D, parametrizable if
there exists a set of arbitrary functions £ =
(€',...,€) and a linear operator D such as all
the compatibility conditions of the inhomoge-
neous system D& = n are exactly generated
by D1n = 0.

Theorem 1 A linear PD control system is
controllable if and only if it is parametrizable
[4, 5].

We describe the formal test for checking
controllability of an operator D;:

1. Start with D,
2. Construct its adjoint D.

3. Find the compatibility conditions of
DA = i and denote this operator by
D.

4. Construct its adjoint D.

5. Find the compatibility conditions of
D¢ = 7 and let this operator be Dj.

We are ted to two different cases. If D] =
D, then the system D; is torsion-free (i.e.
controllable) and D is a parametrization of
D;. Else, the operator D; is among (not
exactly) the compatibility conditions D} of
D and the torsion elements of M are all
the new compatibility conditions modulo the
equations D1n = 0. Let use remark that the
geometrical duality has nothing to do with
the functional duality as Pommaret noticed
in {5]. We recall that an operator D, is sur-
jective if and only if the equations Dyn = 0
are differentially independent and injective if
Din =0 = n =0 [4. We have the following
theorem:

LR



Theorem 2 A surjective linear QD operator
1s controllable if and only if its adjoint is in-
Jective [4, 5].

Proof In a principal ring, the notion of
torsion-free and projective module are equiv-
alent. Thus a linear OD control system is
controllable if and only if the module M is
projective. Let D; be a surjective operator
and D; is dual. If D, is an injective opera-
tor, then bringing it to formal integrability,
it provides a left-inverse P, of D, (differen-
tial lift). We have P1 oDy = id,, then taking
the adjoint, we obtain D, o P; = id, and D,
admits a right-inverse which thus character-
izes a projective module [6]. So the system is
controllable. Conversely, if D, is not injective
then we can find a test vector A which satisfies
D;A = 0. Then A D17 is a total derivative of
an observable which is therefore a torsion el-
ement because its derivative is null as soon
as 7 is a solution of the system. Then the
system is not controllable.

Example 2 We take our first exemple. First
of all, let set n = (n',n% 7n®) with p! =
yh,n? = y%n® = u in order to mix to-
gether inputs and outputs. The system can
be rewritten as '

it +n' —n* +an® =0,

{ﬁ+n n' =’ =0.

Multiplying it by a row vector A = (A, Ag)
and integrating by part, we obtain:

??1=>§\1+/\1—)\2:Ml1

= Ao+ Ao — Ay = pg,

?]3 = —/\2 + Oé/\l = U3

We now study the formal integrability of the
corresponding homogenous system. Differen-
tiating the zero-order equation and substitut-
ing, we obtain

(Ol + 1)(0{ - 1))\1 = 0,
and thus the operator D, is injective if and
only if
o # -1,
o # 1.

We can verify that the torsion elements are
exactly those of example 1.

2.2 Controllability of Systems with
Variable Coefficients

We have seen a formal test for checking con-
trollability of both OD and PD linear control
systems. Thanks to theorem 1, for surjective
OD linear control systems, we only have to
study formal integrability of the dual D, and
thus controllability only depends on one tree
of formal integrability conditions.

Example 3 Consider the following OD con-
trol system:

i+ o)y +alt)y = i — pu,

where « is time-varying parameter and 8 is a
constant. Thus D, is defined by

it + eyt + a(t)yy' — i + B = 0.

We propose to find the conditions on @ and
for Dy to be controllable or not. We construct
the operator D, (be careful, the adjoint of ag
is —ah — &)

A= B = pg,
A CL’(t)/\ £,

and investiguate whether it is injective. So
let us put (g1, p2) = (0,0) and rewrite the
corresponding system into the following form

"

Let us bring I to formal integrability:

A—BA=0,
o)A — BA=0.

1. If a(t) = 0 then II is defined by

A= BA=0,
B\ = 0.

(a) If # = 0 then II is equal to A = 0
and thus Dy is not injective. For
these values of the parameters D,
is not controllable.

If § # 0 then Il is equal to A = 0
and thus D, is injective and D, is
controllable for these values of the
parameters.



2. If «(t) # 0 then differentiating the sec-
ond equation of IT and substituting it,

we obtain
A—Br=0,
a(t)A - pA=0,

Bla(t) + aft)* - A =0.

(a) If 8 = 0 then II is equal to A = 0
and thus D, is not injective. D; is
not controllable for these values of
parameters.

(b) If B # 0 then

i If oft) + a(t)? — 6 = 0 then II
is equal to a(t)A — A =0 and
thus D, is not controllable for
these values of parameters,

ii. If a(t) + a(t)? — 8 # 0 then II
is equal to A = 0 and thus D,
is controllable.

We obtain the following tree of integrability
conditions:

a=0 a#0
60Aﬁ;éo ﬁ/k?m
=0 A=0 ,\=0/\
G+o?—f=0 a+a® -840
o)A —BA=0  A=0

We remark that in this example, the system
is controllable for the leaf corresponding to
the most generic situation o« # 0,5 # 0,& +
a? — B # 0 as well as for a less generic one
a =0, # 0. Thus only these two leaves are
robust in the sense of the second question of
the introduction.

For linear PD control systems, controllabil-
ity depends on two studies of formal integra-
bility (D; and D). Thus it depends on two
trees of integrability conditions. Let us give
a example (such examples are very rare !).

Example 4 Let us consider the finite trans-
formation y = f(x) satisfying the Pfaffian
system:

dy® — a(y)dy' = p(z)(dz® — a(z)dz"),

where a(z) only depends on z?. Linearizing
such a transformation around the identity by
setting ¥y = x +1t&(x) +. .. and making ¢ — 0,
after eliminating p(z), we discover easily that
infinitesimal transformations are defined by
the kernel of the differential system D¢ = g
as follows [4]:

—a(2)01E' + 63 + La(z) (1€ + ByE2

+05€%) ~ £20sa(x) = 7,
—a(z)BE! + 383 = 7,
—a(z)03E" + 038 — 3(0,E" + DE?

+03€%) = 77

From the theory of Lie pseudogroups, we can
prove [4] that the PD system D¢ = 0 is for-
mally integrable if and only if &alz) = ¢ =
cst, the “classical case” of contact transforma-
tions corresponding to a{z) = 2% (= ¢ = 1).
It follows that the only compatibility condi-
tion Dy =01is

—a(z)(8y1° —B3n? )+ —Oan' +0a(z)n® = 0,

and the operator D, is surjective. The adjoint
operator D is defined by:

7?1 — BZA = M1
7t — —a(x)BA — A = u,
7 = a(@)FA+2eA = p.

As p3 — a(z)py, = 2¢A, the operator D, is
injective if and only if ¢ # 0. In that case,
the two independent compatibility conditions
can be written:

Dotz — alz)Oppuy — 3epy = 2w,
—a(2)03(u3 — a(z)py) — O (ps
-2

—a{z)p) — 2epy = (1 + a(z)vs),



after introducting the adjoint D of D as fol-
lows:

3a(®)01m + 3011 + a(2)Dspiy

+a(x) Oz pts + Gaa(x) iz = v,
_%‘1(33)32:”1 + %32#3 - %320(39)#1 = Uy,
—Ovp1 — 3a(2)Ospty — Oapty — 503113 = v

In order to point out the link with the dou-
ble set of obstructions to controllability in the
PD situation, let us start with the operator
D depending on the arbitrary function a(z)
and let us question about its controllability.
According to the general test, we must con-
struct the adjoint of D which is D and look
for its compatibility conditions D,, a result
bringing out the condition dsa({x) = ¢, where
c is an arbitary constant. When ¢ = 0, we
should find the zero order compatibility con-
dition g3 — a(z)u; = 0 which is not a con-
sequence of D. When ¢ # 0, the adjoint D;
admits the compatibility condition expressed
by D because we have in that case:

a(x)0svy — Bovy + O1vy — a(x)Byrs —2c 1y = 0,
which gives:
cvy = (0 + a(x)3s)re — O2(1n + alz)vs).

Once again, controllability arises in the most
generic situation. To conclude with this ex-
ample, we notice that a similar but more dif-
ficult computation can be achieved with an
arbitrary 1-form w*(z)dz;, our situation be-
ing wl(z) = —a(z),w?(z) = 0,w*(z) = 1.

3 Conclusion

We have seen that controllability of linear OD
or PD control systems with variable coeffi-
cients depends at most two problems of for-
mal integrability. Thus, it depends at least on
two trees of integrability conditions. These
methods are interesting, not only because
they allow to simplify the calculations as the
reader can check by himself but mostly be-
cause they bring the calculations closer to ba-
sic concepts of geometry {operators, differen-
tial sequences, lifts, ...

) or algebra (torsion,

projective and free modules, ...). In respect
of this purpose, these methods are the only
ones, we know, allowing for an intrinsic study
of control systems.
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