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Abstract Within a lattice approach, the purpose of this paper is to give general
necessary and sufficient conditions for internal stabilizability and for the existence
of (weakly) left-/right-/doubly coprime factorizations of multi input multi output
linear systems. These results extend the ones recently obtained in [24] for single
input single output systems. In particular, combining these results with the one
obtained in [3,13], we prove that every internally stabilizable multidimensional
system admits doubly coprime factorizations, solving Lin’s conjecture [17,18].

Keywords Fractional representation approach · Lattice approach · Internal stabil-
izability · (weakly) left-/right-/doubly coprime factorization · Lin’s conjecture ·
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1 Introduction

In their pioneering work [5,6,39,40], Desoer and Zames developed the modern con-
cepts of internal stabilizability and parametrization of all stabilizing controllers.
They have since played fundamental roles in the study of stabilization problems
(e.g., internal/strong/simultaneous/robust/optimal stabilization) and in the success-
ful development of the H∞-control in the nineties. For more details, see [4,9–11,
19,38] and the references therein.

However, Desoer and Zames did not use the same approaches in order to char-
acterize internal stabilizability and obtain their parametrizations of all stabilizing
controllers. Combining the idea of stable factorizations of a plant developed by
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Vidyasagar [38] in the seventies with the concept of coprimeness, Desoer and his
co-authors obtained in [6] necessary and sufficient conditions for internal stabil-
izability in terms of some Bézout equations. Solving these Bézout identities, they
obtained the so-called Youla–Kučera parametrization of all stabilizing controllers.
This approach is nowadays called the fractional representation approach to anal-
ysis and synthesis and it has been largely developed in the literature for important
classes of systems [4,19,38]. In contrast, Zames [39] worked within the classical
approach directly using the transfer matrices P and C of the plant and the con-
troller [40]. He characterized internal stabilizability in terms of some interpolation
problems, and solving them, Zames and Francis [40] were able to obtain a parame-
trization of all stabilizing controllers for finite-dimensional systems that they called
the Q-parametrization. In particular, they showed that, after a simplification by a
stable factor, the Q-parametrization became the Youla–Kučera one [40].

The fractional representation approach is nowadays a cornerstone in the study
of stabilization problems whereas the classical approach and, in particular, Zames’
ideas on internal stabilizability and parametrization of all stabilizing controllers,
has been mainly forgotten. It can be partially explained by the fact that for finite-
dimensional linear systems, every transfer matrix admits doubly coprime factor-
izations over RH∞ and different algorithms for their computations are well-known
[6,38]. However, this result is generally not true for general linear systems (e.g.,
infinite-dimensional or multidimensional systems) [20,23,24,33,36,37]. More-
over, for important classes of systems such as infinite-dimensional systems (e.g.,
differential time-delay systems, systems of partial differential equations, convo-
lutional systems) or multidimensional systems, the question of the equivalence
between internal stabilizability and the existence of doubly coprime factorizations
is still open [4,18–20,23,24,38]. Hence, we are sometimes led to artificially as-
sume the existence of doubly coprime factorizations for a transfer matrix in order
to mimic the results classically obtained for finite-dimensional systems.

Some people have felt that it was important to revisit stabilization problems by
using only the concept of internal stabilizability and without assuming that the only
interesting plants were the ones admitting doubly coprime factorizations. Such a
program was pioneered by the work of Shankar [33] and Sule [36,37] and it has been
recently extended in [20,21,23,25,26,28–30]. Within the fractional representation
framework, a natural module-theoretic approach to analysis and synthesis prob-
lems was developed in [20,23,36,37]. General necessary and sufficient conditions
for internal/strong stabilizability and for the existence of (weak) left-/right-/doubly
coprime factorizations were then obtained [20,23,33,36,37]. In particular, it was
shown that the existence of a left-/right-coprime factorization is a sufficient but gen-
erally not a necessary condition for internal stabilizability. Hence, the question of
the possibility to parametrize all stabilizing controllers of an internal stabilizable
plant which does not necessarily admit doubly coprime factorizations naturally
holds [21,24,27,28,33,36,37]. Such a problem has only recently been completely
solved in [24] for single input single output (SISO) plants (see [21,33,36,37] for
partial answers). However, in order to do that, we had to develop a fractional ideal
approach to stabilization problems [24,26,30]. The theory of fractional ideals is
a framework which allows us to study ideals generated by elements belonging to
the quotient field of an integral domain (the classical ideal theory only deals with
ideals generated by elements of a ring) [2,32]. Within this mathematical theory, we
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can simultaneously study the classical approach based on transfer functions and
the fractional representation approach based on stable fractional representations
of transfer functions. Recently, after the reading of [40], we have realized that the
fractional ideal approach gave appropriate tools for investigating and developing
Zames’ ideas on internal stabilizability and Q-parametrization of all stabilizing
controllers for general plants.

A natural challenge was then to find a way to extend the fractional ideal ap-
proach to analysis and synthesis problems developed in [24,26,30] for multi input
multi output (MIMO) plants. We have recently understood that it could be done by
means of the algebraic concept of lattices of a vector space [2]. Hence, the purpose
of this paper is to develop a lattice approach to analysis and synthesis problems for
MIMO plants which generalizes the fractional ideal approach developed in [24] for
SISO plants. In this paper, we first explain the concept of lattices of a vector space
and show how it generalizes the concept of fractional ideals. Moreover, we also ex-
plain elementary operations on the lattices which allow us to develop an algebraic
calculus on lattices. Within this framework, we then obtain new necessary and suffi-
cient conditions for internal/strong stabilizability and for the existence of (weakly)
left-/right-/doubly coprime factorizations of MIMO plants. We show that the same
tools allow us to characterize structural properties of a plant — either defined by a
transfer matrix P or by stable fractional representations P = D−1 N = Ñ D̃−1 of
P — by means of some lattices intrinsically associated with the matrices (I − P)
and (PT I T )T or with (D − N ) and (Ñ T D̃T )T . As in the behavioural and the
module-theoretic approaches [22,23,26,36,37], the lattice approach does not sepa-
rate the inputs and the outputs of plants. We can even prove that a module-theoretic
duality exists between the lattice approach developed in this paper and the oper-
ator-theoretic one obtained in [4,10,38] using domains and graphs of unbounded
linear operators. For the SISO case, see [26] for more details.

We then illustrate this new approach by showing how to combine the previ-
ous results with one of [3,13] in order to prove that every internally stabilizable
multidimensional system (in the sense of the structural stabilizability [17,18])
admits doubly coprime factorizations. This result positively answers Lin’s conjec-
ture which was still open in the literature of multidimensional systems (see e.g.,
[17,18] and the references therein). A part of the results developed here already
appeared in the Congress papers [28–30].

Finally, within the lattice approach developed here, a general parametrization
of all stabilizing controllers of a MIMO plant, which does not necessarily admit
doubly coprime factorizations, will be obtained in [27]. This parametrization gen-
eralizes for MIMO plants the parametrization previously obtained in [24] for SISO
plants and extends Zames and Francis’ ideas on the Q-parametrization of all sta-
bilizing controllers for general linear systems.

Notation In what follows, we shall denote by A an integral domain A (namely,
A is a ring with an identity which satisfies a b = b a for any a, b ∈ A and
a b = 0, a �= 0 ⇒ b = 0) [2,32]. Elements of Am (respectively, A1×m) will be
considered as column (respectively, row) vectors of length m with entries in A. We
shall denote by Am×m the ring of m × m matrices with entries in A and Im the
identity matrix of Am×m . The standard basis of the free A-module Am is the basis
{ei }1≤i≤m , where ei is the column vector defined by 1 in the i th component and 0
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elsewhere. Finally, if V is a finite-dimensional K -vector space, then we denote its
dimension by dimK (V ).

2 Fractional representation approach

We briefly recall the fractional representation approach to analysis and synthesis
problems. We refer to [6,19,38] for more details and references.

Let us consider an integral domain A of (proper) stable SISO plants [6,19,38].
For instance, we have the following examples of such rings.

Example 1 Let A = RH∞ be the integral domain of all proper stable real rational
functions [38], namely:

RH∞ = {n/d | 0 �= d, n ∈ R[s], deg n ≤ deg d, d(s�) = 0⇒ Re s� < 0}.
A transfer function p belongs to A iff p is the transfer function of an exponentially
stable time-invariant finite-dimensional SISO linear system.

Let A = H∞(C+) be the integral domain of holomorphic functions in the right
half-plane C+ = {s ∈ C |Re s > 0} which are bounded with respect to the norm
‖ f ‖∞= sups∈C+ | f (s)|.

A transfer function p belongs to A iff we have

‖ p ‖∞= sup
0 �=u∈H2(C+)

‖ p u ‖2
‖ u ‖2 < +∞,

where H2(C+) denotes the Hilbert space of the holomorphic functions in C+ which
are bounded with respect to the norm:

‖ f ‖2=
(

sup
Re x>0

∫ +∞
−∞
| f (x + i y)|2 dy

)1/2

.

Therefore, p belongs to A iff p is the transfer function of an L2(R+)-stable time-
invariant infinite-dimensional SISO linear system [4,10].

Let A be the Wiener algebra [4,6,38] defined by

A = {h(t) = f (t)+∑∞
i=0 ai δ(t − ti ) | f ∈ L1(R+), (ai )i ≥ 0 ∈ l1(Z+),

0 = t0 ≤ t1 ≤ t2 ≤ · · · },
where h is bounded with respect to the norm:

‖ h ‖A=‖ f ‖L1(R+) + ‖ (ai )i ≥ 0 ‖l1(Z+) =
∫ +∞

0
| f (t)| dt +

+∞∑
i=0

|ai |.

Then, h belongs to A iff h is the impulse response of an L∞(R+)-stable time-
invariant infinite-dimensional SISO linear system (BIBO stability) [4,6]. We also
define the integral domain Â = {L( f ) | f ∈ A}, where L( f ) denotes the Laplace
transform.
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Let A = W+ be the integral domain of holomorphic functions on the open unit
disc D = {z ∈ C | |z| < 1} of C whose Taylor series converge absolutely, namely,

W+ =
{

f (z) =
+∞∑
n=0

an zn ∈ H(D) |
+∞∑
n=0

|an| < +∞
}
,

where H(D) denotes the integral domain of holomorphic functions in D. Then,
p ∈ W+ iff p is the unit-pulse response of a BIBO-stable causal digital filter [38].

Let A = R(z1, . . . , zm)S be the integral domain of structural stable multidi-
mensional systems, namely,

R(z1, . . . , zm)S = {n/d | 0 �= d, n ∈ R[z1, . . . , zm], d(z) = 0⇒ z /∈ D
m},

where D
m = {(z1, . . . , zm) ∈ C

m | |zi | ≤ 1, i = 1, . . . ,m} denotes the closed
unit polydisc of C

m [17,18].

If A is an integral domain of (proper) stable SISO systems, then its quotient
field [2,32], namely, the commutative field defined by

Q(A) = {n/d | 0 �= d, n ∈ A},
corresponds to the universal class of A-stable and A-unstable SISO plants. For
instance, the transfer function p = e−s/(s − 1) /∈ H∞(C+) because p has an
unstable pole in C+. However, we have p = n/d , where

n = e−s/(s + 1) ∈ H∞(C+), d = (s − 1)/(s + 1) ∈ H∞(C+), (1)

and thus, p ∈ Q(H∞(C+)). Similarly, p /∈ Â but p = n/d ∈ Q(Â), where d and
n are defined by (1).

More generally, we can consider the class of MIMO plants defined by transfer
matrices with entries in K = Q(A). Hence, if P ∈ K q×r is a transfer matrix with
entries in K , then we can always write P as:

P = D−1 N = Ñ D̃−1, where

{
R = (D − N ) ∈ Aq×(q+r),

R̃ = (Ñ T D̃T )T ∈ A(q+r)×r .

Indeed, we can take D = d Iq and D̃ = d Ir where 0 �= d ∈ A denotes the
product of the denominators of all the entries of P , N = d P ∈ Aq×r and Ñ =
P d ∈ Aq×r . Then, P = D−1 N = Ñ D̃−1, where (D − N ) ∈ Aq×(q+r) and
(Ñ T D̃T )T ∈ A(q+r)×r , is called fractional representations of P ∈ K q×r .

Example 2 If A = H∞(C+) and K = Q(A), then

P =
(

e−s

s−1
e−s

(s−1)2

)
∈ K 2 (2)

because we have P = D−1 N = Ñ D̃−1, where:

R =


(s−1)2

(s+1)2
0 − (s−1) e−s

(s+1)2

0 (s−1)2

(s+1)2
− e−s

(s+1)2


 ∈ A2×3, R̃ =




(s−1) e−s

(s+1)2

e−s

(s+1)2

(s−1)2

(s+1)2


 ∈ A3.
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The fractional representation approach was developed in the eighties in order to
study in a unique mathematical framework several questions on stabilization prob-
lems (e.g., existence of internal controllers, parametrization of all stabilizing con-
trollers, strong/simultaneous/robust stabilization, metrics of robustness, H∞/H2
controllers). See [6,19,38] for more details.

We recall a few definitions that will constantly be used in what follows.

Definition 1 Let A be an integral domain of stable SISO plants and its quotient
field K = Q(A).

– [23] A transfer matrix P ∈ K q×r admits a weakly left-coprime factorization
if there exists a matrix (D − N ) ∈ Aq×(q+r) such that we have det D �= 0,
P = D−1 N and:

∀ λ ∈ K 1×q , λ (D − N ) ∈ A1×(q+r) ⇒ λ ∈ A1×q .

– [23] A transfer matrix P ∈ K q×r admits a weakly right-coprime factorization
if there exists a matrix (Ñ T D̃T )T ∈ A(q+r)×r such that we have det D̃ �= 0,
P = Ñ D̃−1 and:

∀ λ ∈ K r ,

(
Ñ
D̃

)
λ ∈ Aq+r ⇒ λ ∈ Ar .

– [23] A transfer matrix P ∈ K q×r admits a weakly doubly coprime factorization
iff P admits a weakly left- and a weakly right-coprime factorization.

– [6,19,38] A plant P ∈ K q×r is called internally stabilizable (IS) if there exists
a controller C ∈ K r×q such that the transfer matrix defined by(

e1
e2

)
= H(P, C)

(
u1
u2

)
, H(P, C) =

(
Iq −P
−C Ir

)−1

,

is A-stable (see Fig. 1), namely, if all the entries of the following matrix

H(P, C) =
(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)
(3)

=
(

Iq + P (Ir − C P)−1 C P (Ir − C P)−1

(Ir − C P)−1 C (Ir − C P)−1

)
(4)

belongs to A. Then, C is called a stabilizing controller of P .
– [19,38] A plant P ∈ K q×r is said to be strongly stabilizable if P is internally

stabilized by a stable controller C , i.e., C ∈ Ar×q .
– [6,19,38] A transfer matrix P ∈ K q×r admits a left-coprime factorization if

there exist R = (D − N ) ∈ Aq×(q+r) and S = (X T Y T )T ∈ A(q+r)×q such
that we have det D �= 0, P = D−1 N and:

R S = D X − N Y = Iq .

– [6,19,38] A transfer matrix P ∈ K q×r admits a right-coprime factorization if
there exist two matrices R̃ = (Ñ T D̃T )T ∈ A(q+r)×r and S̃ = (−Ỹ X̃) ∈
Ar×(q+r) such that det D̃ �= 0, P = Ñ D̃−1 and:

S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ir .
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Fig. 1 Closed-loop system

– [6,19,38] A transfer matrix P ∈ K q×r admits a doubly coprime factorization
if P admits a left- and a right-coprime factorizations.

Remark 1 We note that a left-coprime factorization P = D−1 N of P , i.e., R =
(D − N ) ∈ Aq×(q+r), S = (X T Y T ) ∈ A(q+r)×q , R S = Iq , is a weakly left-
coprime factorization. Indeed, for all λ ∈ K 1×q such that λ R ∈ A1×(q+r), we
have λ = λ (R S) = (λ R) S ∈ A1×q . Similarly, a right-coprime factorization is a
weakly right-coprime factorization.

3 Lattices of vector spaces

The purpose of this section is to introduce the concept of a lattice of a finite-dimen-
sional vector space [2]. In order to do that, we first recall a few concepts of module
theory [2,32].

Definition 2 An A-module M is said to be free if M is isomorphic to a direct sum
of copies of A.

Equivalently, an A-module M is free iff M has a basis, namely, a set {ei }i∈I of
elements of M such that every element of M is a unique finite linear combination
of the ei s [32]. Then, the rank of M is the cardinal of a basis {ei }i∈I of M and it is
denoted by rk A(M).

Let us now introduce the concept of a lattice of a finite-dimensional vector
space [2]. This concept will play a major role in what follows.

Definition 3 [2] Let A be an integral domain, K = Q(A) its quotient field and
V a finite-dimensional K -vector space. Then, an A-submodule M of V is called
a lattice of V if there exist two free A-submodules L1 and L2 of V such that
L1 ⊆ M ⊆ L2 and rk A(L1) = dimK (V ).

To our knowledge, this concept was introduced in control theory by Sontag
[35] but it seems that it has not been used since. Let us illustrate the concept of a
lattice by means of a few important examples.

Example 3 If P ∈ K q×r is a transfer matrix, then the A-module defined by

L = (Iq − P) Aq+r = {λ1 − P λ2 | λ1 ∈ Aq , λ2 ∈ Ar } (5)
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is a lattice of the finite-dimensional K -vector space K q . Indeed, we have the fol-
lowing inclusions L1 = Aq ⊆ L = Aq + P Ar and Aq is a free A-submod-
ule of K q of rank q . Moreover, if P = D−1 N is a fractional representation of
P , where (D − N ) ∈ Aq×(q+r), then any element λ ∈ L has the form λ =
λ1 − P λ2 = D−1 (D λ1 − N λ2) for some λ1 ∈ Aq and λ2 ∈ Ar . Therefore,
we have µ = D λ1 − N λ2 ∈ Aq , which shows that λ = D−1 µ ∈ D−1 Aq .
Hence, we have the inclusions Aq ⊆ L ⊆ D−1 Aq . Finally, L2 = D−1 Aq is a
free A-submodule of K q of basis {D−1

1 , . . . , D−1
q }, where D−1

i is the i th column
of D−1.

If P ∈ K q×r is a transfer matrix, then we can similarly prove that the A-module
defined by

M = A1×(q+r)
(

P
Ir

)
= {λ1 P + λ2 | λ1 ∈ A1×q , λ2 ∈ A1×r } (6)

is a lattice of K 1×r .

Example 4 Let P ∈ K q×r be a transfer matrix and P = D−1 N a fractional
representation of P (not necessarily a (weakly) left-coprime factorization), where
(D − N ) ∈ Aq×(q+r). Then, the A-module defined by

P = (D − N ) Aq+r = {D λ1 − N λ2 | λ1 ∈ Aq , λ2 ∈ Ar } (7)

is a lattice of K q . Indeed, we can easily check that we have the inclusions D Aq ⊆
P = D Aq + N Ar ⊆ Aq . Moreover, L1 = D Aq is a free A-submodule of K q

of basis {D1, . . . , Dq}, where Di is the i th column of D, and thus, rkA(L1) = q .
Finally, Aq is trivially a free A-submodule of K q .

If P = Ñ D̃−1 is a fractional representation of a transfer matrix P , where
(Ñ T D̃T )T ∈ A(q+r)×r , then we can similarly prove that

Q = A1×(q+r)
(

Ñ
D̃

)
= {λ1 Ñ + λ2 D̃ | λ1 ∈ A1×q , λ2 ∈ A1×r } (8)

is a lattice of K 1×r .

We recall that an A-module M is said to be finitely generated if there exists
a finite set {mi }i∈I of elements of M which generates M , namely, any element
m ∈ M can be written as m = ∑

i∈I ai mi for certain ai ∈ A [2,32]. Then, we
have the following characterization of a lattice.

Proposition 1 [2] An A-submodule M of V is a lattice of V iff the K -vector space
K M = {∑n

i=1 ki mi | ki ∈ K , mi ∈ M, n ∈ Z+} satisfies K M = V and M is
contained in a finitely generated A-submodule of V .

Let us again consider Examples 3 and 4 using Proposition 1.

Example 5 Let P ∈ K q×r be a transfer matrix and L = (Iq − P) Aq+r the
A-submodule of K q . Then, we have L = ∑q

i=1 A ei +∑r
i=1 A Pi ⊆ K q , where

{ei }1≤i≤q is the standard basis of Aq , namely, ei is the vector defined by 1 in the
i th position and 0 elsewhere, and P = (P1 · · · Pr ), i.e., Pi ∈ Aq is the i th column
of P . Therefore, L is finitely generated by {e1, . . . , eq , P1, . . . , Pr }. Finally, we
have K q ⊆ K L = ∑q

i=1 K ei +∑r
i=1 K Pi ⊆ K q , and thus, K L = K q . Then,

by Proposition 1, L is a lattice of K q .
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Example 6 Let P ∈ K q×r be a transfer matrix, P = D−1 N a fractional repre-
sentation of P , (D − N ) ∈ Aq×(q+r), and P = D Aq + N Ar the A-submod-
ule of K q . Then, we have P ⊆ Aq , i.e., P is contained in a finitely generated
A-submodule of K q . Moreover, if we denote by ei the vector defined by 1 in the
i th position and 0 elsewhere and by D−1

i ∈ K q the i th column of D−1, then we
have ei = D D−1

i ∈ K P = D K q + N K r . Hence, we have K q ⊆ K P ⊆ K q ,
i.e., K P = K q , and, by Proposition 1, P is a lattice of V .

Proposition 2 [2] Let M be a lattice of a finite-dimensional K -vector space V
and L an A-submodule of V .

– If there exist non-zero x, y ∈ K such that x M ⊆ L ⊆ y M, then L is a lattice
of V .

– If L is a lattice of V , then there exist non-zero a, b ∈ A such that:

a M ⊆ L ⊆ b−1 M.

Example 7 In examples 5 and 6, we proved the following chain of inclusions
D Aq ⊆ P ⊆ Aq ⊆ L ⊆ D−1 Aq . Let us denote by Dc the cofactor matrix of
D, namely, the matrix Dc ∈ Aq×q such that Dc D = D Dc = (det D) Iq (such a
matrix always exists [32]). Then, we have:

{
(det D) Aq = D (Dc Aq) ⊆ D Aq ,

D−1 Aq = (det D)−1 (Dc Aq) ⊆ (det D)−1 Aq .

We easily check that (det D) Aq and (det D)−1 Aq are two lattices of K q . There-
fore, we have the following long chain of inclusions of lattices of K q :

(det D) Aq ⊆ D Aq ⊆ P ⊆ Aq ⊆ L ⊆ D−1 Aq ⊆ (det D)−1 Aq .

Then, using the inclusions (det D) Aq ⊆ P ⊆ Aq and Aq ⊆ L ⊆ (det D)−1 Aq ,
we finally obtain:

{
(det D)2 L ⊆ P ⊆ L,
P ⊆ L ⊆ (det D)−2 P.

The next proposition shows the main interest of using lattices.

Proposition 3 Let P = D−1
1 N1 = Ñ1 D̃−1

1 and P = D−1
2 N2 = Ñ2 D̃−1

2 be two
fractional representations of P ∈ K q×r and let us define the following lattices of
K q and K 1×r :
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L = (Iq − P) Aq+r ,

P1 = (D1 − N1) Aq+r ,

P2 = (D2 − N2) Aq+r ,




M = A1×(q+r)
(

P
Ir

)
,

Q1 = A1×(q+r)
(

Ñ1

D̃1

)
,

Q2 = A1×(q+r)
(

Ñ2

D̃2

)
.

Then, we have the following isomorphisms L ∼= P1 ∼= P2 and M ∼= Q1 ∼= Q2.

Proof We easily check that Pi = Di L and Qi =M D̃i for i = 1, 2. Hence, every
element p ∈ P1 has the form p = D1 l for a certain l ∈ L. Such l is uniquely
determined by p as we have

p = D1 l = D1 l ′ ⇒ D1 (l − l ′) = 0⇒ l = l ′,

because D1 is a non-singular matrix and A is an integral domain. Hence, we obtain
P1 ∼= L and doing similarly with P2, Q1 and Q2, we finally obtain

P1 ∼= L ∼= P2, Q1 ∼=M ∼= Q2,

which proves the result. �
From Proposition 3, it follows that the lattices introduced in Examples 3 and 4

only depend up to an isomorphism on the plant P . Thus, the structural properties
of the plant defined by P can be studied by means of the ones of the lattices L and
M or the ones of the lattices P and Q.

The next proposition shows that the set of lattices of a finite-dimensional vector
space V is stable by intersections and sums.

Proposition 4 [2] We have the following two results:

– If M1 and M2 are two lattices of V , then so are M1 ∩ M2 and M1 + M2.
– If W is a sub-vector space of V and M is a lattice of V , then M ∩W is a lattice

of W .

Example 8 From Examples 3 and 4, we know that L and P are two lattices of
V = K q . Moreover, using the inclusion P ⊆ L obtained in Example 7, we then
have L ∩ P = P and L+ P = L, which are obviously two lattices of V .

If V and W are two finite-dimensional K -vector spaces, then we denote by
homK (V,W ) the set of K -linear maps from V to W .

Definition 4 [2] Let V and W be two finite-dimensional K -vector spaces and M
(respectively, N ) a lattice of V (respectively, W ). Then, we shall denote by N : M
the A-submodule of homK (V,W ) formed by the K -linear maps f : V → W
which satisfy f (M) ⊆ N .

Proposition 5 [2] Let V and W be two finite-dimensional K -vector spaces and
M (respectively, N) a lattice of V (respectively, W ). Then, we have:

1. N : M is a lattice of homK (V,W ) = { f : V → W | f is a K -linear map}.
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2. The canonical map N : M → homA(M, N ), which maps f ∈ N : M into the
restriction f|M of f to M, is an isomorphism, where homA(M, N ) denotes the
A-module of A-linear maps from M to N.

Example 9 If P ∈ K q×r , then according to Example 5, L = (Iq −P) Aq+r was a
lattice of the K -vector space K q . Therefore, A : L is a lattice of homK (K q , K ) ∼=
K 1×q defined by:

A : L = A : ((Iq − P) Aq+r ) = { f : K q → K | f ((Iq − P) Aq+r ) ⊆ A}
= {λ ∈ K 1×q | λ (Iq − P) Aq+r ⊆ A}
= {λ ∈ K 1×q | λ ∈ A1×q , λ P ∈ A1×r }
= {λ ∈ A1×q | λ P ∈ A1×r }.

Similarly, we can prove that:

A :M = A :
(

A1×(q+r)
(

P
Ir

))
= {λ ∈ Ar | P λ ∈ Aq}.

Example 10 Let P ∈ K q×r be a transfer matrix, P = D−1 N a fractional rep-
resentation of P and R = (D − N ) ∈ Aq×(q+r). Then, from Example 6, P =
R Aq+r is a lattice of the K -vector space K q . Therefore, A : P is a lattice of
homK (K q , K ) ∼= K 1×q defined by:

A : P = A : (R Aq+r ) = {λ ∈ K 1×q | λ (R Aq+r ) ⊆ A}
= {λ ∈ K 1×q | λ R ∈ A1×(q+r)}.

Similarly, if we denote by R̃ = (Ñ T D̃T )T ∈ A(q+r)×r , then we can prove that
we have:

A : Q = A :
(

A1×(q+r) R̃
)
=

{
λ ∈ K r | R̃ λ ∈ Aq+r

}
.

Finally, let us introduce the concept of a fractional ideal of A.

Example 11 A fractional ideal J of A is an A-submodule of K such that there
exists a non-zero a ∈ A satisfying:

a J � {a j | j ∈ J } ⊆ A.

See [2,32] for more details. Hence, if J is a non-zero fractional ideal of A,
then J is a lattice of K as we have b A ⊆ J ⊆ (1/a) A, where b is any non-zero
element of J , and the non-zero fractional ideals of A are lattices of K .

Conversely, let us suppose that J is a lattice of K . Then, by Definition 3,
there exist two free A-submodules L1 and L2 of K such that L1 ⊆ J ⊆ L2 and
rk A(L1) = 1. Hence, we have L1 �= 0, and thus, J �= 0. Moreover, we have
K L1 = K ⊆ K J ⊆ K L2 ⊆ K , and thus, K L2 = K , which shows that L2 is
a free A-submodule of K of rank 1. Therefore, Li is isomorphic to A, i.e., there
exists φi ∈ homA(A, Li ) such that φi (A) = Li and φi is injective. But, φi is
totally determined by the knowledge of φi (1) = li ∈ Li , and thus, we obtain that
Li = A li is a non-zero fractional ideal of K generated by li ∈ K . Finally, writing
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l2 = n2/d2, where 0 �= d2, n2 ∈ A, we obtain that d2 J ⊆ d2 L2 = (n2) ⊆ A,
which shows that the lattices of K are exactly the non-zero fractional ideals of A.
See [2] for more details.

Now, if p ∈ K , then L = A + A (−p) = A + A p = P is a fractional ideal
of A as we have d L = A d + A n ⊆ A, where p = n/d , 0 �= d, n ∈ A, is a
fractional representation of p. Then, the ideal defined by

A : L = A : P = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}
is called the ideal of the denominators of p [24]. Indeed, for all 0 �= d ∈ A : L,
we have n = d p ∈ A, and thus, p = n/d is a fractional representation of p.

Finally, if p = n/d is a fractional representation of p, where 0 �= d, n ∈ A,
then the lattice M = A d + A (−n) = A d + A n = Q of K is the integral ideal
of A generated by d and n. Then, A : M = A : Q = {k ∈ K | k d, k n ∈ A} is
also a fractional ideal of A. Note that A : M cannot be finitely generated as an
A-module. See [24] for more details and for an example.

Within the theory of fractional ideals, we have recently obtained in [24] neces-
sary and sufficient conditions for the existence of (weakly) coprime factorizations
and internal/strong/bistably stabilizability of SISO systems. The purpose of this
paper is to generalize these results for MIMO systems using the lattice approach.

4 Coprime factorizations

Within the lattice approach developed in Sect. 3, the purpose of this section is
to give general necessary and sufficient conditions for a transfer matrix to admit
(weakly) left-/right-coprime factorizations.

4.1 Weakly left-/weakly right-coprime factorizations

Let us start by the following two lemmas.

Lemma 1 1. P = D−1 N, (D − N ) ∈ Aq×(q+r), is a weakly left-coprime fac-
torization of the transfer matrix P iff we have:

A : P = A1×q . (9)

2. P = Ñ D̃−1, (Ñ T D̃T )T ∈ A(q+r)×r , is a weakly right-coprime factorization
of the transfer matrix P iff we have:

A : Q = Ar . (10)

Proof 1. From Example 10, we know that the lattice P = (D − N ) Aq+r of
K q is such that A : P = {λ ∈ K 1×q |λ(D − N ) ∈ A1×(q+r)}. By Definition 1,
P = D−1 N is a weakly coprime factorization of P if we have

{λ ∈ K 1×q | λ (D − N ) ∈ A1×(q+r)} = A1×q ,

which proves the result.
2 can be proved similarly. �
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With the notations of Example 3, we easily check that we have P = D L. Let
us study the relation existing between the residuals A : P and A : L.

Lemma 2 1. If P = D−1 N is a fractional representation of the transfer matrix
P where (D − N ) ∈ Aq×(q+r), then we have:

A : L = (A : P) D. (11)

2. If P = Ñ D̃−1 is a fractional representation of the transfer matrix P where
(Ñ T D̃T )T ∈ A(q+r)×r , then we have:

A :M = D̃ (A : Q).

Proof 1. From Example 9, we know that λ ∈ A : L iff λ ∈ A1×q and λ P ∈ A1×r ,
i.e., iff we have

λ (Iq − P) ∈ A1×(q+r) ⇔ (λ D−1) (D − N ) ∈ A1×(q+r)

⇔ ∃ µ ∈ K 1×q :
{
λ = µ D
µ (D − N ) ∈ A1×(q+r) ⇔ λ ∈ (A : P) D.

2 can be proved similarly. �
The next theorem gives necessary and sufficient conditions for the existence of

a weakly left-/right-/doubly coprime factorization of a transfer matrix P .

Theorem 1 1. The following assertions are equivalent:
(a) P ∈ K q×r admits a weakly left-coprime factorization.
(b) There exists a non-singular matrix D ∈ Aq×q such that:

A : L = A1×q D. (12)

If we denote by N = D P ∈ Aq×r , P = D−1 N is then a weakly left-
coprime factorization.

(c) The A-module A : L is a free lattice of K 1×q .
2. The following assertions are equivalent:

(a) P ∈ K q×r admits a weakly right-coprime factorization.
(b) There exists a non-singular matrix D̃ ∈ Ar×r such that:

A :M = D̃ Ar . (13)

If we denote by Ñ = P D̃ ∈ Aq×r , P = Ñ D̃−1 is then a weakly right-
coprime factorization.

(c) The A-module A :M is a free lattice of K r .

Proof 1.a⇒ 1.b. If P = D−1 N is a weakly left-coprime factorization of P , then,
by Lemma 1, we have A : P = A1×q , and thus, by 1 of Lemma 2, we obtain
A : L = A1×q D, where D ∈ Aq×q is a non-singular matrix.

1.b ⇒ 1.c. If there exists a non-singular matrix D ∈ Aq×q such that (12)
holds, then the A-module A : L is generated by the family {D1, . . . , Dq}, where
Di ∈ A1×q is the i th row of D. Moreover, the family {D1, . . . , Dq} is independent
as λ D = 0 implies λ = 0 because D is non-singular. Therefore, {D1, . . . , Dq} is
a basis of A : L.
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1.c⇒ 1.a. Let us suppose that A : L is a free lattice of K 1×q . Then, A : L is a
free A-submodule of K 1×q of rank q , and thus, A : L admits a basis {D1, . . . , Dq}.
The fact that Di ∈ A : L implies Di ∈ A1×q . Hence, if we denote by D =
((D1)T · · · (Dq)T )T , then D ∈ Aq×q is a non-singular matrix which satisfies
(12). Therefore, if we denote by N = D P ∈ Aq×r , then P = D−1 N is a frac-
tional representation of P , using Lemma 2, we obtain that (A : P) D = A1×q D.
Hence, if we take λ in A : P , then there existsµ ∈ A1×q such that λ D = µ D and,
using the fact that D is non-singular, we obtain λ = µ, proving that A : P ⊆ A1×q .
Finally, using the trivial fact that A1×q ⊆ A : P , we obtain A : P = A1×q , which
proves that P = D−1 N is a weakly coprime factorization by Lemma 1.

2 can be proved similarly. �
In Theorem 1, we characterized the existence of a weakly coprime factoriza-

tion of a plant P using only the transfer matrix P . In the next corollary, we also
characterize the existence of a weakly coprime factorization of P in terms of a
fractional representation of P .

Corollary 1 1. Let P = D−1 N be a fractional representation of the transfer
matrix P and (D − N ) ∈ Aq×(q+r). Then, the following assertions are equiv-
alent:
(a) P admits a weakly left-coprime factorization.
(b) There exists a non-singular matrix E ∈ K q×q such that:

A : P = A1×q E . (14)

If we denote by D′ = E D ∈ Aq×q and N ′ = E N ∈ Aq×r , then P =
(D′)−1 N ′ is a weakly left-coprime factorization of P.

(c) The A-module A : P is a free lattice of K 1×q .
2. Let P = Ñ D̃−1 be a fractional representation of the transfer matrix P and
(Ñ T D̃T )T ∈ A(q+r)×r . Then, the following assertions are equivalent:
(a) P admits a weakly right-coprime factorization.
(b) There exists a non-singular matrix F ∈ K r×r such that:

A : Q = F Ar . (15)

If we denote by D̃′ = D̃ F ∈ Ar×r and Ñ ′ = Ñ F ∈ Aq×r , then P =
Ñ ′ (D̃′)−1 is a weakly right-coprime factorization of P.

(c) The A-module A : Q is a free lattice of K r .

Proof 1.a ⇒ 1.b. Let P = (D′)−1 N ′ be a weakly coprime factorization of P .
Then, by 1.b of Theorem 1, we have A : L = A1×q D′. Moreover, using 1 of
Lemma 2, we obtain that (A : P) D = A1×q D′, and thus, A : P = A1×q E where
E = (D′ D−1) ∈ K q×q is a non-singular matrix.

1.b⇒ 1.c.We suppose that there exists a non-singular matrix E ∈ K q×q such
that A : P = A1×q E . Then, A : P is a free lattice of K 1×q of basis {E1, . . . , Eq},
where Ei denotes the i th row of E .

1.c⇒ 1.a. Let us suppose that A : P is a free lattice of K 1×q . Then, A : P is a
free A-submodule of K 1×q of rank q . Therefore, there exists a basis {E1, . . . , Eq},
where Ei ∈ K 1×q . If we denote by E = ((E1)T · · · (Eq)T )T , then E is a
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non-singular matrix which satisfies (14). In particular, we have E (D − N ) ∈
Aq×(q+r) and, if we denote by

D′ = E D ∈ Aq×q , N ′ = E N ∈ Aq×r ,

then we have det D′ �= 0 and P = (D′)−1 N ′. Finally, let us take λ ∈ K 1×r such
that λ (D′ − N ′) ∈ A1×(q+r). Then, we have (λ E) (D − N ) ∈ A1×(q+r), and
thus, λ E ∈ A : P = A1×q E , i.e., there exists µ ∈ A1×q such that λ E = µ E .
Hence, using the fact that E is non-singular, we obtain λ = µ ∈ A1×q , proving
that P = (D′)−1 N ′ is a weak coprime factorization.

2 can be proved similarly. �
Example 12 If p ∈ K is a transfer function of a SISO plant, then

L = (1 − p) A2 = A1×2
(

p
1

)
=M = {a + b p | a, b ∈ A}

is a fractional ideal of A (see Example 11). By 1 or 2 of Theorem 1, p admits a
weakly coprime factorization iff A : L = {d ∈ A | d p ∈ A} is a free lattice of
K , i.e., a principal ideal of A. Hence, we obtain that p admits a weakly coprime
factorization if there exists 0 �= d ′ ∈ A such that A : L = A d ′. Hence, Theorem 1
generalizes 2 of Theorem 1 of [24] for MIMO systems.

If p = n/d is a fractional representation of p, 0 �= d, n ∈ A, then, by
1 or 2 of Corollary 1, p admits a weakly coprime factorization if the lattice
P = (d − n) A2 = A1×2(n d)T = Q of K , i.e., the ideal P = A d + A n
of A, is such that A : P = {k ∈ K | k d, k n ∈ A} is a free lattice of K , i.e., a
principal fractional ideal of A. Hence, p admits a weakly coprime factorization iff
there exists 0 �= k ∈ K such that A : P = A k. Hence, Corollary 1 generalizes 2
of Theorem 3 of [24] for MIMO systems.

Remark 2 An algorithm computing weakly doubly coprime factorizations is ob-
tained in [23]. Moreover, we proved in [23] that every transfer matrix admits a
weakly doubly coprime factorization iff A is a coherent Sylvester domain, namely,
a ring A satisfying that, for every n ∈ Z+ and every row vector R ∈ A1×n , the
A-module ker R = {µ ∈ An | R µ = 0} is free [7]. For instance, RH∞, H∞ (C+),
R[s, z] are coherent Sylvester domains [23].

4.2 Left-/right-coprime factorizations

Let us start with the following simple lemma.

Lemma 3 1. P = D−1 N, (D− N ) ∈ Aq×(q+r), is a left-coprime of the transfer
matrix P iff we have P = Aq.

2. P = Ñ D̃−1, (Ñ T D̃T )T ∈ A(q+r)×r , is a right-coprime factorization of the
transfer matrix P iff we have Q = A1×r .

Proof The fact that P = Aq is equivalent to the existence of a matrix (X T Y T )T ∈
Aq×(q+r) satisfying (D − N ) (X T Y T )T = Iq , and thus, it is equivalent to the
fact that P = D−1 N is a left-coprime factorization.

2 can be proved similarly. �
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The following theorem gives necessary and sufficient conditions for the
existence of a left-/right-coprime factorization of a transfer matrix P .

Theorem 2 1. The following assertions are equivalent:
(a) P ∈ K q×r admits a left-coprime factorization.
(b) There exists a non-singular matrix D ∈ Aq×q such that:

L = D−1 Aq . (16)

If we denote by N = D P ∈ Aq×r , P = D−1 N is then a left-coprime
factorization of P.

(c) The A-module L is a free lattice of K q .
2. The following assertions are equivalent:

(a) P ∈ K q×r admits a right-coprime factorization.
(b) There exists a non-singular matrix D̃ ∈ Ar×r such that:

M = A1×r D̃−1. (17)

If we denote by Ñ = P D̃ ∈ Aq×r , P = Ñ D̃−1 is then a right-coprime
factorization of P.

(c) M is a free lattice of K 1×r .

Proof 1.a ⇒ 1.b. Let P = D−1 N be a left-coprime factorization of P and
D X − N Y = Iq . Then, we have:

L = (Iq − P) Aq+r = (D−1 (D − N )) Aq+r = D−1 P.

Using 1 of Lemma 3, we finally obtain P = Aq , and thus, L = D−1 Aq .
1.b ⇒ 1.c. If there exists a non-singular matrix D ∈ Aq×q such that we

have (16), then the A-module L is trivially free and a basis of L is defined by
{D−1

1 , . . . , D−1
q }, where D−1

i denotes the i th column of D−1. Therefore, L is a
free lattice of K q .

1.c⇒ 1.a. If L is a free lattice of K q , then L is in particular a free A-submodule
of K q of rank q . Hence, if we denote by {E1, . . . , Eq} a basis of L and form the
non-singular matrix E = (E1 · · · Eq) ∈ K q×q , then we have L = E Aq . Hence,
there exists two matrices (D − N ) ∈ Aq×(q+r) and (X T Y T )T ∈ A(q+r)×q such
that we have


(Iq − P) = E (D − N ),

E = (Iq − P)

(
X
Y

)
,
⇒




E D = Iq ,

P = E N ,

X − P Y = E,

⇒
{

P = D−1 N ,

D X − N Y = Iq ,

which shows that P admits the left-coprime factorization P = D−1 N .
2 can be proved similarly. �
In Theorem 2, we characterized the existence of a coprime factorization of a

plant P using only the transfer matrix P . In the next corollary, we characterize the
existence of a coprime factorization of P in terms of a fractional representation
of P .
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Corollary 2 1. Let P = D−1 N be a fractional representation of the transfer
matrix P and (D − N ) ∈ Aq×(q+r). Then, the following assertions are equiv-
alent:
(a) P admits a left-coprime factorization.
(b) There exists a non-singular matrix G ∈ Aq×q such that:

P = G Aq . (18)

If we denote by D′ = G−1 D ∈ Aq×q and N ′ = G−1 N ∈ Aq×r , then
P = (D′)−1 N ′ is a left-coprime factorization of P.

(c) The A-module P is a free lattice of K q .
2. Let P = Ñ D̃−1 be a fractional representation of the transfer matrix P and
(Ñ T D̃T )T ∈ A(q+r)×r . Then, the following assertions are equivalent:
(a) P admits a right-coprime factorization.
(b) There exists a non-singular matrix H ∈ Ar×r such that:

Q = A1×r H. (19)

If we denote by D̃′ = D̃ H−1 ∈ Ar×r and Ñ ′ = Ñ H−1 ∈ Aq×r , then
P = Ñ ′ (D̃′)−1 is a right-coprime factorization of P.

(c) The A-module Q is a free lattice of K 1×r .

Proof 1.a⇒ 1.b. If P = (D′)−1 N ′ is a coprime factorization of P , then, by 1 of
Theorem 2, we have L = (D′)−1 Aq . Therefore, we obtain:

L = (Iq − P) Aq+r = D−1 ((D − N ) Aq+r ) = D−1 P
⇒ D−1 P = (D′)−1 Aq ⇒ P = (D (D′)−1) Aq .

Thus, the non-singular matrix G = D (D′)−1 satisfies P = G Aq and, using the
fact that P ⊆ Aq , we obtain G ∈ Aq×q .

1.b⇒ 1.c. If there exists a non-singular matrix G ∈ Aq×q such that we have
(18), then P is a free A-submodule of K q with basis {G1, . . . ,Gq}, where Gi
denotes the i th column of G. Thus, P is a free lattice of K q .

1.c ⇒ 1.a. If P is a free lattice of K q , then P is a free A-submodule of K q

of rank q . Hence, if we denote by {G1, . . . ,Gq} a basis of P and form the non-
singular matrix G = (G1 · · · Gq), we then have P = G Aq . Thus, there exists
(D′ − N ′) ∈ Aq×(q+r) and (X T Y T )T ∈ A(q+r)×q satisfying


(D − N ) = G (D′ − N ′),

G = (D − N )

(
X
Y

)
,
⇒




D = G D′,
N = G N ′,
D X − N Y = G,

⇒
{

P = (D′)−1 N ′,
D′ X − N ′ Y = Iq ,

showing that P admits the left-coprime factorization P = (D′)−1 N ′.
2 can be proved similarly. �
We refer to [23,33,36,37] for related results. We thank Prof. Sontag (Rutgers

University) for pointing out to us Reference [14] where conditions for the exis-
tence of stable factorizations are also obtained within the systems over the rings
approach. The links with these results will be studied in the future.
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Example 13 If p ∈ K is a transfer function, then, by 1 or 2 of Theorem 2, p admits
a coprime factorization iff the lattice L = (1 − p) A2 =M of K is free, i.e., iff L
is a principal fractional ideal of A. Hence, Theorem 2 generalizes 4 of Theorem 1
of [24] for MIMO systems.

If p = n/d is a fractional representation of p, with 0 �= d, n ∈ A, then, by 1 or 2
of Corollary 2, p admits a coprime factorization iff the lattice P = (d−n) A2 = Q
of K is free, i.e., iff the ideal P = A d + A n is a principal ideal of A [38]. Hence,
Corollary 2 generalizes 4 of Theorem 3 of [24] for MIMO systems.

Remark 3 Vidyasagar proved in [38] that every transfer matrix admits a doubly
coprime factorization iff A is a Bézout domain [32], namely, an integral domain
such that every finitely generated ideal of A is principal, namely, generated by an
element of A (see also [23] for another proof).

Finally, let us illustrate Theorems 1 and 2 by obtaining Remark 1.

Corollary 3 If P = D−1 N (respectively, P = Ñ D̃−1) is a left-coprime (respec-
tively, right-coprime) factorization of the transfer matrix P, then P = D−1 N
(respectively, P = Ñ D̃−1) is a weakly left-coprime (respectively, weakly right-
coprime) factorization of P.

Proof If P ∈ K q×r admits a left-coprime factorization P = D−1 N , then, by 1 of
Theorem 2, we have L = D−1 Aq . Therefore, we obtain:

A : L = {λ ∈ K 1×q | λ ((Iq − P) Aq+r ) = λ (D−1 Aq) ⊆ A}
= {λ ∈ K 1×q | λ D−1 ∈ A1×q} = A1×q D.

By 1 of Theorem 1, P = D−1 N is a weakly left-coprime factorization of P .
Similarly, we can prove that a right-coprime factorization is a weakly right-

coprime factorization. �
Finally, we want to point out that the lattice approach developed in this paper can

also be used for the study of multidimensional systems defined over the polynomial
ring k[x1, . . . , xn], where k is a field (k = R,C). We then obtain a generalization
of some results obtained by Fuhrmann [8] for 1-D systems.

5 Elementary characterizations of internal stabilizability

5.1 Characterizations in terms of the transfer matrix P

Let us start by giving elementary characterizations of internal stabilizability.

Proposition 6 A plant P ∈ K q×r is internally stabilizable (IS) iff one of the fol-
lowing equivalent assertions is satisfied:

1. There exists L = (U T V T )T ∈ A(q+r)×q which satisfies det U �= 0 and:

(a) L P =
(

U P
V P

)
∈ A(q+r)×r ,

(b) (Iq − P) L = U − P V = Iq .
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Then, the controller defined by C = V U−1 internally stabilizes P and:{
U = (Iq − P C)−1,

V = C (Iq − P C)−1.

2. There exists L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r) which satisfies det Ũ �= 0 and:
(a) P L̃ = (−P Ṽ P Ũ ) ∈ Aq×(q+r),

(b) L̃

(
P
Ir

)
= −Ṽ P + Ũ = Ir .

Then, the controller defined by C = Ũ−1 Ṽ internally stabilizes P and:{
Ũ = (Ir − C P)−1,

Ṽ = (Ir − C P)−1 C.

3. There exist L = (U T V T )T ∈ A(q+r)×q and L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r)

which satisfy det U �= 0, det Ũ �= 0 and:
(

Iq −P

−Ṽ Ũ

) (
U P
V Ir

)
=

(
U P
V Ir

) (
Iq −P

−Ṽ Ũ

)
= Iq+r , (20)

�1 =
(

U
V

)
(Iq − P) ∈ A(q+r)×(q+r), (21)

�2 =
(

P
Ir

)
(−Ṽ Ũ ) ∈ A(q+r)×(q+r). (22)

Then, the controller defined by C = V U−1 = Ũ−1 Ṽ internally stabilizes P
and we have:


U = (Iq − P C)−1,

V = C (Iq − P C)−1 = (Ir − C P)−1 C = Ṽ ,

Ũ = (Ir − C P)−1.

Proof IS⇒ 1. Let us suppose that P ∈ K q×r is internally stabilizable, i.e., there
exists a controller C ∈ K r×q such that we have:



A1 = (Iq − P C)−1 ∈ Aq×q ,

A2 = (Iq − P C)−1 P ∈ Aq×r ,

A3 = C (Iq − P C)−1 ∈ Ar×q ,

A4 = Ir + C (Iq − P C)−1 P ∈ Ar×r .

(23)

From (23), we easily obtain C = A3 A−1
1 . Now, if we define the matrix

L = (AT
1 AT

3 )
T ∈ A(q+r)×q , then we have:

– L (Iq − P) =
(

A1 −A1 P
A3 −A3 P

)
=

(
A1 −A2
A3 Ir − A4

)
∈ A(q+r)×(q+r),

– (Iq − P) L = A1 − P A3 = (Iq − P C)−1 − P C (Iq − P C)−1 = Iq .
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IS ⇐ 1. Let us suppose that there exists L = (U T V T )T ∈ A(q+r)×q

satisfying det U �= 0, and 1.a and 1.b. If we define C = V U−1 ∈ K r×q , then,
using 1.b, we obtain:

Iq − P C = (U − P V )U−1 = U−1 ⇒ (Iq − P C)−1 = U ∈ Aq×q .

Hence, using 1.a and (3), we obtain

H(P, C) =
(

U U P
V Ir + V P

)
∈ A(q+r)×(q+r),

i.e., C = V U−1 internally stabilizes P and V = C U = C (Iq − P C)−1.
IS ⇒ 2. Let us suppose that P ∈ K q×r is internally stabilizable, i.e., there

exists a controller C ∈ K r×q such that we have:



B1 = Iq + P (Ir − C P)−1 C ∈ Aq×q ,

B2 = P (Ir − C P)−1 ∈ Aq×r ,

B3 = (Ir − C P)−1 C ∈ Ar×q ,

B4 = (Ir − C P)−1 ∈ Ar×r .

(24)

From (24), we easily obtain C = B−1
4 B3. Now, if we define the matrix

L̃ = (−B3 B4) ∈ Ar×(q+r), then we have:

–
(

P
Ir

)
L̃ =

(−P B3 P B4
−B3 B4

)
=

(
Iq − B1 B2

−B3 B4

)
∈ A(q+r)×(q+r),

– L̃

(
P
Ir

)
= −B3 P + B4 = −(Ir − C P)−1 C P + (Iq − C P)−1 = Ir .

IS ⇐ 2. Let us suppose that there exists L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r) satisfying
det Ũ �= 0, 2.a and 2.b. If we define C = Ũ−1 Ṽ ∈ K r×q , then, using 2.b, we
obtain

Ir − C P = Ir − (Ũ−1 Ṽ ) P = Ũ−1 (Ũ − Ṽ P) = Ũ−1,

and thus, (Ir − C P)−1 = Ũ ∈ Ar×r . Using point 2.a and (4), we obtain

H(P, C) =
(

Iq + P Ṽ P Ũ
Ṽ Ũ

)
∈ A(q+r)×(q+r),

i.e., C = Ũ−1 Ṽ internally stabilizes P and Ṽ = Ũ C = (Ir − C P)−1 C .
IS ⇒ 3. Let us suppose that P ∈ K q×r is internally stabilized by the con-

troller C ∈ K r×q . Following the proofs of “1 ⇒” and “2 ⇒”, we obtain that
L = (AT

1 AT
3 )

T (respectively, L̃ = (−B3 B4) satisfies (21) (respectively, (22)
and

(
Iq −P
−B3 B4

) (
A1 P
A3 Ir

)
=

(
Iq 0

−B3 A1 + B4 A3 Ir

)
= Iq+r , (25)
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because we have:

B3 A1 = ((Ir − C P)−1 C) (Iq − P C)−1

= (Ir − C P)−1 (C (Iq − P C)−1) = B4 A3.

Therefore, from (25), we obtain

(
Iq −P

−B3 B4

)−1

=
(

A1 P

A3 Ir

)
⇒

(
A1 P

A3 Ir

) (
Iq −P

−B3 B4

)
= Iq+r ,

which proves (20). To finish, let us note that this last equality can be directly
checked by using the following well-known identities [38]:




(Iq − P C)−1 = P (Ir − C P)−1 C + Iq ,

(Iq − P C)−1 P = P (Ir − C P)−1,

C (Iq − P C)−1 = (Ir − C P)−1 C,

C (Iq − P C)−1 P = (Ir − C P)−1 − Ir .

(26)

IS ⇐ 3. Let us suppose that there exist L = (U T V T )T ∈ K (q+r)×q and
L̃ = (−Ṽ Ũ ) ∈ K r×(q+r) which satisfy (20), (21) and (22). In particular, L
(respectively, L̃) satisfies 1.a and 1.b (respectively, 2.a and 2.b), and thus, by
point 1 (respectively, point 2), C1 = V U−1 (respectively, C2 = Ũ−1 Ṽ ) is a
stabilizing controller of P . From (20), we deduce that Ṽ U = Ũ V , and thus,
C1 = V U−1 = Ũ−1 Ṽ = C2 internally stabilizes P . �
Example 14 Let us consider the transfer matrix P defined by (2). We can check
that the matrix L = (U T V T )T ∈ A3×2 defined by

L =




2
s+1 + b

(
s−1
s+1

)3
2 b

(
s−1
s+1

)3 − 2 (s−1)
(s+1)

b (s−1)2

(s+1)3
− 1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3

−a (s−1)2

(s+1)3
−2 a (s−1)2

(s+1)3


 ,

where a and b are given by




a = 4 e (5 s−3)
(s+1) ∈ A,

b = (s+25)
(s+1) + 4 (5 s−3)

(s+1)
(2−s−e−(s−1))

(s−1)2
= (s+1)3−4 (5 s−3) e−(s−1)

(s+1) (s−1)2
∈ A,

(27)

satisfies:

{
L (I2 − P) ∈ A3×3,

(I2 − P) L = U − P V = I2.
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From 1 of Proposition 6, we deduce that P is internally stabilized by the controller
C = V U−1, namely:

C =
(
−a (s−1)2

(s+1)3
− 2 a (s−1)2

(s+1)3

) 
 2

s+1 + b
(

s−1
s+1

)3
2 b

(
s−1
s+1

)3 − 2 (s−1)
(s+1)

b (s−1)2

(s+1)3
− 1

s+1
s−1
s+1 + 2 b (s−1)

(s+1)3



−1

,

= − 4 (5 s−3) e (s−1)2

(s+1) ((s+1)3−4 (5 s−3) e−(s−1))
(1 2).

We note that the controller C involves a distributed delay.

Example 15 By 1 or 2 of Proposition 6, a SISO plant defined by a transfer function
p ∈ K is internally stabilizable iff there exists a, b ∈ A such that

{
a − b p = 1,
a p ∈ A, (28)

as we have b p = a − 1 ∈ A. Equivalently, p is internally stabilizable iff there
exists b ∈ A such that b p ∈ A and (1 + b p) p ∈ A. If a �= 0, then c = b/a
is a stabilizing controller of p whereas, if a = 0, then p = (−1)/b is internally
stabilized by c = 1− b. Hence, Proposition 6 generalizes 3 of Theorem 1 of [24]
for MIMO systems.

Remark 4 The remark made in Example 15 concerning SISO plants can be simi-
larly extended to MIMO plants as follows: the plant P is internally stabilizable iff
there exists V ∈ Ar×q such that:

V P ∈ Ar×r , P V ∈ Aq×q , (P V + Iq) P = P (V P + Ir ) ∈ Aq×r . (29)

Then, C = V (P V + Iq)
−1 = (V P + Ir )

−1 V is a stabilizing controller of P
and we have V = C (Iq − P C)−1 = (Ir − C P)−1 C . We have recently found
that such a condition for internal stabilizability was first obtained by Zames and
Francis [40] for SISO systems. We shall show in Section 6 that the matrices L and
L̃ defined in proposition 6 in fact play a more intrinsic role than V (see also [24]
for SISO plants).

We give conditions on the controller C so that it internally stabilizes P .

Corollary 4 A plant P ∈ K q×r is internally stabilized by the controller C ∈ K r×q

iff one of the following conditions is satisfied:

1. The matrix defined by

�1 =
(
(Iq − P C)−1 −(Iq − P C)−1 P

C (Iq − P C)−1 −C (Iq − P C)−1 P

)
(30)

is an idempotent of A(q+r)×(q+r), namely, �1 satisfies the condition:

�2
1 = �1 ∈ A(q+r)×(q+r).
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2. The matrix defined by

�2 =
(−P (Ir − C P)−1 C P (Ir − C P)−1

−(Ir − C P)−1 C (Ir − C P)−1

)
(31)

is an idempotent of A(q+r)×(q+r), namely, �2 satisfies the condition:

�2
2 = �2 ∈ A(q+r)×(q+r).

Then, �1 and �2 satisfy the identity �1 +�2 = Iq+r and we have

(
e1
y1

)
= �1

(
u1
−u2

)
,

(
y2
e2

)
= �2

(−u1
u2

)
, (32)

where e1, e2, u1, u2, y1 and y2 are defined in Fig. 1.

Proof IS ⇒ 1. Let us suppose that C ∈ K r×q internally stabilizes P ∈ K q×r .
Then, by 1 of Proposition 6, there exists a matrix L = (U T V T )T ∈ A(q+r)×r

satisfying 1.a and 1.b of Proposition 6. Let us denote by:

�1 = L (Iq − P) =
(

U −U P
V −V P

)
=

(
(Iq − P C)−1 −(Iq − P C)−1 P

C (Iq − P C)−1 −C (Iq − P C)−1 P

)
.

By 1.a of Proposition 6, we obtain that �1 ∈ A(q+r)×(q+r) and, by 1.b of Propo-
sition 6, we have:

�2
1 = L (Iq − P) L (Iq − P) = L ((Iq − P) L) (Iq − P)

= L (Iq − P) = �1,

i.e., �1 is an idempotent of A(q+r)×(q+r).

IS⇐ 1. First of all, we have�1 =
(
(Iq − P C)−1

C (Iq − P C)−1

)
(Iq − P)which gives

�2
1=

(
(Iq − P C)−1

C (Iq − P C)−1

)
((Iq − P C)−1 − P C (Iq − P C)−1) (Iq − P) = �1,

i.e., �1 is an idempotent of K (q+r)×(q+r). Now, if �1 is an idempotent of
A(q+r)×(q+r), then we have

(Iq − P C)−1 ∈ Aq×q , (Iq − P C)−1 P ∈ Aq×r , C (Iq − P C)−1 ∈ Ar×q ,

and C (Iq − P C)−1 P ∈ Ar×r , which implies that H(P,C) ∈ A(q+r)×(q+r),
where H(P,C) is defined (3), and thus, C internally stabilizes P . 2 can be proved
similarly. Finally, using (26), we easily check that�1+�2 = Iq+r and, using (3),
y1 = C e1 and y2 = P e2, we finally obtain (32). �
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Remark 5 The fact that �1 and �2 are two idempotents satisfying the condition
�1+�2 = Iq+r was already proved in [9] for A = H∞(C+). Over A = H∞(C+),
every internally stabilizable plant admits doubly coprime factorizations [12,34]
(see also Remark 2 and [23]). We point out that such an assumption is not used in
Corollary 4.

The two idempotents�1 and�2 play important roles in robust control and loop-
shaping procedure [11]. For instance, for A = H∞(C+), the robustness radius is
defined by [9]:

bP,C = ‖ �1 ‖−1∞ = ‖ �2 ‖−1∞ . (33)

To finish, we prove that the existence of a left-/right-coprime factorization for
the transfer matrix P implies internal stabilizability, finding again a well-known
result [38].

Corollary 5 1. If P ∈ K q×r admits a left-coprime factorization

P = D−1 N , D X − N Y = Iq , det X �= 0,

with (X T Y T )T ∈ A(q+r)×q , then L = ((X D)T (Y D)T )T ∈ A(q+r)×q

satisfies 1.a and 1.b of Proposition 6, and thus, C = Y X−1 is a stabilizing
controller of P.

2. If P ∈ K q×r admits a right-coprime factorization

P = Ñ D̃−1, −Ỹ Ñ + X̃ D̃ = Ir , det X̃ �= 0,

with (−Ỹ X̃) ∈ Ar×(q+r), then L̃ = (−D̃ Ỹ D̃ X̃) ∈ Ar×(q+r) satisfies 2.a
and 2.b of Proposition 6, and thus, C = X̃−1 Ỹ is a stabilizing controller of P.

Proof If P = D−1 N , D X − N Y = Iq , is a left-coprime factorization of P , then
we have:


D X − N Y = Iq ⇒ X − D−1 N Y = D−1 ⇒ X − P Y = D−1

⇒ (X D)− P (Y D) = Iq ,

(X D) P = X N ∈ Aq×r , (Y D) P = Y N ∈ Ar×r .

Therefore, L = ((X D)T (Y D)T )T ∈ A(q+r)×q satisfies 1.a and 1.b of Proposi-
tion 6, and thus, C = (Y D) (X D)−1 = Y X−1 internally stabilizes P .

2 can be proved similarly. �

5.2 Characterization in terms of fractional representations of P

In Proposition 6, we characterized internal stabilizability using only transfer matri-
ces. In the next proposition, we characterize internal stabilizability of a plant P =
D−1 N = Ñ D̃−1 by means of a fractional representation of P .

Proposition 7 A plant defined by P = D−1 N = Ñ D̃−1 ∈ K q×r , where R =
(D − N ) ∈ Aq×(q+r) and R̃ = (Ñ T D̃T )T ∈ A(q+r)×r , is internally stabilizable
(IS) if one of the following equivalent assertions is satisfied:
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1. There exists S = (X T Y T )T ∈ K (q+r)×q satisfying det X �= 0 and:

(a) S R =
(

X D −X N

Y D −Y N

)
∈ A(q+r)×(q+r),

(b) R S = D X − N Y = Iq .
Then, the controller C = Y X−1 internally stabilizes the plant P and:{

X = (D − N C)−1,

Y = C (D − N C)−1.

2. There exists S̃ = (−Ỹ X̃) ∈ K r×(q+r) satisfying det X̃ �= 0 and:

(a) R̃ S̃ =
(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)
∈ A(q+r)×(q+r),

(b) S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ir .
Then, the controller C = X̃−1 Ỹ internally stabilizes the plant P and:{

X̃ = (D̃ − C Ñ )−1,

Ỹ = (D̃ − C Ñ )−1 C.

Proof IS⇒ 1. Let C ∈ K r×q be a stabilizing controller of the plant P . Then, we
have: 



A1 = (Iq − P C)−1 ∈ Aq×q ,

A2 = (Iq − P C)−1 P ∈ Aq×r ,

A3 = C (Iq − P C)−1 ∈ Ar×q ,

A4 = Ir + C (Iq − P C)−1 P ∈ Ar×r .

Let us define the following matrices:

X = A1 D−1, Y = A3 D−1, S = (X T Y T )T ∈ K (q+r)×q .

Then, we have C = A3 A−1
1 = Y X−1. Moreover, we have

R S = D A1 D−1 − N A3 D−1 = (D A1 − N A3) D−1

= (D − N C) (Iq − P C)−1 D−1 = D (Iq − P C) (Iq−P C)−1 D−1 = Iq ,

and thus, we obtain R S = D X − N Y = Iq which proves 1.b. Using this identity,
we obtain

A−1
1 = Iq − P C = Iq − (D−1 N ) (Y X−1)

= D−1 (D X − N Y ) X−1 = (X D)−1,

and thus, we have A1 = X D, A2 = X N , A3 = Y D and A4 = Ir + Y N . Finally,
we obtain

S R =
(

X D −X N

Y D −Y N

)
=

(
A1 −A2

A3 Ir − A4

)
∈ A(q+r)×(q+r),

which proves 1.a.
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IS ⇐ 1. Let us suppose that there exists S = (X T Y T )T ∈ K (q+r)×q

satisfying 1.a, 1.b and det X �= 0 and let us define by C = Y X−1. Then, using
point 1.b, we obtain

Iq − P C = Iq − (D−1 N ) (Y X−1) = D−1 (D X − N Y ) X−1 = (X D)−1,

and thus, we have: 


(Iq − P C)−1 = X D,

(Iq − P C)−1 P = X N ,

C (Iq − P C)−1 = Y D,

C (Iq − P C)−1 P = Y N .

Hence, using 1.a and (3), we obtain

H(P,C) =
(

X D X N
Y D Ir + Y N

)
∈ A(q+r)×(q+r),

and thus, C = Y X−1 internally stabilizes the plant P = D−1 N .
2 can be proved similarly (see [30] for more details). �

Example 16 Let us consider the transfer matrix P defined by (2). We can eas-
ily check that P admits the fractional representation P = D−1 N , where R =
(D − N ) ∈ A2×3 is defined by:

R =

 s−1

s+1 0 − e−s

s+1

0
(

s−1
s+1

)2 − e−s

(s+1)2


 .

We can check that the matrix S = (X T Y T )T ∈ K 3×2 defined by

S =




b
(

s−1
s+1

)2 + 2
s−1 2 (b − 1) (s−1)

(s+1)

b (s−1)
(s+1)2

− 1
s−1

2 b
s+1 + s+1

s−1

−a (s−1)
(s+1)2

− 2 a
s+1


 ,

where a and b are defined by (27), satisfies:{
S R ∈ A3×3,

R S = D X − N Y = I2.

Therefore, by 1 of Proposition 7, the controller defined by

C = Y X−1=
(
−a

(s − 1)

(s + 1)2
− 2 a

s + 1

)
b

(
s−1
s+1

)2 + 2
s−1 2 (b − 1) (s−1)

(s+1)

b (s−1)
(s+1)2

− 1
s−1

2 b
s+1 + s+1

s−1



−1

,

=− 4 (5 s − 3) e (s − 1)2

(s + 1) ((s + 1)3 − 4 (5 s − 3) e−(s−1))
(1 2).

internally stabilizes P . We again find the controller obtained in Example 14.
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Example 17 By 1 or 2 of proposition 7, a SISO plant defined by a transfer function
p = n/d ∈ K , 0 �= d, n ∈ A, is internally stabilizable iff there exist x, y ∈ K
such that {

d x − n y = 1,
d x, d y, n x ∈ A,

(34)

as we have n y = d x − 1 ∈ A. If x �= 0, then c = y/x is a stabilizing controller
of p whereas, if x = 0, then c = 1 − y d stabilizes p = (−1)/(y d). Hence,
Proposition 7 generalizes 3 of Theorem 3 of [24] for MIMO systems.

The next corollary shows that every stabilizing controller C of P can be writ-
ten in the form C = Y X−1 (respectively, C = X̃−1 Ỹ ), where the matrix S =
(X T Y T )T (respectively, S̃ = (−X̃ Ỹ )) satisfies 1.a and 1.b (respectively, 2.a
and 2.b) of Proposition 7.

Corollary 6 Let C ∈ K r×q be a stabilizing controller of P ∈ K q×r .

1. Let P = D−1 N be a fractional representation of P and let us define the matri-
ces X = (D − N C)−1 ∈ K q×q and Y = C (D − N C)−1 ∈ K r×q . Then,
the matrix S = (X T Y T )T satisfies 1.a and 1.b of Proposition 7 and we have
C = Y X−1.

2. Let P = Ñ D̃−1 be a fractional representation of P and let us define the matri-
ces X̃ = (D̃ − C Ñ )−1 ∈ K r×r and Ỹ = (D̃ − C Ñ )−1 C ∈ K r×q . Then,
the matrix S̃ = (−Ỹ X̃) satisfies 2.a and 2.b of Proposition 7 and we have
C = X̃−1 Ỹ .

Proof 1. Let C be a stabilizing controller of P = D−1 N . Then, using the same
notations as in the proof of “IS⇒ 1” of Proposition 7, let us define{

X = A1 D−1 = (Iq − P C)−1 D−1 = (D − N C)−1,

Y = A3 D−1 = C (Iq − P C)−1 D−1 = C (D − N C)−1,

and S = (X T Y T )T ∈ K (q+r)×q . Then, we have C = A3 A−1
1 = Y X−1 and the

result directly follows from the end of the proof of “IS⇒ 1” of Proposition 7.
2 can be proved similarly (see [30] for more details). �
If P = D−1 N = Ñ D̃−1 is a fractional representation of the transfer matrix

P and C ∈ K r×q a controller, then, with the notations of Corollary 6, we have

�1 =
(

X D −X N

Y D −Y N

)
, �2 =

(
−Ñ Ỹ Ñ X̃

−D̃ Ỹ D̃ X̃

)
, (35)

where �1 and �2 are defined in Corollary 4. Therefore, a similar result as Corol-
lary 4 holds for �1 and �2 defined by (35).

Finally, let us give the following direct consequence of Proposition 7.

Corollary 7 1. [38] If P ∈ K q×r admits a left-coprime factorization

P = D−1 N , D X − N Y = Iq , det X �= 0,

where S = (X T Y T )T ∈ A(q+r)×q , then S satisfies 1.a and 1.b of Proposi-
tion 7, and thus, C = Y X−1 is a stabilizing controller of P.
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2. [38] If P ∈ K q×r admits a right-coprime factorization

P = Ñ D̃−1, −Ỹ Ñ + X̃ D̃ = Ir , det X̃ �= 0,

where S̃ = (−Ỹ X̃) ∈ Ar×(q+r), then S̃ satisfies 2.a and 2.b of Proposition 7,
and thus, C = X̃−1 Ỹ is a stabilizing controller of P.

In particular, we again find that the existence of a left-/right-coprime factor-
ization is a necessary but not a sufficient condition for internal stabilizability (see
also Corollary 5).

6 Module-theoretic interpretations of internal stabilizability

We reinterpret the characterizations of internal stabilizability obtained in Propo-
sitions 6 and 7 in terms of projective lattices. Such intrinsic characterizations of
internal stabilizability will play an important role in the proof of Lin’s conjecture
[17,18].

6.1 Characterizations in terms of the transfer matrix P

Let us introduce a few definitions. See [2,32] for more details.

Definition 5 1. 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 is called a short exact

sequence of A-modules if the A-morphisms (namely, A-linear maps) f and g
satisfy that f is injective, g is surjective and ker g = im f .

2. A short exact sequence is said to be a split exact sequence if one of the following
equivalent assertions is satisfied:
– there exists an A-morphism h : M ′′ → M which satisfies g ◦ h = idM ′′ ,
– there exists an A-morphism k : M → M ′ which satisfies k ◦ f = idM ′ ,
– there exist two A-morphisms h : M ′′ → M and k : M → M ′ such that the

A-morphisms defined by

φ =
(

g
k

)
: M −→ M ′′ ⊕ M ′, ψ = (h f ) : M ′′ ⊕ M ′ −→ M

satisfy the following relations:

φ ◦ ψ =

(
g
k

)
(h f ) =

(
idM ′′ 0

0 idM ′

)
= idM ′′⊕M ′,

ψ ◦ φ = (h f )

(
g
k

)
= h ◦ g + f ◦ k = idM .

Then, we say that M is isomorphic to M ′′ ⊕ M ′, which will be denoted by
M ∼= M ′′ ⊕ M ′ (⊕ denotes the direct sum of A-modules).

Finally, we denote a split exact sequence by the following diagram:

0←− M ′′ g←− M
f←− M ′ ←− 0.

h−→ k−→
(36)
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3. An A-module M is said to be finitely generated if M admits a finite family of
generators.

4. A finitely generated A-module M is said to be free if M admits a finite basis or,
equivalently, if M is isomorphic to a finite power of A, i.e., there exists r ∈ Z+
such that M ∼= Ar .

5. A finitely generated A-module M is said to be projective if there exists an A-
module M ′ and r ∈ Z+ such that we have M ⊕ M ′ ∼= Ar , i.e., if M is a direct
summand of a finitely generated free A-module.

6. The rank of an A-module M , denoted by rkA(M), is the dimension of the
K = Q(A)-vector space K ⊗A M formed by extending the scalars of M from
A to K . In other words, we have rk A(M) = dimK (K⊗A M), where⊗A denotes
the tensor product of A-modules.

Example 18 Let us consider the following A-morphism (A-linear map):

g : Aq+r −→ L = (Iq − P) Aq+r ,

λ �−→ (Iq − P) λ.

Then, g is surjective and, using Example 9, its kernel is defined by:

ker g = {λ = (λT
1 λT

2 )
T ∈ Aq+r | λ1 = P λ2}

= {((P λ2)
T λT

2 )
T ∈ Aq+r | λ2 ∈ Ar : Pλ2 ∈ Aq}

=
(

P
Ir

)
{λ2 ∈ Ar | Pλ2 ∈ Aq} =

(
P
Ir

)
(A :M).

Therefore, we have the following exact sequence

0←− L g←− Aq+r f←− A :M←− 0, (37)

where f is defined by f (λ) = (PT I T
r )

T λ.
Similarly, we can prove that we have the following exact sequence

0 −→ A : L φ−→ A1×(q+r) ψ−→M −→ 0, (38)

where the A-morphisms φ and ψ are respectively defined by:

φ : A : L −→ A1×(q+r),

λ �−→ λ (Iq − P),

ψ : A1×(q+r) −→M,

µ �−→ µ (PT I T
r )

T .

We have the following standard lemma in module theory.

Lemma 4 [2,32] Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be a short exact sequence

and M ′′ a projective A-module. Then, the exact sequence splits and we have

M ∼= M ′ ⊕ M ′′.

The next theorem intrinsically characterizes internal stabilizability.

Theorem 3 A plant P ∈ K q×r is internally stabilizable iff one of the following
equivalent assertions is satisfied:
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1. L is a projective A-submodule of K q of rank q, namely, L is a projective lattice
of K q .

2. M is a projective A-submodule of K 1×r of rank r , namely, M is a projective
lattice of K 1×r .

Proof IS ⇒ 1. If P is internally stabilizable then, by 1 of Proposition 6, there
exists L = (U T V T )T ∈ A(q+r)×q such that L (Iq − P) ∈ A(q+r)×(q+r) and
(Iq − P) L = Iq , and thus, there exists an A-morphism

h : L −→ Aq+r ,
µ �−→ L µ, (39)

satisfying g ◦ h = idL. Hence, by 2 of Definition 5, (37) is a split exact sequence.
Therefore, we have

Aq+r ∼= L⊕ (A :M), (40)

which, by 3 of Definition 5, shows that L is a projective A-module.
IS⇐ 1. If L is a projective A-module, then, by Lemma 4, (37) is a split exact

sequence because (37) ends with a projective A-module. Therefore, there exists an
A-morphism h : L→ Aq+r such that g ◦ h = idL. But, by 2 of Proposition 5, we
have

h ∈ homA(L, Aq+r ) ∼= Aq+r : L = {� ∈ A(q+r)×q |� P ∈ A(q+r)×r },
i.e., h(λ) = L λ for a certain matrix L ∈ A(q+r)×q satisfying L P ∈ A(q+r)×r .
Moreover, g ◦ h = idL implies that we have λ = ((Iq − P) L) λ for every λ ∈ L.
Using the fact that Aq ⊆ L, we finally obtain that ((Iq − P) L) ei = ei , for
i = 1, . . . , q , where ei denotes the i th vector of the standard basis of Aq , which
proves that (Iq − P) L = Iq , and thus, the result by 1 of Proposition 6.

Similarly, 2 can be proved using the exact sequence (38) and 2 of Proposition 6:
P is internally stabilizable iff there exists L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r) satisfying
2.a and 2.b of Proposition 6, i.e., iff there exists an A-morphism ϕ defined by

ϕ :M −→ A1×(q+r),

ν �−→ ν L̃,
(41)

which satisfies ψ ◦ ϕ = idM, i.e., iff M is a projective A-module. �
Example 19 Theorem 3 generalizes the following result obtained in [24]: p ∈ K
is internally stabilizable iff the fractional ideal L =M = {α− β p |α, β ∈ A} of
A is invertible [2,24,32], namely, we have

L (A : L) = {a − b p | a, b ∈ A : L} = A,

or, equivalently, iff there exist a, b ∈ A : L such that a − b p = 1.

Remark 6 We proved in [23] that every transfer matrix is IS iff A is a Prüfer
domain [2,32], namely, A is an integral domain such that, for every p ∈ Q(A),
L = A + A p is an invertible fractional ideal of A (see [2,23,32] for different
characterizations). Moreover, we can show that an integral domain A is a Bézout
domain (see Remark 3) iff A is a Prüfer domain and a coherent Sylvester domain
(see Remark 2) [23].
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Proposition 8 Let P ∈ K q×r be an internally stabilizable plant.

1. If L ∈ A(q+r)×q is a matrix satisfying 1 of proposition 6, then we have:

A : L = A1×(q+r) L , (42)

L = A : (A : L) (43)

= {λ ∈ K q | L λ ∈ Aq+r }. (44)

2. If L̃ ∈ Ar×(q+r) is a matrix satisfying 2 of proposition 6, then we have:

A :M = L̃ Aq+r , (45)

M = A : (A :M) (46)

= {λ ∈ K 1×r | λ L̃ ∈ A1×(q+r)}. (47)

Proof Let us firstly prove (42). Let us consider λ ∈ A : L, i.e., λ ∈ A1×q satisfies
λ P ∈ A1×r , and let us denote by µ = λ (Iq − P). Then, we have µ ∈ A1×(q+r).
Using 1.b of Proposition 6, we obtain λ = (λ (Iq − P)) L = µ L showing that
λ ∈ A1×(q+r) L .

Conversely, if λ ∈ A1×(q+r) L , then there exists µ ∈ A1×(q+r) such that
λ = µ L and λ ∈ A1×q . By 1.a of Proposition 6, we have L P ∈ A(q+r)×r , and
thus, λ P = µ (L P) ∈ A1×r , i.e., λ ∈ A : L.

Let us secondly prove (43) and (44). Using (42), we obtain that:

A : (A : L) = A : (A1×(q+r) L) = {λ ∈ K q | L λ ∈ Aq+r }.
Finally, let us prove that L = A : (A : L). Let us consider κ ∈ L, i.e.,
κ = (Iq − P) µ for a certain µ ∈ Aq+r . Then, using 1.a of Proposition 6,
we obtain L κ = (L (Iq − P)) µ ∈ Aq+r , i.e., κ ∈ {λ ∈ K q | L λ ∈ Aq+r }.

Conversely, if κ ∈ K q is such that µ = L κ ∈ Aq+r , then, using 1.b of
Proposition 6, we obtain κ = ((Iq − P) L) κ = (Iq − P) µ ∈ L.

(45), (46) and (47) can be proved similarly. �
Remark 7 We point out that Proposition 8 could be directly proved without any
computations. Indeed, the fact that P is internally stabilizable implies that the exact
sequences (37) and (38) split and then they are dual with each other. Moreover, if
P is internally stabilizable, then, using the proof of Theorem 3 and Proposition 8,
we easily obtain the following results{

Aq+r = h(L)⊕ f (A :M) = h(L)⊕ (�2 Aq+r ),

A1×(q+r) = ϕ(M)⊕ φ(A : L) = ϕ(M)⊕ (A1×(q+r) �1),

where h (resp., ϕ) is defined by (39) (respectively, (41)) and�1 (respectively�2)
is defined (30) (respectively (31)).

Let us characterize strong stabilizability in terms of lattices.

Proposition 9 A plant P ∈ K q×r is strongly stabilizable iff there exists a controller
C ∈ Ar×q such that we have L = (Iq− P C) Aq or M = A1×r (Ir −C P). Then,
P = D−1 N = Ñ D̃−1 is a doubly coprime factorization of P, where:

D = (Iq−P C)−1 ∈ Aq×q , N = (Iq−P C)−1 P ∈ Aq×r , D̃ = (Ir−C P)−1 ∈ Ar×r

and Ñ = P (Ir − C P)−1 ∈ Ar×q .
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Proof ⇒ Let us suppose that P is strongly stabilizable. Then, there exists a con-
troller C ∈ Ar×q such that the matrix defined by L = (U T V T )T ∈ A(q+r)×q ,
where U = C (Iq−P C)−1 and V = (Iq−P C)−1, satisfies 1 of Proposition 6. But,
by Proposition 8, we know that L = A : (A1×(q+r) L) = {λ ∈ K q | L λ ∈ Aq+r }.
Using the facts that L = (I T

q CT )T (Iq − P C)−1 and C ∈ Ar×q , we obtain that
L = {λ ∈ K q | (Iq − P C)−1 λ ∈ Aq} = (Iq − P C) Aq .
⇐ If there exists C ∈ Ar×q such that L = (Iq − P C) Aq , then there exists

D ∈ Aq×q and N ∈ Aq×r satisfying:

{
Iq = (Iq − P C) D,

−P = (Iq − P C) (−N )
⇒

{
D = (Iq − P C)−1 ∈ Aq×q ,

N = (Iq − P C)−1 P ∈ Aq×r .

Finally, using the fact that C ∈ Ar×q , we obtain C (Iq − P C)−1 ∈ Ar×q and
C (Iq − P C)−1 P ∈ Ar×r , which shows that C strongly stabilizes P .

A similar result can be proved with the lattice M of K 1×r . �
Remark 8 If we use the notations of the proof of Proposition 9, from the triv-
ial inclusion (Iq − P C) Aq ⊆ L, we obtain that L = (Iq − P C) Aq iff we
have D ∈ Aq×q and N ∈ Aq×r . But, using the identity D = Iq + N C , we
finally obtain that P is strongly stabilizable iff there exists C ∈ Ar×q such that
N = (Iq − P C)−1 P = P (Ir −C P)−1 ∈ Aq×r . See [25] for more details on the
strong stabilization problem.

Now, let us show that the existence of a weak doubly coprime factorization
for an internally stabilizable plant P implies the existence of a doubly coprime
factorization of P .

Corollary 8 [23] A plant P ∈ K q×r is internally stabilizable and admits a
weakly left-coprime (respectively, weakly right-coprime) factorization P = D−1 N
(respectively, P = Ñ D̃−1) iff P = D−1 N (respectively, P = Ñ D̃−1) is a left-
coprime (respectively, right-coprime) factorization of P.

Proof Let us suppose that the stabilizable plant P admits a weakly left-coprime
factorization P = D−1 N . Then, by 1 of Theorem 1, we obtain A : L = A1×q D.
Moreover, there exists a matrix L ∈ A(q+r)×q which satisfies 1 of Proposition 6
and, by Proposition 8, we obtain

L = A : (A : L) = A : (A1×q D) = D−1 Aq ,

which, by 1 of Theorem 2, proves that P = D−1 N is a coprime factorization. The
converse holds as a left-coprime factorization is a weakly left-coprime factoriza-
tion (see Remark 1 or Corollary 3) and the existence of a left-coprime factorization
implies internal stabilizability by Corollaries 5 and 7. �

6.2 Characterizations in terms of fractional representations of P

Let us give an intrinsic reformulation of Proposition 7 by finding again a result first
obtained by Sule [36,37]. See also [23] for different proofs.
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Theorem 4 [36,37] The plant P = D−1 N = Ñ D̃−1 ∈ K q×r is internally sta-
bilizable iff one of the following equivalent assertions is satisfied:

1. P is a projective A-submodule of K q of rank q, namely, P is a projective lattice
of K q .

2. Q is projective A-submodule of K 1×r of rank r , namely, Q is a projective lattice
of K 1×r .

Proof Let P = D−1 N be a fractional representation of P and let us denote by
R = (D − N ) ∈ Aq×(q+r). Then, we have the following exact sequence

0 −→ ker (R.)
i−→ Aq+r R.−→ P = R Aq+r −→ 0

λ �−→ R λ,
(48)

i.e., the A-morphism (R.) : Aq+r → P is surjective and i is the canonical injection.
IS ⇒ 1. If P is internally stabilizable then, by Proposition 7, there exists a

matrix S = (X T Y T )T ∈ K (q+r)×q which satisfies 1.a and 1.b. Hence, we can
define the following A-morphism:

P S.−→ Aq+r

µ �−→
(

X
Y

)
µ.

Indeed, (S.) is trivially A-linear and it is well-defined as, for all µ ∈ P , there
exists a certain ν ∈ Aq+r satisfying µ = R ν, and thus, using the fact that we
have S R ∈ A(q+r)×(q+r), we obtain S µ = (S R) ν ∈ Aq+r . Moreover, 1.b means
that (R.) ◦ (S.) = (R S). = (Iq .), i.e., the A-morphism (S.) is a right-inverse
of the A-morphism (R.). Therefore, the exact sequence (48) splits and we have
P ⊕ ker (R.) ∼= Aq+r . Therefore, P is a direct summand of the free A-module
Aq+r , i.e., P is a projective A-module.

IS⇐ 1. We suppose that P is a projective A-module. Then, by Lemma 4, the
short exact sequence (48) splits, and thus, there exists an A-morphism s : P →
Aq+r such that (R.) ◦ s = idP . But, using Proposition 5, we have:

s ∈ homA(P, Aq+r ) ∼= Aq+r : P = {T ∈ K (q+r)×q | T R ∈ A(q+r)×(q+r)}.
Therefore, there exists a matrix S ∈ K (q+r)×q satisfying S R ∈ A(q+r)×(q+r) and
such that s(λ) = S λ for all λ ∈ (R Aq+r ). Hence, we have

(R.) ◦ s = (R.) ◦ (S.) = (R S). = idR Aq+r ,

and thus, we obtain (R S)(R Aq+r ) = R Aq+r , i.e., R S R = R. Finally, we have
(R S− Iq) R = 0 and using the fact that R = (D−N ) has full row rank, we obtain
R S = Iq . Then, by 1 of Proposition 6, we obtain that P is internally stabilizable.

A similar proof can be obtained using the A-module Q and the following short
exact sequence:

0 −→ ker (.R̃) −→ A1×(q+r) .R̃−→ Q = A1×(q+r) R̃ −→ 0,
λ �−→ λ R̃.

(49)

�
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Example 20 If p = n/d , 0 �= d, n ∈ A, is a fractional representation of a transfer
function p ∈ K = Q(A), then, by Theorem 4, we know that p is internally stabil-
izable iff the lattice P = Q = A d + A n of K is projective or, equivalently, iff the
fractional ideal P is invertible [2,24], namely, we have

P (A : P) = {d x − n y | x, y ∈ A : P} = A,

i.e., iff there exist x, y ∈ A : P such that d x − n y = 1. This characterization
was proved in [23] to be equivalent to the first general characterization of internal
stabilizability for SISO plants obtained in the pioneering work [33].

Let us characterize the A-modules ker (R.) and ker (.R̃).

Lemma 5 Let P ∈ K q×r be a transfer matrix, P = D−1 N = Ñ D̃−1 a fractional
representation of P, and:

R = (D − N ) ∈ Aq×(q+r), R̃ = (Ñ T D̃T )T ∈ A(q+r)×r .

Then, we have {
ker (.R̃) = (A : P) R,

ker (R.) = R̃ (A : Q),
and the following two short exact sequences:

0←− Q .R̃←− A1×(q+r) .R←− A : P ←− 0, (50)

0 −→ A : Q R̃.−→ Aq+r R.−→ P −→ 0. (51)

Proof Let us prove the first equality (the second can be obtained similarly). By
Proposition 2.8 of part I of [23], we know that ker (.R̃) = A1×q R, where A1×q R
denotes the A-closure of A1×q R in A1×(q+r), namely:

A1×q R = {λ ∈ A1×(q+r) | ∃ 0 �= a ∈ A, a λ ∈ A1×q R}.
By Lemma 2.3 of part I of [23], we also know that:

A1×q R = (K 1×q R) ∩ A1×(q+r).

But, from Example 10, we have A : P = {λ ∈ K 1×q | λ R ∈ A1×(q+r)} showing
that:

(K 1×q R) ∩ A1×(q+r) = {λ R ∈ A1×(q+r) | λ ∈ K 1×q} = (A : P) R.

Then, the exactness of (50) directly follows from the exact sequence (48).
A similar proof can be given for ker (R.) = R̃ (A : Q) and (51). �

Remark 9 If P = D−1 N = Ñ D̃−1 is an internally stabilizable plant, then it fol-
lows from Lemma 5 and the proof of Theorem 4 that the direct complement to P
(respectively Q) in Aq+r is defined by R̃ (A : Q) (respectively (A : P) R).
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In the case where the plant P is internally stabilizable, then the A-modules
A : P and A : Q can be characterized in terms of the matrices S and S̃ defined in
Proposition 7.

Proposition 10 Let P be an internally stabilizable plant, P = D−1 N = Ñ D̃−1

a fractional representation of P and:

R = (D − N ) ∈ Aq×(q+r), R̃ = (Ñ T D̃T )T ∈ A(q+r)×r .

1. If S is a matrix satisfying 1 of Proposition 7, then we have:

A : P = A1×(q+r) S, (52)

P = A : (A : P) = {λ ∈ K q | S λ ∈ Aq+r }. (53)

2. If S̃ is a matrix satisfying 2 of Proposition 7, then we have:

A : Q = S̃ Aq+r , (54)

Q = A : (A : Q) = {λ ∈ K 1×r | λ S̃ ∈ A1×(q+r)}. (55)

Hence, we have

{
ker (.R̃) = A1×(q+r) (S R) = A1×(q+r) �1,

ker (R.) = (R̃ S̃) Aq+r = �2 Aq+r ,

where �1 and �2 are the idempotents of A(q+r)×(q+r) defined by (35).

Proof The proof is exactly the same as the one given for Proposition 8. �

Finally, similarly as Proposition 9, using Proposition 10, we can easily prove
the following result.

Proposition 11 A plant P ∈ K q×r is strongly stabilizable iff there exists a con-
troller C ∈ Ar×q such that we have P = (D− N C) Aq or Q = A1×r (D̃−C Ñ ).
Then, P = (D′)−1 N ′ = Ñ ′ (D̃′)−1 is a doubly coprime factorization of P, with
the notations D′ = (D − N C)−1 D ∈ Aq×q , N ′ = (D − N C)−1 N ∈ Aq×r ,
D̃′ = D̃ (D̃ − C Ñ )−1 ∈ Ar×r and Ñ ′ = Ñ (D̃ − C Ñ )−1 ∈ Ar×q .

Remark 10 As in Remark 8, we can prove that P = D−1 N = Ñ D̃−1 ∈ K q×r is
strongly stabilizable iff there exists C ∈ Ar×q such that

(D − N C)−1 N = Ñ (D̃ − C Ñ )−1 ∈ Aq×r .

We also refer to [25] for more information on the strong stabilization problem.
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6.3 Proof of Lin’s conjecture

If we take M ′ = 0 in 5 of Definition 5, we then obtain that a free A-module is a pro-
jective A-module. Hence, using Theorems 2 and 3, we again obtain the existence of
a left-/right-coprime factorization for the transfer matrix P is a sufficient condition
for internal stabilizability (but generally not a necessary one). See Corollaries 5
and 7 for more details.

Corollary 9 [23] If A is a projective-free ring [15], namely, a ring such that any
finitely generated projective A-module is free, then every internally stabilizable
plant admits a doubly coprime factorization. In particular, this result holds for
A = RH∞, H∞(C+) and H∞(D).

Corollary 9 directly follows from Theorems 2, 3 and 4 and Corollary 2. How-
ever, we do not know whether or not the converse of Corollary 9 is true, i.e., whether
or not the fact that every internally stabilizable plant admits a doubly coprime fac-
torization implies that A is projective-free (at least, we know that every projective
A-module of the form P = R Aq+r is free, where R ∈ Aq×(q+r) has full row
rank). Such an important question will be investigated in the future.

Remark 11 We note the fact that every internally stabilizable plant over H∞(C+)
admits a doubly coprime factorization was first proved by Inouye [12] and Smith
[34] by investigating the properties of the ring H∞(C+). In particular, we can prove
that H∞(C+) is a coherent Sylvester domain (see Remark 2 and [23]), and thus,
a projective-free ring as a coherent Sylvester domain is a projective-free coher-
ent domain with w.gl.dim(A) ≤ 2, where w.gl.dim(A) denotes the weak global
dimension. See [7,23] for more details.

In a series of papers (see [17,18] and the references therein), Lin has conjectured
that every internally stabilizable multidimensional linear systems admits doubly
coprime factorizations. The next corollary gives a positive answer to this conjecture.

Theorem 5 [29] The ring R(z1, . . . , zm)S of structural stable linear multidimen-
sional systems is projective-free (Corollary 2.2.4 of [3] and Theorem A.3 of [13]).
Therefore, every internally stabilizable plant defined by a transfer matrix P ∈
K q×r , where K = R(z1, . . . , zm), admits a doubly coprime factorization over
R(z1, . . . , zm)S.

The fact that the ring R(z1, . . . , zm)S is projective-free is a non-trivial result
explaining why the equivalence between internal stabilizability and the existence
of coprime factorizations for multidimensional systems was still open up to now
(the central part of the proof in [13] comes from a private communication by A.
Tannenbaum to the Fields medalist P. Deligne). However, we do not have a con-
structive proof of Corollary 2.2.4 of [3] and of theorem A.3 of [13]. Such a problem
needs to be investigated in the future.

Corollary 10 [29] The ring R(z1, z2)S is a coherent Sylvester domain.
Therefore, R(z1, z2)S is a greatest common divisor domain, namely, any two

elements in R(z1, z2)S have a greatest common divisor, and every transfer matrix
with entries in R(z1, z2) admits a doubly weakly coprime factorization.
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Proof From Remark 11 (see [7,23] for more details), we need to prove that
R(z1, z2)S is a projective-free coherent domain with w.gl.dim(R(z1, z2)S) ≤ 2.

First of all, if we denote by S = {d ∈ R[z1, z2] | ∀ (z1, z2) ∈ D
2
, d(z1, z2) �= 0},

then we have [3,13]:

R(z1, z2)S = S−1
R[z1, z2] � {n/d | n ∈ R[z1, z2], d ∈ S}.

But, R[z1, z2] is a noetherian ring [2,23,32] and any localization of a noetheri-
an ring by a multiplicatively closed subset of R[z1, z2] is also noetherian [2,32].
Therefore, R(z1, z2)S = S−1

R[z1, z2] is a noetherian ring, and thus, a coher-
ent ring [2,23,32]. Moreover, it is a well known fact in homological algebra
that w.gl.dim(R(z1, z2)S) = w.gl.dim(S−1

R[z1, z2]) ≤ w.gl.dim(R[z1, z2]) and
w.gl.dim(R[z1, z2]) = 2 [2,32]. Finally, by theorem 5, we know that R(z1, z2)S
is projective-free, proving that R(z1, z2)S is a coherent Sylvester domain.

Using the fact that a coherent Sylvester domain is the greatest common divisor
domain (see [23] for a proof), we deduce that R(z1, z2)S is the greatest common
divisor domain.

Finally, the fact that every transfer matrix with entries in R(z1, z2) admits a
doubly weakly coprime factorization directly follows from Remark 2 (see [23] for
a proof). �

Let us point out that the previous result is no more true if we consider the ring
R(z1, . . . , zm)S where m ≥ 3.

Let us introduce the concept of a stably free module.

Definition 6 [32] A finitely generated A-module M is called stably free if there
exists r, s ∈ Z+ such that M ⊕ As ∼= Ar .

A free module is then stably free and a stably free module is projective.

Corollary 11 [38] A is a Hermite ring [15], namely, every finitely generated sta-
bly free A-module is free, iff every transfer matrix which admits a left-coprime
(respectively, right-coprime) factorization admits a doubly coprime factorization.

In particular, this result holds for the rings A = R H∞, H∞(C+), H∞(D), W+,
R(z1, . . . , zm)S and the disc algebra A(D) of the bounded holomorphic functions
in the unit disc D={z ∈ C | |z| < 1} which are continuous on the unit circle T =
{z ∈ C | |z| = 1} [30].

Proof ⇒. If P = D−1 N is a left-coprime factorization of P and if we denote by
R = (D−N ) ∈ Aq×(q+r), then we have P = R Aq+r = Aq by Lemma 3, i.e., P is
free, and thus, a projective A-module. Therefore, by Lemma 4, the exact sequence
(51) splits, and thus, there exists S ∈ A(q+r)×q such that S R ∈ A(q+r)×(q+r) and
R S = Iq . Hence, we have (.R)◦(.S) = .(S R) = .Iq , and thus, the exact sequence
(50) splits and we obtain

A1×(q+r) ∼= Q⊕ (A : Aq) ⇔ A1×(q+r) ∼= Q⊕ A1×q ,

i.e., Q is a stably free A-module of rank q+ r − q = r . Then, using the fact that A
is a Hermite ring, Q is a free A-module of rank r . Then, the result directly follows
from Corollary 2.
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⇐ Let R = (d − n1 · · · − nr−1) ∈ A1×r be such that there exists S ∈ Ar

satisfying R S = 1 and let us suppose without loss of generality that d �= 0. Then,
the transfer matrix P = (n1/d · · · nr−1/d) ∈ K 1×(r−1) admits the left-coprime
factorization P = d−1 (n1 · · · nr−1), and thus, a doubly coprime factorization by
hypothesis. Therefore, there exists two matrices R̃ = (Ñ T D̃T )T ∈ Ar×(r−1) and
S̃ = (−Ỹ X̃) ∈ A(r−1)×r such that (RT S̃T )T (S R̃) = Ir . Therefore, for every
r > 0 and every R ∈ A1×r which admits a right-inverse S ∈ Ar , there exists a
matrix U ∈ Ar×r such that U−1 ∈ Ar×r and R = (1 0 · · · 0)U . It is known
in commutative algebra that this fact is an equivalent formulation for A to be a
Hermite ring [15,32].

A projective-free ring is in particular a Hermite ring. Thus, from Corollary 9
and Theorem 5, we obtain that R(z1, . . . , zm)S , RH∞, H∞(C+) and H∞(D) are
Hermite rings. Finally, the stable range of A = W+ (respectively, A(D)) is equal
to 1 (see [25,30] for more details), namely, whenever we have A a + A b= A for
a, b∈ A, there exists c ∈ A such that (a+c b)−1 ∈ A. Therefore, by Theorem 20.13
of [16], we obtain that any stably free A-module is free, i.e., W+ and A(D) are
Hermite rings (see [30] for a different proof based on strong stabilizability). �

There is a long tradition in commutative algebra of studying rings over which
projective/stably free modules are not free. For instance, such a question is investi-
gated in the so-called algebraic K -theory [31] and examples of no-Hermite or
no projective-free rings are nowadays well-known. However, a K -theory for
Banach/operators algebras has only been recently developed in order to study such
types of modules over Banach algebras (e.g., over C�-algebras which naturally
appear in functional analysis) [1]. To our knowledge, it seems that the question
of whether or not there exists projective/stably free but not free modules over the
Banach algebras A, Â and W+ (see Example 1) has not been solved in K -theory
yet. Hence, it is not known whether or not an internally stabilizable plant over these
rings admits doubly coprime factorizations. As many different infinite-dimensional
linear systems (e.g., differential time-delay systems, systems of partial differential
equations, convolutional systems) are defined by means of transfer matrices with
entries in the quotient fields of these algebras [4,19], this question should draw
more attention in the future.

7 Conclusion

In this paper, we have shown how a lattice approach to analysis and synthesis
problems allowed us to give new, necessary and sufficient conditions for internal
stabilizability and for the existence of (weakly) left-/right-/doubly coprime fac-
torizations. Moreover, combining these results with one of [3,13], we proved that
every internally stabilizable multidimensional system admitted doubly coprime
factorizations, answering positively to an open question in the literature of mul-
tidimensional systems theory [17,18,36,37]. In [27], we showed how to use the
previous lattice approach in order to obtain a general parametrization of all stabi-
lizing controllers of internally stabilizable plants which do not necessarily admit
doubly coprime factorizations. In particular, this new parametrization of all stabi-
lizing controllers is a generalization of the Youla–Kučera parametrization. Finally,
within the lattice approach developed in this paper, the results obtained in [26] for
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SISO plants can be generalized for MIMO plants. In particular, they characterize
the graphs and the domains of internally stabilizable plants which do not necessar-
ily admit doubly coprime factorizations and give the relations between the graph
of a plant and the one of any of its stabilizing controllers.
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