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Abstract

Within a constructive homological algebra approach, we study the factorization and decomposition
problems for a class of linear functional (determined, over-determined, under-determined) systems. Using the
concept of Ore algebras of functional operators (e.g., ordinary/partial differential operators, shift operators,
time-delay operators), we first concentrate on the computation of morphisms from a finitely presented left
module M over an Ore algebra to another one M ′, where M (resp., M ′) is a module intrinsically associated with
the linear functional system Ry = 0 (resp., R′z = 0). These morphisms define applications sending solutions
of the system R′z = 0 to solutions of R y = 0. We explicitly characterize the kernel, image, cokernel and
coimage of a general morphism. We then show that the existence of a non-injective endomorphism of the
module M is equivalent to the existence of a non-trivial factorization R = R2R1 of the system matrix R.
The corresponding system can then be integrated “in cascade”. Under certain conditions, we also show that
the system Ry = 0 is equivalent to a system R′z = 0, where R′ is a block-triangular matrix of the same size as
R. We show that the existence of idempotents of the endomorphism ring of the module M allows us to reduce
the integration of the system Ry = 0 to the integration of two independent systems R1y1 = 0 and R2 y2 = 0.
Furthermore, we prove that, under certain conditions, idempotents provide decompositions of the system
Ry = 0, i.e., they allow us to compute an equivalent system R′z = 0, where R′ is a block-diagonal matrix
of the same size as R. Applications of these results in mathematical physics and control theory are given.
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Finally, the different algorithms of the paper are implemented in the Maple package Morphisms based on
the library oremodules.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many systems coming from mathematical physics, applied mathematics and engineering sci-
ences can be described by means of systems of ordinary or partial differential equations (ODEs,
PDEs), difference equations, differential time-delay equations. . . If these systems are linear, they
can then be defined by means of matrices with entries in non-commutative algebras of functional
operators such as the rings of differential operators, shift operators, time-delay operators. . . An
important class of such non-commutative rings of functional operators is called Ore algebras [15].
It is a subclass of the so-called skew polynomial rings in several variables (or Ore extensions).
See [46] for a general exposition on skew polynomial rings and Ore extensions.

Algebraic analysis is a mathematical theory first introduced by Malgrange in his study of linear
systems of partial differential equations with constant coefficients [45]. See also [51]. It was then
developed by the Japanese school of Sato to treat partial differential equations with variable
coefficients. See [10,22,34] and the references therein. Ideas of algebraic analysis have recently
been extended to the case of Ore algebras in order to study linear functional systems [16]. The
methods of algebraic analysis give us a way to intrinsically study a linear functional system by
considering its associated finitely presented left module over an Ore algebra. This idea is natural
as the structural properties of the linear functional systems can be studied by handling algebraic
manipulations on the system matrix of functional operators, i.e., by performing linear algebra
over a ring which is also called module theory [37,46,66]. The tools of homological algebra have
been developed in order to study the properties of modules [66], and thus, the structural properties
of the corresponding systems. Using recent developments and implementations of Gröbner and
Janet bases over Ore algebras [15,40,41,65], it has been shown in [16,55–59,63,64] how to make
effective some of these tools as, for instance, free resolutions, parametrizations, projective dimen-
sions, torsion-free degrees, Hilbert series, extension functors, classification of modules (torsion,
torsion-free, reflexive, projective, stably free, free). The corresponding constructive algorithms
have been implemented in the library OreModules [17]. Applications of these algorithms in
multidimensional systems theory have recently been given in [16,17,24,55–59,62–64]. For related
works, see [50,52,53,73,76,77]. We also refer the reader to [12,14,48] and the references therein
for pioneering works on the development of constructive homological algebra methods in the case
of holonomic systems of PDEs [10,22] and to [40,44,70] for their implementations in computer
algebra software.

Continuing the development of constructive homological algebra for linear systems over Ore
algebras and, in particular [58,63,62], the first part of the paper aims at computing effectively
morphisms from a left D-module M , finitely presented by a matrix R with entries in a certain
Ore algebra D, to a left D-module M ′ presented by a matrix R′. In particular, a morphism
from M to M ′ defines a transformation sending solutions of the system R′z = 0 to solutions
of Ry = 0. In the case where R′ = R, the ring endD(M) of endomorphisms of M corresponds
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to the “Galois transformations” of the system Ry = 0. In the case of 1-D linear systems or
linear systems of PDEs defined by integrable connections, we explain how the endomorphism
ring endD(M) generalizes the concept of eigenring developed in the symbolic computation litera-
ture [4,7,11,18,19,61,68,74,75]. The constructive computation of morphisms between differential
modules was first studied in [49,71] in the case of holonomic differential modules (see also [41]
for morphisms between non-commutative polynomial algebras). As very few systems coming
from mathematical physics and systems theory define holonomic differential modules, this paper
attempts to study the case of general (determined, over-determined, under-determined) systems. To
our knowledge, the only work which goes in the same direction for commutative polynomial rings
is [53] following [59]. Algorithms for computing morphisms are given when Gröbner bases exist
over the underlying Ore algebra. As an application, we show how to use morphism computations
to obtain quadratic first integrals of motion and quadratic conservation laws. Within this new
algebraic approach, we find again in a purely algorithmic way the quadratic conservation laws
classically studied in mathematical physics (e.g., electromagnetism, hydrodynamics, elasticity
theory).

We explicitly characterize the kernel, coimage, image and cokernel of a morphism from M to
M ′ and deduce a heuristic method to check the equivalence of the corresponding systemsRy = 0
and R′z = 0. In Theorem 3.1, we prove that the existence of a non-injective endomorphism of a
leftD-moduleM , finitely presented by a matrix R with entries in an Ore algebraD, corresponds
to a factorization of the form R = R2R1, where R1 and R2 are two matrices with entries in D.
As a consequence, the integration of the system Ry = 0 is reduced to a cascade of integrations.
In Theorem 3.2, under certain conditions on the morphism (freeness), we show that the system
Ry = 0 is equivalent to a system of the form(

T1 T2
0 T3

) (
z1
z2

)
= 0, (1)

where T1, T2 and T3 are three matrices with entries inD such that the matrix defining (1) has the
same size as R. One of the main interests of (1) is that the integration of Ry = 0 is then reduced
to the cascade integration T3z2 = 0 and T1z1 = −T2z2.

In the fourth part of the paper, we show how to effectively compute some idempotents of
endD(M) and we prove in Theorem 4.1 that they allow us to decompose the system Ry = 0 into
two decoupled systems S1y1 = 0 and S2y2 = 0, where S1 and S2 are two matrices with entries
in D. Consequently, the integration of the system Ry = 0 is then equivalent to the integrations
of the two independent systems S1y1 = 0 and S2y2 = 0. Then, under certain conditions on the
idempotents (freeness), we prove in Theorem 4.2 that the system Ry = 0 is equivalent to a
block-diagonal system of the form(

T1 0
0 T2

) (
z1
z2

)
= 0, (2)

where T1 and T2 are two matrices with entries in D such that the matrix defining (2) has the
same size as R. In particular, these conditions always hold in the case of a univariate Ore algebra
over a field of coefficients (i.e., ordinary differential/difference systems over the field of rational
functions) and in the case of a multivariate commutative Ore algebras due to the Quillen-Suslin
theorem [43,66] (e.g., linear system of partial differential equations with constant coefficients).
Moreover, if some rank conditions on the idempotent are fulfilled, then, using a result due to
Stafford [69], we prove that a similar result also holds for the Weyl algebras An(k) and Bn(k)
over a field k of characteristic 0 (i.e., linear system of partial differential equations with poly-
nomial/rational coefficients). Using recent implementations of both Quillen-Suslin and Stafford
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theorems in the library OreModules [17,24,64], we obtain a way to find the decomposition (2)
of Ry = 0 when it exists.

We point out that for all the above-mentioned results, and thus, for the corresponding algo-
rithms, no condition on the system Ry = 0 is required such as D-finite, determined, over-deter-
mined, under-determined, i.e., this approach handles general linear systems over a certain class
of Ore algebras over which Gröbner bases exist. To our knowledge, the problem of factoring
or decomposing linear functional systems has been studied only for a few particular cases. For
scalar linear ordinary differential operators or linear determined ordinary differential systems,
we refer to [4,8,9,13,30,32,33,67,68,72]. Generalizations to linear determined difference and
q-difference systems appear in [4,11] and see [42,74,75] forD-finite partial differential systems.
A more general work in that direction is included in [31]. For similar cases where the base field
is of positive characteristic and for modular approaches, see [7,18,19] and the references therein.

All along the paper, we illustrate our results by considering some applications coming from
mathematical physics (e.g., quadratic first integrals of motion and quadratic conservation laws,
equivalence of systems appearing in linear elasticity, factorization and decomposition of linearized
Euler equations and the Dirac equations) and control theory (factorization and decomposition of
systems coming from control theory, decoupling of the autonomous and controllable subsystems,
parametrizations). See also [21,53,58] for other applications to mathematical systems theory.

The different algorithms presented in the paper have been implemented in the Maple package
Morphisms [21] based on the library OreModules [17]. This package is available with a large
library of concrete examples which demonstrates the main results of the paper.

Finally, this paper is an extension of the congress paper [20].

2. Morphisms of linear functional systems

2.1. Finitely presented modules and linear functional systems

In this paper, we consider linear functional systems defined by matrices with entries in an Ore
algebraD and we study them by means of their associated leftD-modules. In this first subsection,
we gather many useful definitions and properties on these concepts.

Definition 2.1. Let A be a ring, σ an endomorphism of A, namely,

∀a, b ∈ A, σ(a + b) = σ(a)+ σ(b), σ (ab) = σ(a)σ (b),
and δ a σ -derivation, namely, δ : A→ A satisfies:

∀a, b ∈ A, δ(a + b) = δ(a)+ δ(b), δ(ab) = σ(a)δ(b)+ δ(a)b.

1. [46] A non-commutative polynomial ring A[∂; σ, δ] in ∂ is called skew if it satisfies the fol-
lowing commutation rule:

∀a ∈ A, ∂a = σ(a)∂ + δ(a). (3)

An element P of A[∂; σ, δ] has the canonical form P =∑r
i=0 ai∂

i , where ai ∈ A and i =
0, . . . , r ∈ Z+ = {0, 1, 2, . . .}. If ar /= 0, then the order of P , denoted by ord(P ), is r .

2. [15,46] Let k be a field and A be either k or the commutative polynomial ring k[x1, . . . , xn].
The skew polynomial ring D = A[∂1; σ1, δ1] · · · [∂m; σm, δm] is called an Ore algebra if the
σi’s and δj ’s commute for 1 � i, j � m and satisfy the following conditions:

σi(∂j ) = ∂j , δi(∂j ) = 0, 1 � j < i � m,
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An element P of D has the canonical form P =∑
0�|ν|�r aν∂ν , where aν ∈ A, r ∈ Z+,

ν = (ν1, . . . , νn) ∈ Zn+ denotes a multi-index of non-negative integers, |ν| = ν1 + · · · + νn
its length, and ∂ν = ∂ν1

1 · · · ∂νnn . If there exists ν ∈ Zn+ such that |ν| = r and aν /= 0, then the
(total) order ord(P ) is r .

We note that the commutation rule (3) must be understood as a generalization of the Leibniz
rule for functional operators, namely, for an unknown y, we have

∂(ay) = σ(a)∂(y)+ δ(a)y.
Let us give a few examples of Ore algebras which will be important in what follows.

Example 2.1

1. Let k be a field, A = k or k[n], σ : A→ A the forward shift operator, namely, σ(a(n)) =
a(n+ 1), and δ = 0. Then, the skew polynomial ring A[∂; σ, 0] is the ring of shift operators
with coefficients in A (i.e., constant or polynomial coefficients).

2. Let k be a field, A = k or k[t], σ = idA and δ : A→ A the standard derivation d
dt . The skew

polynomial ring A[∂; idA, d
dt ] is then the ring of differential operators with coefficients in A

(i.e., constant or polynomial coefficients).
3. If k is a field and A is respectively k or k[x1, . . . , xn], then we can consider

σi = idA[∂1;σ1,δ1]···[∂i−1;σi−1,δi−1], ∀a ∈ A, δi(a) = �a
�xi

the standard derivation of a ∈ A with respect to xi . Then, the Ore algebra

A[∂1; id, δ1] · · · [∂n; id, δn]
is the ring of differential operators with respectively constant or polynomial coefficients. The
last algebra is called the Weyl algebra and is denoted by

An(k) = k[x1, . . . , xn][∂1; id, δ1] · · · [∂n; id, δn].
4. Let k be a field, A = k or k[t], and A[∂1; idA, d

dt ] the ring of differential operators with
coefficients in A. Let h ∈ R+ be a positive real and let us denote by σ2(a(t)) = a(t − h) the
time-delay operator and δ2(a) = 0 for all a ∈ A. Then, A[∂1; idA, d

dt ][∂2; σ2, 0] is the Ore
algebra of differential time-delay operators with coefficients in A.

By extension, we can consider the previous Ore algebras with rational coefficients instead
of polynomial ones. For instance, the ring of differential operators with rational coefficients
Bn(k) = k(x1, . . . , xn)[∂1; id, δ1] · · · [∂n; id, δn], δi = �

�xi
, is also called the Weyl algebra.

We refer the reader to [15] for more examples of functional operators such as, for instance,
difference, divided difference, q-difference, q-dilation operators and for their applications in the
study of special functions and combinatorics. See also [41] for other polynomial algebras.

Proposition 2.1 [15,36]. Let k be a computable field (e.g., k = Q, Fp), A = k[x1, . . . , xn] the
polynomial ring with n indeterminates over the field k and A[∂1; σ1, δ1] . . . [∂m; σm, δm] an Ore
algebra satisfying the conditions

σi(xj ) = aij xj + bij , δi(xj ) = cij , 1 � i � m, 1 � j � n, (4)

for certain aij ∈ k \ {0}, bij ∈ k, cij ∈ A. Let ≺ be an admissible term order, i.e., a total order

on the set B = {xi11 · · · xinn ∂j1
1 · · · ∂jmm |(i1, . . . , in) ∈ Zn+, (j1, . . . , jm) ∈ Zm+} with 1 as smallest
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element and such that tu ≺ tv for all t ∈ B whenever u ≺ v for u, v ∈ B. If the ≺-greatest
term u in each non-zero cij satisfies u ≺ xj ∂i, then a non-commutative version of Buchberger’s
algorithm terminates for this admissible term order and its result is a Gröbner basis with respect
to this order.

We refer the reader to [35,36,41] for more general results. In particular, the existence of Gröbner
bases and the generalization of Buchberger’s algorithm have been studied in [12,14,40,44,70] for
the Weyl algebras An(Q) and Bn(Q).

In the rest of the paper, we shall only consider an Ore algebra D over which the existence of
Grobner bases for any admissible term order is ensured.

We can prove that the hypotheses of Proposition 2.1 implies that the Ore algebra D is a left
noetherian ring, namely, every left ideal I of D is finitely generated as a left D-module, i.e.,
there exists a finite family {ai}i=1,...,l(I ) of elements ofD such that I = Da1 + · · · +Dal(I) [46].
Moreover, an Ore algebra D satisfying the hypotheses of Proposition 2.1 can be proved to be a
domain, namely, the product of non-zero elements ofD is non-zero [46]. We note that Proposition
2.1 holds for the examples of Ore algebras described in Example 2.1.

Let us recall the well-known concept of homorphisms as it will play a central role.

Definition 2.2 [66]. Let M and N be two left D-modules.

1. A D-homomorphism or, simply, a D-morphism f from M to N is a map satisfying:

∀a1, a2 ∈ D,∀m1,m2 ∈ M, f (a1m1 + a2m2) = a1f (m1)+ a2f (m2).

2. We denote by homD(M,M
′) the abelian group of theD-morphisms fromM toM ′. IfM has a

D-D′ bimodule structure, namely,M is a rightD′-module which satisfies (am)b = a(mb) for
all a in D and b in D′, then homD(M,M

′) inherits a right D′-module structure. In particular,
if D is a commutative ring, then homD(M,M

′) is a D-module.
3. A D-morphism f ∈ homD(M,M

′) is an isomorphism if f is injective and surjective.
4. If M ′ = M , then we denote the non-commutative ring of endomorphisms of M by endD(M).

Moreover, we denote by autD(M) the non-abelian group of automorphisms ofM , namely, the
group of injective and surjective D-morphisms from M to M .

In what follows, we shall assume that a linear functional system (LFS) is defined by means of
a matrix of functional operators R ∈ Dq×p, whereD is an Ore algebra satisfying the hypotheses
of Proposition 2.1. We consider the D-morphism of left D-modules defined by

D1×q .R−→ D1×p,

(λ1, . . . , λq) �→ (λ1, . . . , λq)R =
(

q∑
i=1

λiRi1, . . . ,
q∑
i=1

λiRip

)
.

(5)

Generalizing an important idea coming from number theory and algebraic geometry, we shall
consider the following important left D-module

M = D1×p/(D1×qR)

which is the cokernel of the D-morphism .R defined by (5).
This idea can be traced back to the work of Malgrange [45] on linear systems of PDEs with

constant coefficients and it has been extended to the variable coefficients case by Kashiwara [34].
See also [10,22]. We refer to [16] for the extension to linear functional systems.
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Before explaining the main interest of the leftD-moduleM , we first recall some basic concepts
of homological algebra used in the sequel. We refer the reader to [66] for more details.

Definition 2.3. A sequence (Mi, di : Mi → Mi−1)i∈Z of left D-modules Mi and D-morphisms
di : Mi → Mi−1 is said to be:

1. A complex if, for all i ∈ Z, di ◦ di+1 = 0 or, equivalently, im di+1 ⊆ ker di . The complex
(Mi, di)i∈Z is then denoted by

· · · di+2→ Mi+1
di+1→ Mi

di→Mi−1
di−1→ . . .

The defect of exactness of the complex (Mi, di)i∈Z atMi is defined byH(Mi) = ker di/im di+1.

2. Exact at Mi if ker di = im di+1, i.e., H(Mi) = 0 and exact if ker di = im di+1, for all i ∈ Z.
3. Split exact if it is exact and there further exist left D-morphisms si : Mi−1 → Mi satisfying:

∀i ∈ Z, si+1 ◦ si = 0, si ◦ di + di+1 ◦ si+1 = idMi
.

The complex (Mi−1, si)i∈Z is then also exact.

Using (5), we obtain the exact sequence

D1×q .R→D1×p π→M = D1×p/(D1×qR)→ 0, (6)

where π denotes the canonical projection of D1×p onto M that sends an element of D1×p to its
residue class in M . The exact sequence (6) is called a finite presentation of M and M is said to
be a finitely presented left D-module [37,66].

Let us describeM in terms of generators and relations. Let {ei}1�i�p (resp., {fj }1�j�q ) be the
standard basis of D1×p (resp., D1×q ), namely, the basis of D1×p formed by the row vectors ei
defined by 1 at the ith position and 0 elsewhere. We denote by yi the residue class of ei inM , i.e.,
yi = π(ei). Then, {yi}1�i�p is a set of generators of M as every element m ∈ M is the form
π(μ), where μ = (μ1, . . . , μp) ∈ D1×p, and thus, we obtain m = π(μ) =∑p

i=1 μiπ(ei) =∑p

i=1 μiyi . The leftD-moduleM is said to be finitely generated [37,66]. Now, for j = 1, . . . , q,
we have

1. fjR = (Rj1, . . . , Rjp) ∈ (D1×qR)⇒ π(fjR) = 0,
2. π(fjR) =∑p

k=1 Rjkπ(ek) =
∑p

k=1 Rjkyk.

Hence, the generators {yi}1�i�p ofM satisfy the relations
∑p

k=1 Rjkyk = 0 for j = 1, . . . , q,
or, more compactly, Ry = 0 where y = (y1, . . . , yp)

T.

Example 2.2. Let us consider the equations of a fluid in a tank satisfying Saint-Venant’s equations
and subjected to a one-dimensional horizontal move developed in [23]:{

y1(t − 2h)+ y2(t)− 2u̇(t − h) = 0,
y1(t)+ y2(t − 2h)− 2u̇(t − h) = 0.

(7)

LetD = Q[∂1; idQ,
d
dt ][∂2; σ2, 0] be the Ore algebra of differential time-delay operators with

coefficients in Q defined in 4 of Example 2.1 and let us consider the system matrix of (7):

R =
(
∂2

2 1 −2∂1∂2

1 ∂2
2 −2∂1∂2

)
∈ D2×3. (8)
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The D-module M = D1×3/(D1×2R) is then defined by the following finite presentation:

D1×2 .R→D1×3 π→M → 0.

We note that kerD(.R) = {λ ∈ D1×2|λR = 0} = 0 as the rows of R are D-linearly independent

and we get the following exact sequence 0→ D1×2 .R→D1×3 π→M → 0.

To develop the relations between the properties of the finitely presented left D-module M
defined by (6) and the solutions of the system Ry = 0, we need to introduce a few more concepts
of module theory (see [37,66] for details).

Definition 2.4

1. A finitely generated leftD-module is called free ifM is isomorphic to a finite power ofD, i.e.,
there exists an injective and surjectiveD-morphism fromM toD1×r , where r is a non-negative
integer. r is then called the rank of the free D-module M .

2. A finitely generated left D-module M is called projective if there exist a left D-module N
and a non-negative integer r such thatM ⊕N ∼=D1×r , where⊕ denotes the direct sum of left
D-modules and P ∼=Q means that P and Q are isomorphic as left D-modules. Then, N is
also a projective left D-module.

3. A projective resolution of a left D-module M is an exact sequence of the form

· · · d3→P2
d2→P1

d1→P0
d0→M → 0, (9)

where the Pi are projective left D-modules. If all the Pi are free left D-modules, then (9) is
called a free resolution ofM . Finally, if there exists a non-negative integer s such that Pr = 0
for all r � s and the Pi’s are finitely generated free left D-modules, then (9) is called a finite
free resolution of M .

4. Let (9) be a projective resolution of a leftD-moduleM . We call truncated projective resolution

of M the complex defined by · · · d3→P2
d2→P1

d1→P0 → 0.

Let us suppose that a finitely presented left D-module admits a finite free resolution (we note
that it is always the case for the Ore algebras defined in Example 2.1 as it is proved in [16]):

0→ D1×pl .Rl→· · · .R2→D1×p1
.R1→D1×p0 π→M → 0. (10)

LetFbe a leftD-module. Then, applying the functor hom(·,F) [66] to the following truncated
free resolution of M

0→ D1×pl .Rl→· · · .R2→D1×p1
.R1→D1×p0 → 0,

and using the isomorphismϕ : homD(D
1×pi ,F)∼=Fpi defined byϕ(f )=(f (e1), . . . , f (epi ))

T,
for all f ∈ homD(D

1×pi ,F), where {ej }1�j�pi denotes the standard basis of the freeD-module
D1×pi , we then get the following complex:

0←Fpl
Rl .←· · · R2.←Fp1

R1.←Fp0 ← 0, (11)

where, for i = 1, . . . , l, we have

Ri. :Fpi−1 →Fpi

ζ = (ζ1 . . . ζpi−1)
T �→ (Ri.)(ζ ) = Riζ.
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A classical result of homological algebra proves, up to some isomorphisms, the defects of
exactness of (11) only depend onM and F and not on the choice of the finite free resolution (10)
of M . See [66] for more details. In particular, these defects of exactness can also be defined by
means of projective resolutions ofM and not necessarily a finite free resolution ofM as we have
done for simplicity reasons. These defects of exactness are denoted by{

ext0
D(M,F)

∼= kerF(R1.) = {η ∈Fp0 |R1η = 0},
extiD(M,F)

∼= kerF(Ri+1.)/imF(Ri.), i � 1.

It is quite easy to show that

ext0
D(M,F) = homD(M,F)

(see, e.g., [66]) which proves that the abelian group kerF(R1.) of F-solutions of the linear
functional system R1η = 0 is isomorphic to homD(M,F). We refer to [34,45,51] for more
details. The abelian group kerF(R1.) is sometimes called the behaviour of the left D-module
M = D1×p0/(D1×p1R1) [50,52,54,60,73,76]. Moreover, if we want to solve the inhomogeneous
system R1η = ζ , where ζ ∈Fp1 is fixed, then, using the fact that (10) is exact, we obtain that a
necessary condition for the existence of a solution η ∈Fp0 is given by R2ζ = 0 as we have

R1η = ζ ⇒ R2(R1η) = R2ζ ⇒ R2ζ = 0.

In order to understand if the compatibility condition R2ζ = 0 is also sufficient, we need to
investigate the residue class of ζ in ext1

D(M,F) = kerF(R2.)/(R1F
p0). If its residue class is

reduced to 0, then it means that ζ ∈Fp1 satisfyingR2ζ = 0 is such that ζ ∈ (R1F
p0), i.e., there

exists γ ∈Fp0 such that R1γ = ζ . The solution η is generally not unique as we can add any
element of kerF(R1.) = {η ∈Fp0 |R1η = 0} to γ .

Definition 2.5 [37,66].

1. A left D-module F is called injective if, for every left D-module M , we have
extiD(M,F) = 0 for i � 1.

2. A left D-module F is called cogenerator if homD(M,F) = 0 implies M = 0.

If F is an injective left D-module, then R2ζ = 0 is a necessary and sufficient condition for
the existence of η ∈Fp0 satisfying R1η = ζ . Moreover, if F is a cogenerator left D-module
and M is not reduced to the trivial module 0, then homD(M,F) /= 0, which means that the
system R1η = 0 admits at least one solution in Fp0 . Finally, if F is an injective cogenerator left
D-module, then we can prove that any complex of the form

0←Fpl
Rl .←· · · R2.←Fp1

R1.←Fp0 ← homD(M,F)← 0
is exact if and only if the corresponding complex (10) is exact [50].

Proposition 2.2 [66]. For every ring D, there exists an injective cogenerator left D-module F.

In some interesting situations, explicit injective cogenerators are known.

Example 2.3

1. If � is a convex open subset of Rn, then the space C∞(�) (resp., D′(�)) of smooth func-
tions (resp., distributions) on � is an injective cogenerator module over the commutative ring
R[∂1; id, δ1] · · · [∂n; id, δn] of partial differential operators with coefficients in R (see, e.g.,
Corollary 7.8.4 of [51] and also [45,50]).
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2. If F is the set of all functions that are smooth on R except for a finite number of points, then
F is an injective cogenerator left R(t)[∂; idR(t),

d
dt ]-module. See [77] for more details.

To finish, let us recall two classical results of homological algebra. See [66] for more informa-
tion.

Proposition 2.3

1. Let us consider the following short exact sequence of left D-modules:
0→ M ′ f→M

g→M ′′ → 0.

If M ′′ is a projective left D-module, then the previous exact sequence splits.
2. Let F be a left D-module. Then, the contravariant left exact functor homD(·,F) transforms

split exact sequences of left D-modules into split exact sequences of abelian groups.

2.2. Morphisms of finitely presented modules

2.2.1. Definitions and results
Let us first introduce a few definitions of homological algebra. See [66] for more details.

Definition 2.6

1. Let (Pi, di)i∈Z and (P ′i , d ′i )i∈Z be two complexes of leftD-modules. A morphism of complexes
f : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z is a set of D-morphisms fi : Pi → P ′i satisfying

∀i ∈ Z, d ′i ◦ fi = fi−1 ◦ di,
i.e., such that we have the following commutative diagram:

· · · di+2→ Pi+1
di+1→ Pi

di→ Pi−1
di−2→ . . .

↓ fi+1 ↓ fi ↓ fi−1

· · · d
′
i+2→ P ′i+1

d ′i+1→ P ′i
d ′i→ P ′i−1

d ′i−2→ . . .

2. A morphism of complexes f : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z is said to be homotopic to zero if
there exist D-morphisms si : Pi → P ′i+1 such that:

∀i ∈ Z, fi = d ′i+1 ◦ si + si−1 ◦ di.
By extension, two morphisms of complexes f, f ′ : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z are homotopic
if f − f ′ is homotopic to zero.

3. A morphism of complexes f : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z is called a homotopy equivalence
or a homotopism if there exists a morphism of complexes g : (P ′i , d ′i )i∈Z → (Pi, di)i∈Z such
that f ◦ g − idP ′ and g ◦ f − idP are homotopic to zero, where idP = (Pi, idPi )i∈Z. The
complexes (Pi, di)i∈Z and (P ′i , d ′i )i∈Z are then said to be homotopy equivalent.

We have the following important result. See [66] for a proof.

Proposition 2.4. Let (Pi, di)i∈Z (resp., (P ′i , d ′i )i∈Z) be a truncated projective resolution of a left
D-module M (resp., M ′). Then, a morphism f : M → M ′ induces a morphism of complexes
f̃ : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z defined uniquely up to a homotopy equivalence.
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Conversely, a morphism of complexes f̃ : (Pi, di)i∈Z → (P ′i , d ′i )i∈Z from a truncated projec-
tive resolution (Pi, di)i∈Z of M to a truncated projective resolution (P ′i , d ′i )i∈Z of M ′ induces a
morphism f : M → M ′.

From Proposition 2.4, we deduce the following interesting corollary.

Corollary 2.1. Let us consider the following finite presentations of respectively M and M ′:
D1×q .R→D1×p π→M → 0,

D1×q ′ .R′→D1×p′ π ′→M ′ → 0.

1. The existence of a morphism f : M → M ′ is equivalent to the existence of two matrices
P ∈ Dp×p′ and Q ∈ Dq×q ′ satisfying the relation:
RP = QR′. (12)

We then have the following commutative exact diagram

D1×q .R→ D1×p π→ M → 0
↓ .Q ↓ .P ↓ f
D1×q ′ .R′→ D1×p′ π ′→ M ′ → 0,

(13)

where the D-morphism f ∈ homD(M,M
′) is defined by

∀λ ∈ D1×p, f (π(λ)) = π ′(λP ). (14)

2. Let us denote by R′2 ∈ Dq
′
2×q ′ a matrix satisfying kerD(.R′) = D1×q ′2R′2 and let P ∈ Dp×p′

and Q ∈ Dq×q ′ be two matrices satisfying RP = QR′. Then, the matrices defined by{
P = P + Z1R

′,
Q = Q+ RZ1 + Z2R

′
2,

where Z1 ∈ Dp×q ′ and Z2 ∈ Dq×q ′2 are two arbitrary matrices, satisfy RP = QR′ and:
∀λ ∈ D1×p, f (π(λ)) = π ′(λP ) = π ′(λP ).

We note that a D-morphism f ∈ homD(M,M
′) is in fact defined by a matrix P ∈ Dp×p

satisfying that (D1×qR)P ⊆ (D1×q ′R′). Hence, the matrix P plays a more important role than
Q, a fact which is also clear from (14).

In the particular case where R′ = R, from Corollary 2.1, we obtain that the existence of an
endomorphism f of M is equivalent to the existence of two matrices P ∈ Dp×p and Q ∈ Dq×q
satisfying the following relation:

RP = QR. (15)

Example 2.4. Let us consider the left D-module M = D/I , where I =∑q

i=1DRi is a finitely
generated left ideal of D. Then, the left D-module M admits the following presentation:

D1×q .R→D
π→M → 0, R = (R1, . . . , Rq)

T ∈ Dq×1.

By Corollary 2.1, f ∈ endD(M) is defined by P ∈ D satisfying (D1×qR)P ⊆ (D1×qR), i.e.,
by P ∈ D such that IP ⊆ I . The set E(I ) = {P ∈ D|IP ⊆ I } is called the idealizer of the left
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ideal I ofD. It is the largest subring ofDwhich contains I as a two-sided ideal [46]. The eigenring
of I is then the ring defined by E(I )/I . We have the ring isomorphism σ : endD(D/I)∼=E(I )/I
defined by σ(f ) = κ(P ), where P ∈ E(I ) satisfies that, for all λ ∈ D, f (π(λ)) = π(λP ) and
κ : E(I )→ E(I )/I denotes the canonical projection [46].

IfD is a commutative ring, we then haveE(I ) = D and endD(D/I)∼=D/I . For instance, if we
consider the commutative ringD = Q[∂t ; id, �

�t ][∂x; id, �
�x ] of differential operators with rational

constant coefficients and I = D(∂t − ∂2
x ) the ideal of D generated by the differential operator

defining the heat equation, then endD(D/I)∼=D/I ∼=Q[∂x; id, �
�x ]. Finally, if we consider the

ringD = Q[∂1; id, �
�x1
][∂2; id, �

�x2
][∂3; id, �

�x3
] and theD-moduleM = D/(D∂1 +D∂2 +D∂3)

associated with the gradient operator in R3, we then get endD(M)∼=M ∼=Q.

Before illustrating Corollary 2.1, let us give a direct consequence of this corollary which shows
one interest of computing morphisms between finitely presented left D-modules.

Corollary 2.2. With the same hypotheses and notations as in Corollary 2.1, if F is a left D-
module, then the morphism

P. :Fp′ →Fp

ζ �→ (P .)(ζ ) = Pζ,
sends elements of kerF(R′.) to elements of kerF(R.), i.e.,F-solutions of the system R′ζ = 0 to
F-solutions of the system Rη = 0.

Proof. Applying the contravariant left exact functor homD(·,F) to the commutative exact dia-
gram (13), we obtain the following commutative exact diagram (see [66] for more details):

Fq R.← Fp π�← homD(M,F) ← 0
↑ Q. ↑ P. ↑ f �

Fq ′ R′.← Fp′ (π ′)�← homD(M
′,F) ← 0.

Up to an isomorphism, at the end of the previous subsection, we have seen that we can identify
homD(M,F) (resp., homD(M

′,F)) with kerF(R.) (resp., kerF(R′.)). An easy chase in the
previous exact diagram proves that, for all ζ ∈ kerF(R′.), we have f �(ζ ) = Pζ ∈ kerF(R.). �

Remark 2.1. From Corollary 2.2, we see that the computation of morphisms from a finitely
presented left D-module M to a finitely presented left D-module M ′ gives some kind of “Ga-
lois transformations” which send solutions of the second system to solutions of the first one.
This fact is particularly clear when R = R′: we then send a solution of the system to another
one.

As an example, we now apply Corollary 2.1 to a particular case and recover in a unified way
the eigenring introduced in the literature (see [4,11,18,19,61,68,74,75] for more details).

Example 2.5. Let us consider a skew polynomial ringD = A[∂; σ, δ] over a (non-commutative)
ring A and two matrices E,F ∈ Ap×p. Let us consider R = (∂Ip − E) ∈ Dp×p (resp., R′ =
(∂Ip − F) ∈ Dp×p) and the finitely presented left D-module M = D1×p/(D1×pR)
(resp., M ′ = D1×p/(D1×pR′)). Let π (resp., π ′) be the canonical projection of D1×p onto
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M (resp., M ′) and {ei}1�i�p the standard basis of D1×p. As we have seen in Section 2.1,
{yi = π(ei)}1�i�p and {zi = π ′(ei)}1�i�p satisfy the equations:

∂yi =
p∑
j=1

Eijyj , i = 1, . . . , p,

(16)

∂zi =
p∑
j=1

Fij zj , i = 1, . . . , p.

Let f be a morphism from M to M ′. Then, there exists a matrix P = (Pij )1�i,j�p ∈ Dp×p
such that f (yi) =∑p

j=1 Pij zj . Using (16), we easily check that we can always suppose that all
the Pij belong to A, i.e., P ∈ Ap×p. By Corollary 2.1, there exists Q ∈ Dp×p satisfying (12).
f is the zero morphism if and only if there exists a matrix Z ∈ Dp×p satisfying P = ZR′. As

the order of P is 0 in ∂ and that of R′ is 1 in ∂ , we get that Z = 0, i.e., P = 0 and Q = 0.
Now, let us suppose that P andQ are different from zero. As both the orders of RP and R′ in

∂ are 1, we deduce that the order of Q must be 0, i.e., Q ∈ Ap×p. Then, we get

(12) ⇔ (∂Ip − E)P = Q(∂Ip − F)
⇔ σ(P )∂ + δ(P )− EP = Q∂ −QF
⇔ (σ (P )−Q)∂ + (δ(P )− EP +QF) = 0. (17)

The first order polynomial matrix in the left-hand side of (17) must be equal to 0 so that:

(17)⇔
{
Q = σ(P ),
δ(P ) = EP − σ(P )F. (18)

We then obtain the following commutative exact diagram:

0 → D1×p .R→ D1×p π→ M → 0
↓ .σ (P ) ↓ .P ↓ f

0 → D1×p .R′→ D1×p π ′→ M ′ → 0.

(19)

Conversely, if there exist P ∈ Ap×p andQ ∈ Ap×p which satisfy (18), we can check that (12)
holds, i.e., the commutative exact diagram (19) where the morphism f : M → M ′ is defined by

∀m = π(λ) ∈ M, λ ∈ D1×p, f (m) = π ′(λP ).
The previous results prove that we have

homD(M,M
′) =

{
f : M → M ′|f (yi) =

p∑
j=1

Pij zj , 1 � i � p, P ∈ Ap×p,

δ(P ) = EP − σ(P )F
}
,

endD(M) =
{
f : M → M|f (yi) =

p∑
j=1

Pij yj , 1 � i � p, P ∈ Ap×p,

δ(P ) = EP − σ(P )E
}
.

For instance, if we consider the ring A = k[t] or k(t) and D = A[∂; idA, d
dt ], then (18)

becomes:
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Q(t) = P(t),
Ṗ (t) = E(t)P (t)− P(t)F (t). (20)

If we considerA = k[n] or k(n) andD = A[∂; σ, 0], where σ(a(n)) = a(n+ 1), then (18) gives:{
Qn = σ(Pn) = Pn+1,

EnPn − σ(Pn)Fn = EnPn − Pn+1Fn = 0.
(21)

We find again in a unified way known results concerning the eigenring of a linear system.
Finally, if F is a leftD-module, then applying the contravariant left exact functor homD(·,F)

to the commutative exact diagram (19), we then obtain the following commutative exact diagram:

Fp R.← Fp ← homD(M,F) ← 0
↑ σ(P ). ↑ P. ↑ f �

Fp R′.← Fp ← homD(M
′,F) ← 0.

If η ∈ homD(M
′,F), i.e., η ∈Fp is a solution of the system ∂η = Fη, then an easy chase in

the previous commutative exact diagram shows that ζ = Pη is then a solution of ∂ζ = Eζ , that
is to say, ζ = f �(η) ∈ homD(M,F). This last result can also be proved as follows:

∂ζ − Eζ = ∂(Pη)− E(Pη) = σ(P )∂η + δ(P )η − (EP )η = σ(P )(∂η − Fη) = 0.

For instance, if D = A[∂; idA, d
dt ], using (20), we then obtain

∂ζ(t)− E(t)ζ(t)= ∂(P (t)η(t))− (E(t)P (t))η(t) = P(t)∂η(t)− Ṗ (t)η(t)− (EP )η(t)
= P(t)(∂η(t)− Fη(t)) = 0.

If we now consider D = A[∂; σ, 0], using (21), then we get

ζn+1 − Enζn = Pn+1ηn+1 − EnPnηn = Pn+1(ηn+1 − Fnηn) = 0.

Let us introduce the definition of an integrable connection.

Definition 2.7. Let us consider the Weyl algebra D = Bn(k), where k is a field of characteristic
0, and n matrices Ei ∈ k(x1, . . . , xn)

p×p. A connection is a linear system of PDEs of the form:⎧⎪⎨⎪⎩
∂1y − E1y = 0,

...

∂ny − Eny = 0.

(22)

Let us denote by ∇i = ∂iIp − Ei ∈ Dp×p, i = 1, . . . , n. Then, the connection (22) is said to
be integrable if the following integrability conditions hold:

1 � i < j � n, ∇i∇j − ∇j∇i = �Ei
�xj
− �Ej

�xi
+ EiEj − EjEi = 0. (23)

Using a Gröbner basis computation, we can always transform aD-finite system of PDEs [15],
namely, a linear system of PDEs whose formal power series solutions at non-singular points only
depend on a finite number of arbitrary constants, into an integrable connection.
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Let us characterize the endomorphism ring of the left D-module M associated with the inte-
grable connection (22).

Proposition 2.5. Let D = Bn(k) be the Weyl algebra, where k is a field of characteristic 0, n
matrices E1, . . . , En ∈ k(x1, . . . , xn)

p×p satisfying (23), the matrix of functional operators

R = ((∂1Ip − E1)
T · · · (∂nIp − En)T)T ∈ Dnp×p,

and the finitely presented left D-module M = D1×p/(D1×npR) associated with (22).
Then, anyD-endomorphismf ofM can be defined by a pair of matricesP ∈ k(x1, . . . , xn)

p×p
and Q ∈ k(x1, . . . , xn)

np×np satisfying the following relations⎧⎨⎩
�P
�xi
+ PEi − EiP = 0, i = 1, . . . , n,

Q = diag(P, . . . , P ),
(24)

where diag(P, . . . , P ) denotes the diagonal matrix with n matrices P on the diagonal.

Proof. Using the fact that the integrability conditions (23) are fulfilled, we can easily check that
(22) forms a Janet basis with x1 as a multiplicative variable for the equations ∂1y − E1y = 0,
x1 and x2 as multiplicative variables for the equations ∂2y − E2y = 0, …, and x1, . . . , xn as
multiplicative variables for the equations ∂ny − Eny = 0 [65]. Let f be an endomorphism of M
defined by a pair of matrices P ∈ Dp×p and Q ∈ Dnp×np. Using the special first-order form of
(22), we can assume without a loss of generality that P ∈ k(x1, . . . , xn)

p×p. Then, the matrix
P ∈ k(x1, . . . , xn)

p×p defines an endomorphism ofM if and only if we have RP ∈ (Dnp×npR),
i.e., if and only if the rows of (∂i − Ei)P = P∂i + ∂P/∂xi − EiP are reduced to zero with
respect to the Janet basis (22) for i = 1, . . . , n. Hence, we obtain that the zero-order equations
∂P/∂xi + PEi − EiP = 0, i = 1, . . . , n, must be satisfied and Q = diag(P, . . . , P ). �

In [7,61,75], the eigenring of the connection (22) is defined by

E =
{
P ∈ k(x1, . . . , xn)

n×n
∣∣∣∣∣�P�xi + PEi − EiP = 0, i = 1, . . . , n

}
.

We refer to [21] for a generalization of the previous result to linear functional systems.
The previous results show that the concept of endomorphism ring endD(M) generalizes the

concept of the eigenring of a 1-D linear system or of an integrable connection.
Finally, we refer the reader to [20,21] for relations between the concepts of endomorphism

rings, eingerings and Lax pairs developed in the integrability theory of Hamiltonian systems and
evolution equations.

2.2.2. Algorithms
Before giving two algorithms for the computation of morphisms between two finitely presented

left modules, we first recall the notion of the Kronecker product of two matrices.

Definition 2.8. Let E ∈ Dq×p and F ∈ Dr×s be two matrices with entries in a ring D. The
Kronecker product of E and F , denoted by E ⊗ F , is the matrix defined by

E ⊗ F =
⎛⎜⎝E11F . . . E1pF

...
...

...

Eq1F . . . EqpF

⎞⎟⎠ ∈ D(qr)×(ps).
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The next result is very classical.

Lemma 2.1. LetD be a commutative ring,E ∈ Dr×q,F ∈ Dq×p andG ∈ Dp×m three matrices.
If we denote by row(F ) = (F1•, . . . , Fq•) ∈ D1×qp the row vector obtained by stacking the rows
of F one after the other, then the product of the three matrices can be obtained by

EFG = row(F )(ET ⊗G).

We point out that Lemma 2.1 is only valid for commutative rings.
Let us consider a commutative ring D and the matrices R ∈ Dq×p, R′ ∈ Dq ′×p′ , P ∈ Dp×p′

and Q ∈ Dq×q ′ . Then, from the previous lemma, we get{
RP = RPIp′ = row(P )(RT ⊗ Ip′),
QR′ = IqQR′ = row(Q)(Iq ⊗ R′),

which implies that (12) is equivalent to:

(row(P ) − row(Q))

(
RT ⊗ Ip′
Iq ⊗ R′

)
= 0.

This leads to an algorithm for computing matrices P ∈ Dp×p′ andQ ∈ Dq×q ′ satisfying (12)
in the case of a commutative polynomial ring D.

Algorithm 2.1

• Input: A commutative Ore algebra D, R ∈ Dq×p and R′ ∈ Dq ′×p′ .
• Output: A finite family of generators {fi}i∈I of the D-module homD(M,M

′), where

M = D1×p/(D1×qR), M ′ = D1×p′/(D1×q ′R′),
and each fi is defined by means of two matrices Pi and Qi satisfying the relation (12), i.e.:

∀λ ∈ D1×p : fi(π(λ)) = π ′(λPi), i ∈ I.

1. Form the following matrix with entries in D:

K =
(
RT ⊗ Ip′
Iq ⊗ R′

)
∈ D(pp′+qq ′)×qp′ . (25)

2. Compute kerD(.K), i.e., the first syzygy leftD-module ofD1×(pp′+qq ′)K using, for instance,
a computation of a Gröbner basis for an elimination order (see [16])) or a more efficient
method developed in the symbolic computation literature. We obtain L ∈ Ds×(pp′+qq ′) satis-
fying kerD(.K) = D1×sL.

3. For i = 1, . . . , s, construct the following matrices{
Pi(j, k) = ri(L)(1, (j − 1)p′ + k),
Qi(l,m) = −ri(L)(1, pp′ + (l − 1)q ′ +m),

where ri(L) denotes the ith row of L, E(i, j) the i × j entry of the matrix E, j = 1, . . . , p,
k = 1, . . . , p′, l = 1, . . . , q and m = 1, . . . , q ′. We then have

RPi = QiR
′, i = 1, . . . , s.

4. Compute a Gröbner basis G of the rows of R′ for a total degree order.
5. For i = 1, . . . , s, reduce the rows ofPi with respect toG by computing their normal forms with

respect to G. We obtain the matrices P i which satisfy P i = Pi + ZiR′, for certain matrices
Zi ∈ Dp×q ′ which can be obtained by means of factorizations.
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6. For i = 1, . . . , s, define the following matrices Qi = Qi + RZi. The pair (Pi,Qi) then sat-
isfies the relation RP i = QiR

′.

Remark 2.2. If we denote by R′2 ∈ Dq
′
2×q ′ a matrix satisfying kerD(.R′) = D1×q ′2R′2, we then

note that any matrix of the form Qi = Qi + RZi + Z′iR′2, where Z′i ∈ Dq×q
′
2 is an arbitrary

matrix, also satisfies the relation RP i = QiR
′.

Remark 2.3. As D is a commutative ring, we know that homD(M,M
′) has a D-module struc-

ture. Let us prove that the family {fi}i∈I obtained in the output of Algorithm 2.1 generates
homD(M,M

′). Let us consider f ∈ homD(M,M
′). By Corollary 2.1, we know that there exist

P ∈ Dp×p′ and Q ∈ Dq×q ′ such that RP = QR′, i.e., (row(P ) − row(Q))K = 0, where K
is defined by (25). Using the fact that the matrix L, defined in Step 2 of Algorithm 2.1, generates
kerD(.K), we obtain that (row(P ) − row(Q)) ∈ (D1×sL), i.e., there exists (α1, . . . , αs) ∈
D1×s such that

(row(P ) − row(Q)) = (α1, . . . , αs)L⇒

⎧⎪⎪⎨⎪⎪⎩
P =

s∑
i=1

αiPi,

Q =
s∑
i=1

αiQi,

where the matrices Pi andQi are defined in Step 3 of Algorithm 2.1. Using the definitions of P i
and Qi defined in Steps 5 and 6 of Algorithm 2.1, we then get⎧⎪⎪⎨⎪⎪⎩

P =
s∑
i=1

αiPi −
(

s∑
i=1

αiZi

)
R′,

Q =
s∑
i=1

αiQi − R
(

s∑
i=1

αiZi

)
.

Using 2 of Corollary 2.1, we obtain f =∑s
i=1 αifi , which proves the result.

Hence, if {fi}i∈I is a family of morphisms obtained by Algorithm 2.1 defined by the pairs of
matrices (P i,Qi), then any element f ∈ homD(M,M

′) has the form f =∑
i∈I αifi , αi ∈ D

for i ∈ I , and, up to a homotopy equivalence, f can be defined by (
∑
i∈I αiP i,

∑
i∈I αiQi).

Finally, let us explain how to compute the relations between the generators {fi}i=1,...,s of theD-
module homD(M,M

′). We first define the matrices U = (row(P 1)
T . . . row(P s)T)T ∈ Ds×pp′ ,

V = Ip ⊗ R′ ∈ Dpq ′×pp′ and W = (UT V T)T ∈ D(s+pq ′)×pp′ . Computing kerD(.W), we get
(X − Y ) ∈ Dl×(s+pq ′), X ∈ Dl×s and Y ∈ Dl×pq ′ , satisfying kerD(.W) = D1×l (X − Y ).
If we denote by

Zi =

⎛⎜⎜⎜⎝
Y(i,1) . . . Y(i,q ′)
Y(i,q ′+1) . . . Y(i,2q ′)

...
...

...

Y(i,(p−1)q ′+1) . . . Y(i,pq ′)

⎞⎟⎟⎟⎠ ∈ Dp×q ′ , i = 1, . . . , l,

then, for i = 1, . . . , l, we obtain the relations
∑s
j=1XijP j = ZiR′, and thus,

∑s
j=1Xijfj = 0.

Example 2.6. Let us consider again Example 2.2. Applying Algorithm 2.1 to the matrixR defined
by (8), we obtain that theD-endomorphisms ofM are generated by the endomorphisms fe1 , fe2 ,
fe3 and fe4 defined by fα(π(λ)) = π(λPα), for all λ ∈ D1×3, where
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Pα =
⎛⎝ α1 α2 2α3∂1∂2
α2 + 2α4∂1 α1 − 2α4∂1 2α3∂1∂2

α4∂2 −α4∂2 α1 + α2 + α3(∂
2
2 + 1)

⎞⎠ ,

Qα =
(
α1 − 2α4∂1 α2 + 2α4∂1

α2 α1

)
,

α = (α1, α2, α3, α4) ∈ D1×4 and {ei}1�i�4 denotes the standard basis of D1×4. Finally, we can
check that the generators {fei }1�i�4 of the D-module endD(M) satisfy the following relations:

(∂2
2 − 1)fe4 = 0, ∂2

2fe1 + fe2 − fe3 = 0, fe1 + ∂2
2fe2 − fe3 = 0.

Let D = A[∂1; σ1, δ1] · · · [∂m; σm, δm] be an Ore algebra, where A = k or k[x1, . . . , xn], or
D = k(x1, . . . , xn)[∂1; σ1, δ1] · · · [∂m; σm, δm], where k is a field of constants, namely:

k = {a ∈ A|δi(a) = 0, i = 1, . . . , m}.
The next algorithm computes the morphisms of homD(M,M

′)which can be defined by means
of a matrix P with a fixed total order in the functional operators ∂i and a fixed degree in xi for
the numerators and denominators of the polynomial/rational coefficients.

Algorithm 2.2

• Input: An Ore algebraD satisfying the hypotheses of Proposition 2.1, two matricesR ∈ Dq×p
and R′ ∈ Dq ′×p′ and three non-negative integers α, β, γ .
• Output: A family of pairs (P i,Qi)i∈I satisfying:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RP i = QiR
′,

ord∂ (P i) � α, i.e., P i = ∑
0�|ν|�α

a
(i)
ν ∂

ν,

and ∀ν ∈ Zn+, 0 � |ν| � α, a
(i)
ν ∈ Ap×p satisfies:

degx(num(a(i)ν )) � β,

degx(denom(a(i)ν )) � γ,

where ord∂ (P i) denotes the maximal of the total orders of the entries of P i , degx(num(a(i)ν ))
(resp., degx(denom(a(i)ν ))) the maximal of the degrees of the numerators (resp., denominators)
of a(i)ν . For all i ∈ I , fi ∈ homD(M,M

′) is then defined by fi(π(λ)) = π ′(λP i).

1. Take an ansatz for P satisfying the input

P(i, j) =
∑

0�|ν|�α
b(i,j)ν ∂ν, 1 � i � p, 1 � j � p′,

where b(i,j)ν is a rational function whose numerator (resp., denominator) has a total degree β
(resp., γ ).

2. Compute RP and denote the result by F .
3. Compute a Gröbner basis G of the rows of R′ for a total degree order.
4. Compute the normal forms of the rows of F with respect to G.
5. Solve the system for the coefficients of b(i,j)ν so that all the normal forms vanish.
6. Substitute the solutions into the matrix P . Denote the set of solutions by {Pi}i∈I .
7. For i ∈ I , compute the normal forms P i of the rows of Pi with respect to G.
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8. Using rj (RP i) ∈ (D1×q ′R′), j = 1, . . . , q, where rj (RP i) denotes the j th row of the matrix
RP i ∈ Dq×p′ , compute a matrixQi ∈ Dq×q ′ satisfying RP i = QiR, i ∈ I , by reducing to 0
the row rj (RP i) with respect to the Gröbner basis G.

Remark 2.4. If we search for morphisms with only polynomial coefficients, i.e., γ = 0, then
we note that the algebraic system in the coefficients b(i,j)ν that we need to solve in Step 5 of
Algorithm 2.2 is linear. Hence, the solutions of this system belong to field k. However, if we look
for morphisms with rational coefficients, we then have to solve a non-linear algebraic system in
the coefficients b(i,j)ν , meaning that its solutions generally belong to the algebraic closure k of k.

If M and M ′ are two finite-dimensional k-vector spaces (e.g., the linear systems defined in
Example 2.5 where A is a field k or k(t), integrable connections, D-finite modules [15]) or
holonomic modules over the Weyl algebra An(Q) [49,71], using Algorithm 2.2, we can then
compute a basis of the finite-dimensional k-vector space homD(M,M

′). In order to apply this
algorithm, we need to know some bounds on the orders and degrees of the entries of solutions of
(12). In other words, we need to find some bounds for the inputs α, β and γ of Algorithm 2.2 . In
some cases, such bounds are known. Let us recall some known results.

In Example 2.5, we saw that if D = A[∂; σ, δ] was a skew polynomial ring over a commu-
tative ring A, E,F ∈ Ap×p and R = (∂Ip − E),R′ = (∂Ip − F), the morphisms from M =
D1×p/(D1×pR) to M ′ = D1×p/(D1×pR) were defined by matrices P ∈ Ap×p satisfying:

δ(P ) = EP − σ(P )F. (26)

Hence, we need to solve (26). There are two main cases:

1. If A = k[t] or k(t) and D = A[∂; idA, d
dt ], then (26) becomes Ṗ (t) = E(t)P (t)− P(t)F (t).

A direct method to solve the previous linear system of ODEs is developed in [8]. Another
method, based on the fact that the entries of the matrices E, F and P belong to a commutative
ringA, uses the equivalence of the previous system with the following first order linear system
of ODEs
d

dt
(row(P )) = row(P )((ET ⊗ Ip)− (Ip ⊗ F)), (27)

where⊗ denotes the Kronecker product (see Definition 2.8). Hence, computing homD(M,M
′)

is equivalent to computing the A-solutions of the auxiliary linear differential system (27) (see
for example [8,18,19,68]). Consequently, we can use the bounds appearing in [2,5] on the
degrees of numerators (and denominators) of polynomial (rational) solutions to deduce bounds
on the entries of P . These bounds only depend on the valuations and degrees of the entries of
the two matrices E and F .

2. If we consider the ring A = k[n] or A = k(n) and D = A[∂; σ, 0] with σ(a)(n) = a(n+ 1),
then (26) becomes Pn+1Fn = EnPn. A direct method to solve the previous linear difference
system is developed in [6]. Another one, based again on the fact that the entries of the matrices
En, Fn and Pn belong to a commutative ring A, uses the equivalence of the previous system
with the following first order linear discrete system:

row(Pn+1)(E
T
n ⊗ Ip) = row(Pn)(Ip ⊗ Fn). (28)

Moreover, if E ∈ GLp(A), i.e., the matrix E is invertible over A, then (28) becomes

row(Pn+1) = row(Pn)((Ip ⊗ F)(ET
n ⊗ Ip)−1).
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Some bounds exist on the degrees of numerators (and denominators) of polynomial (rational)
solutions of the previous system (see [1,6]), and thus, for the matrices P and Q.

It was shown in [49] how to compute the space of polynomial or rational solutions of a
holonomic system of PDEs [10,22]. In the case whereM andM ′ are two holonomic modules over
the Weyl algebrasAn(k), this result was used in [71] to compute bases of the finite-dimensional k-
vector space homD(M,M

′). See [44,70] for implementations of these results in computer algebra
systems. The result developed in [49] can be used to compute the eigenring of a linear system of
PDEs defined by means of an integrable connection (see Proposition 2.5). See also [74,75].

Finding bounds in more general situations is a subject for future researches.
If homD(M,M

′) is an infinite-dimensional k-vector space, we can then only consider the
morphisms of homD(M,M

′)which can be defined by means of a matrixP with a fixed total order
in the functional operators ∂i’s and a fixed degree in the xj ’s for the numerators and denominators
of the polynomial/rational coefficients (a kind of “filtration of homD(M,M

′)”). Hence, giving
bounds α, β and γ , Algorithm 2.2 computes those matrices P .

Let us illustrate Algorithm 2.2 by means of an example.

Example 2.7. We consider the Euler-Tricomi equation ∂2
1u(x1, x2)− x1∂

2
2u(x1, x2) = 0 which

appears in the study of transonic flow. LetD = A2(Q) be the Weyl algebra with coefficients in Q,
R = (∂2

1 − x1∂
2
2 ) ∈ D andM = D/(DR) the associated leftD-module. We can easily prove that

M is not a holonomic left D-module [10,22] and endD(M) is an infinite-dimensional k-vector
space. However, using Algorithm 2.2, we can compute the D-endomorphisms of M defined by
P ∈ D with a fixed total order in the ∂i’s and a fixed total degree in the xj ’s. We denote by
endD(M)α,β the Q-vector space of all the elements of endD(M) defined by differential operators
whose total orders (resp., degrees) in the ∂i’s (resp., xj ’s) are less or equal to α (resp., β), where
α and β are two non-negative integers. Below is a list of some of these Q-vector spaces obtained
by means of Algorithm 2.2:

• endD(M)0,0 is defined by P = Q = a, a ∈ Q.

• endD(M)1,1 is defined by P = a1 + a2∂2 + 3
2a3x2∂2 + a3x1∂1, whereQ = P + 2a3, a1, a2,

a3 ∈ Q.

• endD(M)2,0 is defined by P = Q = a1 + a2∂2 + a3∂
2
2 , where a1, a2, a3 ∈ Q.

• endD(M)2,1 is defined by (a1, . . . , a5 ∈ Q):{
P = a1 + a2∂2 + 3

2a3x2∂2 + a3x1∂1 + a4∂
2
2 + 3

2a5x2∂
2
2 + a5x1∂1∂2,

Q = P + 2a3 + 2a5∂2.

2.2.3. Applications: Quadratic first integrals of motion and conservation laws
We illustrate the interest of the computation of morphisms in the search of quadratic first

integrals of motion of linear systems of ODEs and quadratic conservation laws of linear systems
of PDEs.

We consider the Ore algebraD = A[∂; idA, d
dt ] of ordinary differential operators with coeffi-

cients in a commutative k-algebra A (e.g., A = k[t], k(t)), where k is a field of characteristic 0,
E ∈ Ap×p and the matrix R = (∂Ip − E) ∈ Dp×p. Using (20), we can check that any solution
P ∈ Ap×p of the following Liapunov equation

Ṗ (t)+ ET(t)P (t)+ P(t)E(t) = 0
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defines a morphism from the finitely presented leftD-module Ñ = D1×p/(D1×pR̃) to the finitely
presented leftD-moduleM = D1×p/(D1×pR), where R̃ = (−(∂Ip + ET)) ∈ Dp×p denotes the
formal adjoint ofR [56,57]. As we haveD1×pR̃ = D1×p(∂Ip + ET), we can also use the matrix
(∂Ip + ET) instead of R̃ in the definition of Ñ .

We recall that the formal adjoint R̃ of a matrix R of differential operators is obtained by
contracting the column vector Rη by a row vector λT and integrating the result by parts to get

λT(Rη) = ηT(R̃λ)+ ∂(�(λ, η)), (29)

where � denotes the boundary terms of the integration by parts (see [56–58]). We note that � is
a bilinear application in (η, λ) constructed from the difference of the two bilinear applications
(η, λ) �→ λT(Rη) and (η, λ) �→ ηT(R̃λ).

In particular, in our case, we have

λT(∂η − Eη) = −(∂λT + λTE)η + ∂(λTη) = ηT(−(∂λ+ ETλ))+ ∂(ηTλ). (30)

If F is a left D-module and η ∈Fp satisfies the system ∂η − Eη = 0, then, following the
results obtained in Example 2.5, λ = Pη is a solution of ∂λ+ ETλ = 0. Hence, using (30), we
then get

∂(ηTλ) = ∂(ηTPη) = 0,

which proves that the quadratic form V = ηTPη is a first integral of the motion of the system
∂η − Eη = 0. Hence, we obtain that there exists a one-to-one correspondence between the qua-
dratic first integrals of the motion of the form V = ηTPη, P ∈ Aq×p, of ∂η − Eη = 0 and the
morphisms between the left D-modules Ñ and M , i.e., the elements of homD(Ñ,M).

We note that if E is a skew-symmetric matrix, namely, ET = −E, then we get

−R̃ = (∂Ip + ET) = (∂Ip − E) = R,
Ñ = M and homD(Ñ,M) = endD(M). Such a particular case usually appears in mechanics.

Let us illustrate the previous result.

Example 2.8. Let us consider the example of a linear system of ODEs defined in page 117 of
[38] and let us compute its quadratic first integrals. In order to do that, let us introduce the matrix

E =

⎛⎜⎜⎝
0 1 0 0
−ω2 0 α 0

0 0 0 1
0 0 −ω2 α

⎞⎟⎟⎠ ,

whereω andα are two real constants, the ringD = Q(ω, α)[∂; id, d
dt ] of differential operators, the

matrixR = (∂I4 − E) ∈ D4×4 of differential operators and theD-moduleM = D1×4/(D1×4R).
Then, we have R̃ = −(∂I4 + ET) and Ñ = D1×4/(D1×4R̃). Using Algorithm 2.1, we obtain that
an element of the D-module homD(Ñ,M) can be defined by means of the matrix

P =

⎛⎜⎜⎝
c1ω

4 c2ω
2 −ω2(c1α + c2) c1ω

2

−c2ω
2 c1ω

2 −c1ω
2 + c2α −c2

−ω2(c1α − c2) −c1ω
2 − c2α c1(α

2 + ω2) −c1α + c2

c1ω
2 c2 −c1α − c2 c1

⎞⎟⎟⎠ ,

where c1 and c2 are two arbitrary elements of Q, which leads to the quadratic first integral:
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V (x)= xTPx

= c1ω
4x1(t)

2 − 2c1αω
2x1(t)x3(t)+ 2c1ω

2x1(t)x4(t)+ c1ω
2x2(t)

2

− 2c1ω
2x2(t)x3(t)+ c1α

2x3(t)
2 + c1ω

2x3(t)
2

− 2c1αx3(t)x4(t)+ c1x4(t)
2.

More generally, let us consider a matrix R ∈ Dq×p of differential operators, R̃ ∈ Dp×q
its formal adjoint and the finitely presented left D-modules M = D1×p/(D1×qR) and Ñ =
D1×q/(D1×pR̃). Let us suppose that there exists a morphismf from Ñ toM defined byP ∈ Dq×p
and Q ∈ Dp×q , i.e., we have the commutative exact diagram:

D1×p .R̃→ D1×q π ′→ Ñ → 0
↓ .Q ↓ .P ↓ f
D1×q .R→ D1×p π→ M → 0.

Applying the left exact contravariant functor homD(·,F) to the previous commutative exact
diagram, we then obtain the following commutative exact diagram

Fp R̃.← Fq ← kerF(R̃.) ← 0
↑ Q. ↑ P. ↑ f �

Fq R.← Fp ← kerF(R.) ← 0,

where f �(η) = Pη. If η ∈Fp is a solution of Rη = 0, then λ = Pη is a solution of R̃λ = 0 as

R̃(Pη) = Q(Rη) = 0.

Therefore, using (29), we obtain that V = �(Pη, η) is a quadratic first integral of the motion of
system Rη = 0, i.e., V satisfies ∂V (t) = 0.

An extension of the previous ideas exists for the computation of quadratic conservation laws
of linear system of PDEs, namely, a vector � = (�1, . . . ,�n)T of quadratic functions of the
system variables and their derivatives which satisfies div � =∑n

i=1 ∂i�i = 0, where n denotes
the number of independent variables.

Let us give a simple example as the general theory exactly follows the same lines.

Example 2.9. The movement of an incompressible rotating fluid with a rotation axis lying along
the x3 axis and a small velocity is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
�u1

�t
− 2ρ0�0u2 + �p

�x1
= 0,

ρ0
�u2

�t
+ 2ρ0�0u1 + �p

�x2
= 0,

ρ0
�u3

�t
+ �p

�x3
= 0,

�u1

�x1
+ �u2

�x2
+ �u3

�x3
= 0,

(31)

where u = (u1, u2, u3)
T denotes the local rate of velocity, p the pressure, ρ0 the constant fluid

density and �0 the constant angle speed. See page 62 of [39] for more details.
Let us denote byD = Q(ρ0, �0)[∂t ; id, �

�t ][∂1; id, �
�x1
][∂2; id, �

�x2
][∂3; id, �

�x3
] the ring of dif-

ferential operators, the system matrix
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R =

⎛⎜⎜⎝
ρ0∂t −2ρ0�0 0 ∂1

2ρ0�0 ρ0∂t 0 ∂2
0 0 ρ0∂t ∂3
∂1 ∂2 ∂3 0

⎞⎟⎟⎠ ,

and the D-module M = D1×4/(D1×4R) associated with (31).
If we denote by ξ = (u1, u2, u2, p)

T, we then have the following identity

(λ, Rξ) = (ξ, R̃λ)+
(

�
�t

�
�x1

�
�x2

�
�x3

) ⎛⎜⎜⎝
ρ0(λ1u1 + λ2u2 + λ3u3)

λ1p + λ4u1
λ2p + λ4u2
λ3p + λ4u3

⎞⎟⎟⎠ , (32)

where R̃ = −R. Using the fact thatR is skew-symmetric, we get that Ñ = D1×4/(D1×4R̃) = M
and homD(Ñ,M) = endD(M). Hence, if (�u, p) is a solution of (31), then λ1 = u1, λ2 = u2,
λ3 = u3 and λ4 = p is a solution of R̃λ = 0. Hence, if we take λ = ξ , using (32), we then obtain

�
�t
(ρ0(u

2
1 + u2

2 + u2
3))+

�
�x1

(2pu1)+ �
�x2

(2pu2)+ �
�x3

(2pu3) = 0,

i.e., we obtain the following conservation of law of (31):

�
�t

(
1

2
ρ0 ‖ �u ‖2

)
+ div (p�u) = 0.

We refer the reader to [21] for examples coming from electromagnetism and elasticity theory.

3. Reducible modules and factorizations

We recall that D denotes an Ore algebra satisfying the hypotheses of Proposition 2.1.

3.1. Modules associated with a morphism and equivalences

Let f : M → M ′ be a morphism between two left D-modules. Then, we can define the fol-
lowing left D-modules:⎧⎪⎪⎨⎪⎪⎩

ker f = {m ∈ M|f (m) = 0},
im f = {m′ ∈ M ′| ∃ m ∈ M : m′ = f (m)},
coim f = M/ ker f,
coker f = M ′/im f.

Let us explicitly characterize the above-mentioned kernel, image, coimage and cokernel of a
morphism f : M → M ′ between two finitely presented left D-modules M and M ′.

Proposition 3.1. LetR∈Dq×p,R′ ∈Dq ′×p′ ,M = D1×p/(D1×qR)andM ′ = D1×p′/(D1×q ′R′).
Letf : M → M ′ be a morphism defined by means of the two matricesP ∈ Dp×p′ andQ ∈ Dq×q ′
satisfying (12). Then, we have:

1. ker f = (D1×rS)/(D1×qR), where S ∈ Dr×p is the matrix defined by

kerD

(
.

(
P

R′
))
= D1×r (S − T ), T ∈ Dr×q ′ . (33)
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2. coim f = D1×p/(D1×rS),
3. im f =

(
D1×(p+q ′)

(
P

R′
))/

(D1×q ′R′),

4. coker f = D1×p′
/(

D1×(p+q ′)
(
P

R′
))
.

Proof. 1. Letm ∈ ker f and writem = π(λ) for a certain λ ∈ D1×p. Then, f (m) = π ′(λP ) = 0
implies that λP ∈ (D1×q ′R′), i.e., there exists μ ∈ D1×q ′ satisfying λP = μR′. Hence, m =
π(λ) ∈ ker f implies that there existsμ ∈ D1×q ′ such that λP = μR′. Conversely, we can easily
check that any element (λ − μ) ∈ kerD(.(P T R′T)T) gives m = π(λ) ∈ ker f .

2. Using the canonical short exact sequence 0→ ker f
i→M

ρ→ coim f → 0, where i (resp.,
ρ) denotes the canonical injection (resp., surjection), M = D1×p/(D1×qR) and the fact that
ker f = (D1×rS)/(D1×qR), we obtain the following exact sequence

0→ (D1×rS)/(D1×qR) i→D1×p/(D1×qR) ρ→ coim f → 0,

which proves that coim f = D1×p/(D1×rS) by the third isomorphism theorem (see, e.g., [66]).
3. For all λ ∈ D1×p, we have f (π(λ)) = π ′(λP ), which clearly proves that we have

im f =
(
D1×(p+q ′)

(
P

R′
)) /

(D1×q ′R′).

4. Using the canonical short exact sequence 0→ im f
j→M ′ σ→ coker f → 0,where j (resp.,

σ ) denotes the canonical injection (resp., surjection), M ′ = D1×p′/(D1×q ′R′) and the fact that
im f = (D1×pP +D1×q ′R′)/(D1×q ′R′), we then obtain the following exact sequence

0→
(
D1×(p+q ′)

(
P

R′
)) /

(D1×q ′R′) j→D1×p′/(D1×q ′R′) σ→ coker f → 0,

and thus, coker f = D1×p′/
(
D1×(p+q ′)

(
P

R′
))

by the third isomorphism theorem [66]. �

Let us state the first main result of the paper.

Theorem 3.1. With the notations of Proposition 3.1, any non-zero morphism f : M → M ′ leads
to a factorization of R ∈ Dq×p of the form R = LS, where L ∈ Dq×r and S ∈ Dr×p satisfies
coim f = D1×p/(D1×rS).

Proof. Using (33) and the fact that RP = QR′, we obtain that

(D1×q(R −Q)) ⊆ kerD

(
.

(
P

R′
))
= D1×r (S − T ),

and thus, there exists a matrix L ∈ Dq×r satisfying{
R = LS,
Q = LT . (34)
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We then have the following commutative exact diagram

0
↓

0 ker f
↓ ↓

D1×q .R→ D1×p π→ M → 0
↓ .L ‖ ↓ ρ
D1×r .S→ D1×p κ→ coim f → 0,

↓ ↓
0 0

(35)

where ρ : M → coim f denotes the canonical projection onto coim f = M/ ker f . �

We point out that the results of Proposition 3.1 and Theorem 3.1 are constructive as Gröbner
bases exist for the class of Ore algebras we are considering (see Proposition 2.1), a fact allowing us
to compute syzygy modules and factorizations of matrices. We note that the problem of factoring
R by S can be reduced to a membership problem as we need to check that every row ofR belongs
to the left D-module D1×rS. We refer to the library OreModules [17] for more details.

Definition 3.1

1. A non-zero leftD-moduleM is called simple if it only admits 0 andM as leftD-submodules.
2. A factorization R = LS of the matrix R ∈ Dq×p, where L ∈ Dq×r and S ∈ Dr×p, is said to

be non-trivial if we have (D1×qR)� (D1×rS).

IfR = LS is a trivial factorization of a full row rank matrixR, namely, kerD(.R) = 0, using the
equality (D1×rS) ⊆ (D1×qR), then there exist a matrix L′ ∈ Dr×q such that S = L′R. Hence,
we get (Iq − LL′)R = 0 and, using the fact that kerD(.R) = 0, we obtain that LL′ = Iq , i.e., L
admits a right-inverse over D. Moreover, if R is a square matrix, i.e., p = q, we then get that
L′L = Ip, showing that L is an invertible matrix over D, which explains the name of non-trivial
factorization.

Using 1 of Proposition 3.1, we obtain the following corollary of Theorem 3.1.

Corollary 3.1. With the notations of Proposition 3.1, we obtain that the existence of a non-
injective endomorphism of M defines a non-trivial factorization of R and proves that M is not a
simple left D-module.

IfM is a simple leftD-module, Corollary 3.1 then shows that any non-zero endomorphism f of
M is injective. Moreover, as im f is a non-zero leftD-submodule ofM andM is a simple leftD-
module, we obtain that im f = M . Hence, any element 0 /= f ∈ endD(M) is aD-automorphism
ofM , i.e., f ∈ autD(M). This is the classical Schur’s lemma saying that the endormorphism ring
endD(M) of a simple left D-module M is a division ring (see, e.g., [46]).

Let us illustrate Theorem 3.1 and Corollary 3.1 on an example.

Example 3.1. We consider the linearized Euler equations for an incompressible fluid (see page
356 of [39]) defined by
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div �v(x, t) = 0,

��v(x, t)
�t

+ grad p(x, t) = 0,
(36)

where x = (x1, x2, x3) and �v = (v1, v2, v3)
T (resp., p) denotes the perturbations of the speed

(resp., pressure). Let us denote by D = Q[∂t ; id, �
�t ][∂1; id, �

�x1
][∂2; id, �

�x2
][∂3; id, �

�x3
] the ring

of differential operators with rational constant coefficients, the system matrix corresponding to
(36) is then defined by

R =

⎛⎜⎜⎝
∂1 ∂2 ∂3 0
∂t 0 0 ∂1
0 ∂t 0 ∂2
0 0 ∂t ∂3

⎞⎟⎟⎠ ∈ D4×4.

Let M = D1×4/(D1×4R) be the D-module associated with the system (36). Using
Algorithm 2.1, we obtain that an endomorphism f ofM is defined by the following two matrices:

P =

⎛⎜⎜⎝
0 ∂3 −∂2 0
−∂3 0 ∂1 0
∂2 −∂1 0 0
0 0 0 0

⎞⎟⎟⎠ , Q =

⎛⎜⎜⎝
0 0 0 0
0 0 ∂3 −∂2
0 −∂3 0 ∂1
0 ∂2 −∂1 0

⎞⎟⎟⎠ .

We then obtain the following factorization R = LS of R where

L =

⎛⎜⎜⎝
0 1 0 0 0
−1 0 0 0 ∂1
0 0 1 0 ∂2
0 0 0 −1 ∂3

⎞⎟⎟⎠ , S =

⎛⎜⎜⎜⎜⎝
−∂t 0 0 0
∂1 ∂2 ∂3 0
0 ∂t 0 0
0 0 −∂t 0
0 0 0 1

⎞⎟⎟⎟⎟⎠ .

We can check that ker f = (D1×5S)/(D1×4R) /= 0, which shows thatR = LS is a non-trivial
factorization of R and M is not a simple D-module as coim f = D1×4/(D1×5S) is a non-trivial
D-submodule of M . If we consider F = C∞(�), where � is an open convex subset of R4, we
easily check that all F -solutions of Sη = 0 satisfy⎧⎨⎩

�v(x, t) = �v(x),
div �v(x) = 0,
p(x, t) = 0,

⇔
{�v(x, t) = curl �ψ(x),
p(x, t) = 0,

where �ψ = (ψ1, ψ2, ψ3)
T is any vector of smooth functions on � ∩ R3 and curl denotes the

standard curl operator (see, e.g., [38]). Finally, we can easily check that the solutions of the
system Sη = 0 are particular solutions of (36).

Let us state a useful lemma.

Lemma 3.1. Let R ∈ Dq×p, R′ ∈ Dq ′×p, R′′ ∈ Dq×q ′ be three matrices satisfying the relation
R = R′′R′ and let T ′ ∈ Dr ′×q ′ be such that kerD(.R′) = D1×r ′T ′. Let us also consider the
canonical projections π1 : D1×q ′R′ → M1 = (D1×q ′R′)/(D1×qR) and:

π2 : D1×q ′ → M2 = D1×q ′/(D1×qR′′ +D1×r ′T ′).
Then, the morphism ψ defined by

ψ : M2 → M1

m2 = π2(λ) �→ ψ(m2) = π1(λR
′),
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is an isomorphism and its inverse φ is defined by

φ : M1 → M2

m1 = π1(λR
′) �→ φ(m1) = π2(λ).

In other words, we have the following isomorphism of left D-modules:
(D1×q ′R′)/(D1×qR)∼=D1×q ′/(D1×qR′′ +D1×r ′T ′). (37)

Proof. Let us prove thatψ is a well-defined morphism. Let us assume thatm2 = π2(λ) = π2(λ
′),

where λ, λ′ ∈ D1×q ′ . Then, we have π2(λ− λ′) = 0, i.e., λ− λ′ ∈ (D1×qR′′ +D1×r ′T ′) so that
there exist μ ∈ D1×q and ν ∈ D1×r ′ such that λ− λ′ = μR′′ + νT ′. We then have

(λ− λ′)R′ = (μR′′ + νT ′)R′ = μR ⇒ π1((λ− λ′)R′) = π1(μR) = 0

⇒ π1(λ
′R′) = π1(λR

′) = ψ(m2).

Let us prove that φ is also well-defined. Let us suppose thatm1 = π1(λR
′) = π1(λ

′R′), where
λ, λ′ ∈ D1×q ′ . Then, we get π1((λ− λ′)R′) = 0, i.e., (λ− λ′)R′ ∈ (D1×qR), and thus, there
exists μ ∈ D1×q such that (λ− λ′)R′ = μR. Now, using the factorization R = R′′R′, we then
get (λ− λ′ − μR′′)R′ = 0 so that λ− λ′ − μR′′ ∈ kerD(.R′) = D1×r ′T ′.Therefore, there exists
ν ∈ D1×r ′ such that λ− λ′ = μR′′ + νT ′ and then

π2(λ)− π2(λ
′) = π2(λ− λ′) = π2(μR

′′ + νT ′) = 0.

Finally, for all m1 = π1(λR
′) ∈ M1 and m2 = π2(λ) ∈ M2, where λ ∈ D1×q ′ , we have{

(ψ ◦ φ)(m1) = ψ(π2(λ)) = π1(λR
′) = m1,

(φ ◦ ψ)(m2) = φ(π1(λR
′)) = π2(λ) = m2,

which proves that ψ ◦ φ = idM1 , φ ◦ ψ = idM2 and we thus obtain (37). �

We deduce the following corollary of Lemma 3.1 and Proposition 3.1.

Corollary 3.2. With the notations of Proposition 3.1, if L ∈ Dq×r denotes a matrix satisfying
R = LS and kerD(.S) = D1×r2S2, S2 ∈ Dr2×r , we then have:

ker f ∼=D1×r/ (
D1×(q+r2)

(
L

S2

))
.

We recall that the first isomorphism theorem says that we have coim f = M/ ker f ∼= im f

(see, e.g., [66]). This result can also be checked again as follows. Using the following two facts

R′ = (0 Iq ′)

(
P

R′
)
, kerD

(
.

(
P

R′
))
= D1×r (S − T ),

where S ∈ Dr×p, T ∈ Dr×q ′ , and applying Lemma 3.1 to 3 of Proposition 3.1, we then get:

im f ∼=D1×(p+q ′)/ (
D1×(q ′+r)

(
0 Iq ′
S −T

))
∼=D1×p/(D1×rS) = coim f.

We give a corollary of Proposition 3.1 and Corollary 3.2.
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Corollary 3.3. With the notations of Corollary 3.2 and Proposition 3.1, f ∈ homD(M,M
′) is:

1. The zero morphism (f = 0) if and only if one of the following conditions holds:
(a) There exists a matrix Z ∈ Dp×q ′ such that P = ZR′. Then, there exists Z′ ∈ Dq×q ′2 such

that Q = RZ + Z′R′2, where R′2 ∈ Dq
′
2×q ′ satisfies kerD(.R′) = D1×q ′2R′2.

(b) The matrix S admits a left-inverse over D.
2. Injective if and only if one of the following conditions holds:

(a) There exists a matrix F ∈ Dr×q such that S = FR.
(b) The matrix (LT ST

2 )
T admits a left-inverse over D.

3. Surjective if and only if (P T R′T)T admits a left-inverse over D.

4. An Isomorphism if the matrices (LT ST
2 )

T and (P T R′T)T admit left-inverses over D.

Proof. 1. Using 3 of Proposition 3.1, im f = 0 if and only if we have D1×pP +D1×q ′R′ =
D1×q ′R′, that is, if and only if (D1×pP ) ⊆ (D1×q ′R′) which is equivalent to the existence of a
matrix Z ∈ Dp×q ′ such that P = ZR′. Now, substituting P = ZR′ into (12), we then get

RZR′ = QR′ ⇒ (Q− RZ)R′ = 0.

Thus, there exists Z′ ∈ Dq×q ′2 satisfyingQ− RZ = Z′R′2, which proves the result. We also note
that 1.a is a trivial consequence of Corollary 2.1.

Let us prove 1.b. Using the canonical isomorphism ε : coim f → im f, defined by

∀m ∈ M : ε(ρ(m)) = f (m),
where ρ : M → coim f denotes the canonical projection, we obtain that im f = 0 if and only if

coim f = D1×p/(D1×rS) = 0⇔ D1×rS = D1×p,
i.e., if and only if S admits a left-inverse over D.

2. From 1 of Proposition 3.1, ker f = 0 if and only if D1×rS = D1×qR, i.e., if and only if
there exists F ∈ Dr×q satisfying S = FR.

Moreover, using Corollary 3.2, we have ker f = 0 if and only ifD1×qL+D1×r2S2 = D1×r ,
i.e., if and only if the matrix (LT ST

2 )
T admits a left-inverse over D.

3. f is surjective if and only if coker f = 0, i.e., from 4 of Proposition 3.1, if and only if
D1×pP +D1×q ′R′ = D1×p, which is equivalent to the fact that the matrix (P T R′T)T admits
a left-inverse over D.

4. The result is a direct consequence of 2.b and 3. �

We note that the results of Corollary 3.3 can algorithmically be checked as factoring matrices
and deciding the existence of left-inverses have been made constructive and implemented in the
library OreModules [17]. Moreover, we can sometimes use the previous results in order to check
that two given modules are isomorphic, i.e., that the two corresponding systems are equivalent
(see also [53] for a commutative polynomial ring).

Let us illustrate Corollary 3.3.

Example 3.2. We consider two systems of PDEs appearing in the theory of elasticity (see [55]):
one half of the so-called Killing operator, namely, the Lie derivative of the euclidean metric
defined by ωij = 1 for i = j and 0 otherwise (1 � i, j � 2) and the Spencer operator of the
Killing operator:
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⎧⎪⎨⎪⎩
∂1ξ1 = 0,
1
2 (∂2ξ1 + ∂1ξ2) = 0,

∂2ξ2 = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂1z1 = 0,

∂2z1 − z2 = 0,

∂1z2 = 0,

∂1z3 + z2 = 0,

∂2z3 = 0,

∂2z2 = 0.

Let D = Q[∂1; id, �
�x1
][∂2; id, �

�x2
] be the ring of differential operators with rational constant

coefficients and let us define the following two matrices:

R =
⎛⎝ ∂1 0

1
2∂2

1
2∂1

0 ∂2

⎞⎠ ∈ D3×2, R′ =
⎛⎝∂1 ∂2 0 0 0 0

0 −1 ∂1 1 0 ∂2
0 0 0 ∂1 ∂2 0

⎞⎠T

∈ D6×3,

and the associated finitely presented D-modules M = D1×2/(D1×3R) and M ′ = D1×3/

(D1×6R′). Using Algorithm 2.1, we find that the matrices

P =
(

1 0 0
0 0 1

)
, Q = 1

2

⎛⎝2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0

⎞⎠ ,

satisfy the relation RP = QR′, i.e., define a morphism f : M → M ′ given by f (ξ1) = z1 and
f (ξ2) = z3. The morphism f is injective as the matrix

S =
(
∂2 ∂1 ∂2

2 0
∂1 0 0 ∂2

)T

defined by Proposition 3.1, satisfies the relation S = FR, where

F =

⎛⎜⎜⎝
0 2 0
1 0 0
0 2∂2 −∂1
0 0 1

⎞⎟⎟⎠ .

Moreover, f is surjective as the matrix (P T R′T)T admits the following left-inverse overD:⎛⎝1 0 0 0 0 0 0 0
0 −∂1 0 0 0 1 0 0
0 1 0 0 0 0 0 0

⎞⎠ .

This proves that f is a D-isomorphism and M ∼=M ′.

3.2. Reducible modules and block-triangular matrices

In what follows, we shall denote by GLp(D) the general linear group over D, namely,

GLp(D) = {U ∈ Dp×p|∃V ∈ Dp×p : UV = VU = Ip},
where Ip denotes the unit of GLp(D), i.e., the identity p × p matrix. An element of GLp(D)
will be called a unimodular matrix.

The next proposition will play an important role in what follows.
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Proposition 3.2. Let us consider a matrix P ∈ Dp×p. The following assertions are equivalent:

1. The left D-modules kerD(.P ) and coimD(.P ) are free of rank respectively m and p −m.
2. There exists a matrix U ∈ GLp(D) and a matrix J ∈ Dp×p of the form

J =
(

0 0
J1 J2

)
, J1 ∈ D(p−m)×m, J2 ∈ D(p−m)×(p−m),

where (J1 J2) has full row rank, i.e., kerD(.(J1 J2)) = 0, satisfying the relation:
UP = JU. (38)

The matrix U has then the form

U =
(
U1
U2

)
, (39)

where the matrixU1 ∈ Dm×p defines a basis of kerD(.P ), i.e., U1 is a full row rank matrix satisfy-
ing kerD(.P )=D1×mU1,andU2∈D(p−m)×p defines a basis of coimD(.P ) = D1×p/(D1×mU1),

i.e., U2 is a full row rank matrix such that we have the following split exact sequence

0→ D1×m .U1→ D1×p .W2→ D1×(p−m) → 0,
.W1← .U2←

for certain matrices W1 ∈ Dp×m and W2 ∈ Dp×(p−m).
In particular, we have the relations:
U1P = 0, U2P = J1U1 + J2U2.

Proof. (1⇒ 2). Let us suppose that kerD(.P ) and coimD(.P ) are two free left D-modules of
rank respectively m and p −m. Let U1 ∈ Dm×p be a basis of kerD(.P ), i.e., the full row rank
matrix U1 satisfies kerD(.P ) = D1×mU1. Using the fact that we have the short exact sequence

0→ kerD(.P )→ D1×p κ→ coimD(.P )→ 0

and kerD(.P ) = D1×mU1, we then obtain the following short exact sequence:

0→ D1×m .U1→D1×p κ→ coimD(.P )→ 0.

If we denote by N = D1×p/(D1×mU1), then we get coim(.P ) = D1×p/ kerD(.P ) = N.
Using the fact thatN is a free leftD-module of rank p −m and denoting by φ : N → D1×(p−m)
the associated isomorphism, κ : D1×p → N the canonical projection and W2 ∈ Dp×(p−m) the
matrix corresponding to the D-morphism φ ◦ κ in the canonical bases of D1×p and D1×(p−m),
we then obtain the short exact sequence:

0→ D1×m .U1→D1×p .W2→D1×(p−m)→ 0.

Using the fact that D1×(p−m) is a free left D-module, by 1 of Proposition 2.3, the previous
short exact sequence splits, and thus, there exist two matrices W1 ∈ Dp×m and U2 ∈ D(p−m)×p
such that we have the Bézout identities:(

U1
U2

)
(W1 W2) = Ip, (W1 W2)

(
U1
U2

)
= Ip.
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Using the fact that U−1 = (W1 W2) ∈ Dp×p, we have

UP =
(
U1P

U2P

)
=

(
0

(U2PU
−1)U

)
=

(
0

U2PU
−1

)
U,

which proves a part of the result with the notations:

(J1 J2) = U2PU
−1, J =

(
0

U2PU
−1

)
=

(
0 0
J1 J2

)
∈ Dp×p.

Finally, if λ ∈ kerD(.(U2PU
−1)), we then have

λ(U2PU
−1) = 0 ⇔ (λU2)P = 0⇔ λU2 ∈ kerD(.P ) = D1×mU1

⇔ ∃μ ∈ D1×m : λU2 = μU1

⇔ ∃μ ∈ D1×m : (−μ, λ) ∈ kerD(.U) = 0,

which proves that λ = 0 as U ∈ GLp(D), i.e., kerD(.(U2PU
−1)) = 0, and thus, the matrix

(J1 J2) has full row rank.
(2⇒ 1). Using the relation (38) and the fact that U is a unimodular matrix, we have the

commutative exact diagram

0 0
↑ ↑

0→ kerD(.P ) → D1×p .P→ D1×p
↑ .U ↑ .U

0→ kerD(.J ) → D1×p .J→ D1×p,
↑ ↑
0 0

which shows that kerD(.P )∼= kerD(.J ) (more precisely, kerD(.P ) = (kerD(.J ))U ). Let us char-
acterize kerD(.J ). Let us consider (λ1, λ2) ∈ kerD(.J ). We then have λ2(J1 J2) = 0 and using
the fact that (J1 J2) has full row rank, we obtain that λ2 = 0 and λ1 is any arbitrary element of
D1×m, which proves that kerD(.J ) = D1×m and kerD(.P ) is a free left D-module of rank m.

Similarly, we have imD(.P ) = (imD(.J ))U as U is a unimodular matrix and:

∀λ,μ ∈ D1×p,
{
λP = ((λU−1)J )U,

(μJ )U = (μU)P.
Therefore, we have imD(.P )∼= imD(.J ) = D1×(p−m)(J1 J2). Using the fact that the matrix

(J1 J2) has full row rank, we obtain that D1×(p−m)(J1 J2)∼=D1×(p−m), which proves that
coimD(.P )∼= imD(.P ) is a free left D-module of rank p −m. �

We note that (38) is equivalent to P = U−1JU, which means that P and J are similar.

Remark 3.1. We refer to [29,64] (resp., [24,43]) for constructive algorithms for computing bases
of free left modules over the Weyl algebrasAn(Q) andBn(Q) (resp., over a commutative polyno-
mial ring with coefficients in Q). These algorithms and heuristic methods have been implemented
in the packages QuillenSuslin and Stafford of the library OreModules [17,24,64].

The constructive algorithms developed in [24,29,43,64] compute bases of finitely presented
free left D-modules, i.e., modules of the form D1×l/(D1×mL), where L ∈ Dm×l . Hence, if we
want to compute a basis of the free leftD-module kerD(.P ), we first need to compute the beginning
of the free resolution of kerD(.P ):
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D1×l1 .L1→D1×l0 .L0→ kerD(.P ) = D1×l0L0 → 0.

If L1 = 0, then we get kerD(.P ) = D1×l0L0∼=D1×l0 as the rows of L0 are left D-linearly
independent. Hence, we can takem = l0 andU1 = L0. Otherwise, we need to use the constructive
algorithms or the heuristic methods developed in [16,24,29,43,56,57,64] to compute two matrices
K1 ∈ Dl0×m and S1 ∈ Dm×l0 such that we have the split exact sequence:

D1×l1 .L1→ D1×l0 .K1→ D1×m → 0.
.S1←

A basis of the free left D-module kerD(.P ) is then defined by the rows of the matrix S1L0.
Moreover, we have coimD(.P ) = D1×p/ kerD(.P ) = D1×p/(D1×l0L0) and we can use the

constructive algorithms developed in [24,29,43,64] to obtain the matrices K0 ∈ Dp×(p−m) and
S0 ∈ D(p−m)×p such that we have the split exact sequence:

D1×l0 .L0→ D1×p .K0→ D1×(p−m) → 0.
.S0←

Then, a basis of coimD(.P ) = D1×p/(D1×l0L0) is defined by the residue classes of the rows
of the matrix S0 ∈ D(p−m)×p in coimD(.P ). Hence, we can take U2 = S0.

We shall need the next two lemmas.

Lemma 3.2. LetR ∈ Dq×p,P ∈ Dp×p andQ ∈ Dq×q be three matrices satisfying (15). Assume
further that there exist U ∈ GLp(D) and V ∈ GLq(D) such that{

UP = JPU,
VQ = JQV, (40)

for certain matrices JP ∈ Dp×p and JQ ∈ Dq×q . Then, we have the following equality:
(V RU−1)JP = JQ(VRU−1). (41)

Proof. We can easily check that we have the following commutative diagram

from which we obtain (41). Let us give the corresponding explicit computations. Starting with
the second equation of (40) and post-multiplying it by R and using (15), we obtain

JQVR = VQR = VRP = (V RU−1)(UP ).

Using the first equation of (40), we get JQVR = (V RU−1)(JPU) and post-multiplying the
previous equality byU−1, we finally have JQ(VRU−1) = (V RU−1)JP ,which proves (41). �
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Lemma 3.3. Let us consider two matrices of the form⎧⎪⎪⎨⎪⎪⎩
JP =

(
0 0
J1 J2

)
,

JQ =
(

0 0
J3 J4

)
,

(42)

with the notations 1 � m � p, 1 � l � q and:
J1 ∈ D(p−m)×m, J2 ∈ D(p−m)×(p−m), J3 ∈ D(q−l)×l , J4 ∈ D(q−l)×(q−l).

Moreover, let us suppose that the matrix (J1 J2) has full row rank. If the matrix R ∈ Dq×p
satisfies the relation

RJP = JQR,
then there exist three matrices R1 ∈ Dl×m, R2 ∈ Dl×(p−m), R3 ∈ D(q−l)×(p−m) such that:

R =
(
R1 0
R2 R3

)
. (43)

Proof. Let us write

R =
(
R11 R12

R21 R22

)
,

where R11 ∈ Dl×m, R12 ∈ Dl×(p−m), R21 ∈ D(q−l)×m, R22 ∈ D(q−l)×(p−m). Then, we have

RJP =
(
R12J1 R12J2

R22J1 R22J2

)
, JQR =

(
0 0

J3R11 + J4R21 J3R12 + J4R21

)
.

Therefore, we obtain R12(J1 J2) = 0. Using the fact that (J1 J2) has full row rank, we then
get R12 = 0, which proves the result. �

Let us state the second main result of the paper (the fairy’s first theorem).

Theorem 3.2. Let us considerR ∈ Dq×p, M = D1×p/(D1×qR) and f : M → M an endomor-
phism defined by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (15). If the left D-modules
kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q) are free of rank respectively m, p −m, l and
q − l, where 1 � m � p and 1 � l � q, then the following results hold:

1. There exist U ∈ GLp(D) and V ∈ GLq(D) satisfying the relations{
P = U−1JPU,

Q = V −1JQV,

where JP and JQ are the matrices defined by (42). In particular, U and V are defined by⎧⎪⎪⎨⎪⎪⎩
U =

(
U1
U2

)
, U1 ∈ Dm×p, U2 ∈ D(p−m)×p,

V =
(
V1
V2

)
, V1 ∈ Dl×q, V2 ∈ D(q−l)×q,

where the full row rank matricesU1 and V1 respectively define bases of the free leftD-modules
kerD(.P ) and kerD(.Q), i.e.,{

kerD(.P ) = D1×mU1,

kerD(.Q) = D1×lV1,
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and the full row rank matrices U2 and V2 respectively define bases of the free leftD-modules:
coimD(.P ) = D1×p/(D1×mU1), coimD(.Q) = D1×q/(D1×lV1).

2. The matrix R is equivalent to R = VRU−1.

3. If we denote by U−1 = (W1 W2), W1 ∈ Dp×m, W2 ∈ Dp×(p−m), we then have:
R =

(
V1RW1 0
V2RW1 V2RW2

)
∈ Dq×p.

Proof. 1. The result directly follows from 2 of Proposition 3.2.
2. Using the fact that U and V are unimodular, we obtain R = V −1RU .
3. From Lemma 3.2, the matrix R = VRU−1 satisfies (41). Then, applying Lemma 3.3 to the

matrix R, we obtain that R has the triangular form (43), where R1 ∈ Dl×m, R2 ∈ Dl×(p−m) and
R3 ∈ D(q−l)×(p−m). Finally, we have

R = VRU−1 =
(
V1RW1 V1RW2
V2RW1 V2RW2

)
∈ Dq×p,

where V1RW1 ∈ Dl×m, V2RW1 ∈ D(p−l)×m and V1RW2 ∈ Dl×(p−m), V2RW2 ∈
D(p−l)×(p−m). �

We refer to Remark 3.1 for more details on the computation of the unimodular matrices U and
V defined in Theorem 3.2.

Remark 3.2. Let us consider a skew polynomial ring D = A[∂; σ, δ] over a ring A, the matrix
R = (∂Ip − E) ∈ Dp×p andM = D1×p/(D1×qR) the leftD-module associated with the linear
functional system ∂y = Ey. Using the results proved in Example 2.5, we know that any endomor-
phism f can be defined by means of two matrices P ∈ Ap×p andQ ∈ Aq×q . If A is a field (e.g.,
A = k(t), k(n)), then we can use standard linear algebra techniques to compute the bases of the
A-vector spaces kerA(.P ), coimA(.P ), kerA(.Q) and coimA(.Q), i.e., to compute the matrices
U1 ∈ Am×p, U2 ∈ A(p−m)×p, V1 ∈ Al×q and V2 ∈ A(q−l)×q defined in Theorem 3.2 as we have

kerD(.P ) = D ⊗A kerA(.P ), coimD(.P ) = D ⊗A coimA(.P ),

and similarly for kerD(.Q)=D ⊗A kerA(.Q) and coimD(.Q)=D ⊗A coimA(.Q), whereD ⊗A ·
denotes the tensor product of A-modules (see, e.g., [66]). Finally, if A is a (left) principal ideal
domain (e.g., Z, k[t], k is a field), then we can compute bases of kerA(.P ), coimA(.P ), kerA(.Q)
and coimA(.Q) by means of a (Jacobson) Smith form (see, e.g., [24]).

Example 3.3. Let us consider the Weyl algebra D = A1(Q), the following matrix

R =

⎛⎜⎜⎝
∂ −t t ∂

∂ t∂ − t ∂ −1
∂ −t ∂ + t ∂ − 1
∂ ∂ − t t ∂

⎞⎟⎟⎠ ∈ D4×4, (44)

and the finitely presented leftD-moduleM = D1×4/(D1×4R). Using Algorithm 2.2 with α = 0,
β = 1 and γ = 0, we obtain that an endomorphism f ofM is defined by means of the two matrices

P =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ∈ k4×4, Q =

⎛⎜⎜⎝
t + 1 1 −1 −t

1 1 −1 0
t + 1 1 −1 −t
t 1 −1 −t + 1

⎞⎟⎟⎠ ∈ k[t]4×4, (45)
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i.e., RP = QR. Using linear algebra techniques and Smith form computations, we can prove
that the left D-modules kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q) are free of rank 2 with
bases:⎧⎪⎪⎨⎪⎪⎩

U1 =
(

0 0 1 0
0 0 0 1

)
,

U2 =
(

1 0 0 0
0 1 0 0

)
,

⎧⎪⎪⎨⎪⎪⎩
V1 =

(
1 0 −1 0
0 1 t − 1 −t

)
,

V2 =
(

0 0 1 0
0 0 −1 1

)
.

If we denote by U = (UT
1 UT

2 )
T ∈ GL4(D) and V = (V T

1 V T
2 )

T ∈ GL4(D), then we obtain
that R is equivalent to the following block-triangular matrix:

R = VRU−1 =

⎛⎜⎜⎝
−∂ 1 0 0
t∂ − t −∂ − t 0 0
∂ + t ∂ − 1 ∂ −t
−∂ 1 0 ∂

⎞⎟⎟⎠ .

Example 3.4. Let us consider the following four complex matrices:

γ 1 =

⎛⎜⎜⎝
0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

⎞⎟⎟⎠ , γ 2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

γ 3 =

⎛⎜⎜⎝
0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

⎞⎟⎟⎠ , γ 4 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ .

The Dirac equation for a particle without a mass has the form

4∑
j=1

γ j
�ψ(x)
�xj

= 0, (46)

where ψ = (ψ1, ψ2, ψ3, ψ4)
T is Dirac spinor and x = (x1, x2, x3, x4) is the space-time coordi-

nates.
Let us consider the ringD = Q(i)[∂1; id, �

�x1
][∂2; id, �

�x2
][∂3, id; �

�x3
][∂4; id, �

�x4
] of differen-

tial operators, the system matrix associated with (46)

R =

⎛⎜⎜⎝
∂4 0 −i∂3 −(i∂1 + ∂2)

0 ∂4 −i∂1 + ∂2 i∂3
i∂3 i∂1 + ∂2 −∂4 0

i∂1 − ∂2 −i∂3 0 −∂4

⎞⎟⎟⎠ ∈ D4×4,

and the finitely presented D-module M = D1×4/(D1×4R).
Using Algorithm 2.1, we obtain that an endomorphism f of M is defined by the matrices:

P = 1

2

⎛⎜⎜⎝
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎞⎟⎟⎠ , Q = 1

2

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎠ .
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As the entries of P and Q belong to Q, using linear techniques, we can easily compute bases
of the free Q-modules kerQ(.P ), coimQ(.P ), kerQ(.Q) and coimQ(.Q), i.e., bases of the free
D-modules kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q):⎧⎪⎪⎨⎪⎪⎩

U1 =
(

1 0 1 0
0 −1 0 −1

)
,

U2 =
(

0 0 −1 0
0 0 0 1

)
,

⎧⎪⎪⎨⎪⎪⎩
V1 =

(
1 0 −1 0
0 1 0 −1

)
,

V2 =
(

0 0 −1 0
0 0 0 1

)
.

Forming the matricesU = (UT
1 UT

2 )
T ∈ GL4(D) and V = (V T

1 V T
2 )

T ∈ GL4(D), we then
obtain that the matrix R is equivalent to the following block-triangular one:

R = VRU−1 =

⎛⎜⎜⎝
∂4 − i∂3 ∂2 + i∂1 0 0
∂2 − i∂1 −(∂4 + i∂3) 0 0
i∂3 −(∂2 + i∂1) −(∂4 + i∂3) ∂2 + i∂1

∂2 − i∂1 −i∂3 −(∂2 − i∂1) −(∂4 − i∂3)

⎞⎟⎟⎠ .

Example 3.5. Let us consider again the equation of the tank subjected to a one dimensional
horizontal move defined by (7). Using Algorithm 2.1, we obtain that an endomorphism f of
the D-module M = D1×3/(D1×2R), defined in Example 2.2, can be generated by the pair of
matrices:

P =
⎛⎝ 0 0 0

2∂1∂2 −2∂1∂2 0
1 −1 0

⎞⎠ , Q =
(

0 0
2∂1∂2 −2∂1∂2

)
.

Using algorithms developed in [16,24,56,64], we can prove that kerD(.P ), coimD(.P ), kerD(.Q)
and coimD(.Q) are free D-modules with bases⎧⎨⎩U1 =

(
1 0 0
0 −1 2∂1∂2

)
,

U2 = (0 0 1),

{
V1 = (1 0),
V2 = (0 1),

Finally, if we form U = (UT
1 UT

2 )
T ∈ GL3(D) and V = (V T

1 V T
2 )

T ∈ GL2(D), we then
obtain that the matrix R is equivalent to the following matrix:

R = VRU−1 =
(
∂2

1 −1 0
1 −∂2

1 2∂1∂2(∂
2
1 − 1)

)
.

We refer the reader to the library of examples of Morphisms [21] for more difficult examples.

4. Idempotents and decompositions

We recall that D denotes an Ore algebra which satisfies the hypotheses of Proposition 2.1.

4.1. Idempotents of endD(M) and solution space decompositions

Let us introduce the definition of an idempotent of a ring.

Definition 4.1. An element a of a ring A satisfying a2 = a is called an idempotent of A.
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We give a lemma which characterizes the idempotents of endD(M) and we deduce an algorithm
for computing them.

Lemma 4.1. Let us consider the beginning of a finite free resolution of a left D-module M

D1×q2
.R2→D1×q .R→D1×p π→M → 0,

and a morphism f : M → M defined by two matrices P ∈ Dp×p andQ ∈ Dq×q satisfying (15).
Then, f is an idempotent of endD(M) if and only if there exists a matrix Z ∈ Dp×q satisfying:

P 2 = P + ZR. (47)

Then, there exists Z′ ∈ Dq×q2 such that:
Q2 = Q+ RZ + Z′R2. (48)

In particular, if R ∈ Dq×p has full row rank, namely, R2 = 0, we then have:
Q2 = Q+ RZ. (49)

Proof. Post-multiplying (15) by P , we obtainRP 2 = QRP and using again (15), we getRP 2 =
Q2R,which shows thatf 2 : M → M can be defined by the matricesP 2 andQ2. By 1 of Corollary
3.3, the morphism f 2 − f is 0 if and only if there exist two matrices Z ∈ Dp×q and Z′ ∈ Dq×q2

satisfying (47) and (48) holds. The end of the lemma is straightforward. �

From this lemma, we deduce an algorithm which computes idempotents of endD(M) defined
by matrices P with a fixed total order in the ∂i’s and a fixed degree in the xj ’s for the numerators
and denominators of the polynomial/rational coefficients.

Algorithm 4.1

• Input: An Ore algebra D, a matrix R ∈ Dq×p and the output of Algorithm 2.2 for fixed α, β
and γ .
• Output: A family of pairs (P i,Qi)i∈I and a set of matrices {Zi}i∈I satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RP i = QiR,

P
2
i = P i + ZiR, for certain Zi ∈ Dp×q,

ord∂ (P i) � α, i.e., P i =∑
0�|ν|�α a

(i)
ν ∂

ν,

and ∀ 0 � |ν| � α, a
(i)
ν ∈ Ap×p satisfies:

degx(num(a(i)ν )) � β,

degx(denom(a(i)ν )) � γ,

where ord∂ (P i) denotes the maximal of the total orders of the entries of P i , degx(num(a(i)ν ))
(resp., degx(denom(a(i)ν ))) the maximal of the degrees of the numerators (resp., denominators)
of a(i)ν . The morphisms fi are defined by fi(π(λ)) = π(λP i), for all λ ∈ D1×p, i ∈ I .

1. Consider a generic element P =∑
i∈I ciPi of the output of Algorithm 2.2 for fixed α, β and

γ , where ci ∈ k for i ∈ I and k denotes an algebraic closure of k.
2. Compute P 2 − P and denote the result by F .
3. Compute a Gröbner basis G of the rows of R for a total degree order.
4. Computing the normal forms of the rows of F with respect to the Gröbner basis G.
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5. Solve the system on the coefficients of ci so that all the normal forms vanish.
6. Substitute the solutions into the matrix P . Denote the set of solutions by {Pj }j∈J .
7. For j ∈ J , compute the normal forms P j of the rows of Pj with respect to G.

8. Using rk(P
2
j − P j ) ∈ (D1×qR), k = 1, . . . , p, where rk(P

2
j − P j ) denotes the kth row of

P
2
j − P j , compute a matrix Zj ∈ Dp×q satisfying P

2
j − P j = ZjR, for j ∈ J , by reducing

to 0 the row rk(P
2
j − P j ) with respect to the Gröbner basis G.

We shall say that an idempotent f of endD(M) is trivial if either f = 0 or f = idM . We note
that the trivial endomorphisms f = 0, defined by P = 0 and Q = 0, and f = idM , defined by
P = Ip and Q = Iq , are always outputs of Algorithm 4.1.

In the forthcoming Theorem 4.1, we shall show how the knowledge of an idempotent f of
endD(M), namely, an element f ∈ endD(M) satisfying f 2 = f , can be used to decompose the
system Ry = 0 into two decoupled systems S1y1 = 0 and S2y2 = 0 or, in other words, how to
decompose the leftD-moduleM into two direct summandsM1 andM2, namely,M ∼=M1 ⊕M2.
In order to do that, we first need to start with the following lemma.

Lemma 4.2. Let R ∈ Dq×p, M = D1×p/(D1×qR) and f ∈ endD(M) be an idempotent.

1. We have the following split exact sequence:

0→ ker f
i→ M

ρ→ coim f → 0,
idM−f← f �←

where f � : coim f → M is defined by

∀m ∈ M, f �(ρ(m)) = f (m). (50)

2. We have the following isomorphism:

ϕ : ker f → coker f

m �→ σ(m),

whose inverse is defined by

ψ : coker f → ker f

σ(m) �→ m− f (m),

where σ : M → coker f denotes the canonical projection onto coker f = M/im f.

Proof. 1. For all ρ(m) ∈ coim f , we have

((idM − f ) ◦ f �)(ρ(m)) = f (m)− f 2(m) = 0,

i.e., (idM − f ) ◦ f � = 0. Moreover, we can easily check that (idM − f ) ◦ i = idker f . Now, for
all m ∈ M , we have

(i ◦ (idM − f )+ f � ◦ ρ)(m) = m− f (m)+ f (m) = m,
i.e., (i ◦ (idM − f ))+ f � ◦ ρ = idM . Composing the last identity by ρ on the left and using the
fact that ρ ◦ i = 0, we get ρ ◦ f � ◦ ρ = ρ which proves ρ ◦ f � = idcoim f and the result.
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2. Let us check that ψ is well-defined. We first note that m− f (m) ∈ ker f . Let us consider
σ(m) = σ(m′) and let us prove that ψ(ρ(m)) = ψ(ρ(m′)). The fact that we have σ(m) = σ(m′)
implies thatσ(m−m′) = 0, i.e.,m−m′ ∈ imf , and thus, there existsn ∈ M such thatm−m′ =
f (n). Then, we get ψ(ρ(m))− ψ(ρ(m′)) = ψ(ρ(m−m′)) = ψ(ρ(f (n)) = 0 as ρ(f (n)) = 0,
which proves that ψ is a well-defined morphism.

For all m ∈ ker f , we have (ψ ◦ ϕ)(m) = ψ(σ(m)) = m− f (m) = m, i.e., ψ ◦ ϕ = idker f .

Finally, for all σ(m) ∈ coker f , we have (ϕ ◦ ψ)(σ(m)) = ϕ(m− f (m)) = σ(m), which
proves ϕ ◦ ψ = idcoker f and the result. �

Let us introduce the definition of a decomposable left D-module.

Definition 4.2. A non-zero left D-module M is said to be decomposable if it can be written as
a direct sum of two proper left D-submodules. A left D-module M which is not decomposable,
i.e., which is not the direct sum of two proper left D-submodules, is said to be indecomposable.

By Lemma 4.2, we obtain that the existence of a non-trivial idempotent f of endD(M) implies
that we haveM ∼= ker f ⊕ coim f , i.e.,M is a decomposable leftD-module. Conversely, if there
exist two left D-modules M1 and M2 such that M is isomorphic to M1 ⊕M2 and if we denote
this isomorphism by φ : M → M1 ⊕M2 and p1 : M1 ⊕M2 → M1 ⊕ 0 the canonical projection
(i.e., p2

1 = p1), then p = φ−1 ◦ p1 ◦ φ is an idempotent of endD(M). We obtain the following
well-known corollary of Lemma 4.2 (see, e.g., [46,37]).

Corollary 4.1. A leftD-moduleM is decomposable if and only if endD(M) admits a non-trivial
idempotent.

If we consider again the example of the heat equation defined in Example 2.4, we proved
that the endomorphism ring endD(M) of the corresponding D-module M is isomorphic to a
univariate commutative polynomial ring Q

[
∂x; idQ,

�
�x

]
. Hence, we obtain thatM is an indecom-

posable D-module. A similar result holds for the gradient operator in R3 defined in Example
2.4.

Checking whether or not a finitely presented leftD-moduleM is decomposable is generally a
difficult issue. Indeed, we can easily check that the set of idempotents of endD(M) has no algebraic
structure (the only main thing that we can say is that if f is an idempotent of endD(M) then so is
idM − f ). Hence, Algorithm 4.1 only gives a heuristic method for checking that a leftD-module
M is decomposable. However, in [21], it was shown to be quite efficient on different classical
linear functional systems appearing in engineering sciences, control theory and mathematical
physics.

The next proposition gives a necessary and sufficient condition for f ∈ endD(M) to be an
idempotent. This result will play an important role for decomposing the solution space kerF(R.).

Proposition 4.1. Let R ∈ Dq×p, M = D1×p/(D1×qR) and f : M → M be an endomorphism
of M defined by a pair of matrices P ∈ Dp×p and Q ∈ Dq×q satisfying RP = QR. Then, the
following results are equivalent:

1. f is an idempotent of endD(M), namely, f 2 = f.
2. There exists X ∈ Dp×r satisfying
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P = Ip −XS, (51)

where S ∈ Dr×p is the matrix defined in Proposition 3.1, i.e., coim f = D1×p/(D1×rS).

Finally, we have the following commutative exact diagram where f � is defined by (50)

0
.X← ↓

D1×r .S→ D1×p κ→ coim f → 0
↓ .T ↓ .P ↓ f �
D1×q .R→ D1×p π→ M → 0.

↓
ker f
↓
0

Proof. (1⇒ 2). By 1 of Lemma 4.2, the morphism f � defined by (50) satisfies ρ ◦ f � = idcoim f ,
and thus, we haveM = i(ker f )⊕ f �(coim f ), where i denotes the canonical injection of ker f
into M . Using the relation SP = T R, we obtain that f � induces the morphism of complexes:

D1×r .S→ D1×p κ→ coim f → 0
↓ .T ↓ .P ↓ f �
D1×q .R→ D1×p π→ M → 0.

Composing the morphisms of complexes corresponding to ρ (see Theorem 3.1) and f �, we obtain
that the morphism id − ρ ◦ f � = 0 is defined by the following morphism of complexes

D1×r2 .S2→ D1×r .S→ D1×p
↓ .(Ir − T L) ↓ .(Ip − P)

D1×r2 .S2→ D1×r .S→ D1×p

which must be homotopic to zero. Thus, there exist X ∈ Dp×r and X2 ∈ Dr×r2 such that:{
Ip − P = XS,
Ir − T L = SX +X2S2.

(52)

(2⇒ 1). Using (51) and SP = T R, we get P 2 = (Ip −XS)P = P −XSP = P − (XT )R,
which proves that f is an idempotent of endD(M) by Lemma 4.1. �

We note that, substituting (51) into SP = T R, we obtain

S(Ip −XS) = T R ⇔ S − SXS = T R.
We give a necessary and sufficient condition for a left D-module M to be of the form

M ∼=N ⊕ P
for a given left D-module N .

Proposition 4.2. LetR ∈ Dq×p and S ∈ Dr×p be two matrices satisfying (D1×qR) ⊆ (D1×rS).
Then, the left D-module M ′ = D1×p/(D1×rS) is isomorphic to a direct summand of the left
D-module M = D1×p/(D1×qR), i.e., we have
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M ∼=M ′ ⊕ ker ρ, (53)

where ρ : M → M ′ is defined by ρ(π(λ)) = κ(λ), for all λ ∈ D1×p, and κ : D1×p → M ′ de-
notes the canonical projection onto M ′, if and only if there exist two matrices X ∈ Dp×r and
T ∈ Dr×q satisfying the relation:

S − SXS = T R. (54)

Proof. (⇒). The isomorphism (53) is equivalent to the existence of a morphism g : M ′ → M

which satisfies ρ ◦ g = idM ′ (see, e.g., [66]). Following the same techniques as the ones used in
the proof of Proposition 4.1, (53) is then equivalent to the existence of three matrices P ∈ Dp×p,
T ∈ Dr×q and X ∈ Dp×r satisfying the relations:{

SP = T R,
Ip − P = XS, ⇒ S − SXS = T R.

(⇐). From (54), we get S(Ip −XS) = T R, and, if we set P = Ip −XS, then we have the
following commutative diagram

D1×r .S→ D1×p κ→ M ′ → 0
↓ .T ↓ .P
D1×q .R→ D1×p π→ M → 0,

which induces a morphism g : M ′ → M defined by g(κ(λ)) = π(λP ), for all λ ∈ D1×p. Using
the fact that κ = ρ ◦ π , for all λ ∈ D1×p, we then get

(ρ ◦ g)(κ(λ)) = ρ(π(λP )) = κ(λP ) = κ(λ)− κ((λX)S) = κ(λ),
i.e.,ρ ◦ g = idM ′ , which proves that the exact sequence 0→ ker ρ

i→M
ρ→M ′ → 0 splits, which

implies that M = ker ρ ⊕ g(M ′), i.e., M ∼=M ′ ⊕ ker ρ as g is an injective D-morphism (i.e.,
g(m) = 0⇒ m = ρ(g(m)) = 0). �

Remark 4.1. If S has full row rank, i.e., kerD(.S) = 0, the second equation of (52) becomes:

SX + T L = Ir . (55)

Note that the factorization R = LS satisfying (55) is nothing else than the generalization for
matrices and non-commutative rings of the classical decomposition of a commutative polynomial
into coprime factors. Indeed, if R belongs to a commutative polynomial ringD = k[x1, . . . , xn],
where k is a field, then (55) becomesXS + T L = 1 (Bézout identity), i.e., the ideal ofD generated
by S and L isD and we obtain that R = LS is a factorization of R into coprime factors L and S.

We have the following corollary of Proposition 4.1.

Corollary 4.2. With the hypotheses and notations of Proposition 4.1, we have the equality:
D1×rS = D1×(p+q)

(
Ip − P
R

)
.

Proof. Using the factorization R = LS and (51), we obtain the following equality:(
Ip − P
R

)
=

(
X

L

)
S,
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which proves the first inclusion. The second one is a direct consequence of (54) as we have
XS = Ip − P and:

S = SXS + T R = (S T )

(
XS

R

)
= (S T )

(
Ip − P
R

)
. �

Let us state the third main result of the paper.

Theorem 4.1. Let R ∈ Dq×p and let us assume that the left D-module M = D1×p/(D1×qR)
is such that there exists a non-trivial idempotent f of endD(M). Moreover, let us denote by
S ∈ Dr×p, L ∈ Dq×r , X ∈ Dp×r and S2 ∈ Dr2×s the matrices defined by⎧⎪⎪⎨⎪⎪⎩

coim f = D1×p/(D1×rS),
R = LS,
Ip − P = XS,
kerD(.S) = D1×r2S2.

If F is an injective leftD-module, then we obtain that a solution η ∈Fp ofRη = 0 has the form
η = ζ +Xτ, where ζ ∈Fp is a solution of Sζ = 0 and τ ∈Fr is a solution of the system:{

Lτ = 0,
S2τ = 0.

(56)

The integration of the system Rη = 0 is then equivalent to the integration of the two independent
systems Sζ = 0 and (56).

Proof. Applying the functor homD(·,F) to the commutative exact diagram (35) and using the
fact that F is an injective left D-module, we obtain the following commutative exact diagram:

Fq R.← Fp ← kerF(R.) ← 0
↑ L. ‖ ↑ ρ�

Fr2
S2.← Fr S.← Fp ← kerF(S.) ← 0.

Let us first prove that any element of the form η = ζ +Xτ, where ζ ∈Fp (resp., τ ∈Fr )
satisfies Sζ = 0 (resp., (56)), is a solution of Rη = 0. Using R = LS and Sζ = 0, we get

Rη = Rζ + R(Xτ) = L(Sζ )+ R(Xτ) = R(Xτ).
Using the fact that τ satisfies the second equation of (56) and the exactness of the last horizontal
sequence of the previous commutative exact diagram, there exists η ∈Fp satisfying τ = Sη.
Substituting this relation into the first equation of (56), we obtain

Lτ = L(Sη) = Rη = 0.

Then, using (51) and the relation RP = QR, we obtain

η − Pη = XSη = Xτ ⇒ Rη − RPη = R(Xτ)⇒ R(Xτ) = Rη −QRη = 0.

This last result proves that Rη = 0, i.e., η = ζ +Xτ is a solution of the system Rη = 0.
Secondly, let us prove that any solution η ∈Fp of Rη = 0 has the form of η = ζ +Xτ ,

where ζ ∈Fp satisfies Sζ = 0 and τ ∈Fr satisfies (56). Let us consider η ∈Fp satisfying
Rη = 0, i.e., (LS)η = 0. Using the previous commutative exact diagram, we obtain that the
element τ ∈Fr defined by τ = Sη satisfies (56). Then, from (54), we obtain

Sη − S(X(Sη)) = T (Rη) = 0⇒ S(Xτ) = τ.
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All the solutions of the inhomogeneous system Sη = τ are defined as the sum of a particular
solution of Sη = τ and any of solution of Sζ = 0, i.e., we have η = ζ +Xτ . �

Let us suppose that an idempotent f ∈ endD(M) defined by the pair of matrices (P,Q) is
obtained by Algorithm 4.1. Then, the matrices S, S2 and L defined in Theorem 4.1 can easily be
obtained by means of Gröbner bases computations. We refer to [16,17] for more details.

The previous result has already been obtained in [62] in the particular case where

M ∼= t (M)⊕ (M/t(M)), (57)

where the torsion submodule t (M) is defined by t (M) = {m ∈ M| ∃ 0 /= P ∈ D : Pm = 0}.
We recall that the previous decomposition is generally only true over a left hereditary ring D

[46] (e.g.,D = A1(k)) or over a left principal ideal domain (e.g.,D = B1(k)). In [62], we construc-
tively characterize when the exact sequence 0→ t (M)→ M → M/t(M)→ 0 splits, i.e., when
we have (57). In control theory, the previous result gives a general answer to the question of know-
ing when a behaviour homD(M,F) can be split into the autonomous behaviour homD(t (M),F)
and the parametrizable behaviour homD(M/t(M),F) (see, e.g., [52,56,57,73,76]). We refer the
reader to [62,63] for more details and examples.

Let us illustrate Theorem 4.1.

Example 4.1. Let D be the Weyl algebra A1(Q) = Q[t][∂; idk[t], d
dt ] and the finitely presented

leftD-moduleM = D1×4/(D1×4R) defined in Example 3.3, whereR ∈ D4×4 is defined by (44).
We consider again the endomorphism f of M defined by the pair of matrices (P,Q) given in
(45). We can check that P 2 = P which implies that f 2 = f , i.e., f is a non-trivial idempotent
of endD(M). With the notations used in this section, we obtain the following matrices:

S =

⎛⎜⎜⎝
∂ −t 0 0
0 ∂ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , L =

⎛⎜⎜⎝
1 0 t ∂

1 t ∂ −1
1 0 ∂ + t ∂ − 1
1 1 t ∂

⎞⎟⎟⎠ , X =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

We can also verify that kerD(.S) = 0 which implies S2 = 0. Theorem 4.1 then asserts that the
integration of Rη = 0 is equivalent to both the integration of Sζ = 0, which easily gives

ζ1 = 1

2
C1t

2 + C2, ζ2 = C1, ζ3 = 0, ζ4 = 0,

where C1 and C2 are two arbitrary constants, and the integration of Lτ = 0, i.e.:⎧⎪⎪⎨⎪⎪⎩
τ1 = 0,
τ2 = 0,
tτ3 + ∂τ4 = 0,
∂τ3 − τ4 = 0.

⇔

⎧⎪⎪⎨⎪⎪⎩
τ1 = 0,
τ2 = 0,
∂2τ3 + tτ3 = 0,
τ4 = ∂τ3,

⇔

⎧⎪⎪⎨⎪⎪⎩
τ1 = 0,
τ2 = 0,
τ3(t) = C3Ai(t)+ C4Bi(t),
τ4(t) = C3∂Ai(t)+ C4∂Bi(t),

where Ai and Bi denote the two independent solutions of ∂2y(t)− ty(t) = 0 called the Airy
functions and C3 and C4 are two constants. The general solution of Rη = 0 is then given by

η = ζ +Xτ =

⎛⎜⎜⎝
1
2C1t

2 + C2
C1

C3Ai(t)+ C4Bi(t)
C3∂Ai(t)+ C4∂Bi(t)

⎞⎟⎟⎠ , (58)

where C1, C2, C3 and C4 are four arbitrary constants.
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4.2. Idempotents of Dp×p and block-diagonal decompositions

We recall that P ∈ Dp×p is an idempotent of the ring Dp×p if it satisfies P 2 = P .
We are now going further by proving that, under certain conditions, the existence of idempotents

P of Dp×p defining f ∈ endD(M) allows us to obtain a system Rz = 0 equivalent to Ry = 0,
where R is a block-diagonal matrix of the same size as R.

We shall need the following three lemmas.

Lemma 4.3. Let R ∈ Dq×p be a full row rank matrix, i.e., kerD(.R) = 0, and P ∈ Dp×p,
Q ∈ Dq×q be two matrices satisfying (15).Then, ifP is an idempotent ofDp×p, namelyP 2 = P,
so is Q, i.e., Q2 = Q.

Proof. Post-multiplying (15) by P , we obtain RP 2 = QRP . Using again (15), we get RP 2 =
Q2R. Then, the relation P 2 = P implies RP = Q2R, and using again (15), we obtain Q2R =
QR, i.e., (Q2 −Q)R = 0. Finally, the fact that R has full row rank implies Q2 = Q. �

Example 4.2. LetD = A[∂; σ, δ] be a skew polynomial ring over a ring A, a matrix E ∈ Ap×p,
R = (∂Ip − E) ∈ Dp×p andM = D1×p/(D1×pR) the leftD-module associated with the linear
functional system ∂y = Ey. In Example 2.5, we proved that we could always suppose without
any restriction that f ∈ endD(M) is defined by P ∈ Ap×p and Q ∈ Aq×q satisfying (18) where
F = E. By Lemma 4.1, we obtain that any idempotent f of endD(M) is defined by a matrix
P ∈ Ap×p satisfying P 2 = P + ZR, where Z ∈ Dp×q . Using the fact that R is a first order
matrix in ∂ and P is a zero order matrix in ∂ , we obtain that Z = 0, i.e., P 2 = P . Now, using the
fact that R has full row rank, i.e., kerD(.R) = 0, by Lemma 4.3, we obtain that Q2 = Q.

Lemma 4.4. LetR ∈ Dq×p be a full row rank matrix andM = D1×p/(D1×qR). Let us consider
an idempotent f : M → M defined by two matrices P ∈ Dp×p andQ ∈ Dq×q satisfying RP =
QR, P 2 = P + ZR and Q2 = Q+ RZ (see Lemma 4.1). If there exists a solution � ∈ Dp×q
of the algebraic Riccati equation

�R�+ (P − Ip)�+ �Q+ Z = 0, (59)

then the matrices defined by{
P = P + �R,
Q = Q+ R�,

(60)

satisfy the following relations:
RP = QR, P

2 = P , Q
2 = Q.

Proof. By hypothesis, the matrices P and Q satisfy (47) and (49). Let us define P = P + �R
for a certain matrix � ∈ Dp×q . Then, we have

P
2 = (P + �R)(P + �R) = P 2 + P�R + �RP + �R�R.

Using (15), we get P
2 = P 2 + (P�+ �Q+ �R�)R. From (47) and P = P + �R, we then

obtain

P
2 = P + (Z − �+ P�+ �Q+ �R�)R.
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Hence, we have P
2 = P if and only if � satisfies the following equation:

(Z − �+ P�+ �Q+ �R�)R = 0,
i.e., since R has full row rank, if and on if � satisfies the Riccati equation (59).

Finally, we have

Q
2 = (Q+ R�)(Q+ R�) = Q2 +QR�+ R�Q+ R�R�.

Using (15), we get Q
2 = Q2 + R(P�+ �Q+ �R�), and using (49) and Q = Q+ R�, we

obtain
Q

2 = Q+ R(Z − �+ P�+ �Q+ �R�) = Q. �

Remark 4.2. Determining whether or not the algebraic Riccati equation (59) admits a solution
seems to be a difficult issue. This problem will be studied in detail in the future.

For instance, if we consider the trivial projector f = 0 defined by the matrices P = 0,Q = 0
andZ = 0, we then obtain the equation �R� = �, i.e., we need to determine when a given matrix
R is a generalized inverse of a certain matrix � and, if so, compute it. It does not seem that this
problem has been studied in the algebra contrary to the problem of determining whether or not a
matrix � admits a generalized inverse. This first problem plays an important role in recognizing
when a matrix R is equivalent to its Smith form (see [21]).

We can compute a solution � of (59) with fixed order and fixed degrees for numerators and
denominators by substituting an ansatz in (59) and solving the quadratic algebraic system obtained
on its coefficients. Similarly, we can compute some idempotent matrices P of Dp×p with fixed
order and fixed degrees for numerators and denominators by solving a quadratic algebraic system
in the unknowns of the linear k-combinations of the P i given in the output of Algorithm 2.2.

Example 4.3. Let us considerD = A1(Q),R = (∂2 − t∂ − 1) andM = D1×2/(DR). Search-
ing for idempotents of endD(M) defined by matrices P andQ of total order 1 and total degree 2,
Algorithm 4.1 gives P1 = Q1 = 0, P2 = Q2 = I2 and⎧⎨⎩P3 =

(−(t + a)∂ + 1 t2 + at
0 1

)
,

Q3 = −((t + a)∂ + 1),

⎧⎨⎩P4 =
(
(t − a)∂ −t2 + at

0 0

)
,

Q4 = (t − a)∂ + 2,

where a is an arbitrary constant of Q. We can check that P 2
i = Pi + ZiR, i = 3, 4, where

Z3 = ((t + a)2 0)T, Z4 = ((t − a)2 0)T.
Using Remark 4.2, we obtain that (59) admits respectively the following solutions:

�3 = (at a∂ − 1)T, �4 = (at a∂ + 1)T.

The matrices (60) are then defined by⎧⎨⎩P 3 =
(
at∂2 − (t + a)∂ + 1 t2(1− a∂)

(a∂ − 1)∂2 −at∂2 + (t − 2a)∂ + 2

)
,

Q3 = 0,⎧⎨⎩P 4 =
(
at∂2 + (t − a)∂ −t2(1+ a∂)
(a∂ + 1)∂2 −at∂2 − (t + 2a)∂ − 1

)
,

Q4 = 1,

and we can easily check that we have P
2
i = P i , Q2

i = Qi, for i = 3, 4.
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The next lemma characterizes the kernel and the image of an idempotent P of Dp×p.

Lemma 4.5. LetP ∈ Dp×p be an idempotent, i.e., P 2 = P . Then,we have the following results:

1. kerD(.P ) and imD(.P ) are two projective left D-modules of rank respectively m and p −m,
with 0 � m � p.

2. We have the following equalities:{
imD(.P ) = kerD(.(Ip − P)),
imD(.(Ip − P)) = kerD(.P ).

Proof. 1. We have the following short exact sequence:

0→ kerD(.P )→ D1×p .P→ imD(.P )→ 0.

Let us define the D-morphism i : imD(.P )→ D1×p by i(m) = m, for all m ∈ imD(.P ).
For every element m ∈ imD(.P ), there exists λ ∈ D1×p such that m = λP . Therefore, we have
((.P ) ◦ i)(m) = mP = λP 2 and, using the fact that P 2 = P , we get ((.P ) ◦ i)(m) = λP = m,
i.e., ((.P ) ◦ i) = idimD(.P ), which shows that the previous exact sequence splits, and thus, we
obtain

D1×p = kerD(.P )⊕ imD(.P ). (61)

This proves that kerD(.P ) and imD(.P ) are two finitely generated projective left D-modules.
Finally, from the previous short exact sequence, we get (see, e.g., [66])

rankD(D
1×p) = rankD(kerD(.P ))+ rankD(imD(.P )),

and using the fact that, by hypothesis, D is a left noetherian ring, and thus, D has the Invariant
Basis Number (IBN) [37,46], we finally get rankD(D1×p) = p, which proves the first result.

2. The fact that P 2 = P implies that P(Ip − P) = 0, i.e., imD(.P ) ⊆ kerD(.(Ip − P)). Now,
let λ ∈ kerD(.(Ip − P)) and let us prove that λ ∈ imD(.P ). Applying λ on the left of the iden-
tity Ip = P + (Ip − P), we obtain λ = λP , which proves kerD(.(Ip − P)) ⊆ imD(.P ) and the
equality.

The second result can be proved similarly. �

We note that ifP = 0 (resp.,P = Ip) is the trivial idempotent, then we have kerD(.P ) = D1×p
and imD(.P ) = 0 (resp., kerD(.P ) = 0, imD(.P ) = D1×p), i.e., kerD(.P ) and imD(.P ) are two
trivial free leftD-modules, namely, defined as the images of the trivial matrices Ip and 0. We are
going to show that the case where kerD(.P ) and imD(.P ) are two non-trivial free leftD-modules
plays an important role in the block-diagonal decomposition problem.

Proposition 4.3. Let P ∈ Dp×p be an idempotent, i.e., P 2 = P. The following assertions are
equivalent:

1. The left D-modules kerD(.P ) and imD(.P ) are free of rank respectively m and p −m.
2. There exists a unimodular matrix U ∈ Dp×p, i.e., U ∈ GLp(D), and a matrix JP ∈ Dp×p

of the form

JP =
(

0 0
0 Ip−m

)
,
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which satisfy the relation:
UP = JPU. (62)

The matrix U has then the form

U =
(
U1
U2

)
, (63)

where the matrices U1 ∈ Dm×p and U2 ∈ D(p−m)×p have full row ranks and satisfy:{
kerD(.P ) = D1×mU1,

imD(.P ) = D1×(p−m)U2.
(64)

In particular, we have the relations U1P = 0 and U2P = U2.

Proof. (1⇒ 2). Let us suppose that kerD(.P ) (resp., imD(.P )) is a free left D-module of rank
m (resp., p −m) and let U1 ∈ Dm×p (resp., U2 ∈ D(p−m)×p) be a basis of kerD(.P ) (resp.,
imD(.P )), i.e., (64) holds. Let us form the matrix U defined by (63).

Using (61), for all λ ∈ D1×p, there exist unique λ1 ∈ kerD(.P ) and λ2 ∈ im (.P ) such that
λ = λ1 + λ2. Then, there exist unique μ1 ∈ D1×m and μ2 ∈ D1×(p−m) such that λ1 = μ1U1
and λ2 = μ2U2, and thus, a unique μ = (μ1, μ2) ∈ D1×p satisfying λ = μU . Hence, using the
standard basis {ei}1�i�p of D1×p, for i = 1, . . . , p, there exists a unique Vi ∈ D1×p such that
ei = ViU . The matrix V = (V T

1 , . . . , V
T
p )

T is then a left-inverse of U . By hypothesis,D is a left
noetherian ring, and thus, stably finite [37], which implies that UV = Ip, i.e., U ∈ GLp(D).

Finally, for allμ ∈ D1×p, we haveμU2 ∈ imD(.P ), and thus, there exists ν ∈ D1×p such that
μU2 = νP . Using the fact that P 2 = P , we get

μU2P = νP 2 = νP = μU2.

Hence, for all μ ∈ D1×p, we have μ(U2P − U2) = 0, which proves that U2P = U2. Using
U1P = 0, we finally obtain

UP =
(
U1P

U2P

)
=

(
0
U2

)
=

(
0 0
0 Ip−m

)
U.

(2⇒ 1). Using the relation (62) and the fact that U is a unimodular matrix, we get the com-
mutative exact diagram

0 0
↑ ↑

0→ kerD(.P )→ D1×p .P→ D1×p
↑ .U ↑ .U

0→ kerD(.JP )→ D1×p .JP→ D1×p,
↑ ↑
0 0

which shows that kerD(.P )∼= kerD(.JP ) (more precisely, kerD(.P ) = kerD(.JP )U ). Using the
fact that we have trivially kerD(.JP ) = D1×m, we obtain that kerD(.P ) is a free left D-module
of rank m. Similarly, we have imD(.P ) = imD(.JP )U as U is a unimodular matrix and:

∀λ,μ ∈ D1×p,
{
λP = ((λU−1)Jp)U,

(μJP )U = (μU)P.
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Therefore, we have imD(.P )∼= imD(.JP ). We can easily check that imD(.JP ) = D1×(p−m),
which proves that imD(.P ) is a free left D-module of rank p −m. �

We note that (62) is equivalent to P = U−1JPU, which means that P and JP are similar.
We shall need the next lemma.

Lemma 4.6. Let us consider the following two matrices:⎧⎪⎪⎨⎪⎪⎩
JP =

(
0 0
0 Ip−m

)
∈ Dp×p,

JQ =
(

0 0
0 Iq−l

)
∈ Dq×q,

(65)

where 1 � m � p and 1 � l � q, and a matrix R ∈ Dq×p satisfying the following relation:
RJP = JQR. (66)

Then, there exist R1 ∈ Dl×m and R2 ∈ D(q−l)×(p−m) such that:

R =
(
R1 0
0 R2

)
. (67)

Proof. If we write

R =
(
R11 R12

R21 R22

)
,

where R11 ∈ Dl×m, R12 ∈ Dl×(p−m), R21 ∈ D(q−l)×m, R22 ∈ D(q−l)×(p−m), then, we have

RJP =
(
R11 R12

R21 R22

) (
0 0
0 Ip−m

)
=

(
0 R12

0 R22

)
,

JQR =
(

0 0
0 Iq−l

) (
R11 R12

R21 R22

)
=

(
0 0
R21 R22

)
.

Therefore, (66) implies that R12 = 0 and R21 = 0, which proves the result. �

We are now in position to state the last main result of the paper (the fairy’s second theorem).

Theorem 4.2. LetR ∈ Dq×p,M = D1×p/(D1×qR) and f : M → M be an idempotent defined
by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (12) and:

P 2 = P, Q2 = Q.
If the left D-modules kerD(.P ), imD(.P ), kerD(.Q), imD(.Q) are free of rank respectively m,
p −m, l and q − l, where 1 � m � p and 1 � l � q, then the following results hold:

1. There exist U ∈ GLp(D) and V ∈ GLq(D) satisfying the relations{
P = U−1JPU,

Q = V −1JQV,

where JP and JQ are the matrices defined by (65).



372 T. Cluzeau, A. Quadrat / Linear Algebra and its Applications 428 (2008) 324–381

In particular, the matrices U and V are defined by⎧⎪⎪⎨⎪⎪⎩
U =

(
U1
U2

)
, U1 ∈ Dm×p, U2 ∈ D(p−m)×p,

V =
(
V1
V2

)
, V1 ∈ Dl×q, V2 ∈ D(q−l)×q,

where the full row rank matrices U1, U2, V1 and V2 are respectively bases of the free left
D-modules kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q), i.e.:⎧⎪⎪⎨⎪⎪⎩

kerD(.P ) = D1×mU1,

imD(.P ) = D1×(p−m)U2,

kerD(.Q) = D1×lV1,

imD(.Q) = D1×(q−l)V2.

2. The matrix R is equivalent to R = VRU−1.

3. If we denote by U−1 = (W1 W2), W1 ∈ Dp×m, W2 ∈ Dp×(p−m), we then have:
R =

(
V1RW1 0

0 V2RW2

)
∈ Dq×p. (68)

Proof. 1. The result directly follows from 2 of Proposition 4.3.
2. Using the fact that the matrices U and V are unimodular, we obtain R = V −1RU .
3. From Lemma 3.2, the matrix R = VRU−1 satisfies the relation (66). Then, applying

Lemma 4.6 to R, we obtain that R has the block-diagonal form (67), where R1 ∈ Dl×m and
R2 ∈ D(q−l)×(p−m). Finally, we have

R = VRU−1 =
(
V1RW1 V1RW2
V2RW1 V2RW2

)
∈ Dq×p,

where V1RW1 ∈ Dl×m, V2RW1 ∈ D(p−l)×m, V1RW2 ∈ Dl×(p−m), V2RW2 ∈
D(p−l)×(p−m). �

Remark 4.3. Using 2 of Lemma 4.5 and Remark 3.1, we can compute a basis of the free left
D-module imD(.P ) = kerD(.(Ip − P)).

Let us illustrate Theorem 4.2 on two examples.

Example 4.4. Let us consider again the Dirac equations studied in Example 3.4. We can check
that the matrices P and Q defined in Example 3.4 are idempotents of D4×4, i.e., P 2 = P and
Q2 = Q. As the entries of P andQ belong to Q, by linear algebra, we know that theD-modules
kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q) are free. Hence, by Theorem 4.2, the system matrix
R of the Dirac equations defined in Example 3.4 is equivalent to a block-diagonal matrix. In order
to compute this equivalent form, we only need to compute a basis of the freeD-modules imD(.P )

and imD(.Q) instead of a basis of the free D-modules coimD(.P ) and coimD(.Q). Using linear
algebra techniques, we obtain imD(.P ) = D1×2U ′2 and imD(.Q) = D1×2V ′2, where

U ′2 =
(−1 0 1 0

0 1 0 −1

)
, V ′2 =

(
1 0 1 0
0 −1 0 −1

)
.

Hence, if we define byU ′ = (UT
1 U ′T2 )

T ∈ GL4(D) andV ′ = (V T
1 V ′T2 )

T ∈ GL4(D), where
the matrices U1 and V1 are defined in Example 3.4, we then obtain
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R = V ′RU ′−1 =

⎛⎜⎜⎝
i∂3 − ∂4 −i∂1 − ∂2 0 0
i∂1 − ∂2 i∂3 + ∂4 0 0

0 0 i∂3 + ∂4 i∂1 + ∂2
0 0 i∂1 − ∂2 −i∂3 + ∂4

⎞⎟⎟⎠ .

Example 4.5. Let us consider again system (7) defined in Example 2.2. Using Algorithm 4.1, we
obtain that the matrices

P = 1

2

⎛⎝1 1 0
1 1 0
0 0 2

⎞⎠ , Q = 1

2

(
1 1
1 1

)
,

define an idempotent f ∈ endD(M). Moreover, we have P 2 = P and Q2 = Q. As P and Q
are two matrices with rational coefficients, we obtain that kerD(.P ), imD(.P ), kerD(.Q) and
imD(.Q) are free D-modules. Using linear algebra techniques, we then get⎧⎨⎩

kerD(.P ) = DU1, U1 =
(
1 −1 0

)
,

imD(.P ) = D1×2U2, U2 =
(

1 1 0
0 0 1

)
,

{
kerD(.Q) = DV1, V1 =

(
1 −1

)
,

imD(.Q) = DV2, V2 =
(
1 1

)
.

If we define the matrices U = (UT
1 UT

2 )
T ∈ GL3(D) and V = (V T

1 V T
2 )

T ∈ GL2(D), by
Theorem 4.2, we obtain that the matrix R is equivalent to the following block-diagonal matrix:

R = VRU−1 =
(
∂2

2 − 1 0 0
0 ∂2

2 + 1 −4∂1∂2

)
.

Hence, we get the following isomorphism:

M ∼=D/(D(∂2
2 − 1))⊕D1×2/(D(∂2

2 + 1 − 4∂1∂2)).

In particular, we have t (M)∼=D/(D(∂2
2 − 1)) andM/t(M)∼=D1×2/(D(∂2

2 + 1 − 4∂1∂2))

as the second direct summand ofM is torsion-free because the greatest common divisor of ∂2
2 + 1

and −4∂1∂2 is 1 andD is a greatest common divisor domain (see, e.g., [16,56,57] for algorithms
testing torsion-freeness). With the notation (z1, z2, v)

T = U(y1, y2, u)
T and within a system

theoretic language [16,52,57,73,76], we obtain that the first scalar diagonal block corresponds to
the autonomous subsystem{

z1(t) = y1(t)− y2(t),

z1(t − 2h)− z1(t) = 0,

i.e., z1 is a 2h-periodic function, and the second one corresponds to the parametrizable subsystem⎧⎨⎩
z2(t) = y1(t)+ y2(t),

v(t) = u(t),
z2(t)+ z2(t − 2h)− 4v̇(t − h) = 0,

of the system R(y1, y2, u)
T = 0. We note that the parametrizable subsystem is not flat [16,24,47]

as the corresponding D-module D1×2/(D(∂2
2 + 1 − 4∂1∂2)) is torsion-free but not free (see

[16,24,56] for more details). The previous decomposition can be seen as a generalization of the
Kalman decomposition of state-space control systems [54] for multidimensional systems.

Finally, if F = C∞(R) and ψ is any smooth 2h-periodic function, then

∀ξ ∈F,

⎧⎨⎩
z1(t) = ψ(t),
z2(t) = 4∂1∂2ξ(t) = 4ξ̇ (t − h),
v(t) = (∂2

2 + 1)ξ(t) = ξ(t − 2h)+ ξ(t),
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is a solution of the system Rz = 0. Hence, we obtain that⎛⎝y1(t)

y2(t)

u(t)

⎞⎠ = U−1

⎛⎝z1(t)

z2(t)

v(t)

⎞⎠ =
⎛⎝ 1

2ψ(t)+ 2ξ̇ (t − h)
− 1

2ψ(t)+ 2ξ̇ (t − h)
ξ(t − 2h)+ ξ(t)

⎞⎠
is a solution of (7) for any smooth function ξ and any smooth 2h-periodic function ψ [23].

We have the following important corollary of Theorem 4.2.

Corollary 4.3. LetR ∈ Dq×p,M = D1×p/(D1×qR) and f : M → M be an idempotent defined
by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (15) and:

P 2 = P, Q2 = Q.
Assume further that one of the following conditions holds:

1. D=A[∂; σ, δ] is a skew polynomial ring over a division ring A (e.g., A is a field) and σ
is injective, as, e.g., the ring D = k(t)[∂; idk(t), d

dt ] of differential operators with rational
coefficients or the ring D = k(n)[∂; σ, 0] of shift operators with rational coefficients,

2. D=A[∂1; σ1, δ1] . . . [∂n; σn, δn] is a commutative Ore algebra where A is a field k or a prin-
cipal ideal domain as, e.g., the ring of differential operators with coefficients in Q or Z,

3. D=A[∂1; id, �
�x1
] · · · [∂n; id, �

�xn
] is a Weyl algebra,whereA=k[x1, . . . , xn]or k(x1, . . . , xn),

k is a field of characteristic 0, and moreover:{
rankD(kerD(.P )) � 2,
rankD(imD(.P )) � 2,

{
rankD(kerD(.Q)) � 2,
rankD(imD(.Q)) � 2.

Then, there exist U ∈ GLp(D) and V ∈ GLq(D) such that

R = VRU−1 =
(
R1 0
0 R2

)
∈ Dq×p,

where R1 ∈ Dl×m, R2 ∈ D(p−l)×(p−m), m = rankD(kerD(.P )) and l = rankD(kerD(.Q)).

Proof. 1. By Lemma 4.5, we know that kerD(.P ), kerD(.Q), imD(.P ) and imD(.Q) are projective
D-modules. By (ii) of Theorem 1.2.9 of [46], D is a left principal ideal domain. Therefore,
kerD(.P ), kerD(.Q), imD(.P ) and imD(.Q) are free left D-modules of rank respectively m, l,
p −m and q − l (see [37,46] for more details). Then, the result follows from Theorem 4.2.

2. By Lemma 4.5, we obtain that kerD(.P ), kerD(.Q), imD(.P ) and imD(.Q) are projective
D-modules. As D is a commutative polynomial ring over a field k or a principal ideal domain
A, by the famous Quillen-Suslin theorem (see Theorem 4.59 of [66]), we know that they are free
D-modules of rank respectively m, l, p −m and q − l. Then, the result directly follows from
Theorem 4.2.

3. By Lemma 4.5, we obtain that kerD(.P ), kerD(.Q), imD(.P ) and imD(.Q) are projective
leftD-modules. A result of J.T. Stafford asserts that projective modules of rank at least 2 over the
Weyl algebras An(k) and Bn(k), where k is a field of characteristic 0, are free (see Theorem 3.6
of [69]). Then, the result directly follows from Theorem 4.2. �

In order to constructively obtain the unimodular matricesU and V defined in Corollary 4.3, we
need to compute bases of the free leftD-modules kerD(.P ) and imD(.P ), kerD(.Q) and imD(.Q).
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In the first case of Corollary 4.3, we can use Smith or Jacobson forms in order to compute bases
of these modules over D = A[∂; σ, δ] (see [46,54]). In the second case of Corollary 4.3, we can
use constructive versions of the famous Quillen-Suslin theorem of Serre’s conjecture [43,66].
For more details, see Remarks 3.1 and 4.3. See also [24] for an implementation of the Quillen-
Suslin theorem in the package QuillenSuslin. In the last case of Corollary 4.3, we can use
the constructive algorithm recently obtained in [29,64] and the implementation of the algorithm
developed in [64] in the package Stafford of OreModules [17]. Hence, we get constructive
ways to obtain the unimodular matrices U and V defined in Theorem 4.2.

Remark 4.4. Theorem 4.2 supposes that we already know an idempotent f of endD(M) defined
by idempotents P of Dp×p and Q of Dq×q . Algorithm 4.1 gives a way to get an idempotent of
endD(M) defined by means of a matrix P with a fixed total order in the ∂i’s and a fixed degree in
the xj ’s for the numerators and denominators. We then need to solve the algebraic Riccati equation
(59). Hence, the existence of bounds for total order and degree of P as well as the existence of a
solution of (59) need to be studied in great detail in the future for different classes of functional
systems appearing in applied mathematics (e.g., control theory, mathematical physics).

All the previous algorithms, implemented in the package Morphisms [21], were recently used
to decompose many classical linear functional systems coming from mathematical physics and
control theory. Let us illustrate Theorem 4.2 and Corollary 4.3 on different examples.

Example 4.6. We consider again Example 4.1. Let D = A1(Q) be the Weyl algebra, R ∈ D4×4

the matrix defined by (44) and the left D-module M = D1×4/(D1×4R). Using Algorithm 4.1,
we obtain that the matrices P and Q defined by (45) define an idempotent f ∈ endD(M), which
proves thatM is decomposable. Moreover, we easily check that P 2 = P , i.e., P is an idempotent
of D3×3. Using the fact that the entries of P belong to the field Q, we can easily compute bases
of kerk(.P ) and imk(.P ) = kerk(.(I4 − P)) and we get the following unimodular matrices:

U =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , U−1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

Moreover, if we denote by

V1 =
(

1 0 −1 0
0 1 −1 1

)
, V2 =

(
1 0 0 −1
0 1 −1 1

)
,

we can then check that we have{
kerD(.Q) = D1×2V1,

imD(.Q) = kerD(.(I4 −Q)) = D1×2V2,

and V = (V T
1 V T

2 )
T ∈ GL4(D). The matrix R is then equivalent to the block-diagonal matrix:

R = VRU−1 =

⎛⎜⎜⎝
−∂ 1 0 0

t (∂ − 1) −(∂ + t) 0 0
0 0 0 −∂
0 0 ∂ (t + 1)∂ − t

⎞⎟⎟⎠ .
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Moreover, if we denote by

E =

⎛⎜⎜⎝
−1 0 0 0
−t −1 0 0
0 0 t + 1 1
0 0 −1 0

⎞⎟⎟⎠ ∈ GL4(D),

and W = EV , we can easily check that we have

R = WRU−1 =

⎛⎜⎜⎝
∂ −1 0 0
t ∂ 0 0
0 0 ∂ −t
0 0 0 ∂

⎞⎟⎟⎠ .

If we denote by W = (WT
1 WT

2 )
T, where W1 ∈ D2×4 and W2 ∈ D2×4, then we have

kerk[t](.Q) = k[t]1×2W1, imk[t](.Q) = k[t]1×2W2,

i.e.,W1 (resp.,W2) defines a basis of kerD(.Q) (resp., imD(.Q)) with coefficients in k[t], whereas
V1 (resp., V2) defines a basis with coefficients in k.

Finally, the diagonal blocks of the matrix R are equivalent to the two systems that we had to
solve in Example 4.1 in order to integrate the solutions of Rη = 0. In particular, the solution of
the first diagonal block is z1(t) = C3Ai(t)+ C4Bi(t) and z2(t) = C3∂Ai(t)+ C4∂Bi(t),whereas
the solution of the second diagonal block is z3(t) = 1

2C1t
2 + C2 and z4(t) = C1, where C1, C2,

C3 and C4 are four arbitrary constants. Hence, using the fact that η = U−1(z1, z2, z3, z4)
T, we

find again that the general solution of Rη = 0 is given by (58).

Example 4.7. If we considerD = A1(Q) and the idempotentP 3 ∈ D2×2 defined in Example 4.3,
then we have rankD(kerD(.P 3)) = 1 and rankD(imD(.P 3)) = 1. Hence, we cannot use 1 or 3 of
Corollary 4.3 in order to conclude thatR = (∂2 − t∂ − 1) is equivalent toR = (α 0), α ∈ D,
by means of unimodular matrices over D. Indeed, we can prove that kerD(.P 3)) = D(∂ − t),
which implies that kerD(.P 3)) is a free left D-module of rank 1. However, we have

imD(.P 3)∼=D1×2/(D(∂ − t))
and it was proved in [64] that the last leftD-module was not free. A similar comment holds for P 4
as we have kerD(.P 4)∼=D1×2/(D(∂ − t)). Of course, if we consider the Weyl algebra B1(Q)

instead ofA1(Q), namely, B1(Q) = Q(t)[∂; idQ(t),
d
dt ], using a computation of a Jacobson form,

we can easily prove that R is equivalent to R = (∂ 0) (see 1 of Corollary 4.3). However, we
point out that singularities then appear in the matrices U and U−1 defined in Theorem 4.2 as, for
instance, we have RU−1 = (∂ 0), where U is the matrix defined by

U =
(

∂ −t
−t∂ + 1 t2

)
.

U does belong to GL3(B1(Q)) but not to GL3(A1(Q)) as the matrix U−1 is singular at t = 0:

U−1 =
(
t 1
∂ 1

t
∂

)
.

Finally, even if the hypotheses of Theorem 4.2 are not fulfilled as imD(.P 3) is not a free leftD-
module, we can use Theorem 4.1 to compute the solutions of Rη = 0. Indeed, we can check that
the matrices defined by S3 = (∂ − t), X3 = (t + a 0)T and L3 = ∂ satisfy P 3 = I2 −X3S3,
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R = L3S3 and kerD(.S3) = 0. Hence, we need to solve ∂τ = 0 which gives τ = c, where c is
an arbitrary constant, as well as ∂ζ1 − tζ2 = 0. If F is any left D-module (e.g., F = C∞(R)),
then, using the results developed in [16,56], all the F-solutions of ∂ζ1 − tζ2 = 0 are of the form:

∀ξ1, ξ2 ∈F,

{
ζ1(t) = t2ξ1(t)+ t ξ̇2(t)− ξ2(t),

ζ2(t) = t ξ̇ (t)+ 2ξ1(t)+ ξ̈2(t).

By Theorem 4.1, all the F-solutions of Rη = 0 are then parametrized by

∀ξ1, ξ2 ∈F,∀a, c ∈ Q,

{
η1(t) = (t + a)c + t2ξ1(t)+ t ξ̇2(t)− ξ2(t),

η2(t) = t ξ̇ (t)+ 2ξ1(t)+ ξ̈2(t).

Example 4.8. Let us consider the differential time-delay model of a flexible rod with a torque
developed in [47]:{

ẏ1(t)− ẏ2(t − 1)− u(t) = 0,
2ẏ1(t − 1)− ẏ2(t)− ẏ2(t − 2) = 0.

(69)

Let us define the Ore algebraD = Q[∂1; idQ,
d
dt ][∂2; σ2, 0] of differential time-delay operators

with rational constant coefficients defined in 4 of Example 2.1 and the matrix of the system (69):

R =
(
∂1 −∂1∂2 −1

2∂1∂2 −∂1∂
2
2 − ∂1 0

)
∈ D2×3.

Let us introduce M = D1×3/(D1×2R). Using Algorithm 4.1, we obtain that the matrices

P =
⎛⎝1+ ∂2

2 − 1
2∂

2
2 (1+ ∂2) 0

2∂2 −∂2
2 0

0 0 1

⎞⎠ , Q =
(

1 − 1
2∂2

0 0

)
,

define an idempotent f ∈ endD(M). Moreover, we can check that P 2 = P and Q2 = Q. Then,
using 2 of Corollary 4.3, we obtain thatR is equivalent to a block-diagonal matrix. Let us compute
it. Using the implementation of the Quillen-Suslin theorem developed in [24] or the heuristics
given in [16], we obtain the following unimodular matrices:

U =
⎛⎝ −2∂2 ∂2

2 + 1 0
2∂1(1− ∂2

2 ) ∂1∂2(∂
2
2 − 1) −2

−1 1
2∂2 0

⎞⎠ ∈ GL3(D), V =
(

0 −1
2 −∂2

)
∈ GL2(D).

We obtain that R is equivalent to the following block-diagonal matrix:

R = VRU−1 =
(
∂1 0 0
0 1 0

)
.

Hence, we get the following isomorphisms:

M ∼=D1×3/(D1×2R) = D/(D∂1)⊕D1×2/(D(1 0))∼=D/(D∂1)⊕D,
which show that t (M)∼=D/(D∂1),M/t(M)∼=D andM is extended from the ring Q[∂1; idQ,

d
dt ]

(see [66] for more details). This last result shows that, as in Example 4.5 for the tank model,
the first scalar diagonal block corresponds to the autonomous subsystem, whereas the second
diagonal block defines the flat subsystem (see [47]).

Finally, all smooth solutions of Rz = 0 are defined by z = (c, 0, z3)
T, where c ∈ R and z3 is

an arbitrary smooth function. Hence, all smooth solutions of (69) are then parametrized by
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y2(t)

u(t)

⎞⎠ = U−1

⎛⎝ c

0
z3(t)

⎞⎠ =
⎛⎝ 1

2c − z3(t − 2)− z3(t)

c − 2z3(t − 1)
ż3(t − 2)− ż3(t)

⎞⎠ ,

where c is an arbitrary real constant and z3 an arbitrary smooth function.

We refer the reader to [21,24] for more examples of decomposable modules coming from
mathematical physics and control theory such as the Cauchy-Riemann equations, the Beltrami
equations, acoustic waves, transmission lines, 2-D rotational isentropic flow, wind tunnel/(stirred)
tank/string/network models… Finally, we refer to [21] for a description of the package Morphisms
in which the different algorithms described in this paper were implemented.

5. Conclusion

Within a constructive homological algebra approach, we have obtained new and general results
on the factorization and decomposition problems of linear functional systems over a certain class
of Ore algebras. We point out that no particular assumption on the linear functional systems was
required. Hence, the different results of the paper can be applied to determined, over-determined
and under-determined linear functional systems. In particular, we have shown how some classical
results of the literature of the factorization and decomposition problems such as the ones using the
concept of the eigenring [4,11,18,31,61,68,74,75] could be seen as particular cases of Theorems
3.1, 3.2, 4.1 and 4.2. However, we point out that some open questions need to be studied in the
future such as the computation of bounds for α, β and γ in Algorithms 2.2 and 4.1 for important
classes of linear functional systems, the structure of the set of idempotents of an endomorphism
ring, the existence of solutions of the Riccati equation.

We have shown how these results could be applied in mathematical physics (e.g., computation
of quadratic first integrals of motion and quadratic conservation laws, testing the equivalence of
linear systems of PDEs appearing in mathematical physics, factoring, decomposing and com-
puting Galois transformations of the classical linear systems of PDEs appearing in elasticity
theory, electromagnetism, hydrodynamics) and in control theory (factorization, decomposition
and computation of Galois transformations of classical linear functional systems appearing in the
literature of control theory, parametrizations, decoupling the autonomous and the controllable
subsystems). We refer the reader to [20,21] for more examples and applications (e.g., study of the
KdV equation by means of the eigenring and Lax pairs).

Moreover, all the algorithms presented in the paper have been implemented in the package
Morphisms [21] of OreModules (see [17]). This package is available with a library of examples,
including the ones of the paper, which illustrates the main results obtained in this paper and the
main functions of the package Morphisms. In the case of a commutative polynomial ring, tools of
homological algebra such as the computation of morphisms have also recently been implemented
in the package homalg [3].

This work opens interesting questions such as proving whether or not the differential modules
associated with the main linear systems of PDEs appearing in mathematical physics (e.g., the
Maxwell equations, the Navier equations in elasticity theory, the linearized Einstein equations) are
simple or indecomposable. This problem will be studied in the future. Applications of our results
to the important issue of characterizing the minimal number of generators of a finitely presented
module will soon be developed. For some results going in this direction, see [21]. Computing a
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minimal set of generators for the classical functional systems appearing in mathematical physics
seems to us an important issue of constructive algebraic analysis.

The results obtained in this paper can also be used for studying classical problems in control
theory such as the decoupling problem or equivalence problems (e.g., when is a multidimensional
system equivalent to its Smith form?). We also need to study how the algebraic properties of the
underlying module (e.g., torsion-free, reflexive, projective) can be taken into account to charac-
terize the endormorphism ring and the set of its idempotents (e.g., projective modules). Finally,
applications of these results to the behavioural approach to multidimensional systems need to be
developed following the lines developed in [28,53].
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