Isomorphisms and Serre's reduction of linear systems

Thomas Cluzeau
University of Limoges ;
CNRS ; XLIM UMR 7252, DMI,
123 avenue Albert Thomas,
87060 Limoges cedex, France
Email: cluzeau@ensil.unilim.fr

Alban Quadrat
Inria Saclay - Île-de-France, DISCO project, L2S, Supélec, 3 rue Joliot Curie,
91192 Gif-sur-Yvette cedex, France.
Email: alban.quadrat@inria.fr

Abstract

In this paper, we give an explicit characterization of isomorphic finitely presented modules in terms of certain inflations of their presentation matrices. In particular cases, this result yields a characterization of isomorphic modules as the completion problem characterizing Serre's reduction, i.e., of the possibility to find a presentation of the module defined by fewer generators and fewer relations. This completion problem is shown to induce different isomorphisms between the modules finitely presented by the matrices defining the inflations. Finally, we show how Serre's reduction implies the existence of a certain idempotent endomorphism of the finitely presented module, i.e., that Serre's reduction implies a particular decomposition, proving the converse of a result obtained in [7].

I. Introduction

A multidimensional linear system (e.g., a linear system of ordinary differential (OD) equations, partial differential (PD) equations, OD time-delay equations, difference equations) can be written as $R \eta=0$, where R is a $q \times p$ matrix with entries in a (noncommutative) polynomial ring D of functional operators (e.g., OD or PD operators, OD time-delay operators, shift operators, difference operators) and η is a vector of unknown functions. More precisely, if \mathcal{F} is a left D-module, then we can consider the linear system or behavior:

$$
\operatorname{ker}_{\mathcal{F}}(R .):=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}
$$

The algebraic analysis approach to mathematical system theory (see, e.g., [2], [9] and the references therein) is based on the fact that the linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) can be studied by$ means of the left D-module $M:=D^{1 \times p} /\left(D^{1 \times q} R\right)$ finitely presented by the matrix R since $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{hom}_{D}(M, \mathcal{F})$ (see, e.g., [2], [9]). Module properties of M and \mathcal{F} are then related to system properties of $\operatorname{ker}_{\mathcal{F}}(R$.). Using constructive homological algebra [10] for (noncommutative) polynomial rings D admitting Gröbner bases for admissible term orders [2], one can effectively check some module properties of M (see [2] and references therein). The corresponding algorithms are implemented in packages of computer algebra systems (e.g., OreModules [3], OreMorphisms [4]).

An important issue in mathematical system (resp., module) theory is the equivalence problem which consists in testing whether two systems (resp., modules) are isomorphic. The first contribution of the paper, developed in Section Π, is
to give an explicit characterization of isomorphic finitely presented modules in terms of inflations of their presentation matrices. The classical Schanuel's lemma (see, e.g., [10]) on the syzygy modules of these modules can then be found again. If the ring D is stably finite (e.g., noetherian) (see, e.g., [8]) and one of the presentation matrices has full row rank, then this result yields a characterization of isomorphic modules as the unimodular completion problem characterizing Serre's reduction problem [1]. This problem aims at finding an equivalent system which contains fewer equations and fewer unknowns [1]. Section [II] contains the second result of the paper. We show how the completion problem induces different isomorphisms between the modules finitely presented by the matrices defining the inflations. Consequences of this result are given for doubly coprime factorizations. The result is used in Section [V] to complete results of [1] on the study of Serre's reduction problem. Serre's reduction is known to be related to the so-called decomposition problem [5], [7]. The last contribution of the paper is to prove the converse of a result of [7]. We show how Serre's reduction implies the existence of a particular idempotent endomorphism of M, i.e., that Serre's reduction implies a particular decomposition.

Notation. D will denote a noetherian ring, i.e., a left and a right noetherian ring, i.e., every left/right ideal of D is finitely generated as a left/right D-module [8], [10]. If M and N are two left/right D-modules, then $\operatorname{hom}_{D}(M, N)$ is the abelian group formed by the left/right D-homomorphisms (i.e., left/right D-linear maps) from M to N. The left D modules M and N are isomorphic, denoted by $M \cong N$, if there exists $\phi \in \operatorname{hom}_{D}(M, N)$ which is an isomorphism, i.e., injective and surjective [8], [10]. If $R \in D^{q \times p}$ is a $q \times p$ matrix with entries in D, then.$R \in \operatorname{hom}_{D}\left(D^{1 \times q}, D^{1 \times p}\right)$ is defined by $(. R)(\lambda)=\lambda R$ for all $\lambda \in D^{1 \times q}$. Similarly, $R . \in \operatorname{hom}_{D}\left(D^{p \times 1}, D^{q \times 1}\right)$ is defined by $(R).(\eta)=R \eta$ for all $\eta \in D^{p \times 1}$. We use the notation \mathcal{F}^{p} for $\mathcal{F}^{p \times 1}$. Finally, the group of the units of the ring $D^{r \times r}$ is denoted by:
$\mathrm{GL}_{r}(D)=\left\{U \in D^{r \times r} \mid \exists V \in D^{r \times r}: U V=V U=I_{r}\right\}$.

II. A CHARACTERIZATION OF ISOMORPHIC MODULES

Let us first characterize isomorphic finitely presented modules in terms of inflations of their presentation matrices.

Theorem 1: Let $R_{1} \in D^{q \times p}$ and $Q_{2} \in D^{s \times t}$ be two matrices. Then, the following assertions are equivalent:

1) The left D-modules $M_{1}=D^{1 \times p} /\left(D^{1 \times q} R_{1}\right)$ and $M_{2}=$ $D^{1 \times t} /\left(D^{1 \times s} Q_{2}\right)$ are isomorphic.
2) There exist matrices
$R_{2} \in D^{q \times s}, Q_{1} \in D^{p \times t}, S_{1} \in D^{p \times q}, S_{2} \in D^{s \times q}$,
$T_{1} \in D^{t \times p}, T_{2} \in D^{t \times s}, V_{1} \in D^{q \times l}, V_{2} \in D^{t \times l}$,
$W_{1} \in D^{p \times m}, W_{2} \in D^{s \times m}, P_{1} \in D^{l \times q}, P_{2} \in D^{m \times s}$
satisfying the following two identities

$$
\begin{align*}
& \left(\begin{array}{ll}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=I_{q+t}+\binom{V_{1}}{V_{2}}\left(\begin{array}{ll}
P_{1} & 0
\end{array}\right), \\
& \left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)=I_{p+s}+\binom{W_{1}}{W_{2}}\left(\begin{array}{ll}
0 & P_{2}
\end{array}\right), \tag{2}
\end{align*}
$$

where $P_{1} \in D^{l \times q}$ and $P_{2} \in D^{m \times s}$ are such that:

$$
\begin{aligned}
\operatorname{ker}_{D}\left(. R_{1}\right) & :=\left\{\mu \in D^{1 \times q} \mid \mu R_{1}=0\right\} \\
=\operatorname{im}_{D}\left(. P_{1}\right) & :=D^{1 \times l} P_{1}=\left\{\xi P_{1} \mid \xi \in D^{1 \times l}\right\} \\
\operatorname{ker}_{D}\left(. Q_{2}\right) & =\left\{\nu \in D^{1 \times s} \mid \nu Q_{2}=0\right\} \\
=\operatorname{im}_{D}\left(. P_{2}\right) & =D^{1 \times m} P_{2}=\left\{\zeta P_{2} \mid \zeta \in D^{1 \times m}\right\} .
\end{aligned}
$$

Proof: Let $\pi_{i}: D^{1 \times r_{i}} \longrightarrow M_{i}$ be the canonical projection onto M_{i}, where $i=1,2, r_{1}=p$ and $r_{2}=t$. A left D homomorphism $f: M_{1} \longrightarrow M_{2}$ is defined by

$$
\forall \lambda_{1} \in D^{1 \times p}, \quad f\left(\pi_{1}\left(\lambda_{1}\right)\right)=\pi_{2}\left(\lambda_{1} Q_{1}\right)
$$

for a certain matrix $Q_{1} \in D^{p \times t}$ which is such that:

$$
\begin{equation*}
\exists R_{2} \in D^{q \times s}: \quad R_{1} Q_{1}=-R_{2} Q_{2} . \tag{3}
\end{equation*}
$$

For more details, see, e.g., [5]. Similarly, a left D homomorphism $g: M_{2} \longrightarrow M_{1}$ is defined by

$$
\forall \lambda_{2} \in D^{1 \times t}, \quad g\left(\pi_{2}\left(\lambda_{2}\right)\right)=\pi_{1}\left(\lambda_{2} T_{1}\right)
$$

for a certain $T_{1} \in D^{t \times p}$ which is such that:

$$
\begin{equation*}
\exists S_{2} \in D^{s \times q}: \quad Q_{2} T_{1}=-S_{2} R_{1} \tag{4}
\end{equation*}
$$

Hence, $M_{1} \cong M_{2}$ iff $g \circ f=\operatorname{id}_{M_{1}}$ and $f \circ g=\operatorname{id}_{M_{2}}$, i.e.:
$\left\{\begin{array}{l}\pi_{1}\left(\lambda_{1}\right)=(g \circ f)\left(\pi_{1}\left(\lambda_{1}\right)\right)=g\left(\pi_{2}\left(\lambda_{1} Q_{1}\right)\right)=\pi_{1}\left(\lambda_{1} Q_{1} T_{1}\right), \\ \pi_{2}\left(\lambda_{2}\right)=(f \circ g)\left(\pi_{2}\left(\lambda_{2}\right)\right)=f\left(\pi_{1}\left(\lambda_{2} T_{1}\right)\right)=\pi_{2}\left(\lambda_{2} T_{1} Q_{1}\right),\end{array}\right.$
i.e., for all $\lambda_{1} \in D^{1 \times p}$ and for all $\lambda_{2} \in D^{1 \times t}$,

$$
\pi_{1}\left(\lambda_{1}\left(I_{p}-Q_{1} T_{1}\right)\right)=0, \quad \pi_{2}\left(\lambda_{2}\left(I_{t}-T_{1} Q_{1}\right)\right)=0
$$

i.e., iff there exist $S_{1} \in D^{p \times q}$ and $T_{2} \in D^{t \times s}$ such that:

$$
\begin{equation*}
I_{p}-Q_{1} T_{1}=S_{1} R_{1}, \quad I_{t}-T_{1} Q_{1}=T_{2} Q_{2} \tag{5}
\end{equation*}
$$

Hence, $M_{1} \cong M_{2}$ is equivalent to the existence of matrices satisfying (3), (4), (5), i.e., satisfying the identities:

$$
\left(\begin{array}{ll}
R_{1} & R_{2} \tag{6}\\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=\left(\begin{array}{cc}
R_{1} S_{1}+R_{2} S_{2} & 0 \\
T_{1} S_{1}+T_{2} S_{2} & I_{t}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
S_{1} & Q_{1} \tag{7}\\
S_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{cc}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)=\left(\begin{array}{cc}
I_{p} & S_{1} R_{2}+Q_{1} T_{2} \\
0 & S_{2} R_{2}+Q_{2} T_{2}
\end{array}\right)
$$

Let us prove that (1) is equivalent to (6). Let us first compute $R_{1} S_{1}+R_{2} S_{2}$. Using (4), (3), and (5), we obtain:

$$
\begin{aligned}
\left(R_{1} S_{1}+R_{2} S_{2}\right) R_{1} & =R_{1} S_{1} R_{1}-R_{2} Q_{2} T_{1} \\
& =R_{1} S_{1} R_{1}+R_{1} Q_{1} T_{1} \\
& =R_{1} S_{1} R_{1}+R_{1}\left(I_{p}-S_{1} R_{1}\right)=R_{1}
\end{aligned}
$$

Thus, we get $\left(\left(R_{1} S_{1}+R_{2} S_{2}\right)-I_{q}\right) R_{1}=0$, and thus $D^{1 \times q}\left(\left(R_{1} S_{1}+R_{2} S_{2}\right)-I_{q}\right) \subseteq \operatorname{ker}_{D}\left(. R_{1}\right)=D^{1 \times l} P_{1}$, which shows that $V_{1} \in D^{q \times l}$ exists such that:

$$
\begin{equation*}
R_{1} S_{1}+R_{2} S_{2}=I_{q}+V_{1} P_{1} \tag{8}
\end{equation*}
$$

Let us compute $T_{1} S_{1}+T_{2} S_{2}$. Using (5) and (4), we get

$$
\begin{aligned}
T_{1}\left(S_{1} R_{1}\right) & =T_{1}\left(I_{p}-Q_{1} T_{1}\right)=\left(I_{t}-T_{1} Q_{1}\right) T_{1} \\
& =T_{2}\left(Q_{2} T_{1}\right)=-T_{2} S_{2} R_{1}
\end{aligned}
$$

i.e., $\left(T_{1} S_{1}+T_{2} S_{2}\right) R_{1}=0$, i.e., $D^{1 \times t}\left(T_{1} S_{1}+T_{2} S_{2}\right) \subseteq$ $\operatorname{ker}_{D}\left(. R_{1}\right)=D^{1 \times l} P_{1}$, and thus there exists $V_{2} \in D^{t \times l}$ such that:

$$
\begin{equation*}
T_{1} S_{1}+T_{2} S_{2}=V_{2} P_{1} \tag{9}
\end{equation*}
$$

Using (8) and (9), (6) and (7) is equivalent to (1) and (7).
Similarly, using (5) and (3), we obtain

$$
\begin{aligned}
Q_{1}\left(T_{2} Q_{2}\right) & =Q_{1}\left(I_{t}-T_{1} Q_{1}\right)=\left(I_{p}-Q_{1} T_{1}\right) Q_{1} \\
& =S_{1}\left(R_{1} Q_{1}\right)=-S_{1} R_{2} Q_{2}
\end{aligned}
$$

i.e., $\left(S_{1} R_{2}+Q_{1} T_{2}\right) Q_{2}=0$, i.e., $D^{1 \times p}\left(S_{1} R_{2}+Q_{1} T_{2}\right) \subseteq$ $\operatorname{ker}_{D}\left(. Q_{2}\right)=D^{1 \times m} P_{2}$, and thus there exists $W_{1} \in D^{p \times m}$ such that:

$$
\begin{equation*}
S_{1} R_{2}+Q_{1} T_{2}=W_{1} P_{2} \tag{10}
\end{equation*}
$$

Using (3), (4), and (5), we obtain:

$$
\begin{aligned}
\left(S_{2} R_{2}+Q_{2} T_{2}\right) Q_{2} & =-S_{2} R_{1} Q_{1}+Q_{2} T_{2} Q_{2} \\
& =Q_{2} T_{1} Q_{1}+Q_{2} T_{2} Q_{2} \\
& =Q_{2}\left(I_{t}-T_{2} Q_{2}\right)+Q_{2} T_{2} Q_{2}=Q_{2}
\end{aligned}
$$

Thus, we get $\left(S_{2} R_{2}+Q_{2} T_{2}-I_{s}\right) Q_{2}=0$, and thus $D^{1 \times s}\left(S_{2} R_{2}+Q_{2} T_{2}-I_{s}\right) \subseteq \operatorname{ker}_{D}\left(. Q_{2}\right)=D^{1 \times m} P_{2}$, which shows that there exists $W_{2} \in D^{s \times m}$ such that:

$$
\begin{equation*}
S_{2} R_{2}+Q_{2} T_{2}=I_{s}+W_{2} P_{2} \tag{11}
\end{equation*}
$$

Hence, (1) and (7) is finally equivalent to (1) and (2).
The next corollary of Theorem 1 gives a constructive proof of the standard Schanuel's lemma [10] in module theory.

Corollary 1: With the notations and the assumptions of Theorem [1] if we introduce the unimodular matrices
$P=\left(\begin{array}{cc}I_{p} & -Q_{1} \\ T_{1} & I_{t}-T_{1} Q_{1}\end{array}\right), P^{-1}=\left(\begin{array}{cc}I_{p}-Q_{1} T_{1} & Q_{1} \\ -T_{1} & I_{t}\end{array}\right)$,
then the following left D-homomorphism

$$
\begin{align*}
u: D^{1 \times q} R_{1} \oplus D^{1 \times t} & \longrightarrow D^{1 \times p} \oplus D^{1 \times s} Q_{2} \\
\left(\nu_{1} R_{1}, \nu_{2}\right) & \longmapsto\left(\nu_{1} R_{1}, \nu_{2}\right) P \tag{12}
\end{align*}
$$

is an isomorphism and:

$$
\begin{align*}
u^{-1}: D^{1 \times p} \oplus D^{1 \times s} Q_{2} & \longrightarrow D^{1 \times q} R_{1} \oplus D^{1 \times t} \\
\left(\mu_{1}, \mu_{2} Q_{2}\right) & \longmapsto\left(\mu_{1}, \mu_{2} Q_{2}\right) P^{-1} \tag{13}
\end{align*}
$$

Proof: The proof of Theorem 1 shows that we have the following commutative exact diagram [10]:

$$
\begin{array}{cccccc}
D^{1 \times l} \xrightarrow{\xrightarrow{P_{1}}} & D^{1 \times q} & \xrightarrow{R_{1}} & D^{1 \times p} & \xrightarrow{\pi_{1}} & M_{1} \longrightarrow 0 \\
& \downarrow .-R_{2} & \downarrow \cdot Q_{1} & \downarrow f \\
D^{1 \times m} \xrightarrow{\text {. } P_{2}} & D^{1 \times s} & \xrightarrow{. Q_{2}} & D^{1 \times t} & \xrightarrow{\pi_{2}} & M_{2} \longrightarrow 0 .
\end{array}
$$

Now, $P_{1} R_{1}=0$ and 3) implies that $P_{1}\left(R_{2} Q_{2}\right)=$ $-P_{1}\left(R_{1} Q_{1}\right)=0$, i.e., $D^{1 \times l}\left(P_{1} R_{2}\right) \subseteq \operatorname{ker}_{D}\left(. Q_{2}\right)=$ $D^{1 \times m} P_{2}$, and thus there exists a matrix $X \in D^{l \times m}$ such that $P_{1} R_{2}=-X P_{2}$. Similarly, there exists $Y \in D^{m \times l}$ such that $P_{2} S_{2}=-Y P_{1}$. With the following notations

$$
U:=\left(\begin{array}{ll}
S_{1} & Q_{1} \tag{14}\\
S_{2} & Q_{2}
\end{array}\right), \quad U^{\prime}:=\left(\begin{array}{cc}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)
$$

$\left(\begin{array}{ll}0 & P_{2}\end{array}\right) U=-Y\left(\begin{array}{ll}P_{1} & 0\end{array}\right),\left(\begin{array}{ll}P_{1} & 0\end{array}\right) U^{\prime}=-X\left(\begin{array}{ll}0 & P_{2}\end{array}\right)$, which yields the following commutative exact diagrams

where the left D-modules L_{1} and L_{2} are defined by

$$
\left.\left.\begin{array}{rl}
L_{1} & =\operatorname{coker}_{D}\left(.\left(P_{1}\right.\right. \\
P^{2}
\end{array}\right)\right):=D^{1 \times(q+t)} /\left(D^{1 \times l}\left(P_{1} \quad 0\right)\right), ~ 子 \operatorname{coker}_{D}\left(.\left(\begin{array}{ll}
0 & P_{2}
\end{array}\right)\right):=D^{1 \times(p+s)} /\left(D^{1 \times m}\left(\begin{array}{ll}
0 & P_{2}
\end{array}\right)\right), ~ l
$$

and the left D-homomorphisms g and h are defined by:

$$
\begin{array}{rll}
g: L_{2} & \longrightarrow L_{1} \\
\kappa_{2}\left(\left(\begin{array}{c}
\mu_{1} \\
\left.\left.\mu_{2}\right)\right)
\end{array}\right.\right. & \longmapsto \kappa_{1}\left(\left(\mu_{1} S_{1}+\mu_{2} S_{2}\right.\right. & \left.\left.\mu_{1} Q_{1}+\mu_{2} Q_{2}\right)\right), \\
h: L_{1} & \longrightarrow L_{2} \\
\kappa_{1}\left(\left(\nu_{1} \quad \nu_{2}\right)\right) & \longmapsto \kappa_{2}\left(\left(\nu_{1} R_{1}+\nu_{2} T_{1}\right.\right. & \left.\left.\nu_{1} R_{2}+\nu_{2} T_{2}\right)\right) .
\end{array}
$$

Then, (1) and (2) show that $g \circ h=\mathrm{id}_{L_{1}}$ and $h \circ g=\mathrm{id}_{L_{2}}$, i.e., g is a left D-isomorphism, $h=g^{-1}$ and $L_{1} \cong L_{2}$.

We have $\operatorname{coker}_{D}\left(. P_{1}\right):=D^{1 \times q} /\left(D^{1 \times l} P_{1}\right) \cong D^{1 \times q} R_{1}$ and $\operatorname{coker}_{D}\left(. P_{2}\right):=D^{1 \times s} /\left(D^{1 \times m} P_{2}\right) \cong D^{1 \times s} Q_{2}$ and:

$$
\left\{\begin{array}{l}
L_{1} \cong D^{1 \times q} /\left(D^{1 \times l} P_{1}\right) \oplus D^{1 \times t} \\
L_{2} \cong D^{1 \times p} \oplus D^{1 \times s} /\left(D^{1 \times m} P_{2}\right)
\end{array}\right.
$$

Hence, we have the following left D-isomorphism:

$$
\left.\begin{array}{rl}
L_{1} & \xrightarrow{\alpha} D^{1 \times q} R_{1} \oplus D^{1 \times t} \\
\kappa_{1}\left(\left(\nu_{1}\right.\right. & \left.\left.\nu_{2}\right)\right)
\end{array}\right) \longmapsto\left(\nu_{1} R_{1}, \nu_{2}\right) .
$$

Similarly, we have the following left D-isomorphism:

$$
\begin{array}{ccc}
L_{2} & \stackrel{\beta}{\longrightarrow} & D^{1 \times p} \oplus D^{1 \times s} Q_{2} \\
\kappa_{2}\left(\left(\mu_{1}\right.\right. & \left.\left.\mu_{2}\right)\right) & \longmapsto
\end{array}
$$

The left D-isomorphism $u=\beta \circ h \circ \alpha^{-1}$ and its inverse $u^{-1}=\alpha \circ g \circ \beta^{-1}$ are then defined by:

\[

\]

$$
D^{1 \times p} \oplus D^{1 \times s} Q_{2} \quad \xrightarrow{u^{-1}} \quad D^{1 \times q} R_{1} \oplus D^{1 \times t}
$$

$$
\left(\mu_{1}, \mu_{2} Q_{2}\right) \longmapsto\left(\left(\mu_{1} S_{1}+\mu_{2} S_{2}\right) R_{1} \quad \mu_{1} Q_{1}+\mu_{2} Q_{2}\right)
$$

Using (3) and (5), (5) and (4), we obtain

$$
\begin{aligned}
& \left(\nu_{1} R_{2}+\nu_{2} T_{2}\right) Q_{2}=-\left(\nu_{1} R_{1}\right) Q_{1}+\nu_{2}\left(I_{t}-T_{1} Q_{1}\right), \\
& \left(\mu_{1} S_{1}+\mu_{2} S_{2}\right) R_{1}=\mu_{1}\left(I_{p}-Q_{1} T_{1}\right)-\left(\mu_{2} Q_{2}\right) T_{1},
\end{aligned}
$$

which finally yields (12) and (13).
Let us give another corollary of Theorem 1 which connects isomorphisms to the so-called Serre's reduction [1].

Corollary 2: With the notations and the assumptions of Theorem 1. let us assume that $q+t=p+s$.

1) Then, we have:

$$
\begin{align*}
&\left(\begin{array}{cc}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=I_{q+t} \\
& \Leftrightarrow \quad\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)=I_{p+s} \tag{15}
\end{align*}
$$

2) If either R_{1} or Q_{2} has full row rank, namely, $\operatorname{ker}_{D}\left(. R_{1}\right)=0$ or $\operatorname{ker}_{D}\left(. Q_{2}\right)=0$, then $M_{1} \cong M_{2}$ is equivalent to the existence of matrices $R_{2} \in D^{q \times s}$, $Q_{1} \in D^{p \times t}, Q_{2} \in D^{s \times t}, S_{1} \in D^{p \times q}, S_{2} \in D^{s \times q}$, $T_{1} \in D^{t \times p}$, and $T_{2} \in D^{t \times s}$ such that:

$$
\left(\begin{array}{cc}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=I_{q+t}
$$

Proof: 1 is a consequence of $q+t=p+s$ and of the fact that D noetherian ring, and thus a stably finite ring, i.e., a ring for which $U V=I_{r}$ for two matrices $U, V \in D^{r \times r}$ yields $V U=I_{r}$ [8]. 2 is a direct consequence of Theorem 1 with $P_{1}=0$ or $P_{2}=0$ and of the previous point 1 .

III. UnIMODULAR COMPLETION PROBLEM

The next theorem shows that the unimodular completion problem induces different isomorphisms between the modules finitely presented by the matrices defining the inflations.

Theorem 2: Let $p, q, s, t \in \mathbb{N}$ satisfy $q+t=p+s$ and $R_{1} \in D^{q \times p}, R_{2} \in D^{q \times s}, Q_{1} \in D^{p \times t}, Q_{2} \in D^{s \times t}, S_{1} \in$ $D^{p \times q}, S_{2} \in D^{s \times q}, T_{1} \in D^{t \times p}$, and $T_{2} \in D^{t \times s}$ such that:

$$
\left(\begin{array}{cc}
R_{1} & R_{2} \tag{16}\\
T_{1} & T_{2}
\end{array}\right)\left(\begin{array}{ll}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right)=I_{q+t}
$$

Then, we have:
$\operatorname{coker}_{D}\left(. R_{1}\right) \cong \operatorname{coker}_{D}\left(. Q_{2}\right), \quad \operatorname{ker}_{D}\left(. R_{1}\right) \cong \operatorname{ker}_{D}\left(. Q_{2}\right)$, $\operatorname{coker}_{D}\left(. S_{1}\right) \cong \operatorname{coker}_{D}\left(. T_{2}\right), \quad \operatorname{ker}_{D}\left(. S_{1}\right) \cong \operatorname{ker}_{D}\left(. T_{2}\right)$, $\operatorname{coker}_{D}\left(. Q_{1}\right) \cong \operatorname{coker}_{D}\left(. R_{2}\right), \quad \operatorname{ker}_{D}\left(. Q_{1}\right) \cong \operatorname{ker}_{D}\left(. R_{2}\right)$, $\operatorname{coker}_{D}\left(. T_{1}\right) \cong \operatorname{coker}_{D}\left(. S_{2}\right), \quad \operatorname{ker}_{D}\left(. T_{1}\right) \cong \operatorname{ker}_{D}\left(. S_{2}\right)$.

Right D-module analogous to the above results hold, i.e.: $\operatorname{coker}_{D}\left(R_{1}.\right) \cong \operatorname{coker}_{D}\left(Q_{2}.\right), \operatorname{ker}_{D}\left(R_{1}.\right) \cong \operatorname{ker}_{D}\left(Q_{2}.\right), \ldots$

Proof: Let us consider the following left D-modules:

$$
\begin{aligned}
& M_{1}:=\operatorname{coker}_{D}\left(\cdot R_{1}\right)=D^{1 \times p} /\left(D^{1 \times q} R_{1}\right), \\
& M_{2}:=\operatorname{coker}_{D}\left(\cdot Q_{2}\right)=D^{1 \times t} /\left(D^{1 \times s} Q_{2}\right)
\end{aligned}
$$

By 1 of Corollary 2 16 yields:

$$
\left(\begin{array}{cc}
S_{1} & Q_{1} \tag{17}\\
S_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{cc}
R_{1} & R_{2} \\
T_{1} & T_{2}
\end{array}\right)=I_{p+s}
$$

From (3), we have $R_{1} Q_{1}=-R_{2} Q_{2}$, which yields the following commutative exact diagram

where α_{1} is the left D-homomorphism defined by:

$$
\begin{aligned}
& \alpha_{1}: M_{1} \longrightarrow \\
& M_{2} \\
& \pi_{1}\left(\lambda_{1}\right) \longmapsto \\
& \pi_{2}\left(\lambda_{1} Q_{1}\right) .
\end{aligned}
$$

Moreover, (18) yields the following left D-homomorphism:

$$
\begin{aligned}
\alpha_{1}^{\prime}: \operatorname{ker}_{D}\left(. R_{1}\right) & \longrightarrow \operatorname{ker}_{D}\left(. Q_{2}\right) \\
\mu_{1} & \longmapsto-\mu_{1} R_{2}
\end{aligned}
$$

Similarly, the identity $Q_{2} T_{1}=-S_{2} R_{1}$ yields the following commutative exact diagram

where α_{2} is the left D-homomorphism defined by:

$$
\begin{aligned}
\alpha_{2}: M_{2} & \longrightarrow M_{1} \\
\pi_{2}\left(\nu_{2}\right) & \longmapsto \pi_{1}\left(\nu_{2} T_{1}\right) .
\end{aligned}
$$

Moreover, (19) yields the following left D-homomorphism:

$$
\begin{aligned}
\alpha_{2}^{\prime}: \operatorname{ker}_{D}\left(. Q_{2}\right) & \longrightarrow \operatorname{ker}_{D}\left(. R_{1}\right) \\
\theta_{2} & \longmapsto-\theta_{2} S_{2}
\end{aligned}
$$

Now, (16) and (17) yield (5) so that

$$
\begin{aligned}
\left(\alpha_{1} \circ \alpha_{2}\right)\left(\pi_{2}\left(\nu_{2}\right)\right) & =\alpha_{1}\left(\pi_{1}\left(\nu_{2} T_{1}\right)\right)=\pi_{2}\left(\nu_{2} T_{1} Q_{1}\right) \\
& =\pi_{2}\left(\nu_{2}\right)-\pi_{2}\left(\left(\nu_{2} T_{2}\right) Q_{2}\right)=\pi_{2}\left(\nu_{2}\right) \\
\left(\alpha_{2} \circ \alpha_{1}\right)\left(\pi_{1}\left(\lambda_{1}\right)\right) & =\alpha_{2}\left(\pi_{2}\left(\lambda_{1} Q_{1}\right)\right)=\pi_{1}\left(\lambda_{1} Q_{1} T_{1}\right) \\
& \left.=\pi_{1}\left(\lambda_{1}\right)-\pi_{1}\left(\left(\lambda_{1} S_{1}\right) R_{1}\right)\right)=\pi_{1}\left(\lambda_{1}\right)
\end{aligned}
$$

i.e., α_{1} is a left D-isomorphism, $\alpha_{2}=\alpha_{1}^{-1}$ and $M_{1} \cong M_{2}$.

Now, from (16) and (17), we have $R_{2} S_{2}=I_{q}-R_{1} S_{1}$ and $S_{2} R_{2}=I_{s}-Q_{2} T_{2}$, which implies that

$$
\begin{aligned}
\left(\alpha_{1}^{\prime} \circ \alpha_{2}^{\prime}\right)\left(\theta_{2}\right) & =-\alpha_{1}^{\prime}\left(\theta_{2} S_{2}\right)=\theta_{2}\left(S_{2} R_{2}\right) \\
& =\theta_{2}-\left(\theta_{2} Q_{2}\right) T_{2}=\theta_{2} \\
\left(\alpha_{2}^{\prime} \circ \alpha_{1}^{\prime}\right)\left(\mu_{1}\right) & =-\alpha_{2}^{\prime}\left(\mu_{1} R_{2}\right)=\mu_{1}\left(R_{2} S_{2}\right) \\
& =\mu_{1}-\left(\mu_{1} R_{1}\right) S_{1}=\mu_{1}
\end{aligned}
$$

i.e., α_{1}^{\prime} is a left D-isomorphism, $\alpha_{2}^{\prime}=\alpha_{1}^{\prime-1}$ and:

$$
\operatorname{ker}_{D}\left(\cdot Q_{2}\right) \cong \operatorname{ker}_{D}\left(. R_{1}\right)
$$

Since the role played by R_{1} (resp., Q_{2}) in 16) and 17) is symmetric to the one played by S_{1} (resp., T_{2}), we obtain:
$\operatorname{coker}_{D}\left(. S_{1}\right) \cong \operatorname{coker}_{D}\left(. T_{2}\right), \quad \operatorname{ker}_{D}\left(. S_{1}\right) \cong \operatorname{ker}_{D}\left(. T_{2}\right)$.
Finally, the other isomorphisms of the theorem can be similarly proved. For instance, the left D-isomorphism $\operatorname{ker}_{D}\left(. Q_{1}\right) \cong \operatorname{ker}_{D}\left(. R_{2}\right)$ is defined by:

$$
\begin{align*}
\gamma_{1}^{\prime}: \operatorname{ker}_{D}\left(\cdot Q_{1}\right) & \longrightarrow \operatorname{ker}_{D}\left(. R_{2}\right) \tag{20}\\
\theta_{1} & \longmapsto-\theta_{1} S_{1}, \tag{21}\\
\gamma_{2}^{\prime}=\gamma_{1}^{\prime-1}: \operatorname{ker}_{D}\left(. R_{2}\right) & \longrightarrow \operatorname{ker}_{D}\left(. Q_{1}\right) \\
\mu_{2} & \longmapsto-\mu_{2} R_{1} .
\end{align*}
$$

Theorem 2 generalizes Theorem 4.1 of [1] for a non full row rank R, i.e., $\operatorname{ker}_{D}(. R)$ is not necessarily reduced to 0 .

Let us give an application of Theorem 2 to doubly coprime factorizations. To keep the notations classically used in control theory, the noetherian domain D is denoted by A.

Corollary 3: Let $K:=Q(A)$ be the left and right quotient field of A [8], $P \in K^{q \times r}$, and $P=D^{-1} N=\widetilde{N} \widetilde{D}^{-1}$ a doubly coprime factorization of P, namely, $D \in A^{q \times q}, N \in$ $A^{q \times r}, \widetilde{D} \in A^{r \times r}$ and $\widetilde{N} \in A^{q \times r}$ satisfy

$$
\left(\begin{array}{cc}
D & -N \\
-\tilde{Y} & \tilde{X}
\end{array}\right)\left(\begin{array}{cc}
X & \tilde{N} \\
Y & \widetilde{D}
\end{array}\right)=I_{q+r}
$$

for certain matrices $X \in A^{q \times q}, Y \in A^{r \times q}, \widetilde{X} \in A^{r \times r}$, and $\widetilde{Y} \in A^{r \times q}$. Then, we have:
$\operatorname{coker}_{A}(. D) \cong \operatorname{coker}_{A}(. \widetilde{D}), \quad \operatorname{ker}_{A}(. D) \cong \operatorname{ker}_{A}(. \widetilde{D})$,
$\operatorname{coker}_{A}(. X) \cong \operatorname{coker}_{A}(. \widetilde{X}), \quad \operatorname{ker}_{A}(. X) \cong \operatorname{ker}_{A}(. \widetilde{X})$,
$\operatorname{coker}_{A}(. N) \cong \operatorname{coker}_{A}(. \widetilde{N}), \quad \operatorname{ker}_{A}(. N) \cong \operatorname{ker}_{A}(. \widetilde{N})$,
$\operatorname{coker}_{A}(. Y) \cong \operatorname{coker}_{A}(. \tilde{Y}), \quad \operatorname{ker}_{A}(. Y) \cong \operatorname{ker}_{A}(. \tilde{Y})$,
Similarly, right A-module analogous to the above results hold, i.e., $\operatorname{coker}_{A}(D.) \cong \operatorname{coker}_{A}(\widetilde{D}),. \ldots$

Corollary 4: With the notations and the hypotheses of Theorem 2, we have:

1) R_{1} has full row rank iff so is Q_{2}.
2) R_{2} admits a left inverse iff so is Q_{1}. More precisely:
a) If $Z_{2} \in D^{s \times q}$ is a left inverse of R_{2}, then Q_{1} admits the left inverse $T_{1}-T_{2} Z_{2} R_{1}$.
b) If $Y_{1} \in D^{t \times p}$ is a left inverse of Q_{1}, then R_{2} admits the left inverse $S_{2}-Q_{2} Y_{1} S_{1}$.
3) If R_{2} or Q_{1} admits a left inverse, then $\operatorname{ker}_{D}\left(\cdot R_{2}\right) \cong$ $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is stably free of rank $q-s=p-t$, i.e.:

$$
\operatorname{ker}_{D}\left(. R_{2}\right) \oplus D^{1 \times s} \cong D^{1 \times q}
$$

4) $\operatorname{ker}_{D}\left(\cdot R_{2}\right)$ is a free left D-module of rank r iff so is $\operatorname{ker}_{D}\left(. Q_{1}\right)$. More precisely, we have:
a) If $B_{2} \in D^{r \times q}$ is a basis of $\operatorname{ker}_{D}\left(. R_{2}\right)$, i.e., the matrix B_{2} has full row rank and satisfies
$\operatorname{ker}_{D}\left(. R_{2}\right)=D^{1 \times r} B_{2}$, then $C_{2}:=B_{2} R_{1}$ is a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, i.e., $C_{2} \in D^{r \times p}$ has full row rank and satisfies $\operatorname{ker}_{D}\left(. Q_{1}\right)=D^{1 \times r} C_{2}$.
b) If $C_{1} \in D^{r \times p}$ is a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, i.e., the matrix C_{1} has full row rank and satisfies $\operatorname{ker}_{D}\left(. Q_{1}\right)=D^{1 \times r} C_{1}$, then $B_{1}:=C_{1} S_{1}$ is a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, i.e., $B_{1} \in D^{r \times q}$ has full row rank and satisfies $\operatorname{ker}_{D}\left(. Q_{1}\right)=D^{1 \times r} B_{1}$.

Proof: 1. By Theorem 2, $\operatorname{ker}_{D}\left(. Q_{2}\right) \cong \operatorname{ker}_{D}\left(. R_{1}\right)=0$.
2. $\operatorname{coker}_{D}\left(. R_{2}\right)=0$ iff $D^{1 \times s}=D^{1 \times q} R_{2}$, i.e., iff R_{2} admits a left inverse $Z_{2} \in D^{s \times q}$, i.e., $Z_{2} R_{2}=I_{s}$. Similarly for $\operatorname{coker}_{D}\left(\cdot Q_{1}\right)$. The first result follows from $\operatorname{coker}_{D}\left(. R_{2}\right) \cong$ $\operatorname{coker}_{D}\left(. Q_{1}\right)$ by Theorem 2. If $Z_{2} \in D^{s \times q}$ is such that $Z_{2} R_{2}=I_{s}$, then using 16, we get $R_{1} Q_{1}=-R_{2} Q_{2}$ and $T_{1} Q_{1}+T_{2} Q_{2}=I_{t}$, and thus $\left(T_{1}-T_{2} Z_{2} R_{1}\right) Q_{1}=$ $T_{1} Q_{1}+T_{2}\left(Z_{2} R_{2}\right) Q_{2}=T_{1} Q_{1}+T_{2} Q_{2}=I_{t}$. Now, if $Y_{1} \in D^{t \times p}$ is a left inverse of Q_{1}, i.e., $Y_{1} Q_{1}=I_{t}$, then using (17), we get $S_{1} R_{2}=-Q_{1} T_{2}$ and $S_{2} R_{2}+Q_{2} T_{2}=I_{s}$, and thus $\left(S_{2}-Q_{2} Y_{1} S_{1}\right) R_{2}=S_{2} R_{2}+Q_{2}\left(Y_{1} Q_{1}\right) T_{2}=$ $S_{2} R_{2}+Q_{2} T_{2}=I_{s}$.
3. If $Z_{2} \in D^{s \times q}$ is a left inverse of R_{2}, then the matrix $\Pi:=R_{2} Z_{2}$ is an idempotent of the ring $D^{q \times q}$, i.e., $\Pi^{2}=\Pi$, and thus $D^{1 \times q}=\operatorname{ker}_{D}(. \Pi) \oplus \operatorname{im}_{D}(. \Pi)$. Now, since.$Z_{2} \in \operatorname{hom}_{D}\left(D^{1 \times s}, D^{1 \times q}\right)$ is injective, $\operatorname{ker}_{D}(. \Pi)=$ $\operatorname{ker}_{D}\left(. R_{2}\right)$. Moreover, since.$R_{2} \in \operatorname{hom}_{D}\left(D^{1 \times q}, D^{1 \times s}\right)$ is surjective, $\operatorname{im}_{D}(. \Pi)=D^{1 \times q} \Pi=D^{1 \times s} Z_{2}$, which shows that $\operatorname{ker}_{D}\left(. R_{2}\right) \oplus D^{1 \times s} Z_{2}=D^{1 \times q}$, i.e., $\operatorname{ker}_{D}\left(. R_{2}\right)$ is a stably free left D-module of rank $q-s=p-t$. The result follows from $\operatorname{ker}_{D}\left(. Q_{1}\right) \cong \operatorname{ker}_{D}\left(. R_{2}\right)$ by Theorem 2
4. The first point follows from $\operatorname{ker}_{D}\left(. Q_{1}\right) \cong \operatorname{ker}_{D}\left(. R_{2}\right)$ by Theorem 2 Now, if $\operatorname{ker}_{D}\left(. R_{2}\right)$ is a free left D-module of rank r and the full row rank $B_{2} \in D^{r \times q}$ defines a basis of $\operatorname{ker}_{D}\left(. R_{2}\right)$, i.e., $\operatorname{ker}_{D}\left(. R_{2}\right)=D^{1 \times r} B_{2}$, then the left D isomorphism γ_{2}^{\prime} defined by 21) sends a basis of $\operatorname{ker}_{D}\left(. R_{2}\right)$ to a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, which shows that the full row rank matrix $C_{2}:=B_{2} R_{1} \in D^{r \times p}$ defines a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, i.e., $\operatorname{ker}_{D}\left(. Q_{1}\right)=D^{1 \times r} C_{2}$. The last point can be similarly proved using $\gamma_{1}^{\prime}=\gamma_{2}^{\prime-1}$ defined by 20 .

IV. Serre's reduction

Let us state a necessary and sufficient condition for a linear system to be equivalent to a linear system defined by fewer unknowns and equations (the so-called Serre's reduction).

Theorem 3: Let $R \in D^{q \times p}$ (not necessarily full row rank). Then the following assertions are equivalent:

1) There exist $\bar{R} \in D^{(q-r) \times(p-r)}$, where $0 \leq r \leq q-1$, and $V \in \operatorname{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$ such that:

$$
V R W=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & \bar{R}
\end{array}\right)
$$

2) There exists $\Lambda \in D^{q \times(q-r)}$ such that:
a) a matrix $U \in \mathrm{GL}_{p+q-r}(D)$ exists such that:

$$
(R \quad-\Lambda) U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

b) a matrix $\Gamma \in D^{(q-r) \times q}$ exists such that $\Gamma \Lambda=I_{q}$,
c) the stably free left D-module $\operatorname{ker}_{D}(. \Lambda)$ is free of rank r, i.e., there exists a full row rank matrix $B \in$ $D^{r \times q}$ such that $\operatorname{ker}_{D}(. \Lambda)=D^{1 \times r} B$.
If 2 of Theorem 3 holds, then we have

$$
\begin{gather*}
U=\left(\begin{array}{cc}
S_{1} & Q_{1} \\
S_{2} & Q_{2}
\end{array}\right), \quad U^{-1}=\left(\begin{array}{cc}
R & -\Lambda \\
T_{1} & -T_{2}
\end{array}\right), \tag{22}\\
Q_{1} \in D^{p \times(p-r)}, Q_{2} \in D^{(q-r) \times(p-r)}, S_{1} \in D^{p \times q} \\
S_{2} \in D^{(q-r) \times q}, T_{1} \in D^{(p-r) \times p}, T_{2} \in D^{(p-r) \times(q-r)},
\end{gather*}
$$

i.e., we are in the position of Theorem 2 with $R_{2}=-\Lambda$, $s=q-r, t=p-r$ and T_{2} has been changed into $-T_{2}$ to follow the notations used in [1].

Remark 1: Theorem 3 is proved in Corollaries 4.10 and 4.14 of [1], where $2 . \mathrm{b}$ of Theorem 3 is replaced by $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is a free left D-module of rank r. These conditions are equivalent since $\operatorname{ker}_{D}(. \Lambda) \cong \operatorname{ker}_{D}\left(. Q_{1}\right)$ by Theorem 2 The hypothesis that R has full row rank is not used in the proofs of Corollaries 4.10 and 4.14 of [1].

Corollary 5: 1) If 1 of Theorem 3 holds, then the matrices of 2 of Theorem 3 can be chosen as follows

$$
\begin{gathered}
\Lambda=X_{2}, \quad \Gamma=V_{2}, \quad B=V_{1} \\
U=\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & \bar{R}
\end{array}\right), \quad U^{-1}=\left(\begin{array}{cc}
R & -\Lambda \\
Z_{2} & 0
\end{array}\right),
\end{gathered}
$$

with the following notations:

$$
\left\{\begin{array}{l}
V=\left(\begin{array}{ll}
V_{1}^{T} & V_{2}^{T}
\end{array}\right)^{T}, V_{1} \in D^{r \times q}, V_{2} \in D^{(q-r) \times q} \\
V^{-1}=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right), X_{1} \in D^{q \times r}, X_{2} \in D^{q \times(q-r)} \\
W=\left(\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right), W_{1} \in D^{p \times r}, W_{2} \in D^{p \times(p-r)} \\
W^{-1}=\left(\begin{array}{ll}
Z_{1}^{T} & Z_{2}^{T}
\end{array}\right)^{T}, Z_{1} \in D^{r \times p}, Z_{2} \in D^{(p-r) \times p}
\end{array}\right.
$$

2) If 2 of Theorem 3 holds, then, with the notations 22), the matrices defined in 1 of Theorem 3 can be taken as $\bar{R}=Q_{2}$ and

$$
\begin{array}{ll}
V_{1}=B, & V_{2}=\Gamma-S_{2} F B \\
W_{1}=\left(S_{1}+Q_{1} T_{2} \Gamma\right) F, & W_{2}=Q_{1} \\
X_{1}=R W_{1}, & X_{2}=\Lambda \tag{23}\\
Z_{1}=B R, & Z_{2}=T_{1}-T_{2} \Gamma R
\end{array}
$$

where $F \in D^{q \times r}$ is such that:

$$
\begin{equation*}
I_{q}-\Lambda \Gamma=F B \tag{24}
\end{equation*}
$$

Proof: 1 is proved in Corollary 4.14 of [1] up to the characterization of B. By 20), $\operatorname{ker}_{D}(. \Lambda)=\operatorname{ker}_{D}\left(. Q_{1}\right) S_{1}$, where $Q_{1}=W_{2}$ and $S_{1}=W_{1} V_{1}$. Now, the identity $W^{-1} W=I_{p}$ (resp., $W W^{-1}=I_{p}$) yields $Z_{1} W_{2}=0$ (resp., $W_{1} Z_{1}+W_{2} Z_{2}=I_{p}$), i.e., $D^{1 \times r} Z_{1} \subseteq \operatorname{ker}_{D}\left(. W_{2}\right)$. Now, if $\lambda \in \operatorname{ker}_{D}\left(. W_{2}\right)$, then $W_{1} Z_{1}+W_{2} Z_{2}=I_{p}$ yields $\lambda=\left(\lambda W_{1}\right) Z_{1} \in D^{1 \times r} Z_{1}$, i.e., $\operatorname{ker}_{D}\left(. W_{2}\right) \subseteq D^{1 \times r} Z_{1}$, which shows that $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{ker}_{D}\left(. W_{2}\right)=D^{1 \times r} Z_{1}$. Using the identity $Z_{1} W_{1}=I_{r}$ coming from $W^{-1} W=I_{p}$, we get $\operatorname{ker}_{D}(. \Lambda)=D^{1 \times r}\left(Z_{1} W_{1} V_{1}\right)=D^{1 \times r} V_{1}$. Finally,
$V V^{-1}=I_{q}$ yields $V_{1} X_{1}=I_{r}$, which shows that V_{1} has full row rank $\left(\nu \in \operatorname{ker}_{D}\left(. V_{1}\right)\right.$ yields $\left.\nu=\left(\nu V_{1}\right) X_{1}=0\right)$, and thus $\operatorname{ker}_{D}(. \Lambda)$ is a free left D-module of rank r.
2. Let us define the following matrices

$$
\begin{aligned}
X & =\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right) \in D^{q \times q}, \quad V=\left(\begin{array}{ll}
V_{1}^{T} & V_{2}^{T}
\end{array}\right)^{T} \in D^{q \times q} \\
W & =\left(\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right) \in D^{p \times p}, \quad Z=\left(\begin{array}{ll}
Z_{1}^{T} & Z_{2}^{T}
\end{array}\right)^{T} \in D^{p \times p}
\end{aligned}
$$

with the notations 23). Then, using (22), we get:

$$
\begin{aligned}
R W & =\left(\begin{array}{ll}
R W_{1} & \left.R Q_{1}\right)=\left(\begin{array}{ll}
R W_{1} & \Lambda Q_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
R W_{1} & \Lambda
\end{array}\right)\left(\begin{array}{cc}
I_{r} & 0 \\
0 & Q_{2}
\end{array}\right)=X\left(\begin{array}{cc}
I_{r} & 0 \\
0 & \bar{R}
\end{array}\right) .
\end{array} . . \begin{array}{l}
\end{array}\right) .
\end{aligned}
$$

We note that $\left(I_{q}-\Lambda \Gamma\right) \Lambda=0$ since $\Gamma \Lambda=I_{q-r}$, and thus $D^{1 \times q}\left(I_{q}-\Lambda \Gamma\right) \subseteq \operatorname{ker}_{D}(. \Lambda)=D^{1 \times r} B$, which shows that $F \in D^{q \times r}$ exists such that $I_{q}-\Lambda \Gamma=F B$. Then, we have $\Gamma F B=\Gamma\left(I_{q}-\Lambda \Gamma\right)=\Gamma-(\Gamma \Lambda) \Gamma=0$ since $\Gamma \Lambda=I_{q-r}$. Then, using (22), ГFB=0 and (24), we obtain:

$$
\begin{aligned}
& X V=\left(\begin{array}{ll}
R W_{1} & \Lambda
\end{array}\right)\binom{B}{\Gamma-S_{2} F B} \\
& =R\left(S_{1}+Q_{1} T_{2} \Gamma\right) F B+\Lambda\left(\Gamma-S_{2} F B\right) \\
& =\left(\begin{array}{l}
\left.R S_{1}\right)(F B)+\Lambda \Gamma-\Lambda S_{2} F B \\
=\left(I_{q}+\Lambda S_{2}\right) F B+\Lambda \Gamma-\Lambda S_{2} F B=F B+\Lambda \Gamma=I_{q},
\end{array}\right.
\end{aligned}
$$

which yields $X \in \mathrm{GL}_{q}(D)$ and $V=X^{-1} \in \mathrm{GL}_{q}(D)$. Finally, using 22,,$~ \Gamma F B=0$ and 24, we obtain

$$
\left.\begin{array}{l}
W Z=\left(\begin{array}{ll}
\left(S_{1}+Q_{1} T_{2} \Gamma\right.
\end{array}\right) F \quad Q_{1}
\end{array}\right)\binom{B R}{T_{1}-T_{2} \Gamma R}, ~ \begin{aligned}
& =S_{1}(F B) R+Q_{1} T_{1}-\left(Q_{1} T_{2}\right) \Gamma R \\
& =S_{1}\left(I_{q}-\Lambda \Gamma\right) R+Q_{1} T_{1}+S_{1} \Lambda \Gamma R \\
& =S_{1} R+Q_{1} T_{1}=I_{p},
\end{aligned}
$$

which yields $W \in \mathrm{GL}_{p}(D)$ and $Z=W^{-1} \in \mathrm{GL}_{p}(D)$.

V. From Serre's reduction to decomposition

Theorem 4: Let $R \in D^{q \times p}$ and $\Lambda \in D^{q \times(q-r)}$ satisfy the conditions of 2 of Theorem 3. If $\Gamma \in D^{(q-r) \times q}$ is a left inverse of Λ and $B \in D^{r \times q}$ a basis of the free left D-module $\operatorname{ker}_{D}(. \Lambda)$ of rank r, then, with the notations 22) and 23), we have:

1) $\Delta:=S_{1} F B \in D^{p \times q}$ satisfies $\Delta R \Delta=\Delta$.
2) The matrices $P:=W_{2} Z_{2}=I_{p}-\Delta R \in D^{p \times p}$ and $Q:=I_{q}-R \Delta \in D^{q \times q}$ are idempotents, i.e., $P^{2}=P$ and $Q^{2}=Q$, and satisfy $R P=Q R$.
3) With the notations 23, the left D-modules $\operatorname{ker}_{D}(. P)$, $\operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q), \operatorname{im}_{D}(. Q)$ are defined by

$$
\begin{aligned}
& \operatorname{ker}_{D}(. P)=D^{1 \times r} Z_{1}, \quad \operatorname{im}_{D}(. P)=D^{1 \times(p-r)} Y_{1}, \\
& \operatorname{ker}_{D}(. Q)=D^{1 \times r} V_{1}, \quad \operatorname{im}_{D}(. Q)=D^{1 \times(q-r)} V_{2},
\end{aligned}
$$

i.e., are free of rank respectively $r, p-r, r$ and $q-r$. Hence, Theorem 4.2 of [5] holds with the above P and Q.

Proof: 1. We first note that (24) and $B \Lambda=0$ yield $B F B+B \Lambda \Gamma=B$, i.e., $\left(B F-I_{r}\right) B=0$, i.e., $B F=I_{r}$
since B has full row rank. Now, using (22), $B \Lambda=0$ and $B F=I_{r}$, we get:

$$
\begin{aligned}
\Delta R \Delta & =S_{1} F B\left(R S_{1}\right) F B=S_{1} F B\left(I_{q}+\Lambda S_{2}\right) F B \\
& =S_{1} F(B F) B=S_{1} F B=\Delta .
\end{aligned}
$$

2. Since $W_{1} Z_{1}+W_{2} Z_{2}=I_{p}$, we get

$$
\begin{aligned}
P & :=W_{2} Z_{2}=I_{p}-W_{1} Z_{1} \\
& =I_{p}-\left(\left(S_{1}+Q_{1} T_{2} \Gamma\right) F B\right) R
\end{aligned}
$$

where, using 24 and $\Gamma\left(I_{q}-\Lambda \Gamma\right)=0$, we obtain

$$
\begin{aligned}
\left(S_{1}+Q_{1} T_{2} \Gamma\right)(F B) & =\left(S_{1}+Q_{1} T_{2} \Gamma\right)\left(I_{q}-\Lambda \Gamma\right) \\
& =S_{1}\left(I_{q}-\Lambda \Gamma\right)=S_{1} F B=\Delta,
\end{aligned}
$$

i.e., $P=I_{p}-\Delta R$. Now, $\Delta R \Delta=\Delta$ yields $P^{2}=P, Q^{2}=Q$ and $R P=Q R$. Using (22) and (24), we get:

$$
\begin{aligned}
Q & =I_{q}-\left(R S_{1}\right) F B=I_{q}-\left(I_{q}+\Lambda S_{2}\right) F B \\
& =\left(I_{q}-F B\right)-\Lambda S_{2} F B=\Lambda\left(\Gamma-S_{2} F B\right)=X_{2} V_{2}
\end{aligned}
$$

The identity $Z W=I_{p}$ yields $\operatorname{ker}_{D}\left(. W_{2}\right)=D^{1 \times r} Z_{1}$ and $Z_{2} W_{2}=I_{p-r}$. The latter identity implies that.Z_{2} is injective, . W_{2} is surjective and Z_{2} has full row rank. Thus,

$$
\begin{aligned}
& \operatorname{ker}_{D}(. P)=\operatorname{ker}_{D}\left(.\left(W_{2} Z_{2}\right)\right)=\operatorname{ker}_{D}\left(. W_{2}\right)=D^{1 \times r}(B R) \\
& \operatorname{im}_{D}(. P)=\operatorname{im}_{D}\left(.\left(W_{2} Z_{2}\right)\right)=\operatorname{im}_{D}\left(. Z_{2}\right)=D^{1 \times(p-r)} Z_{2}
\end{aligned}
$$

which proves that $\operatorname{ker}_{D}(. P)$ and $\operatorname{im}_{D}(. P)$ are free left D modules of rank respectively r and $p-r$.

The identity $V X=I_{q}$ yields $\operatorname{ker}_{D}\left(. X_{2}\right)=D^{1 \times r} V_{1}$ and $V_{2} X_{2}=I_{q-r}$. The latter identity implies that.V_{2} is injective, . X_{2} is surjective and V_{2} has full row rank. Thus,

$$
\begin{aligned}
& \operatorname{ker}_{D}(. Q)=\operatorname{ker}_{D}\left(.\left(X_{2} V_{2}\right)\right)=\operatorname{ker}_{D}\left(. X_{2}\right)=D^{1 \times r} B \\
& \operatorname{im}_{D}(. Q)=\operatorname{im}_{D}\left(.\left(X_{2} V_{2}\right)\right)=\operatorname{im}_{D}\left(. V_{2}\right)=D^{1 \times(q-r)} V_{2}
\end{aligned}
$$

which proves that $\operatorname{ker}_{D}(. Q)$ and $\operatorname{im}_{D}(. Q)$ are free left D modules of rank respectively r and $q-r$.

REFERENCES

[1] M. S. Boudellioua, A. Quadrat, Serre's reduction of linear functional systems, Math. Comput. Sci. 4, 289-312, 2010.
[2] F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.
[3] F. Chyzak, A. Quadrat, D. Robertz. OreModules: A symbolic package for the study of multidimensional linear systems. Applications of Time-Delay Systems, LNCIS 352, 233-264, 2007. http://wwwb.math. rwth-aachen.de/OreModules
[4] T. Cluzeau, A. Quadrat, OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional system, Topics in Time-Delay Systems: Analysis, Algorithms and Control, LNCIS, 179-195, Springer 2009, http://pages.saclay.inria.fr/alban. quadrat//OreMorphisms/index.html
[5] T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra Appl., 428 (2008), 324-381.
[6] T. Cluzeau, A. Quadrat, "A constructive version of Fitting's theorem on isomorphisms and equivalences of linear systems", Proceedings of $n D S ' 11$, Poitiers, France, 2011.
[7] T. Cluzeau, A. Quadrat, "Further results on the decomposition and Serre's reduction of linear functional systems", Proceedings of the $5^{\text {th }}$ Symposium on System Structure and Control, Grenoble, France, 2013.
[8] T. Y. Lam, Lectures on Modules and Rings, GTM 189, Springer, 1999.
[9] U. Oberst, "Multidimensional constant linear systems", Acta Appl. Math., 20 (1990), 1-175.
[10] J. J. Rotman, An Introduction to Homological Algebra. Springer, 2009.

