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Abstract Within the lattice approach to analysis and synthesis problems recently
developed in Quadrat (Signal Syst, to appear), we obtain a general parametriza-
tion of all stabilizing controllers for internally stabilizable multi input multi output
(MIMO) plants which do not necessarily admit doubly coprime factorizations. This
parametrization is a linear fractional transformation of free parameters and the set of
arbitrary parameters is characterized. This parametrization generalizes for MIMO
plants the parametrization obtained in Quadrat (Syst Control Lett 50:135–148,
2003) for single input single output plants. It is named general Q-parametrization
of all stabilizing controllers as we show that some ideas developed in this paper can
be traced back to the pioneering work of Zames and Francis (IEEE Trans Automat
control 28:585-601, 1983) on H∞-control. Finally, if the plant admits a doubly
coprime factorization, we then prove that the general Q-parametrization becomes
the well-known Youla-Kučera parametrization of all stabilizing controllers (Desoer
et al. IEEE Trans Automat control 25:399–412, 1980; Vidyasagar, Control system
synthesis: a factorization approach MIT Press, Cambridge 1985).

Keywords Parametrization of all stabilizing controllers · Youla–Kučera
parametrization · Internal stabilizability · (Weakly) Left-/right-/doubly
coprime factorization · Lattice approach to analysis and synthesis problems

1 Introduction

The Youla–Kučera parametrization of all stabilizing controllers was developed
for transfer matrices which admit doubly coprime factorizations [6,13,33,34]. As
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the Youla–Kučera parametrization is a linear fractional transformation of a matrix
of free (arbitrary) parameters, it allows us to transform standard non-linear opti-
mal problems into affine, and thus, convex ones [5,33]. This fact explains why
it played an important role in the development of the H∞-control in the 1990s
[5,9,33].

However, it is becoming well-known that an internally stabilizable plant does
not necessarily admit doubly coprime factorizations [17,18,21,30,31]. In partic-
ular, the existence of a left-/right-/doubly coprime factorization is a sufficient but
generally not a necessary condition for internal stabilizability. The equivalence
between these two concepts is still open for important classes of plants and spe-
cially for infinite-dimensional or multidimensional linear systems [5,15–18,30,
31]. Hence, we may wonder whether or not it is possible to parametrize all sta-
bilizing controllers of an internally stabilizable plant which does not necessarily
admit doubly coprime factorizations.

A characterization of all stabilizing controllers of multi input multi output
(MIMO) stabilizable plants which do not necessarily admit doubly coprime fac-
torizations was first studied in [30,31] and a generalization of the Youla–Kučera
parametrization was obtained for plants defined over unique factorization domains
(UFDs) [26]. However, in spite of the great novelty of [30,31] this parametriza-
tion has the inconvenience of not being explicit in terms of the free parameters.
Moreover, we shall prove that the only complex Banach algebra which is a unique
factorization domain is C. Hence, we cannot use the parametrization developed
in [30,31] for parametrizing all stabilizing controllers of plants defined over non-
trivial Banach algebras and, in particular, the ones for which it is not known if an
internally stabilizable plant admits doubly coprime factorizations (e.g., the Wiener
algebras Â and W+ of bounded input bounded output plants [5,16,33]). Recently,
a more explicit parametrization of all stabilizing controllers has been obtained in
[17]. However, contrary to the Youla–Kučera parametrization, this parametrization
has not the explicit form of a linear fractional transformation and the set of free
parameters is not completely characterized.

Within the lattice approach to analysis and synthesis problems developed in
[21,23], the purpose of this paper is to obtain a general parametrization of all sta-
bilizing controllers for MIMO stabilizable plants which do not necessarily admit
coprime factorizations. This new parametrization only uses the knowledge of a
stabilizing controller and it is a linear fractional transformation of the free param-
eters. The set of free parameters is characterized and a (non-minimal) family of
generators of this set is exhibited. Two equivalent forms of this general parametri-
zation are given: the first one only uses the transfer matrices of the plant P and of a
stabilizing controller C , whereas the second uses stable fractional representations
P = D−1 N = Ñ D̃−1, C = Y X−1 = X̃−1 Ỹ of P and C . These results gen-
eralize for MIMO plants the ones recently obtained in [19] for single input single
output (SISO) plants within the fractional ideal approach to analysis and synthesis
problems.

If the plant admits a doubly coprime factorization, we then prove that the gen-
eral parametrization of all stabilizing controllers becomes the well-known Youla–
Kučera parametrization [6,13,33,34]. Moreover, we also show that it generalizes
the so-called Q-parametrization of all stabilizing controllers developed by Zames
and Francis [35] in their pioneering work on H∞-control for general internally
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stabilizable plants which do not necessarily admit doubly coprime factorizations.
Hence, we shall call it the general Q-parametrization of all stabilizing controllers.

Finally, we show that the problem of determining the minimal number of free
parameters of the general Q-parametrization is related to the well-known problem
in commutative algebra consisting in determining the minimal number of genera-
tors of modules. Using Heitmann’s generalization of Forster–Swan’s theorem [4,7,
10], we give an upper bound on the minimal number of free parameters appearing
in the general Q-parametrization.

A part of the results of this paper appeared in the congress papers [23,24].

Notation. In what follows, we only consider an integral domain A (namely, A is a
ring with an identity which satisfies a b = b a for any a, b ∈ A and
a b = 0, a �= 0 ⇒ b = 0) [3,26]. Elements of Am (resp., A1×m) are column
(resp., row) vectors of length m with entries in A. Moreover, Am×m denotes the
ring of m×m matrices with entries in A and Im the identity matrix of Am×m . If M
and M ′ are two A-modules, then M ∼= M ′ means that M and M ′ are isomorphic
as A-modules and M ⊕ M ′ denotes the direct sum of M and M ′ as A-modules
[3,26]. Finally, if V is a finite-dimensional K -vector space, then the dimension of
V over K is denoted by dimK (V ).

2 A lattice approach to analysis and synthesis problems

2.1 Introduction to the fractional representation approach

The fractional representation approach to analysis and synthesis problems was
introduced in the 1980s by Desoer, Vidyasagar and others in order to study in a
common mathematical framework analysis and synthesis problems for different
classes of linear systems (e.g., continuous/discrete finite-/infinite-dimensional or
multidimensional systems). For more details, see [6,16,18,21,33] and references
therein.

Within the fractional representation approach, the “universal class of sys-
tems” is defined by the set of transfer matrices with entries in the quotient field
Q(A) = {n/d |0 �= d, n ∈ A} of an integral domain A of SISO stable plants. For
instance, we have the following examples of such integral domains A = RH∞,
H∞(D), H∞(C+), W+, Â, A(D), R(z1, . . . , zn)S . See [5,6,18,19,21,30,31,33]
for more details and examples.

We shortly recall a few definitions [6,18,21,30,31,33].

Definition 1 Let A be an integral domain of SISO stable plants and its quotient
field K = Q(A).

– We call fractional representation of a transfer matrix P ∈ K q×r any represen-
tation of the form P = D−1 N = Ñ D̃−1, where:

R = (D − N ) ∈ Aq×(q+r), R̃ = (Ñ T D̃T )T ∈ A(q+r)×r .

– A transfer matrix P ∈ K q×r admits a weakly left-coprime factorization if there
exists a fractional representation P = D−1 N satisfying that, for all λ ∈ K 1×q

such that λ (D − N ) ∈ A1×(q+r), we then have λ ∈ A1×q .
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Fig. 1 Closed-loop system

– A transfer matrix P ∈ K q×r admits a weakly right-coprime factorization if
there exists a fractional representation P = Ñ−1 D̃ satisfying that, for all
λ ∈ K r such that (Ñ T D̃T)T λ ∈ Aq+r , we then have λ ∈ Ar .

– A transfer matrix P ∈ K q×r admits a left-coprime factorization if there exists
a fractional representation P = D−1 N such that the matrix R admits a right-
inverse S = (XT Y T)T ∈ A(q+r)×q , namely, we have:

R S = D X − N Y = Iq .

– A transfer matrix P ∈ K q×r admits a right-coprime factorization if there
exists a fractional representation P = Ñ−1 D̃ such that the matrix R̃ admits a
left-inverse S̃ = (−Ỹ X̃) ∈ A(r×(q+r), namely, we have:

S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ir .

– A transfer matrix admits a (weakly) doubly coprime factorization if it admits a
(weakly) left- and a (weakly) right-coprime factorizations.

– A plant P ∈ K q×r is said to be internally stabilizable iff there exists a controller
C ∈ K r×q such that all the entries of the following matrix

H(P,C) =
(

Iq −P
−C Ir

)−1

=
(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)

=
(

Iq + P (Ir − C P)−1 C P (Ir − C P)−1

(Ir − C P)−1 C (Ir − C P)−1

)

(1)

belong to A (see Fig.1). Then, C is called a stabilizing controller of P .

We refer to [16,19–21,25,33] for the definition of strong (resp., simultaneous,
robust, optimal) stabilization.

2.2 Summary of some important results

We have recently developed in [21,23] a lattice approach to analysis and synthesis
problems. In the next sections, we recall and develop new results which will be
useful for the development of a general parametrization of all stabilizing control-
lers. For more details on the lattice approach, we refer to [19,25] for SISO systems
and to [21,23] for MIMO systems.
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2.2.1 Characterization in terms of the transfer matrix P

We first recall important definitions.

Definition 2 [3] Let A be an integral domain, K = Q(A) its quotient field, V and
W two finite-dimensional K -vector spaces.

1. An A-submodule M of V is called a lattice of V if M is contained in a finitely
generated A-submodule of V and the K -vector space defined by
K M = {∑n

i=1 ki mi | ki ∈ K , mi ∈ M, n ∈ Z+} satisfies K M = V .
2. We denote by homK (V,W ) the K -vector space of all K -linear maps from V

to W .
3. Let M be a lattice of V and N a lattice of W . Then, we denote by N : M the

A-submodule of homK (V,W ) formed by all the K -linear maps f : V → W
which satisfy f (M) ⊆ N .

We refer to [21,23] for more details. We have the following lemma.

Lemma 1 [3,21] Let V and W be two finite-dimensional K = Q(A)-vector spaces
and M (resp., N) a lattice of V (resp., W ). Then, the A-module N : M defined
in 3 of Definition 2 is a lattice of homK (V,W ). Moreover, the canonical map
N : M → homA(M, N ) which maps f ∈ N : M into the restriction f|M of f to
M is an isomorphism, where homA(M, N ) denotes the A-module of the A-mor-
phisms (i.e., A-linear maps) from M to N.

The following lattices will play important roles in what follows.

Example 1 [21,23] Let A be an integral domain of SISO stable plants, its quotient
field K = Q(A) and P ∈ K q×r a transfer matrix. Then, we can easily prove
that L = (Iq − P) Aq+r is a lattice of V = K q . Hence, we obtain the lattice
A : L = {λ ∈ A1×q | λ P ∈ A1×r } of homK (K q , K ) ∼= K 1×q .

Similarly, we can prove that M = A1×(q+r) (PT I T
r )

T is a lattice of K 1×r

and A :M = {λ ∈ Ar | Pλ ∈ Aq} is a lattice of homK (K 1×r , K ) ∼= K r .

Example 2 [19,21] If V = K , then the lattices of K are just the non-zero fractional
ideals of A [3,26]. Let us recall that a fractional ideal J of A is an A-submodule
of K such that there exists a non-zero a ∈ A satisfying:

(a) J � {a j | aj ∈ J } ⊆ A.

If p ∈ K is a transfer function, then L = A + A (−p) = A + A p = P is
a fractional ideal of A as we have (d)L = A d + A n ⊆ A, where p = n/d ,
0 �= d, n ∈ A, is a fractional representation of p. Then, the ideal defined by

A : L = A : P = {k ∈ K | k, k p ∈ A} = {d ∈ A | d p ∈ A}
is usually called the ideal of the denominators of p. Indeed, for all d ∈ A : L, we
have n = d p ∈ A and p = n/d is a fractional representation of p. We point out
that A : L cannot be finitely generated as an A-module [19].

We refer the reader to [21] for more details and examples. We now recall the
intrinsic characterizations of the concepts introduced in Definition 1 in terms of
the lattices given in Example 1.
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Theorem 1 [21] Let P ∈ K q×r be a transfer matrix. Then, we have:
1. P admits a weakly left-coprime factorization iff there exists a non-singular

matrix D ∈ Aq×q such that A : L = A1×q D. Then, P = D−1 N is a weakly
left-coprime factorization of P, where N = D P ∈ Aq×r .

2. P admits a weakly right-coprime factorization iff there exists a non-singular
matrix D̃ ∈ Ar×r such that A : M = D̃ Ar . Then, P = Ñ D̃−1 is a weakly
right-coprime factorization of P, where Ñ = P D̃ ∈ Aq×r .

3. P admits a left-coprime factorization iff there exists a non-singular matrix
D ∈ Aq×q such that L = D−1 Aq. Then, P = D−1 N is a left-coprime
factorization of P, where N = D P ∈ Aq×r .

4. P admits a right-coprime factorization iff there exists a non-singular matrix
D̃ ∈ Ar×r such that M = A1×r D̃−1. Then, P = Ñ D̃−1 is a right-coprime
factorization of P, where Ñ = P D̃ ∈ Aq×r .

5. P is internally stabilizable iff there exists L = (U T V T )T ∈ A(q+r)×q which
satisfies det U �= 0 and:

(a) L P =
(

U P
V P

)
∈ A(q+r)×r ,

(b) (Iq − P) L = U − P V = Iq .
Then, C = V U−1 is a stabilizing controller of P, U = (Iq − P C)−1 and
V = C (Iq − P C)−1.

6. P is internally stabilizable if there exists L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r) which
satisfies det Ũ �= 0 and:
(a) P L̃ = (−P Ṽ P Ũ ) ∈ Aq×(q+r),

(b) L̃

(
P
Ir

)
= −Ṽ P + Ũ = Ir .

Then, C = Ũ−1 Ṽ is a stabilizing controller of P, Ũ = (Ir − C P)−1 and
Ṽ = (Ir − C P)−1 C.

7. P is internally stabilizable iff we have L⊕ (A :M) ∼= Aq+r . Then, we have
A :M = L̃ Aq+r , where L̃ ∈ Ar×(q+r) is a matrix satisfying conditions 6(a),
and 6(b), and M = A : (A :M) = {λ ∈ K 1×r | λ L̃ ∈ A1×(q+r)}.

8. P is internally stabilizable iff we have M ⊕ (A : L) ∼= A1×(q+r). Then, we
have A : L = A1×(q+r) L, where L ∈ A(q+r)×q is a matrix satisfying condi-
tions 5(a) and 5(b), and L = A : (A : L) = {λ ∈ K q | L λ ∈ Aq+r }.

Remark 1 We note that 1 of Theorem 1 means that A : L is a free lattice of K 1×r ,
i.e., the lattice A : L of K 1×r is free as an A-module. We recall that a finitely
generated A-module M is said to be free if it admits a finite basis over A or, equiv-
alently, if M is isomorphic to a finite direct sum Ar of A, i.e., M ∼= Ar . A similar
result holds for the lattices defined in 2–4 of Theorem 1.

Condition 7 means that L is a projective lattice of K q , i.e., the lattice L of K q

is projective as an A-module. We recall that a finitely generated A-module M is
said to be projective if there exist an A-module M ′ and r ∈ Z+ such that we have
M ⊕ M ′ ∼= Ar . We note that M ′ is then also a projective A-module. A similar
result holds for the lattice M defined in 8 of Theorem 1. We refer the reader to
Definition 3 and [21] for more details on module theory.

Remark 2 We refer to [28] for the introduction of the concept of lattices in the
realization problem. We also refer to [11] for the study of stable factorizations of



On a generalization of the Youla-Kučera parametrization 205

transfer matrices within the systems over rings approach. The links between the
results obtained in Theorem 1 and those of [11] will be studied in a forthcoming
publication. Finally, we note that 1–4 of Theorem 1 can be considered over the com-
mutative polynomial ring A = k[x1, . . . , xn], where k is a field (e.g., k = R,C).
Hence, we obtain a lattice approach to multidimensional systems which generalizes
for n-D systems some results obtained by Fuhrmann [8] for 1-D systems in.

We have the following corollary of 5 and 6 of Theorem 1 which shows that the
existence of a left-/right-coprime factorization is a sufficient condition for internal
stabilizability.

Corollary 1 [21] Let P ∈ K q×r be a transfer matrix.

1. If P = D−1 N is a left-coprime factorization of P, D X − N Y = Iq , then
the matrix L = ((X D)T (Y D)T)T ∈ A(q+r)×q satisfies 5(a) and 5(b) of
Theorem 1. If det X �= 0, then C = Y X−1 internally stabilizes P.

2. If P = Ñ D̃−1 is a right-coprime factorization of P, −Ỹ Ñ + X̃ D̃ = Ir , then
the matrix L̃ = (−D̃ Ỹ D̃ X̃) ∈ Ar×(q+r) satisfies 6(a) and 6(b) of Theorem 1.
If det X̃ �= 0, then C = X̃−1 Ỹ internally stabilizes P.

Let us compute a certain lattice which will naturally appear in the general
parametrization of all stabilizing controllers developed in this paper.

Example 3 Using the results obtained in Example 1, we have:

(A :M) : L = {Q ∈ K r×q | Q (Iq − P) Aq+r ⊆ {λ ∈ Ar | P λ ∈ Aq}}
= {Q ∈ K r×q | Q Aq , Q P Ar ⊆ {λ ∈ Ar | P λ ∈ Aq}}
= {Q ∈ K r×q | Q Aq ⊆ Ar , Q P Ar ⊆ Ar , P Q Aq ⊆ Aq ,

P Q P Ar ⊆ Aq}
= {Q ∈ Ar×q | Q P ∈ Ar×r , P Q ∈ Aq×q , P Q P ∈ Aq×r }.

Similarly, we can prove that we have:

(A : L) :M = {Q ∈ Ar×q | Q P ∈ Ar×r , P Q ∈ Aq×q , P Q P ∈ Aq×r }.
Let us denote by � = (A :M) : L = (A : L) :M, namely:

� = {Q ∈ Ar×q | Q P ∈ Ar×r , P Q ∈ Aq×q , P Q P ∈ Aq×r }. (2)

Example 4 Let p ∈ Q(A) be a transfer function of a SISO plant and the frac-
tional ideal L =M = A + A p of A generated by 1 and p (see Example 2). By
Theorem 1, we find that p admits a weakly coprime factorization iff there exists
0 �= d ∈ A such that A : L = {l ∈ A | l p ∈ A} = A d . Then, p = n/d is a weakly
coprime factorization of p, where n = p d ∈ A. Similarly, we obtain that p admits
a coprime factorization iff there exists 0 �= d ∈ A such that L = A (1/d). Then,
p = n/d is a coprime factorization of p, where n = p d ∈ A. Moreover, by (5) or
(6) of Theorem 1, p is internally stabilizable iff there exist a, b ∈ A such that we
have {

a − b p = 1,
a p ∈ A,

(3)
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as b p = a−1 ∈ A. If a �= 0, then c = b/a internally stabilizes p, a = 1/(1− p c)
and b = c/(1− p c). If a = 0, then c = 1− b internally stabilizes p = −1/b. See
[19,21] for more details and explicit examples. Finally, the A-module defined by
(2) becomes � = {q ∈ A | d p, d p2 ∈ A}.

The next proposition will be important when finding again the well-known
Youla–Kučera parametrization of all stabilizing controllers.

Proposition 1 We have:

1. If P ∈ K q×r admits a weakly left-coprime factorization P = D−1 N, then the
A-module � defined by (2) satisfies:

� = (A1×q :M) D = {� ∈ Ar×q | P � ∈ Aq×q} D.

2. If P ∈ K q×r admits a weakly right-coprime factorization P = Ñ D̃−1, then
the A-module � defined by (2) satisfies:

� = D̃ (Ar : L) = D̃ {� ∈ Ar×q |� P ∈ Ar×r }.
3. If P = D−1 N = Ñ D̃−1 is a weakly doubly coprime factorization of P ∈

K q×r , then the A-module � defined by (2) satisfies:

� = D̃ Ar×q D. (4)

Proof 1. Using the fact that P admits a weakly left-coprime fatorization P =
D−1 N , then, by 1 of Theorem 1, we obtain A : L = A1×q D (see also Lemmas 1
and 2 of [21]). Therefore, we have:

� = (A1×q D) :M =
{

Q ∈ K r×q | A1×(q+r)
(

P
Ir

)
Q ⊆ A1×q D

}

= {Q ∈ K r×q | A1×r Q ⊆ A1×q D, A1×q (P Q) ⊆ A1×q D}.
Hence, for Q ∈ �, there exist � ∈ Ar×q and � ∈ Aq×q such that we have
Q = � D and P Q = � D. In particular, we obtain P Q = P � D = � D, i.e.,
(P �−�) D = 0. Now, using the fact that D is non-singular, we obtain� = P �,
i.e., � = {� ∈ Ar×q | P � ∈ Aq×q} D. Finally, we have

A1×q :M = {� ∈ K r×q | A1×(q+r)
(

P
Ir

)
� ⊆ A1×q}

= {� ∈ K r×q | P � ∈ Aq×q , � ∈ Ar×q}
= {� ∈ Ar×q | P � ∈ Aq×q}, (5)

which proves 1.
2. Condition 2 can be proved similarly.
3. If P = D−1 N = Ñ D̃−1 is a weakly doubly coprime factorization of P ,

then, by 2, we obtain � = {� ∈ Ar×q | P � ∈ Aq×q} D and, by 2 of Theorem 1,
we have A : M = D̃ Ar . Hence, every column of T ∈ (A1×q : M) belongs to
{λ ∈ Ar | P λ ∈ Aq} = A : M = D̃ Ar , and thus, T ∈ D̃ Ar×q . Finally, we
easily check that we have D̃ Ar×q ⊆ {� ∈ Ar×q | P � ∈ Aq×q}, which proves
{� ∈ Ar×q | P � ∈ Aq×q} = D̃ Ar×q , and thus, � = D̃ Ar×q D. 
�
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2.2.2 Characterizations in terms fractional representations of P

We now characterize internal stabilizability and the existence of (weakly) left-
/right-/doubly coprime factorizations in terms of fractional representations
P = D−1 N = Ñ D̃−1 of P . Let us start with the next important example.

Example 5 Let A be an integral domain of SISO stable plants, K = Q(A) its
quotient field, P ∈ K q×r and P = D−1 N = Ñ D̃−1 a fractional representation
of P . Then, we can easily prove that P = (D − N ) Aq+r is a lattice of K q

whereas Q = A1×(q+r) (Ñ T D̃T )T is a lattice of K 1×r . Hence, we obtain that
A : P = {λ ∈ K 1×q | λ R ∈ A1×(q+r)} is a lattice of homK (K q , K ) ∼= K 1×q ,
whereas A : Q = {λ ∈ K r | R̃ λ ∈ Aq+r } is a lattice of homK (K 1×r , K ) ∼= K r .
See [21] for more details.

Example 6 Let p ∈ K = Q(A)be a transfer function of a SISO plant and p = n/d ,
0 �= d, n ∈ A a fractional representation of p. By Example 5, we obtain that
P = Q = A d + A n is a lattice of K and, more precisely, an ideal of A. Then,
A : P = {k ∈ K | k d, k n ∈ A} is also a lattice of K , namely, a fractional ideal of
A (see Example 2).

We have the following important results.

Theorem 2 [21] Let P ∈ K q×r be a transfer matrix and P = D−1 N = Ñ D̃−1

a fractional representation of P, where R = (D − N ) ∈ Aq×(q+r) and
R̃ = (Ñ T D̃T )T ∈ A(q+r)×r . Then, we have:

1. P admits a weakly left-coprime factorization iff there exists a non-singular
matrix E ∈ K q×q such that A : P = A1×q E. Then, if we denote by D′ =
E D ∈ Aq×q and N ′ = E N ∈ Aq×r , P = (D′)−1 N ′ is a weakly left-coprime
factorization of P.

2. P admits a weakly right-coprime factorization iff there exists a non-singular
matrix F ∈ K r×r such that A : Q = F Ar . Then, if we denote by D̃′ = D̃ F ∈
Ar×r and Ñ ′ = Ñ F ∈ Aq×r , P = Ñ ′ (D̃′)−1 is a weakly right-coprime
factorization of P.

3. P admits a left-coprime factorization iff there exists a non-singular matrix
G ∈ Aq×q such that P = G Aq. Then, if we denote by D′ = G−1 D ∈ Aq×q

and N ′ = G−1 N ∈ Aq×r , P = (D′)−1 N ′ is a left-coprime factorization of
P.

4. P admits a right-coprime factorization iff there exists a non-singular matrix
H ∈ Ar×r such that Q = A1×r H. Then, if we denote by D̃′ = D̃ H−1 and
Ñ ′ = Ñ H−1 ∈ Aq×r , P = Ñ ′ (D̃′)−1 is a right-coprime factorization of P.

5. P is internally stabilizable iff there exists S = (X T Y T )T ∈ K (q+r)×q which
satisfies det X �= 0 and:

(a) S R =
(

X D −X N
Y D −Y N

)
∈ A(q+r)×(q+r),

(b) R S = D X − N Y = Iq .
Then, C = Y X−1 internally stabilizes the plant P, X = (D − N C)−1 and
Y = C (D − N C)−1.
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6. P is internally stabilizable iff there exists S̃ = (−Ỹ X̃) ∈ K r×(q+r) which
satisfies det X̃ �= 0 and:

(a) R̃ S̃ =
(−Ñ Ỹ Ñ X̃
−D̃ Ỹ D̃ X̃

)
∈ A(q+r)×(q+r),

(b) S̃ R̃ = −Ỹ Ñ + X̃ D̃ = Ir .
Then, C = X̃−1 Ỹ internally stabilizes the plant P, X̃ = (D̃ − C Ñ )−1 and
Ỹ = (D̃ − C Ñ )−1 C.

7. P = D−1 N is internally stabilizable iff we have P ⊕ ker(R.) ∼= Aq+r , where
ker(R.) = {λ ∈ Aq+r | R λ = 0}. Then, we have

A : P = A1×(q+r) S, P = A : (A : P) = {λ ∈ K q | S λ ∈ Aq+r },
where S ∈ K (q+r)×q is a matrix satisfying conditions 5(a) and 5(b).

8. P = Ñ−1 D̃ is internally stabilizable iff we have Q ⊕ ker(.R̃) ∼= A1×(q+r),
where ker(.R̃) = {λ ∈ A1×(q+r) | λ R̃ = 0}. Then, we have

A : Q = S̃ Aq+r , Q = A : (A : Q) = {λ ∈ K 1×r | λ S̃ ∈ A1×(q+r)},
where S̃ ∈ K r×(q+r) is a matrix satisfying conditions 6(a) and 6(b).

Remark 3 As in Remark 1, 1 of Theorem 2 is equivalent to the fact that A : P
is a free lattice of K 1×q . A similar result holds for the lattices defined in 2–4 of
Theorem 2. Moreover, 5 of Theorem 2 is also equivalent to the fact that P is a
projective lattice of K 1×q . A similar result holds for Q.

We have the following trivial corollary of 5 and 6 of Theorem 2 which shows
that the existence of a left-/right-coprime factorization is a sufficient condition for
internal stabilizability.

Corollary 2 [21] Let P ∈ K q×r be a transfer matrix.

1. If P = D−1 N is a left-coprime factorization of P, D X − N Y = Iq , then
the matrix S = (X T Y T )T ∈ A(q+r)×q satisfies conditions 5(a) and 5(b) of
Theorem 2. If det X �= 0, then C = Y X−1 internally stabilizes P.

2. If P = Ñ D̃−1 is a right-coprime factorization of P, −Ỹ Ñ + X̃ D̃ = Ir , then
S̃ = (−Ỹ X̃) ∈ Ar×(q+r) satisfies conditions 6(a) and 6(b) of Theorem 2. If
det X̃ �= 0, then C = X̃−1 Ỹ internally stabilized P.

The lattice introduced in the next example will naturally appears in the general
parametrization of all stabilizing controllers of P .

Example 7 Using the results obtained in Example 5, we have:

(A : P) : Q
=

{
T ∈ K r×q | A1×(q+r)

(
Ñ
D̃

)
T ⊆ {λ ∈ K 1×q | λ R ∈ A1×(q+r)}

}

=
{

T ∈ K r×q | A1×(q+r)
(

Ñ
D̃

)
T (D − N ) ⊆ A1×(q+r)

}

=
{

T ∈ K r×q |
(

Ñ
D̃

)
T (D − N ) ∈ A(q+r)×(q+r)

}
.
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Similarly, we can prove that we have:

(A : Q) : P =
{

T ∈ K r×q |
(

Ñ
D̃

)
T (D − N ) ∈ A(q+r)×(q+r)

}
.

Let us denote by � = (A : P) : Q = (A : Q) : L, namely:

� =
{

T ∈ K r×q |
(

Ñ
D̃

)
T (D − N ) ∈ A(q+r)×(q+r)

}
. (6)

Example 8 Let p = n/d be a fractional representation of p, 0 �= d, n ∈ A. By
Theorem 2, p admits a weakly coprime factorization iff there exists a non-trivial
e ∈ K such that A : P = {k ∈ K | k n, k d ∈ A} = A e. Then, if we denote by
d ′ = e d ∈ A and n′ = e n ∈ A, p = n′/d ′ is a weakly coprime factorization of p.
Similarly, p admits a coprime factorization iff there exists 0 �= g ∈ A such that we
have P = A g. Then, if we define by d ′ = d/g ∈ A and n′ = n/g ∈ A, p = n′/d ′
is a coprime factorization of p. Moreover, p is internally stabilizable iff there exist
x, y ∈ K such that we have:

{
d x − n y = 1,
d x, d y, n x ∈ A (n y = d x − 1 ∈ A).

(7)

If x �= 0, then c = y/x internally stabilizes p and we have x = 1/(d − n c) and
y = c/(d−n c). If x = 0, then c = 1−d y internally stabilizes p = −1/(d y). See
also [18,27]. Finally, we easily check that the A-module� defined by (6) becomes
the fractional ideal � = {t ∈ K | t d2, t d n, t n2 ∈ A} of A.

To finish, let us state a new proposition which will play an important role for
the Youla–Kučera parametrization.

Proposition 2 We have:

1. If P ∈ K q×r admits a weakly left-coprime factorization P = D−1 N, then the
A-module � defined by (6) satisfies:

� = A1×q : Q = D̃−1 (A1×q :M) = D̃−1 {� ∈ Ar×q | P � ∈ Aq×q}.

2. If P ∈ K q×r admits a weakly right-coprime factorization P = Ñ D̃−1, then
the A-module � defined by (6) satisfies:

� = Ar : P = (Ar : L) D−1 = {� ∈ Ar×q |� P ∈ Ar×r } D−1.

3. If P = D−1 N = Ñ D̃−1 is a weakly doubly coprime factorization of P ∈
K q×r , then the A-module � defined by (6) satisfies � = Ar×q .

Proof 1. If P = D−1 N is a weakly left-coprime factorization of P , then, by 1 of
Theorem 2 (see also [21]), we have A : P = A1×q . Therefore, the A-module
� becomes:
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� = A1×q : Q =
{

T ∈ K r×q | A1×(q+r)
(

Ñ
D̃

)
T ⊆ A1×q

}
,

=
{

T ∈ K r×q |
(

Ñ
D̃

)
T ∈ A(q+r)×q

}
.

Hence, T ∈ � if there exist two matrices �1 ∈ Aq×q and �2 ∈ Ar×q such
that we have {

Ñ T = �1,

D̃ T = �2,
⇔

{
T = D̃−1�2,

P �2 = �1,

i.e., we have � = D̃−1 {�2 ∈ Ar×q | P �2 ∈ Aq×q} which proves the result
once using (5).

2. Condition 2 can be proved similarly.
3. If P = D−1 N = Ñ D̃−1 is a doubly weakly coprime factorization of P , then,

by 1, we obtain � = D̃−1 {� ∈ Ar×q | P � ∈ Aq×q} = D̃−1 (A1×q : M)

and, by 2 of Theorem 1, we have A : M = D̃ Ar . Hence, every column of
L ∈ (A1×q :M) belongs to {λ ∈ Ar | P λ ∈ Aq} = A :M = D̃ Ar , and thus,
L ∈ D̃ Ar×q . Finally, we easily check D̃ Ar×q ⊆ {� ∈ Ar×q | P � ∈ Aq×q},
which shows {� ∈ Ar×q | P � ∈ Aq×q} = D̃ Ar×q , and thus, � = Ar×q .


�

3 A generalization of the Youla–Kučera parametrization

If a plant P admits a doubly coprime factorization, then it is well-known that there
exists a parametrization of all its stabilizing controllers called the Youla–Kučera
parametrization [6,13,33]. However, by Corollaries 1 and 2, we know that the exis-
tence of a doubly coprime factorization is a sufficient but not a necessary condition
for internal stabilizability. Hence, we may wonder if it is possible to parametrize all
stabilizing controllers of an internally stabilizable plant which does not necessarily
admit doubly coprime factorizations. The purpose of this section is to show that
such a parametrization exists and it can be explicitly computed once a stabilizing
controller of the plant is known.

3.1 Characterizations in terms of the transfer matrix P

We start by giving a parametrization of all stabilizing controllers of an internally
stabilizable plant without assuming the existence of a doubly coprime factorization
for the plant.

Proposition 3 Let P ∈ K q×r be an internally stabilizable plant, C� ∈ K r×q a
stabilizing controller of P and let us denote by:



U = (Iq − P C�)−1 ∈ Aq×q ,

V = C� (Iq − P C�)−1 ∈ Ar×q ,

Ũ = (Ir − C� P)−1 ∈ Ar×r ,

Ṽ = (Ir − C� P)−1 C� ∈ Ar×q .
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Then, all stabilizing controllers of P are of the form

C(Q) = (V + Q) (U + P Q)−1 = (Ũ + Q P)−1 (Ṽ + Q), (8)

where Q is any matrix which belongs to the A-module � defined by (2), namely,
� = {Q ∈ Ar×q | Q P ∈ Ar×r , P Q ∈ Aq×q , P Q P ∈ Aq×r }, and satisfies the
following conditions:

det(U + P Q) �= 0, det(Ũ + Q P) �= 0. (9)

Proof Let us consider two stabilizing controllers C1 and C2 ∈ K r×q of the plant
P ∈ K q×r and let us denote by:




Ui = (Iq − P Ci )
−1 ∈ Aq×q ,

Vi = Ci (Iq − P Ci )
−1 ∈ Ar×q ,

Ũi = (Ir − Ci P)−1 ∈ Ar×r ,

Ṽi = (Ir − Ci P)−1 Ci ∈ Ar×q ,

Then, we have Ci = Vi U−1
i = Ũ−1

i Ṽi for i = 1, 2.
We now recall that the following standard identities hold [33]:




(Iq − P Ci )
−1 = P (Ir − Ci P)−1 Ci + Iq ,

(Iq − P Ci )
−1 P = P (Ir − Ci P)−1,

Ci (Iq − P Ci )
−1 = (Ir − Ci P)−1 Ci ,

Ci (Iq − P Ci )
−1 P = (Ir − Ci P)−1 − Ir .

i = 1, 2. (10)

By the third relation of (10), we have Ci (Iq − P Ci )
−1 = (Ir − Ci P)−1 Ci , and

thus, we obtain Vi = Ṽi . Secondly, if we denote by

Li = (U T
i V T

i )
T ∈ A(q+r)×q , L̃i = (−Ṽi Ũi ) ∈ Ar×(q+r), i = 1, 2,

then, using the fact that Ci internally stabilizes P , i = 1, 2, we obtain:




(Iq − P) Li = Ui − P Vi = Iq ,

Li (Iq − P) =
(

Ui −Ui P
Vi −Vi P

)
∈ A(q+r)×(q+r),

L̃i

(
P
Ir

)
= −Ṽi P + Ũi = Ir ,(

P
Ir

)
L̃i =

(−P Ṽi P Ũi

−Ṽi Ũi

)
∈ A(q+r)×(q+r),

i = 1, 2.

Moreover, using the two previous equalities, we have:

{
U2 −U1 = P V2 + Iq − P V1 − Iq = P (V2 − V1),

Ũ2 − Ũ1 = Ṽ2 P + Ir − Ṽ1 P − Ir = (Ṽ2 − Ṽ1) P = (V2 − V1) P.
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Therefore, using the second identity of (10), we finally obtain


V2 − V1 = Ṽ2 − Ṽ1 ∈ Ar×q ,

(V2 − V1) P = Ũ2 − Ũ1 ∈ Ar×r ,

P (V2 − V1) = U2 −U1 ∈ Aq×q ,

P (V2 − V1) P = P (Ũ2 − Ũ1) = (U2 −U1) P ∈ Aq×r ,

which shows that we have V2 − V1 = Ṽ2 − Ṽ1 ∈ �. Therefore, if we denote by
Q = V2 − V1 = Ṽ2 − Ṽ1 ∈ �, we then have

V2 = V1 + Q, Ṽ2 = Ṽ1 + Q, Ũ2 = Ũ1 + Q P, U2 = U1 + P Q,

and, if det(U1 + P Q) �= 0 and det(Ũ1 + Q P) �= 0, we finally obtain:{
C2 = V2 U−1

2 = (V1 + Q) (U1 + P Q)−1,

C2 = Ũ−1
2 Ṽ2 = (Ũ1 + Q P)−1 (Ṽ1 + Q).

Therefore, if we use the notations U = U1, V = V1, Ũ = Ũ1 and Ṽ = Ṽ1, then
we finally obtain C2 = C(Q), where C(Q) is defined by (8) for a certain Q ∈ �
which satisfies det(U + P Q) �= 0 and det(Ũ + Q P) �= 0.

Finally, let us prove that the controller C(Q) defined by (8) internally stabilizes
P for every Q ∈ � which satisfies (9). Let us denote by:

L(Q) = ((U + P Q)T (V + Q)T)T, L̃(Q) = (−(Ṽ + Q) (Ũ + Q P)).

Then, using the fact that Q ∈ �, we obtain


V + Q ∈ Ar×q , U + P Q ∈ Aq×q ,

L(Q) P =
(

U P + P Q P
V P + Q P

)
∈ A(q+r)×r ,

(Iq − P) L(Q) = U + P Q − P (V + Q) = U − P V = Iq ,

which shows that C(Q) = (V + Q) (U + P Q)−1 internally stabilizes P by 5 of
Theorem 1. Moreover, we have



Ṽ + Q ∈ Ar×q , Ũ + Q P ∈ Ar×r ,

P L̃(Q) = (−(P Ṽ + P Q) (P Ũ + P Q P)) ∈ Aq×(q+r),

L̃(Q)

(
P
Ir

)
= −Ṽ P − Q P + Ũ + Q P = −Ṽ P + Ũ = Ir ,

showing that C(Q) = (Ũ + Q P)−1 (Ṽ + Q) internally stabilizes P by 6 of
Theorem 1. 
�
Example 9 If the SISO plant p is internally stabilized by a controller c�, then, by
Proposition 3, all stabilizing controllers of p are of the form

c(q) = c�/(1− p c�)+ q

1/(1− p c�)+ q p
= c� + q (1− p c�)

1+ q p (1− p c�)
, (11)

where q is any element of the fractional ideal � = {l ∈ A | l p, l p2 ∈ A} of A
satisfying 1/(1 − p c�) + q p �= 0. We find the parametrization of all stabilizing
controllers of an internally stabilizable SISO plant obtained in [22].
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If a stabilizing controller C� of a plant P is known, then Proposition 3 gives
an explicit parametrization of all stabilizing controllers of P . However, we need
to characterize the set � of free (arbitrary) parameters. By Example 3, we already
know that the set � of free parameters of (8) is a lattice, and thus, an A-module.
The next proposition gives an explicit family of generators of the A-module � in
terms of a stabilizing controller C� of P .

Proposition 4 Let P ∈ K q×r be a stabilizable plant, C� a stabilizing controller
of P and let us denote by:


L =

(
(Iq − P C�)−1

C� (Iq − P C�)−1

)
∈ A(q+r)×q ,

L̃ = (−(Ir − C� P)−1 C� (Ir − C� P)−1) ∈ Ar×(q+r).

Then, the A-module � defined by (2) satisfies

� = L̃ A(q+r)×(q+r) L , (12)

that is, � is generated over A by the (q + r)2 matrices L̃ Ei
j L, where Ei

j denotes
the matrix defined by 1 in the i th row and jth column and 0 elsewhere, and
i, j = 1, . . . , q + r . Equivalently, if we denote by L̃i the i th column of L̃ and by
L j the j th row of L, then we have:

� =
q+r∑

i, j=1

A (L̃i L j ). (13)

Proof By 7 of Theorem 1, we have A :M = L̃ Aq+r . Therefore, using Example 3,
we obtain:

� = (L̃ Aq+r ) : L = {Q ∈ K r×q | Q (Iq − P) Aq+r ⊆ L̃ Aq+r }
= {Q ∈ K r×q | ∃ � ∈ A(q+r)×(q+r) : Q (Iq − P) = L̃ �}.

Hence, if Q ∈ �, then there exists a matrix � ∈ A(q+r)×(q+r) such that we have
Q (Iq − P) = L̃ �. Now, using the fact that (Iq − P) L = Iq (see 5 of
Theorem 1), we obtain:

Q = Q ((Iq − P) L) = (Q (Iq − P)) L = L̃ � L ⇒ Q ∈ L̃ A(q+r)×(q+r) L .

Conversely, if Q ∈ L̃ A(q+r)×(q+r) L , then there exists � ∈ A(q+r)×(q+r) such
that Q = L̃ � L , where L and L̃ satisfy 5 and 6 of Theorem 1. Then, using 5(a)
and 6(a) of Theorem 1, we finally obtain




Q P = L̃ �(L P) ∈ Ar×r ,

P Q = (P L̃)� L ∈ Aq×q ,

P Q P = (P L̃)� (L P) ∈ Aq×r ,

showing that Q ∈ � and proving (12).
Finally, (13) directly follows from the fact that A(q+r)×(q+r) is a free A-module

of rank (q + r)2 with the standard basis defined by {Ei
j }i, j=1,...,q+r . Indeed,
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� ∈ A(q+r)×(q+r) can be uniquely written as� =∑q+r
i, j=1 λ

j
i Ei

j , with λ j
i ∈ A, and

thus, every Q ∈ � can be written (non-necessarily uniquely) as
Q = ∑q+r

i, j=1 λ
j
i (L̃ Ei

j L). Thus, {L̃ Ei
j L}i, j=1,...,q+r is a family of generators

of � and L̃ Ei
j L is in the product of the i th column of L̃ by the j th row of L . 
�

Example 10 Let us consider again Example 9. If c� is a stabilizing controller of
p and if we denote by a = 1/(1 − p c�) ∈ A and b = c�/(1 − p c�), then we
have L = (a b)T ∈ A2 and L̃ = (−b a) ∈ A1×2, and thus, the A-module
� = L̃ A2×2 L = A a2 + A a b + A b2 is the ideal of A generated by a2, a b
and b2. But, using (3), we obtain a b = b a2 − (a p) b2 ∈ A a2 + A b2 because
b, a p ∈ A, showing that � = A a2 + A b2. Therefore, an element q of � has the
form q = q1 a2 + q2 b2 where q1 and q2 ∈ A and the parametrization (11) only
depends on two free parameters. See [19] for more details and examples.

Combining Propositions 3 and 4, we obtain the first main result.

Theorem 3 Let P ∈ K q×r be a stabilizable plant, C� a stabilizing controller of
P and let us denote by:




L =
(

(Iq − P C�)−1

C� (Iq − P C�)−1

)
∈ A(q+r)×q ,

L̃ = (−(Ir − C� P)−1 C� (Ir − C� P)−1) ∈ Ar×(q+r).

(14)

Let us denote by L̃i the i th column of L̃ and by L j the j th row of L. Then, all
stabilizing controllers of P are parametrized by

C(Q) = (C� (Iq − P C�)
−1 + Q) ((Iq − P C�)

−1 + P Q)−1

= ((Ir − C� P)−1 + Q P)−1 ((Ir − C� P)−1 C� + Q), (15)

where Q is any matrix which belongs to � =∑q+r
i, j=1 A (L̃i L j ) and satisfies:

det((Iq − P C�)
−1 + P Q) �= 0, det((Ir − C� P)−1 + Q P) �= 0. (16)

Remark 4 Parametrization (15) only uses the fact P is internally stabilizable. No
assumption on the existence of a doubly coprime factorization for P has been made.
Moreover, parametrization (15) only requires the knowledge of a stabilizing con-
troller C� and the explicit computation of the three transfer matrices (Iq−P C�)−1,
C� (Iq − P C�)−1 and C� (Iq − P C�)−1 P as we have the following relations (see
(10) for more details):{

(Ir − C� P)−1 C� = C� (Iq − P C�)−1,

(Ir − C� P)−1 = C� (Iq − P C�)−1 P + Ir .

For infinite-dimensional systems, it is generally simpler to compute a particular
stabilizing controller of a plant (e.g., a finite-dimensional controller, a controller
with a special form) rather than to compute a doubly coprime factorization. We
shall show in Corollary 4 that if the plant P admits a doubly coprime factorization,
then parametrization (15) becomes the Youla–Kučera parametrization. Hence, (15)
is a generalization of the Youla–Kučera parametrization for internally stabilizable
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plants which do not necessarily admit doubly coprime factorization. Finally, as the
Youla–Kučera parametrization, (15) is a linear fractional transformation of Q ∈ �
and the set of free parameters � is characterized.

Corollary 3 Let P ∈ K q×r be a stabilizable plant and C� a stabilizing controller
of P. With the notations (14), we then have:

1. If P admits a (weakly) left-coprime factorization P = D−1 N, then the A-
module � defined by (2) satisfies:

� = L̃ A(q+r)×q D.

2. If P admits a (weakly) right-coprime factorization P = Ñ D̃−1, then the A-
module � defined by (2) satisfies:

� = D̃ Ar×(q+r) L .

Proof 1. By 1 of Proposition 1, we know that the A-module � defined by (2)
satisfies � = {� ∈ Ar×q | P � ∈ Aq×q} D. Hence, the result directly follows
if we can prove that {� ∈ Ar×q | P � ∈ Aq×q} = L̃ A(q+r)×q .
Let � ∈ Ar×q satisfies P � ∈ Aq×q . Then, every column of � belongs to
the A-module {λ ∈ Ar | P λ ∈ Aq} = A : M. But, by 7 of Theorem 1,
we have A : M = {λ ∈ Ar | P λ ∈ Aq} = L̃ Aq+r . Therefore, there exists
� ∈ A(q+r)×q such that � = L̃ �, i.e., � ∈ L̃ A(q+r)×q .
Conversely, if � ∈ L̃ A(q+r)×q , then there exists � ∈ A(q+r)×q such that
� = L̃ � and, by 6.a of Theorem 1, we obtain P � = (P L̃)� ∈ Aq×q .

2. 2 can be proved similarly.

�

By Corollary 8 of [21], we know that an internally stabilizable plant admits a
weakly left-coprime (resp., right-coprime) factorization iff it admits a left-coprime
(resp., weakly right-coprime) factorization. This fact explains why we have added
“weakly” in between brackets in Corollary 3.

In the next corollary, we prove that if P admits a doubly coprime factorization,
then parametrization (15) becomes the standard Youla–Kučera parametrization [6,
13,33,34].

Corollary 4 If P ∈ K q×r admits the doubly coprime factorization

P = D−1 N = Ñ D̃−1,

(
D −N
−Ỹ X̃

) (
X Ñ
Y D̃

)
= Iq+r , (17)

then all stabilizing controllers of P are of the form

C(�) = (Y + D̃�) (X + Ñ �)−1 = (X̃ +� N )−1 (Ỹ +� D), (18)

where � is any matrix of Ar×q satisfying:

det(X + Ñ �) �= 0, det(X̃ +� N ) �= 0. (19)



216 A. Quadrat

Proof If P admits a doubly coprime factorization P = D−1 N = Ñ D̃−1, then,
by 3 of Proposition 1, we have � = D̃ Ar×q D. Moreover, by 1 of Corollary 1,
we obtain that C = (Y D) (X D)−1 = Y X−1 is a stabilizing controller of P .
Moreover, by 2 of Corollary 1, C ′ = (D̃ X̃)−1 (D̃ Ỹ ) = X̃−1 Ỹ is also a sta-
bilizing controller of P . Then, using the Bézout identities (17), we obtain that
−Ỹ X + X̃ Y = 0, and thus, C ′ = C . Therefore, by Proposition 3 or Theorem 3,
we obtain that all stabilizing controllers of P are defined by

C(�) = (Y D + D̃� D) (X D + P D̃� D)−1

= (Y D + D̃� D) (X D + Ñ � D)−1

= (Y + D̃�) D D−1 (X + Ñ �)−1 = (Y + D̃�) (X + Ñ �)−1 (20)

C(�) = (D̃ X̃ + D̃� D P)−1 (D̃ Ỹ + D̃� D)

= (D̃ X̃ + D̃� N )−1 (D̃ Ỹ + D̃� D)

= (X̃ +� N )−1 D̃−1 D̃ (Ỹ +� D) = (X̃ +� N )−1 (Ỹ +� D) (21)

where � ∈ Ar×q is any matrix which satisfies (19). 
�
Remark 5 Using Example 4, we know that a SISO plant p ∈ Q(A) is internally
stabilizable if there exists a, b ∈ A satisfying (3) or, equivalently, iff there exists
b ∈ A such that we have: {

b ∈ A,

p (1+ b p) ∈ A.
(22)

Then, c = b/(1+ b p) internally stabilizes p.
Now, if p admits a coprime factorization p = n/d , where d x − n y = 1,

then, by Corollary 2, c = y/x internally stabilizes p, a = 1/(1− p c) = d x and
b = c/(1 − p c) = d y. Moreover, by 3 of Proposition 1, we have � = A d2.
Therefore, parametrization (9) becomes:

c(q) = d y + q d2

d x + q d2 p
= y + q d

x + q n
, ∀ q ∈ A : x + q n �= 0. (23)

These computations correspond to (20) and (21) for SISO plants [19].
We have recently discovered that these computations had already been obtained

by Zames and Francis [35] in their pioneering work on H∞-control over A = RH∞.
They have independently been obtained in [19] as a direct consequence of the gen-
eral parametrization (9) for internally stabilizable plants which do not necessarily
admit coprime factorizations. It is interesting to notice that conditions (22) can
be interpreted as an interpolation problem as it is done in [35]. Finally, the left
member of (23) was called by Zames and Francis [35] the Q-parametrization of
all stabilizing controllers of p and it was shown to be equivalent to the Youla–
Kučera parametrization, up to a cancellation by a stable factor (see (23)). Hence,
we shall call the parametrizations (8) and (15) the general Q-parametrization of
all stabilizing controllers. Indeed, conditions 5 and 6 of Theorem 1 extend (22)
for MIMO plants and solving 5(a), 5(b), 6(a) and 6(b) of Theorem 1 for a general
integral domain A, we then obtain the general parametrizations (8) and (15).
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In order to copy the standard form of the Youla–Kučera parametrization, in
what follows, we shall use (8) instead of (15) for the parametrization of all stabi-
lizing controllers, i.e., we shall not explicitly express the matrices U, V, Ũ and Ṽ
in terms of the transfer matrices P and C�.

Using Theorem 5 of [21], we answer a question asked by Lin in [15].

Corollary 5 Let A = R(z1, . . . , zm)S be the ring of structural stable multidi-
mensional systems [15,21] and K = R(z1, . . . , zm) its quotient field. Then, all the
stabilizing controllers of an internally stabilizable multidimensional linear system,
defined by a transfer matrix with entries in K , are parametrized by means of the
standard Youla–Kučera parametrization.

Remark 6 We note that it is still not known whether or not an internally stabilizable
plant over the rings A, Â and W+ admits a doubly coprime factorization, and thus,
if the parametrization of all its stabilizing controllers has the form (8) or (18). See
[21] for more details.

Since the works of Dedekind in the middle of the 19th century, it has been well-
known in commutative algebra that projective module over a ring are generally not
free, i.e., the hypothesis which ensures an internally stabilizable plant to admit
doubly coprime factorizations is rarely satisfied. For instance, this is generally the
case for the algebras appearing in algebraic geometry (e.g., coordinate rings of
non-singular curves) and in number theory (e.g., integral closures of Z into finite
extensions of Q) [18]. We illustrate this fact by taking an example first considered
by Vidyasagar in [33].

Example 11 Let us consider the integral domain

A = R[X1, X2, X3]/(X2
1 + X2

2 + X2
3 − 1) = R[x1, x2, x3 | x2

1 + x2
2 + x2

3 = 1]
of polynomials over the 2-dimensional real sphere S2 and the transfer matrix
P = −(x2/x1 x3/x1) ∈ K 1×2, where K = Q(A). P admits the left-coprime fac-
torization P = (1/x1) (−x2 − x3) because R = (x1 x2 x3) ∈ A1×3 satisfies
R RT = 1. Then, by Corollary 1, we obtain that P is internally stabilizable and,
by 3 of Theorem 2, we have P = R A3 = A, and thus, A : P = A : A = A.
Therefore, if P = Ñ D̃−1 is any right fractional representation of P with R̃ =
(Ñ T D̃T )T ∈ A3×2, then, by Lemma 5 of [21], we obtain the following short
exact sequence (see Definition 3 given after):

0←− Q = A1×3 R̃
.R̃←− A1×3 .R←− A←− 0.

Moreover, by 8 of Theorem 2, we obtain that Q = A1×3 R̃ is a projective A-mod-
ule, and thus, the previous exact sequence splits (see Definition 3). Therefore, we
obtain that A1×3 ∼= Q ⊕ A, showing that Q is a stably free A-module [21,26].
However, it is a well-known result in commutative algebra that Q ∼= A1×3/(A R)
is a stably free but not a free A-module (A is not a Hermite ring [21]) [14]. Hence,
by 4 of Theorem 2 and Remark 3, we deduce that P does not admit a right-coprime
factorization. This result was first obtained by Vidyasagar in [33] (Example 73,
Sect. 8.1) using the equivalent topological argument saying that “we cannot comb
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the hair of a coconut” [14] (see also [18] for another proof). Hence, by Corollary 4,
we deduce that it is impossible to parametrize all stabilizing controllers of P by
means of the Youla–Kučera parametrization. Using Theorem 3, let us compute a
parametrization of all stabilizing controllers of P .

First, we easily check that the matrices

U = x2
1 , V =

(
x1 x2
x1 x3

)
, Ũ =

(
1− x2

2 −x2 x3
−x2 x3 1− x2

3

)
, Ṽ =

(
x1 x2
x1 x3

)
,

satisfy conditions 5 and 6 of Theorem 1. Moreover, using 1 of Proposition 1, we
obtain:

� = {� = (�1 �2)
T ∈ A2 | (x2�1 + x3�2)/x1 ∈ A} (x1 I2)

= {(x1�1 x1�2)
T |�1, �2 ∈ A : (x2�1 + x3�2)/x1 ∈ A}.

All the stabilizing controllers of P are then parametrized by (8), i.e.,

C(�1,�2) =
(

x1 (x2 +�1)
x1 (x3 +�2)

)
1

(x2
1 − x2�1 − x3�2)

=
(

1− x2 (x2 +�1) −x3 (x2 +�1)
−x2 (x3 +�2) 1− x3 (x3 +�2)

)−1 (
x1 (x2 +�1)
x1 (x3 +�2)

)
,

where �1 and �2 are any elements of A such that (x1�1 x1�2)
T ∈ �, i.e.,

satisfying (x2�1 + x3�2)/x1 ∈ A. We let the reader check by himself that all
the entries of the matrix H(P, C(�1,�2)) defined by (1) belong to A and, in
particular, the following two entries:{

H(P, C(�1,�2))1,2 = (x2 (x2�1 + x3�2 − x2
1 ))/x1 ∈ A,

H(P, C(�1,�2))1,3 = (x3 (x2�1 + x3�2 − x2
1 ))/x1 ∈ A.

Let us find a family of generators of the A-module �. Using Corollary 3, we find
that � = x1 L̃ A3 where L̃ = (−Ṽ Ũ ), and thus, � is generated by the following
three vectors:

f1 =
(−x2

1 x2
−x2

1 x3

)
, f2 =

(
x1 (1− x2

2 )−x1 x2 x3

)
, f3 =

( −x1 x2 x3
x1 (1− x2

3 )

)
.

In particular, using 6(b) of Theorem 1, we then obtain that every element
Q = (x1�1 x1�2) ∈ � can be written as:

Q = −((x2�1 + x3�2)/x1) f1 +�1 f2 +�2 f3.

Finally, we note that (x1�1 x1�2)
T ∈ � iff there exists �0 ∈ A such that

x1�0 + x2�1 + x3�2 = 0⇔ ∃ �0 ∈ A : (�0 �1 �2)
T ∈ ker (x1 x2 x3).

However, ker (x1 x2 x3) is known to be a stably free but not a free A-module [18,
33]. But, we can check that ker (x1 x2 x3) is generated by the following three
vectors of A3

g1 = (0 − x3 x2)
T, g2 = (x3 0 − x1)

T, g3 = (−x2 x1 : 0)T,
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which satisfy the relation x1 g1 + x2 g2 + x3 g3 = 0, and thus, we finally obtain:

� =
{

a1

(−x1 x3
x1 x2

)
+ a2

(
0
−x2

1

)
+ a3

(
x2

1
0

)
∈ A2 | ai ∈ A, i = 1, 2, 3

}
.

If we denote by h1 = (−x1 x3 x1 x2)
T, h2 = (0 − x2

1 )
T and h3 = (x2

1 0)T, then
we check that we have hi ∈ � and:

f1 = x3 h2 − x2 h3, f2 = −x3 h1 + x1 h3, f3 = x2 h1 − x1 h2,

which proves that� =∑3
i=1 A fi =∑3

i=1 A hi . Then, all the stabilizing control-
lers of P has the form

C(a1, a2, a3) =
( a3 x1+x2−a1 x3

x1−a3 x2+a2 x3

−a2 x1+a1 x2+x3
x1−a3 x2+a2 x3

)
, (24)

where the ai ∈ A are such that x1 − a3 x2 + a2 x3 �= 0. Finally, we note that
(24) depends on three free parameters whereas, if P would have admitted a doubly
coprime factorization, then the Youla–Kučera parametrization would have only
depended on two free parameters.

Example 12 In the literature of differential time-delay systems, it is well-known
that the unstable plant p = e−s/(s − 1) is internally stabilized by the controller
c = −2 e (s− 1)/(s+ 1− 2 e−(s−1)) involving a distributed delay. This result can
be directly checked by computing:



a = 1

(1− p c)
= (s + 1− 2 e−(s−1))

(s + 1)
∈ H∞(C+),

b = c

1− p c
= −2 e (s − 1)

(s + 1)
∈ H∞(C+),

a p = p

(1− p c)
= e−s

(s + 1)

(s + 1− 2 e−(s−1))

(s − 1)
∈ H∞(C+).

Then, all stabilizing controllers of p are parametrized by (11) where, by Exam-
ple 10, a free parameter q∈� has the form q=q1 a2+q2 b2 with q1, q2∈H∞(C+).
After a few simple computations, we obtain that all stabilizing controllers of p have
the form 



c(l) = −2 e + l (s−1)
(s+1)

1+ 2
(

1−e−(s−1)

s−1

)
+ l e−s

(s+1)

,

l =
(

1+ 2
(

1−e−(s−1)

s−1

))2
q1 + 4 e2 q2,

(25)

for all q1, q2 ∈ H∞(C+). The previous parametrization is nothing else than the
Youla–Kučera parametrization obtained from the following coprime factorization
p = n/d (see [19]):

n = e−s

(s + 1)
, d = (s − 1)

(s + 1)
, (−2 e) n −

(
1+ 2

(
1− e−(s−1)

s − 1

))
d = 1.
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We insist on the fact that we never used any coprime factorization for computing
parametrization (25). Hence, parametrization (8) can also be used in order to com-
pute coprime factorizations of a plant when a stabilizing controller is known and
coprime factorizations exist for the plant (e.g., plants defined over H∞(C+)). For
instance, such a method has recently been used in [2] in order to obtain coprime
factorizations for neutral differential time-delay systems which are stabilized by
PI controllers.

Let P ∈ K q×r be a plant which is internally stabilized by C� ∈ K r×q . Then,
with the notations (14), we can define the following two matrices:

�1(Q,C�) = L (Iq − P) =
(

(Iq − P C�)−1 −(Iq − P C�)−1 P
C� (Iq − P C�)−1 −C� (Iq − P C�)−1 P

)
,

�2(Q,C�) = (PT I T
r )

T L̃ =
(−P (Ir − C� P)−1 C� P (Ir − C� P)−1

−(Ir − C� P)−1 C� (Ir − C� P)−1

)
.

(26)

It is proved in [10,21] that�1 and P2 are two idempotents of A(q+r)×(q+r), namely,
�2

i = �i ∈ A(q+r)×(q+r), i = 1, 2, satisfying �1 +�2 = Iq+r .
Using (1), (12) and (15), we easily obtain the following result.

Corollary 6 Let us consider an internally stabilizable plant P ∈ K q×r and a
stabilizing controller C� ∈ K r×q of P. Then, we have:

1. All stable transfer matrices of the closed-loop system (1) are of the form

H(P,C(Q)) =
(
(Iq − P C�)−1 + P Q (Iq − P C�)−1 P + P Q P
C� (Iq − P C�)−1 + Q Ir + C∗ (Iq − P C�)−1 P + Q P

)

=
(

Iq+P (Ir−C� P)−1 C�+P Q P (Ir−C� P)−1 + P Q P
(Ir−C� P)−1 C∗+Q (Ir−C� P)−1+Q P

)
,

where Q is any matrix which belongs to the A-module � defined by (12) and
satisfies (16).

2. All the stable idempotents (26) are of the form




�1(Q) =
(
(Iq − P C�)−1 + P Q −(Iq − P C�)−1 P − P Q P
C� (Iq − P C�)−1 + Q −C� (Iq − P C�)−1 P − Q P

)
,

�2(Q) =
(−P (Ir − C� P)−1 C∗ − P Q P (Ir − C� P)−1 + P Q P
−(Ir − C� P)−1 C∗ − Q (Ir − C� P)−1 + Q P

)
,

where Q is any matrix which belongs to the A-module � defined by (12) and
satisfies (16).

In particular, the transfer matrices H, �1 and �2 are affine, and thus, convex in
the free parameter Q, namely, for all λ ∈ A, Q1, Q2 ∈ �, we have:
{

H(P,C(λ Q1 + (1− λ) Q2)) = λ H(P,C(Q1))+ (1− λ) H(P,C(Q2)),

�i (λ Q1 + (1− λ) Q2) = λ�i (Q1)+ (1− λ)�i (Q2), i = 1, 2.
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The fact that the parametrization of all stabilizing controllers (8) is a linear
fractional transformation of the free parameter Q allows us to rewrite many stan-
dard optimization problems as convex ones. For instance, if A is a Banach algebra
with respect to the norm ‖ · ‖A (e.g., A = H∞(C+), Â, W+), then the sensitivity
minimization problem becomes

infC∈Stab(P) ‖ W1 (Iq − P C)−1 W2 ‖A

= inf Q∈� ‖ W1 ((Iq − P C�)
−1 + P Q)W2 ‖A,

= inf�∈A(q+r)×(q+r) ‖ W1 ((Iq − P C�)
−1 + (P L̃)� L)W2 ‖A,

where Stab(P) denotes the set of all stabilizing controllers of P , C� is a partic-
ular stabilizing controller of P , L and L̃ are the matrices defined by (14) and
W1, W2 ∈ Aq×q are two weighted matrices.

Copying the case A = H∞(C+) developed in [9], we can also define:

bopt(P) = sup
C∈Stab(P)

‖ �1(P,C) ‖−1
A .

Therefore, we obtain:

bopt(P)
−1= infC∈Stab(P) ‖ �1(P,C) ‖A

= inf Q∈� ‖ �1(P,C(Q)) ‖A

= inf Q∈�
����
(
(Iq − P C�)−1 + P Q −(Iq − P C�)−1 P + P Q P
C� (Iq − P C�)−1 + Q −C� (Iq − P C�)−1 P + Q P

)����
A
,

= inf�∈A(q+r)×(q+r)

���(
(Iq − P C�)−1 + (P L̃)� L −(Iq − P C�)−1 P + (P L̃)� (L P)

C� (Iq − P C�)−1 + L̃ � L −C� (Iq − P C�)−1 P + L̃ �(L P)

)���
A
.

However, we need to study whether or not bopt(P) is still relevant for robust sta-
bilization problems over A as well as when we have the following equality:

bopt(P) = sup
C∈Stab(P)

‖ �2(P,C) ‖−1
A .

We shall study these questions and the applications of the new parametrization (8)
in optimal and robust problems in a forthcoming publication.

3.2 Characterizations in terms of fractional representations of P

The purpose of this section is to give a parametrization of all stabilizing controllers
of an internally stabilizable plant which does not necessarily admit doubly coprime
factorizations using fractional representations of P and C�.

Proposition 5 Let P ∈ K q×r be an internally stabilizable plant with a fractional
representation P = D−1 N = Ñ D̃−1, C� ∈ K r×q a stabilizing controller of P
and let us denote by: 



X = (D − N C�)−1 ∈ K q×q ,

Y = C� (D − N C�)−1 ∈ K r×q ,

X̃ = (D̃ − C� Ñ )−1 ∈ K r×r ,

Ỹ = (D̃ − C� Ñ )−1 C� ∈ K r×q .
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Then, all stabilizing controllers of P are of the form

C(Q) = (Y + D̃ Q) (X + Ñ Q)−1 = (X̃ + Q N )−1 (Ỹ + Q D), (27)

where Q is any matrix which belongs to the A-module � defined by (6), i.e.,

� =
{

T ∈ K r×q |
(

Ñ
D̃

)
T (D − N ) ∈ A(q+r)×(q+r)

}
,

and satisfies:

det(X + Ñ Q) �= 0, det(X̃ + Q N ) �= 0. (28)

Proof Let us consider two stabilizing controllers C1 and C2 ∈ K r×q of the plant
P ∈ K q×r . Then, we have Ci = Yi X−1

i = X̃−1
i Ỹi , with the notations




Xi = (D − N Ci )
−1 ∈ K q×q ,

Yi = Ci (D − N Ci )
−1 ∈ K r×q ,

X̃i = (D̃ − Ci Ñ )−1 ∈ K r×r ,

Ỹi = (D̃ − Ci Ñ )−1 Ci ∈ K r×q ,

i = 1, 2,

and the matrix Si = (X T
i Y T

i )
T (resp., S̃i = (−Ỹi X̃i )) satisfies conditions 5(a)

and 5(b) (resp., 6(a) and 6(b)) of Theorem 2, i.e., we have:




D Xi − N Yi = Iq ,(
Xi
Yi

)
(D − N ) ∈ A(q+r)×(q+r),



−Ỹi Ñ + X̃i D̃ = Ir ,(

Ñ
D̃

)
(−Ỹi X̃i ) ∈ A(q+r)×(q+r).

(29)

In particular, from (29), we obtain the following identities:{
D (X2 − X1) = N (Y2 − Y1),

(Ỹ2 − Ỹ1) Ñ = (X̃2 − X̃1) D̃.
(30)

Moreover, using the identities (10), we also have

Yi D = Ci (Iq − P Ci )
−1 = (Ir − Ci P)−1 Ci = D̃ Ỹi , i = 1, 2,

⇒ (Y2 − Y1) D = D̃ (Ỹ2 − Ỹ1). (31)

Hence, if we denote by Q = D̃−1 (Y2−Y1) = (Ỹ2− Ỹ1) D−1, using (30), we then
obtain 



Y2 = Y1 + D̃ Q,
X2 = X1 + Ñ Q,
Ỹ2 = Ỹ1 + Q D,
X̃2 = X̃1 + Q N ,

which gives

C2 = (Y1 + D̃ Q) (X1 + Ñ Q)−1 = (X̃1 + Q N )−1 (Ỹ1 + Q D),

when det(X1 + Ñ Q) �= 0 and det(X̃1 + Q N ) �= 0.
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Finally, using (29), (30) and (31), we obtain(
Ñ
D̃

)
Q (D − N ) =

(
Ñ Q D −Ñ Q N

D̃ Q D −D̃ Q N

)

=
(

Ñ (Ỹ2 − Ỹ1) −Ñ (Ỹ2 − Ỹ1) P
(Y2 − Y1) D −(Y2 − Y1) N

)

=
(

Ñ (Ỹ2 − Ỹ1) −Ñ (X̃2 − X̃1)
(Y2 − Y1) D −(Y2 − Y1) N

)
∈ A(q+r)×(q+r),

which proves that Q ∈ �. Hence, if we use the notations X1 = X , Y1 = Y ,
X̃1 = X̃ and Ỹ1 = Ỹ , then we have C2 = C(Q), where C(Q) is defined by (27)
for a certain Q ∈ � which satisfies (28).

Finally, let us prove that, for every Q ∈ � which satisfies (28), the controller
C(Q) = (Y+ D̃ Q) (X+ Ñ Q)−1 = (X̃+Q N )−1 (Ỹ+Q D) internally stabilizes
P . Using the fact that Q ∈ �, where � is defined by (6), we obtain


(
X + Ñ Q
Y + D̃ Q

)
(D − N ) =

(
(X + Ñ Q) D −(X + Ñ Q) N
(Y + D̃ Q) D −(Y + D̃ Q) N

)

=
(

X D −X N
Y D −Y N

)
+

(
Ñ
D̃

)
Q(D−N )∈ A(q+r)×(q+r),

(D − N )

(
X + Ñ Q
Y + D̃ Q

)
= D (X + Ñ Q)− N (Y + D̃ Q) = Iq ,

as we have D Ñ = N D̃, which shows that C(Q) = (Y + D̃ Q) (X + Ñ Q)−1

internally stabilizes P by 5 of Theorem 2. Moreover, we have


(
Ñ
D̃

)
(−(Ỹ + Q D) (X̃ + Q N )) =

(−Ñ (Ỹ + Q D) Ñ (X̃ + Q N )
−D̃ (Ỹ + Q D) D̃ (X̃ + Q N )

)
,

=
(−Ñ Ỹ Ñ X̃
−D̃ Ỹ D̃ X̃

)
−

(
Ñ
D̃

)
Q (D−N )∈ A(q+r)×(q+r),

(−(Ỹ+Q D) (X̃ + Q N ))

(
Ñ
D̃

)
= −(Ỹ + Q D) Ñ + (X̃ + Q N ) D̃ = Ir ,

as we have D Ñ = N D̃, which shows that C(Q) = (X̃ + Q N )−1 (Ỹ + Q D)
internally stabilizes P by 6 of Theorem 2. 
�
Example 13 If p = n/d is internally stabilized by the controller c = y/x , where
0 �= x, y ∈ K = Q(A) satisfy (7), then all stabilizing controllers of p are of the
form

c(q) = y + d q

x + n q
, (32)

where q is any element of � = {l ∈ K | l d2, l n2, l d n ∈ A} satisfying the con-
dition x + n q �= 0. We find the parametrization of all stabilizing controllers of an
internally stabilizable SISO plant obtained in [19].

Let us now give an explicit description of the A-module� in terms of the plant
P and a stabilizing controller C�.
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Proposition 6 Let P = D−1 N = Ñ D̃−1 be a fractional representation of an
internally stabilizable plant P ∈ K q×r , C� ∈ K r×q a stabilizing controller of P
and let us denote by:


S =

(
(D − N C�)−1

C� (D − N C�)−1

)
∈ A(q+r)×q ,

S̃ = (−(D̃ − C� Ñ )−1 C� (D̃ − C� Ñ )−1) ∈ Ar×(q+r).

Then, the A-module � defined by (6) satisfies

� = S̃ A(q+r)×(q+r) S, (33)

that is, � is generated over A by the (q + r)2 matrices S̃ Ei
j S, where Ei

j denotes
the matrix defined by 1 in the i th row and jth column and 0 elsewhere, and i,
j = 1, . . . , q + r . Equivalently, if we denote by S̃i the i th column of S̃ and S j the
j th row of S, then we have:

� =
q+r∑

i, j=1

A (S̃i S j ). (34)

Proof By 8 of Theorem 2, we have A : Q = S̃ Aq+r . Therefore, using Example 7,
we obtain:

� = (S̃ Aq+r ) : ((D − N ) Aq+r )

= {T ∈ K r×q | T (D − N ) Aq+r ⊆ S̃ Aq+r }
= {T ∈ K r×q | ∃� ∈ A(q+r)×(q+r) : T (D − N ) = S̃�}.

Hence, if T ∈ �, then there exists� ∈ A(q+r)×(q+r) such that T (D −N ) = S̃�.
Now, using the fact that (D − N ) S = Iq (see 5(b) of Theorem 2), we obtain:

T = T ((D − N ) S) = (T (D − N )) S = S̃� S ⇒ T ∈ S̃ A(q+r)×(q+r) S.

Conversely, if T ∈ S̃ A(q+r)×(q+r) S, then there exists� ∈ A(q+r)×(q+r) such that
T = S̃� S, where S and S̃ satisfy conditions 5(a), 5(b), 6(a) and 6(b) of Theorem 2.
In particular, using 5(a) and 6(a) of Theorem 2, we obtain(

Ñ
D̃

)
T (D − N ) =

((
Ñ
D̃

)
S̃

)
�(S (D − N )) ∈ A(q+r)×(q+r),

showing that T ∈ � and proving (33).
Finally, (34) follows from the same proof as the one given in Proposition 4. 
�

Example 14 Let us consider again Example 13. If c = y/x is a stabilizing con-
troller of p where x, y ∈ Q(A) satisfy (7), then we obtain S = (x y)T and
S̃ = (−y x), and thus, by Proposition 6, the A-module � = S̃ A2×2 S = A x2 +
A x y + A y2 is the fractional ideal of A generated by x2, x y and y2. Now, using
(7), we obtain x y = (y d) x2 − (x n) y2 ∈ A x2 + A y2 because y d, x n ∈ A.
Therefore, we obtain� = A x2+A y2 and the free parameter q of (32) has the form
q = q1 x2 + q2 y2 where q1 and q2 are any elements of A satisfying x + n q �= 0.
Hence, parametrization (32) only depends on two free parameters. See [19] for
more details and examples.
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Combining Propositions 5 and 6, we obtain the second main result.

Theorem 4 Let P = D−1 N = Ñ D̃−1 be a fractional representation of an inter-
nally stabilizable plant P ∈ K q×r , C� ∈ K r×q a stabilizing controller of P and
let us denote by:


S =

(
(D − N C�)−1

C� (D − N C�)−1

)
∈ A(q+r)×q ,

S̃ = (−(D̃ − C� Ñ )−1 C� (D̃ − C� Ñ )−1) ∈ Ar×(q+r).

(35)

Let us denote by S̃i the i th column of S̃ and by S j the j th row of S. Then, all
stabilizing controllers of P are parametrized by

C(Q) = (C� (D − N C�)
−1 + D̃ Q) ((D − N C�)

−1 + Ñ Q)−1

= ((D̃ − C� Ñ )−1 + Q N )−1 ((D̃ − C� Ñ )−1 C� + Q D), (36)

where Q is any matrix which belongs to � =∑q+r
i, j=1 A (S̃i S j ) and satisfies:

det((D − N C�)
−1 + Ñ Q) �= 0, det((D̃ − C� Ñ )−1 + Q N ) �= 0.

Corollary 7 Let P = D−1 N = Ñ D̃−1 be a fractional representation of an inter-
nally stabilizable plant P ∈ K q×r and C� ∈ K r×q a stabilizing controller of P.
Then, with the notations (35), we have:

1. If P = D−1 N is a (weakly) left-coprime factorization of P, then the A-module
� defined by (6) satisfies � = S̃ A(q+r)×q .

2. If P = Ñ D̃−1 is a (weakly) right-coprime factorization of P, then the A-mod-
ule � defined by (6) satisfies � = Ar×(q+r) S.

Proof 1. If we denote by R̃ = (Ñ T D̃T)T ∈ A(q+r)×r , then, by Proposition 2,
we have � = A1×q : Q = {T ∈ K r×q | R̃ T ∈ A(q+r)×q}. Using 6(b) of
Theorem 2, we easily check that S̃ A(q+r)×q ⊆ �, where S̃ is defined by (35).
Now, by 8 of Theorem 2, we have A : Q = {λ ∈ K r | R̃ λ ∈ Aq+r } = S̃ Aq+r .
Hence, every column of T ∈ � belongs to S̃ Aq+r , i.e., T ∈ S̃ A(q+r)×q , which
proves the result.

2. Condition 2 can be proved similarly.

�

Finally, if P admits a doubly coprime factorization

P = D−1 N = Ñ D̃−1, D X − N Y = Iq , −Ỹ Ñ + X̃ D̃ = Ir ,

then, using 3 of Proposition 2, Corollary 2 and Proposition 5 or Theorem 4, we
obtain that C� = Y X−1 = X̃−1 Ỹ is a stabilizing controller of P and all stabilizing
controllers of P are parametrized by (27) where Q is any element of � = Ar×q .
Therefore, parametrization (27) becomes the well-known Youla–Kučera parame-
trization (18) and we find again Corollary 4.

To finish, let us explain the relations between the two parametrizations (15)
and (36).
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Proposition 7 Let P = D−1 N = Ñ D̃−1 be a fractional representation of an
internally stabilizable plant P, � (resp., �) the A-module defined by (2) (resp.,
(6)). Then, we have:

� = D̃� D. (37)

Moreover, if L and L̃ are two matrices satisfying conditions 5(a), 5(b), 6(a) and
6(b) of Theorem 1, then the matrices S = L D−1 and S̃ = D̃−1 L̃ satisfy condi-
tions 5(a), 5(b), 6(a) and 6(b) of Theorem 2. Conversely, if the matrices S and S̃
satisfy conditions 5(a), 5(b), 6(a) and 6(b) of Theorem 2, then the matrices L = S D
and L̃ = D̃ S̃ satisfy conditions 5(a), 5(b), 6(a) and 6(b) of Theorem 1. Hence,
parametrizations (8) and (36) are the same.

Proof Let T ∈ �, i.e., by (6), the matrix T ∈ K r×q is such that we have
(Ñ T D̃T )T T (D − N ) ∈ A(q+r)×(q+r). Hence, if we denote by Q = D̃ T D,
then we have 



Q ∈ Ar×q ,

P Q = Ñ T D ∈ Aq×q ,

Q P = D̃ T N ∈ Ar×r ,

P Q P = Ñ T N ∈ Aq×r ,

which shows that Q ∈ �, and thus, D̃� D ⊆ �. Conversely, let Q ∈ � and let
us denote by T = D̃−1 Q D−1 ∈ K r×q . Then, we have




D̃ T D = Q ∈ Ar×q ,

Ñ T D = P Q ∈ Aq×q ,

D̃ T N = Q P ∈ Ar×r ,

Ñ T N = P Q P ∈ Aq×r ,

which shows that T ∈ �, and thus, we obtain the equality � = D̃� D.
Now, if L satisfies conditions 5(a) and 5(b) of Theorem 1, then the matrix

defined by S = L D−1 ∈ K (q+r)×q satisfies
{

S (D − N ) = L (Iq − P) ∈ A(q+r)×(q+r),

(D − N ) S = D (Iq − P) L D−1 = D D−1 = Iq ,

showing that S satisfies conditions 5(a) and 5(b) of Theorem 2.
Now, if L̃ satisfies conditions 6(a) and 6(b) of Theorem 1, then the matrix

defined by S̃ = D̃−1 L̃ ∈ K r×(q+r) satisfies



(
Ñ
D̃

)
S̃ =

(
P
Ir

)
L̃ ∈ A(q+r)×(q+r),

S̃

(
Ñ
D̃

)
= D̃−1 L̃

(
P
Ir

)
D̃ = D̃−1 D̃ = Ir ,

which shows that S̃ satisfies conditions 6(a) and 6(b) of Theorem 2.
The converse results can be proved similarly.
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Finally, let us show that parametrizations (15) and (36) are in fact the same. Let
L = (U T V T)T and L̃ = (−Ṽ Ũ ) be two matrices satisfying conditions 5(a),
5(b), 6(a) and 6(b) of Theorem 1 and S = L D−1 and S̃ = D̃−1 L̃ the matrices
satisfying conditions 5(a), 5(b), 6(a) and 6(b) of Theorem 2. Then, we have:



X = U D−1,

Y = V D−1,

X̃ = D̃−1 Ũ ,
Ỹ = D̃−1 Ṽ ,

⇔




U = X D,
V = Y D,
Ũ = D̃ X̃ ,
Ṽ = D̃ Ỹ .

Now, using the fact that Q ∈ � has the form Q = D̃ T D for a certain T ∈ � and,
conversely, T ∈ � has the form T = D̃−1 Q D−1 for a certain Q ∈ �, we then
obtain

C(Q) = (V + Q) (U + P Q)−1,

= (Y D + D̃ T D) (X D + P D̃ T D)−1,

= (Y + D̃ T ) D D−1 (X + Ñ T )−1,

= (Y + D̃ T ) (X + Ñ T )−1,

and

C(Q) = (Ũ + Q P)−1 (Ṽ + Q),
= (D̃ X̃ + D̃ T D P)−1 (D̃ Ỹ + D̃ T̃ D),
= (X̃ + T N )−1 D̃ D̃−1 (Ỹ + T D),
= (X̃ + T N )−1 (Ỹ + T D),

which proves the result. 
�
By Proposition 7, we obtain that parametrizations (15) and (36) or, equiva-

lently, parametrizations (8) and (27) are the same but either expressed in terms of
the transfer matrices P and C� (classical approach [35]) or in terms of the sta-
ble matrices D, N , D̃, Ñ , X, Y, X̃ , Ỹ (fractional representation approach [6,33]).
Moreover, Proposition 7 shows that all the results concerning internal stabiliz-
ability stated in terms of fractional representations of P and C can be deduced
from the results only using the transfer matrices P and C and conversely. We have
deliberately chosen to write these results in a rather independent way. We hope that
these redundancies would have some pedagogical virtues by showing different for-
mulations of equivalent results. Moreover, they show that the lattice approach to
analysis and synthesis problems developed in [21] and continued in this paper is
a mathematical framework in which the classical and the fractional representation
approaches can be simultaneously studied by means of similar concepts, methods
and results.

To finish, let us point out that, in his pioneering work [30,31], Sule developed
a parametrization of all stabilizing controllers for a plant which does not necessar-
ily admit doubly coprime factorizations. Unfortunately, this parametrization is not
explicit in terms of free parameters and it requires a large amount of local compu-
tations. Moreover, it exists over a unique factorization domain (UFD or factorial
ring) [26]. We recall that an integral domain A is called a UFD if every non-zero
element of A can be written as a unique product of primes, up to multiplication
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by units and renumbering the prime factors. The next results show that no Banach
algebra over the field of complex numbers C is a UFD.

Theorem 5 We have:

1. [29] Let A be a complex Banach algebra which is also a UFD. If, for every
prime element a ∈ A, the ideal (a) is closed, then A is isomorphic to C.

2. [32] If A is a commutative complex Banach algebra, then every prime element
a ∈ A has close range, i.e., (a) is a closed ideal of A.

We obtain the following direct consequence of the two previous results, answer-
ing to an open question asked in [29].

Corollary 8 A complex Banach algebra which is a UFD is isomorphic to C.

Hence, we cannot use the parametrization of all stabilizing controllers devel-
oped in [30,31] over the non-trivial Banach algebras A, Â and W+. We recall that
we do not know whether or not every internally stabilizable plant defined over A, Â
and W+ admits doubly coprime factorizations. However, we can use parametriza-
tions (15) and (36) or, equivalently, parametrizations (8) and (27), as no restriction
on the integral domain A is required. Let us point out that extensions of the results
of this paper are possible over non-integral domains using techniques similar as
the ones developed in [12].

Finally, Mori [17] has recently developed a parametrization of all stabilizing
controllers for internally stabilizable plants. His parametrization has the advantage
to be more explicit than the one obtained by Sule. However, it is less explicit than
parametrizations (8) and (27) as, for instance, it has not the explicit form of a linear
fractional transformation. Moreover, the set of free parameters is not explicitly
characterized contrary to the A-modules � and � (see (2), (6), Propositions 1, 2,
4 and 6, and Corollaries 3 and 7).

4 Minimal generating systems of � and �

The first purpose of this last section is to give a homological algebra interpretation
of the parametrization of all stabilizing controllers (8) and (27) in terms of split
exact sequences [3,26]. Then, using this new interpretation, we prove that � and
� are two projective A-modules of rank r × q . Finally, this result is used in order
to give an upper bound on the minimal number of free parameters appearing in
parametrizations (8) and (27).

In order to do that, we first recall a few definitions [3,21,26].

Definition 3 We have:

1. 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 is called a short exact sequence of A-mod-

ules if the A-morphisms f and g (i.e., A-linear maps) satisfy that f is injective,
g is surjective and ker g = im f .

2. A short exact sequence is said to be a split exact sequence if one of the following
equivalent assertions is satisfied:
– there exists an A-morphism h : M ′′ → M which satisfies g ◦ h = idM ′′ ,
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– there exists an A-morphism k : M → M ′ which satisfies k ◦ f = idM ′ ,
– there exist two A-morphisms h : M ′′ → M and k : M → M ′ such that the

A-morphisms defined by

φ =
(

g
k

)
: M −→ M ′′ ⊕ M ′, ψ = (h f ) : M ′′ ⊕ M ′ −→ M

satisfy the following relations:

φ ◦ ψ =

(
g
k

)
(h f ) =

(
idM ′′ 0

0 idM ′

)
= idM ′′⊕M ′,

ψ ◦ φ = (h f )

(
g
k

)
= h ◦ g + f ◦ k = idM .

Then, we have M ∼= M ′′ ⊕ M ′.
Finally, we denote a split exact sequence by the following diagram:

0←− M ′′ g←− M
f←− M ′ ←− 0.

h−→ k−→
(38)

3. An A-module M is said to be finitely generated if M admits a finite family of
generators.

4. A finitely generated A-module M is said to be free if M admits a finite basis
or, equivalently, if M is isomorphic to a certain power of A, i.e., there exists
r ∈ Z+ such that M ∼= Ar .

5. A finitely generated A-module M is said to be projective if there exist an A-
module N and r ∈ Z+ such that we have M ⊕ N ∼= Ar , i.e., if M is a direct
summand of a finitely generated free A-module.

6. The rank of an A-module M , denoted by rkA(M), is the dimension of the
K = Q(A)-vector space K ⊗A M formed by extending the scalars of M from
A to K . In other words, we have rkA(M) = dimK (K⊗A M), where⊗A denotes
the tensor product of A-modules.

Let us first start with the following lemma.

Lemma 2 Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be a split exact sequence. Then,

we have the following results:

1. All the A-morphisms h : M ′′ −→ M satisfying g ◦ h = idM ′′ are of the form
h = h� + f ◦ l, where h� : M ′′ −→ M is a particular A-morphism (A-linear
map) satisfying g ◦ h� = idM ′′ and l is any element of homA(M ′′,M ′), namely
any A-morphism from M ′′ to M ′.

2. All the A-morphisms k : M −→ M ′ satisfying k ◦ f = idM ′ are of the form
k = k� + l ◦ g, where k� : M ′ −→ M is a particular A-morphism satisfying
k�◦ f = idM ′ and l is any element of homA(M ′′,M ′), namely any A-morphism
from M ′′ to M ′.

3. Moreover, if k� ◦ h� = 0, then, for every l ∈ homA(M ′′,M ′), we have:


(
g

k� − l ◦ g

)
(h� + f ◦ l f ) =

(
idM ′′ 0

0 idM ′

)
,

(h� + f ◦ l f )

(
g

k� − l ◦ g

)
= idM .
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Proof 1. We easily check that the A-morphism h = h� + f ◦ l : M ′′ → M ,
where l is any element of homA(M ′′,M ′), is a right-inverse of g as we have
g ◦ h = g ◦ h� + g ◦ f ◦ l = idM ′′ because g ◦ f = 0 as (38) is an exact
sequence.
If h1, h2 : M ′′ → M are two A-morphisms satisfying g ◦ h1 = idM ′′ and
g ◦ h2 = idM ′′ , then we have g ◦ (h2 − h1) = 0, i.e., for every m′′ ∈ M ′′, we
have (h2 − h1)(m′′) ∈ ker g. Using the fact that (38) is a short exact sequence,
for every m′′ ∈ M ′′, there exists a unique element m′ ∈ M ′ such that we have
(h2 − h1)(m′′) = f (m′). Let us denote by l : M ′′ → M ′ the A-morphism
which maps an element m′′ ∈ M ′′ to the unique element m′ ∈ M ′ which
satisfies (h2 − h1)(m′′) = f (m′). Then, we obtain h2 − h1 = f ◦ l where
l ∈ homA(M ′′,M ′).

2. Condition 2 can be proved similarly and
3. Condition 3 can be directly checked by computations.


�
Let us recall the following result obtained in [21].

Proposition 8 We have:

1. [21] Let P ∈ K q×r be a transfer matrix, P = D−1 N = Ñ D̃−1 a fractional
representation of P and let us denote by:

R = (D − N ) ∈ Aq×(q+r), R̃ = (Ñ T D̃T )T ∈ A(q+r)×r .

Then, we have the following two exact sequences

0←− L g←− Aq+r f←− A :M←− 0, (39)

0 −→ A : L φ−→ A1×(q+r) ψ−→M −→ 0, (40)

with the notations:

f : A :M −→ Aq+r , g : Aq+r −→ L,
λ �−→

(
P
Ir

)
λ, µ �−→ (Iq − P) µ,

φ : A : L −→ A1×(q+r), ψ : A1×(q+r) −→M,

λ �−→ λ (Iq − P), µ �−→ µ

(
P
Ir

)
.

2. [3,26] If 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 is a short exact sequence and M ′′

is a projective A-module, then the short exact sequence splits.

The next lemma directly follows from Lemma 1 and Examples 3 and 7.

Lemma 3 The A-module � defined by (2) satisfies:

� ∼= homA(L, A :M) ∼= homA(M, A : L).
Similarly, the A-module � defined by (6) satisfies:

� ∼= homA(Q, A : P) ∼= homA(P, A : Q).
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We are now in position to interpret parametrizations (8) and (27) in terms of
split exact sequences. If P is internally stabilized by the controller C∗, then, by 5
and 6 of Theorem 1, L = (U T V T )T ∈ A(q+r)×q and L̃ = (−Ṽ Ũ ) ∈ Ar×(q+r)

satisfy conditions 5(a), 5(b), 6(a) and 6(b) of Theorem 1. Then, the A-morphism
h� : L→ Aq+r defined by h�(µ) = L µ satisfies f ◦ h� = idL, and thus, (39) is
a split exact sequence

0←− L g←− Aq+r f←− A :M←− 0,
h�−→ k�−→

(41)

where k� : Aq+r → A : M is defined by k�(λ) = L̃ λ for all λ ∈ Aq+r . Then,
using Lemma 2, we obtain



(
g

k� − l ◦ g

)
(h� + f ◦ l f ) = idL⊕ (A:M),

(h� + f ◦ l f )

(
g

k� − l ◦ g

)
= idAq+r ,

where, by Lemma 3, the arbitrary A-morphism l belongs to:

homA(L, A :M) ∼= (A :M) : L) = �. (42)

Therefore, every right inverse of g has the form h� + f ◦ l, whereas every left-
inverse of f has the form k� − l ◦ g, where l belongs to the A-module defined by
(42), and thus, we have

L h�+ f ◦l−−−−→ Aq+r , Aq+r k�−l◦g−−−−→ A :M,

ν �−→
(

U + P Q
V + Q

)
ν, µ �−→ (−(Ṽ + Q) (Ũ + Q P)) µ,

for every Q ∈ �. Then, by 5 and 6 of Theorem 1, we finally obtain that every
controller of P has the form (8), where Q is any element of � satisfying (9).

Remark 7 Let us point out that parametrization (8) of all stabilizing controllers was
firstly obtained in [23] by means of the previous module-theoretic proof. Similar
arguments using the split exact sequences defined in Lemma 5 of [21] give another
proof of parametrization (27) of all stabilizing controllers.

Finally, for SISO plants, the split exact sequence (41) was proved in [22] to
be the cornerstone for the development of a module-theoretical duality between
the fractional ideal approach [19,21] and the operator-theoretic approach [5,9,33]
to stabilization problems. In particular, the results of [22] give the general forms
of the domain and graph of an internally stabilizable SISO plant which does not
necessarily admit doubly coprime factorizations, generalizing the different results
existing in the literature. Hence, combining (41) with the approach developed in
[22], we then can extend the previous results for MIMO plants.

Now, using Lemma 3, we obtain the next important result.

Corollary 9 If P ∈ K q×r is internally stabilizable, then the A-module � (resp.,
�) defined by (2) (resp., (6)) is projective of rank r × q.
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Proof The fact that P is internally stabilizable implies that L is a projective A-mod-
ule of rank q (see 7 of Theorem 1 and Remark 1), and thus, by 3 of Proposition 8,
the exact sequence (41) splits and we obtain:

L⊕ (A :M) ∼= Aq+r .

See also 7 of Theorem 1. Then, using the well-known fact that

homA(L⊕M, P) ∼= homA(L, P)⊕ homA(M, P),

(see [3,26] for more details) and Lemma 3, we obtain

A(q+r)×(q+r) ∼= homA(Aq+r , Aq+r )∼= endA(L)⊕ endA(M) ⊕ homA(M,L) ⊕�,
where endA(L) = homA(L,L) denotes the A-module of endomorphisms of L.
Hence, � is a summand of the free A-module A(q+r)×(q+r), i.e., � is a finitely
generated projective A-module (see 5 of Definition 3). Finally, using the fact that
K = Q(A) is a flat A-module [3,26], we obtain:

rankA � = dimK (K ⊗A �) = dimK (K ⊗A homA(L,M))

= dimK (homK (K ⊗A L, K ⊗A M)) = dimK (homK (K q , K r ))

= dimK (K r×q) = r × q.

A similar proof can be obtained for the A-module �. 
�
Let us now study the question of the minimal number of free parameters appear-

ing in the parametrizations (8) and (27). The number of free parameters in these
parametrizations is related to the number of elements in the shortest system of
generators of the projective A-module � (resp., �), i.e., is the cardinal µA(�)
(resp., µA(�)) of the minimal generating system of� (resp.,�). Using 5 and 6 of
Theorem 1, we note that we have

� =
(

P V + Iq
V

)
A(q+r)×(q+r) (−V Ir + V P) (43)

where the matrix V ∈ Ar×q satisfies the conditions:

V P ∈ Ar×r , P V ∈ Aq×q , (P V + Iq) P = P (V P + Ir ) ∈ Aq×r .

See Remark 4 of [21] for more details. But, contrary to the SISO case (see Exam-
ple 10 and [19]), from (43), it is not easy to obtain an explicit minimal family of
generators of �. A similar comment holds for �.

Fortunately, the computation of the cardinal of minimal generating systems is
an active problem in commutative algebra. In order to state Heitmann’s general-
ization of Forster–Swan’s theorem, let us first introduce a few definitions [3,26].

Definition 4 We have:

– An ideal p of A is said to be prime if a b ∈ p and a /∈ p implies b ∈ p. We denote
by Spec A the set of prime ideals of A endowed with the Zariski topology [3,26].
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– An ideal m is called maximal if A is the only ideal strictly containing m.
– The radical Rad(A) of A is the intersection of the maximal ideals of A.
– The Krull dimension dim A of a commutative ring A is the supremum of the

lengths of chains

p0 ⊂ p1 ⊂ p2 ⊂ · · · ⊂ pd

of distinct proper prime ideals of A.
– An A-module M is locally generated by d elements if, for all p ∈ Spec A, we

haveµAp (Mp) ≤ d, where Ap = {a/b | a ∈ A, b ∈ A\p} and Mp = Ap⊗A M
is the Ap-module obtained by extending the scalars of M from A to Ap.

We are now in position to state Heitmann’s generalization of Forster-Swan’s result
using the Krull dimension and without the noetherianity hypothesis.

Theorem 6 [7,10] Let A be a commutative ring of Krull dimension m and M a
finitely generated A-module which is locally generated by d elements, then M is
generated by d + m elements, i.e., µA(M) ≤ d + m.

This result also holds if we take the Krull dimension of the ring A/Rad A.

Let us note that there exist various refinements of Theorem 6 due to Eisenbud
and Evans [7], Heitmann [10] and Coquand et al. [4]. A version of Theorem 6
exists using the concept of the j -dimension j-dim A instead of the Krull dimension
dim A. Such a dimension satisfies j-dim A ≤ dim A [10]. Recently, this result has
even been improved in [4] using the concept of H-dimension H -dim A which sat-
isfies H -dim A ≤ j-dim A. We shall not enter into the details and we only use here
the Krull dimension for a sake of simplicity. We obtain the following corollary of
Theorem 6.

Corollary 10 If A is an integral domain of Krull dimension m, then we have{
µA(�) ≤ r × q + m,
µA(�) ≤ r × q + m,

i.e., the A-module � (resp., �) defined by (2) (resp., (6)) can be generated by
r × q + m elements.

Proof By Corollary 9,� is a projective module over an integral domain A of Krull
dimension m. In module theory, it is well-known that a projective module of rank l
over an integral domain is locally a free module of rank l [3,26]. Therefore, for all
p ∈ Spec(A),�p is a free Ap-module of rank r × q , i.e.,� is locally generated by
r × q elements. Then, the result directly follows from Theorem 6. A similar proof
can be obtained for the A-module �. 
�
Example 15 We have:

– If the transfer matrix P admits a doubly (weakly) coprime factorization
P = D−1 N = Ñ D̃−1, then, by Propositions 1 and 2, we know that � =
D̃ Ar×q D and� = Ar×q , i.e.,� and� are two free A-modules of rank r ×q .
Therefore, a minimal generating system of� is defined by {D̃i D j }1≤i≤r,1≤ j≤q ,
where D̃i (resp., D j ) denotes the i th column (resp., j th row) of D̃ (resp., D).
Similarly, a minimal generating system of � is defined by {Ei

j }1≤i≤r,1≤ j≤q ,
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where Ei
j is the matrix defined by 1 in the i th row and j th column and 0

elsewhere.
– The Krull dimension of the ring A defined in Example 11 equals 2. Therefore,

by Corollary 10, we have µA(�) ≤ r × q + 2 and µA(�) ≤ r × q + 2.
– The ring A = Z[i√5] considered in [1,16,17,19] is a Dedekind domain, and

thus, the Krull dimension of A equals 1 [3,18,26]. Therefore, by Corollary 10,
we have µA(�) ≤ r × q + 1 and µA(�) ≤ r × q + 1.

The Krull dimensions of the rings A, Â and W+ will be investigated in the
future.

5 Conclusion

In this paper, we have obtained a general parametrization of all stabilizing control-
lers of a MIMO stabilizable plant which did not necessarily admit doubly coprime
factorizations. This new parametrization is a linear fractional transformation of the
free parameters and the set of free parameters has been characterized. Moreover, if
the transfer matrix admitted a doubly coprime factorization, then we have shown
that the general parametrization became the standard Youla–Kučera parametriza-
tion of all stabilizing controllers. Finally, the study of the minimal number of free
parameters appearing in this parametrization was reduced to the knowledge of the
minimal generating systems of the two finitely generated projective modules �
and�. Using Heitmann’s generalization of Forster-Swan’s theorem, we then gave
upper bounds on the cardinal of the minimal generating systems of� and�, i.e., on
the minimal number of free parameters appearing in this general parametrization
of all stabilizing controllers.
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