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Abstract—1In this paper, within the constructive alge-
braic analysis approach to linear systems, we study clas-
sical linear systems of partial differential (PD) equations
in two or three independent variables with constant coeffi-
cients appearing in mathematical physics and engineering
sciences such as the Stokes and Oseen equations studied
in hydrodynamics. We first provide a precise algebraic
description of the endomorphism ring of the left D-module
associated with a linear PD system. Then, we use it to
prove that the endomorphism ring of the Stokes and Oseen
equations in R? is a cyclic D-module, which allows us
to conclude about the decomposition and factorization
properties of these linear PD systems.

I. INTRODUCTION

Within the constructive algebraic analysis approach to
linear systems theory developed in [2], [4], we study lin-
ear systems of partial differential (PD) equations in two
independent variables with constant coefficients classi-
cally encountered in engineering sciences and mathemat-
ical physics (e.g., Stokes/Oseen/Euler/Maxwell equa-
tions). Since these linear PD systems can be written as
Rn =0, where R € D?7*P is a ¢ X p matrix with entries

in the commutative polynomial ring D = k[0, 0]
or D = k[0, 0z,0,] of PD operators in J, = %,
Oy = a% and 0; = % with coefficients in a field k,

they can be interpreted as linear 2-dimensional systems.
As explained in [2], a linear PD system can be studied
by means of the left D-module M = D'*? /(D% R),
finitely presented by the matrix R of PD operators, and
its dual homp (M, F) ([9]), where F is a left D-module.
Indeed, according to Malgrange’s remark ([8]), the linear
PD system kerz(R.) = {n € FP | Rn = 0}, also called
behaviour, satisfies kerz(R.) = homp (M, F). Hence,
the linear PD system ker #(R.) can be studied by means
of the two D-modules M and F. In this paper, we shall
study properties of kerx(R.) inherited from the alge-
braic properties of the D-module M, especially those of
the endomorphism ring endp (M) = homp (M, M). We
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focus on the factorization and decomposition problems
for these classical linear PD systems and particularly the
Stokes and Oseen equations. The Euler and Maxwell
equations ([6]) can be studied similarly.

II. ENDOMORPHISM RING
A. Characterization of endp (M)

We shall give a precise description of the endomor-
phism ring endp(M) of M in terms of generators,
relations and multiplication tables. An algorithm to
compute such a representation is given. As shown in [4],
the existence of a D-endomorphism f : M — M is
equivalent to the existence of two matrices P € DP*P
and Q € D7%7 such that R P = () R. Moreover, we
have f(m(\)) = m(AP) for all A € D'*P. Such an
endomorphism is defined up to homotopy equivalence.
Thus, the ring endp (M) can be written as the quotient
of two left D-modules endp(M) = A/(DP*?R),
where A = {P € DP*?|3Q € D?*?: RP = QR}.
Let us first compute a family of generators of A. Let
E € D?P and F € D"* be two matrices with entries
in a ring D. Then, the Kronecker product of E and F,
denoted by E ® F', is the matrix defined by:

EnF Ey F

E®F = € Dlamx@s),
Eq F E,p F
If D is a commutative ring, £ € D"™*4, F € D*P
and G € DP*™ and row(F) € D'*7P denotes the row
vector obtained by concatenating the rows of F, then
the product of the three matrices can be obtained by:

row(E FG) =row(F) (BT ® G).
Consequently, we have
{ row(R P) = row(R P I,) = row(P) (R ® L),
row(Q R) = row(I, Q R) = row(Q) (I, ® R),



so that

RP=QR < (row(P) —row(Q)) L =0,

where the matrix L is defined by:

T
L= Rl c pW’+a®)xap
I,®R

Now, there exists a matrix Lo € Ds*(P*+4*) guch that
kerp(.L) = D'** Ly. Stacking the rows of Lo, we find
a set of matrices {P;},=1.. s and {Q;}i=1, . s, where
P, € DP*P and Q; € D9%*4, satisfying the relation
RP,=Q;Rfori=1,...,s. Moreover, we can easily
check that every solution P € DP*P and Q € D?*? of
R P = @ R has the form

P = Zle Q; F)ia

Q= Zf:l a; Qi,
where the «;’s are arbitrary elements of D, i =1,...,s,
ie., {P}i=1,.s is a set of generators of the left
D-module A. Therefore, the set {P;};,=1,. s of the
residue classes of the matrices P;’s in the D-module
A/(DP*1 R) = endp (M) generates A/(DP*1R), i.e.,
endp (M) up to isomorphism. If we consider

, P.=P, + ZiR,
Vi=1,...,s, _
Q; = Qi+ RZ,

for certain matrices Z; € DP*, then P; and Q; satisfy
the relation RP; = Q; R for i = 1,...,s, ie., they
induce f; € endp (M) defined by:

filw(N)) = m(A P),

Then, {f;}i=1,..s is a family of generators of
endp(M). A D-linear relation ijl d; f; = 0 between
the f;’s is equivalent to the existence of Z € DP*4
satisfying >-°_, d; Pj = Z R, i.e.

vV X e DY*P, i=1,...,s.

S5y djrow(P;) —row(Z) (I, ® R) = 0
row(P1)

& (dy ... ds —row(Z)) =0.

row(Py)
I,®R
If we introduce the matrices
U = (row(P)T ... row(PS)T)T € Ds*P’,
V=1,8 Re Dvoxr’ (1)
W =UT V)T e Distpaxr’,

then there exist X € D'** and Y € D'*P¢ satisfying
kerp(\W) =D (X —Y).IfY;; denotes the i x j

entry of the matrix Y and fori=1,...,1,
Yii ... Yig
}/i,(q+1) Y;Qq
Z; = € DP*4,
Yi(p-1)qt1 Yipq

then 25:1 Xij fj = Z; R, and thus the f;’s satisfy the
following D-linear relations:

S Xuf=0, =1L @
j=1

Hence, endp (M) =2 D¢ /(D! X), i.e., endp (M) is
finitely presented by X € D!*s.

Now, we note that
A={PeDP?|3Q e D™ :RP=QR}

is also aring. Indeed, 0 € A, [,, € Aand if P, P> € A,
ie., RP, = @1 Rand R P, = Q5 R for certain matrices
@1, Q2 € D?*9, then we have

R(P+ P) = (Q1+Q2) R,
R(P, P) = (Q1Q2) R,

so that Pi+ P € A and P; P, € A. The other properties
of a ring can easily be checked. The ring A is generally
a noncommutative ring since P, P» is generally different
from P, P;. Moreover, I £ DP*9 R is a two-sided ideal
of A.Indeed, if P;, P, € Aand Z1 R, Z5 R € I, where
Z; € DP*1 for i = 1, 2, then:

P (Z1 R) + Py (ZQ R) = (Pl Z1+ Py Zg) R,
(Zl R) P+ (ZQ R) Py, = (Zl Ql + Zs Qz) R.

Hence, B = A/I is generally a noncommutative ring
and k = id, ® m : A — B is the canonical projection
onto B. In particular, the product of B is defined by:

Y P, Py GA, H(Pl)H(PQ):FL(Pl PQ)

We call opposite ring of B, denoted by B°P, the ring
defined by B as an abelian group but equipped with the

opposite multiplication defined by:
Va,be A, bea=uab.

If $ : B — endp(M) is the abelian group isomor-
phism defined by

VAeDP, g(r(P))(x(N) = (A P),



and f1 = ¢(k(Py)) and fo = ¢(k(P)), then
VAEDYP, (faof1)(m(N) = ¢(r(Pr) k(P2))(m(N)),
i.e., using the opposite ring B°P, we obtain:
P(k(P2) @ £(P1)) = ¢(k(P1) K(P2))
= 0(r(P2)) o ¢(r(P1)).

Moreover, ¢(x(I,)) = idas, which proves that ¢ is a
ring isomorphism, i.e., endp (M) = B°P,
The ring structure of end (M) can be characterized

by the knowledge of the expansions of the f; o f;’s in
the family of generators { fi}r=1,. s fori,j=1,...,s:

s
VZ7J:177S, floszzvl]kfka ’ngkED

k=1

3)

The v;;1’s look like the structure constants appearing

in the theory of finite-dimensional algebras. Hence, if

F = (fi ... fs)T, then the matrix T' formed by the

Vijk satisfies '@ ' =T'F. I' is called a multiplication

table in group theory. Finally, if D(f1, ... fs) is the free
associative D-algebra generated by the f;’s and

I:<Z;:1Xijfj7 i=1,...,1,
fio fi = 2 py ik frs 1,5 =1,...,8)
is the two-sided ideal of D generated by the polynomials

corresponding to the identities (2) and (3), then the
noncommutative ring endp (M) is defined by

endp(M) = D{f1,... fs)/I, 4

which shows that endp(M) can be defined as the
quotient of a free associative algebra by a two-sided
ideal generated by linear and quadratic relations.

Algorithm 1: o Input: A matrix R € D?*P de-
fined over a commutative polynomial ring D over
a computational field k.

o Output: A finite family of generators {f1,..., fs}
of the endomorphism ring endp(M) of the D-
module M = D'*P/(D'*9R) and a set of D-
linear relations of the f;’s generating the D-module
structure of endp (M).

RT® I,
2) Compute Ly € D3*@®*+4) saisfying:
kerp(.L) = D'** Ly.
3) Construct P; € DP*P and @); € D?7*? defined by
Pi(j.k) = L(i,(j —1)p + k),
Qi(l,m) = —L(i,p> + (1 = 1) ¢ + m),

1) Compute L = (

forj=1,....,p, k=1,...,p,l=1,...,q and
m =1,...,q, where L(, j) denotes the i X j entry
of the matrix L, for ¢ = 1,...,s. Then, we have:

Vi=1,...,s, RP,=Q;R.

4) Compute a Grobner basis G of the rows of R for
a total degree order.

5) For i« = 1,...,s, reduce the rows of P, with
respect to G by computing their normal forms
with respect to G. We obtain the matrices P;
which satisfy P; = P;+ Z; R, for certain matrices
Z; € DP*7 which can be obtained by means of
factorizations.

6) For ¢« = 1,...,s, define the following matrices
Q, = Q; + RZ;. The pair (P;,Q;) then satisfies
the relation RP;, = @Q; R and the D-module
endp(M) is finitely generated by {fi}i=1,. s,
where f; € endp(M) is defined by:

YAe DY fi(n(N) = T(APy).

7) Form the matrices U, V and W defined by (1).

8) By means of syzygies computations, compute
(X —Y), where X € D* and Y € D'*P?,
such that kerp(.W) = D! (X —Y). Then,
the family of generators {f;};=1,. s of the D-
module endp (M) satisfies the D-linear relations
XF =0, where F=(f ... f)T,ie:

endp (M) = D¢ /(DY X).

9) For¢,5 = 1,...,s, compute the normal form of
row(P; P;) with respect to a Grobner basis of
the D-module D'*(5+79) 17/ With these normal
forms, form the matrix (I'; Tg) € D*x(s*+pa)
where T; € D*** and Ty € D* *P4. Then,
the matrix I'; defines the multiplication table of
family of generators {f;}i=1,.. s of endp(M).

Algorithm 1 is implemented in the OREMORPHISMS
package ([S]) built upon OREMODULES ([3]).

B. Cyclic D-module endp (M)

We recall that a D-module M is called cyclic if there
exists m € M which generates M as a D-module, i.e.:

M=Dm={dm|de D}.

Let us consider the Oseen equations in R? defined by

{(’itu—VAﬂ'—i—(l;.ﬁ)ﬁ—i—ﬁp:O, 5)
V.u=0,

where « denotes the velocity, p the pressure, v the
viscosity, b = (by b2)T a steady velocity, V =



(8, 9,)"., A = 02 + 02 the Laplacian operator in
R2. The Oseen equations descrlbe the flow of a viscous
and incompressible fluid at small Reynolds numbers (lin-
earization of the incompressible Navier-Stokes equations
at a steady state) ([7]). Let D = Q(v, b1, b2)[0y, Oz, 0]
be the commutative polynomial ring of PD operators
with coefficients in the field Q(v, by, ba),

L 0 0,
R=| 0 L 9, | eD¥3,
dp 0y, 0

where L = 8, +b.V —v A, M = D3 /(D3 R) the
D-module finitely presented by R and 7 : D'*3 — M
the canonical projection onto M. Using Algorithm 1,
we find that the endomorphism ring endp (M) of M is
defined by the family of generators {f;};=1,.. 5, where
filr(N) = (A P;) for all A € D*3 and:

0 -9, 0
P=13, Py= 0 8;,, 0 ,
0
0 0
Ps=]0 0 )
0 0 (8t+616 + b2 0y
0 V Oy Oy 0
Pi=| 0 —(0+b10:+b20y+v0;) =0, |,
0 0 v
0 9y (0 +b20, —v0}) o2
Ps=1| 0 —0,(0+b20,—v0;) —0y Oy
0 0 02 (v 9y — by)

The generators f;’s of endp (M) satisfy D-linear rela-
tions. Using Algorithm 1, we obtain that a generating
set of D-linear relations between the generators f;’s of

endp (M) is defined by L(f1 ... f5)T =0, where
Og -1 0 0 0
a —b1 -1 -1 0
0 —v 0y 0 —1 0
L = )
0 b —V 8L —bl —UV
0 —v%20, 85 —v 65 —(0: +b20y) V0.
0 0 0 V0, — b1 —v
and:

a = *815 - any + 1/33,
b=—-v (8t + by 0, +b2(’)y - V@g)
Now, following an idea developed for Serre’s reduction

(see [1]), if weset A= (1 0 ...0)€ D> and P=
(LT AT)T € D™5, then we can check that P admits a

left-inverse S over D, which implies D*5/(D*7 P) =
0. The matrix S can be computed using the package
OREMODULES ([3]). Since D6 L C D7 P, the
classical third isomorphism theorem in module theory
(see, e.g., [9]) yields the short exact sequence

0 —s (D1><7P)/(D1><6 L) _ D1><5/(D1><6 L)
_ D1><5/(D1><7 P) =0,
e, D3/(DY*S L) = (D7 P)/(D'6 L), which
proves that the D-module N = D'*5/(D'*6 L) of the
D-linear relations between the generators {f;}i=1, .5

of endp (M) is cyclic and is generated by the residue
class of A in N. If § = (S; Sy), S € D>*6,

Sy = (521 SQ5)T € D° then S1 L+ Sy A = I
and since L f = 0, where f = (f1 f5)T, and
A f = f; =idy, we obtain
f=S1(Lf)+S2(Af)=S>f1,
fi=fi,
f2:amf17
< f3:_(at+blaz+b2ay_VA)fla
f4:—Va§f1,
f5:78§ (u@mfbl)fl.

Therefore, for every f €
di,...,ds € D such that

5 5
F=>difi= (ZdiS%) fr,
=1 =1

which shows that the endomorphism ring endp (M)
is generated as a D-module by f; = idy, ie,
endp(M) = D f; is a cyclic D-module.

endp (M), there exist

The same technique can be applied to the Stokes,
Euler or Maxwell equations in R2.

Theorem 1: Let D be the appropriate commutative
polynomial ring of PD operators with coefficients in a
field k. Moreover, let R € D?%P be the system matrix of
the Stokes, Oseen, Euler or Maxwell equations in R2 and
M = DY*?/(D'*4 R) the D-module finitely presented
by R. Then, the endomorphism ring endp (M) of M is
a cyclic D-module generated by idy,.

III. DECOMPOSITION PROBLEMS

A. Indecomposable D-modules

We recall that a D-module M is called decomposable
if there exist two proper D-submodules M; and M, of
M such that M = My & My ([9]). If a D-module M is
not decomposable, then M is said to be indecomposable.
One can prove that the D-module M is decomposable



iff the endomorphism ring £ = endp (M) of M admits
a non-trivial idempotent, namely, e € E \ {0,idp}
satisfying e2 = e. For more details, see, e.g., [4], [9].

The goal of this section is to use Theorem 1 to
conclude about the (in)decomposability of the finitely
presented D-module M associated to the Stokes, Oseen,
Euler or Maxwell equations, and thus of the correspond-
ing linear PD system kerz(R.).

We continue with the Oseen equations studied in Sec-
tion II-B. Let us determine the annihilator of the genera-
tor f1 =idy of E = endp(M), ie., annp(f1) = {d €
D | d fy = 0}. First, using Grobner basis techniques,
we compute kerp(.P) and we obtain kerp(.P) =
DY 2(Ty Ty), where Ty € D?*6 and:

=0 —1?A@B+b.V-—vA) €D
Moreover, we have L = (Is 0) P, which yields ([4])
D1><5/(D1><6 L) _ (D1><7P)/<D1><6 L)

gD1x7/ Dix8 Ty
Iy O

~ D/(DV*Ty)
=D/(D(A(O+b.V —vA))),
ie., annp(fi) = D (A (0, +b.V — v A)), and thus:
E =D f; = D/annp(f1).

Let us study the idempotents of E = Didy. If o € D
then e = aidy; € E is an idempotent of E iff e2 —e =
(a? —a)idys = 0, i.e., iff there exists 3 € D such that:

ala—1)=BA0,+b.V —vA). (6)
We first study two simple solutions of (6) leading to
the trivial idempotents 0 and id; of E.

o IfA(,+b.V—vA) divides o, i.e., if there exists
~v € D such that « = (9 +b.V — v A), then:

e=«idy = 0.

o If A9, +b.V —vA) divides o — 1, ie, a =
14+7v(0:+b.V —vA) for a certain y € D, then:

€ = Otid]w = ldM

We can check that A and 0; + b.V — v A are two
irreducible polynomials over the field k = Q(v, by, b2)
and their greatest common divisor is 1. Hence, the only
two reminding possibilities of (6) are:

e A divides o and 8; +b.V — v A divides o — 1,

ie,a=yAand a =1+~ (8 +b.V—vA),
for certain v, 4" € D, which yields

YA = (8, 4+b.V —vA) =1,

which is impossible since:
(A0 +b5.V—vA)=(A,8,+b.V)C D.

o A divides o — 1 and 9, + 5.V — v A divides o,
ie,a=1+vAand a =+ (0 +b.V —vA),
for certain 7, v’ € D, which yields

V(O +b.V—vA) —yA=1,

which is impossible.

The above results can be also understood as follows:
if I =(A)and J = (8,+b.V—vA), thenI.J=1INJ
since ged(A, 8, +b.V —vA) =1, I and J are two
prime ideals (i.e., I J = INJ is a prime decomposition)
and the Chinese remainder theorem then shows that
D/(INnJ)y=D/(IJ)=2D/I®D/Jiff I+J =D
but I +.J = (A8, +b.V—vA)CD.

Over the new ring D' = Q(v, b1, bs,1)[0, 0x, 0y,
where ¢ denotes the complex number, we have

A= (0, +i0,) (0, —id,)

and 0; + b.V — v A is irreducible (over any algebraic
closure k of k = Q(v, b1,b2)). Then, we can similarly
prove that the corresponding module is indecomposable.

Finally, within implicit schemes of the time dependent
Navier-Stokes, the term J; u in (5) is replaced by cu,
where the constant ¢ corresponds to the inverse of the
time step. We can redo the previous computations in this
case and prove that the endomorphism ring endg(N)
of the corresponding E = Q(v, by, ba, ¢)[0,, Oy]-module
N is a cyclic E-module generated by idp, which is
isomorphic to the E-module E/(A (v A—b.V —c)). In
particular, this result is also true when b; = 0 or by = 0.
We note that the case by = by = 0 corresponds to an
implicit scheme of the time dependent Stokes equations.
Then, ¢ = aidy € endg(N), where a € D, is an
idempotent of endg(N) iff:

ala—1)=BAWA—-b.V —c). (7)

Since A and ¥A — b.V — ¢ are irreducible over
Q(v, by, ba, ¢), non-trivial solutions of (7) are then:
o Adivides a and v A —b.V — ¢ divides o — 1, i.e.,
a=yAand o =1+~ (VA —-b.V —c), for
certain v, v/ € D, which yields:

’yA:l—!—’y/(yA—l_)’.ﬁ—c).

In particular, we must have degy = deg~’ and
(vy=—vyH)A +9'b.V 4+ ¢—1= 0. Moreover,
~' must be a constant as if degy’ > 0, then the
constant 1 cannot be cancelled. Then, we obtain
y=vy,9b =0,vby=0and v c=1,ie,



~v" = 1/c which yields v'b; = b;/c = 0, ie,
b; = 0, for ¢ = 1, 2. Hence, if by = by = 0, then
a = (v/e) A is a non-trivial solution of (7) and
e = (v/c) Aidy is a non-trivial idempotent of F
and M is a decomposable D-module.

e Adivides a—1and v A —b.V — c divides a, i.e.,
a=14+~Aand a =~ wvA—-b.V —c), for
certain v, v/ € D, which yields:

1+~vA :'y/(VA—l_)’.ﬁ—c).
In particular, we must have deg~y = deg~’ and

(v=vy)A+~b.V++9c+1=0,

and thus degy’ = 0 and v'¢ = —1, v = vv/,
~"by = 0 and v by = 0, ie.,, ¥/ = —1/c, which
yields v'b; = —b;/c = 0, ie., by = by = 0.

Therefore, if by = be =0, then @ = 1 — (v/c) A
and e = aidys is a non-trivial idempotent of M
and M is a decomposable D-module.

Similar studies for the Euler or Maxwell equations in
R? can be performed. We summarize the main result of
this section in the following theorem.

Theorem 2: Let D be the appropriate commutative
polynomial ring of PD operators with coefficients in a
field k. If R € D?*P is the system matrix of the Oseen,
Euler or Maxwell equations (resp., Stokes) in R? and
M = DY*? /(D4 R) the D-module finitely presented
by R, then the D-module M is indecomposable (resp.,
decomposable).

B. Closed-form solutions of the Stokes equations in R?

We consider an implicit scheme of the time dependent

Stokes equations, namely:
—VAﬁ—i—cﬁ—i—ﬁpzo,
o ®)
V.u=0.

Let D = Q(v,c)[0s,0,] be the commutative polyno-
mial ring of PD operators with coefficients in the field
Q(v,c¢), R the presentation matrix of (8) defined by

-vA+c 0 Ox
R= 0 —vA+c 0, | €D¥3 (9
Oy dy 0

and M = D'*3/(D**3 R) the D-module finitely pre-
sented by R. In Section III-A, we proved that M is
decomposable when ¢ # 0. The matrices

P:Q:(l—%A) I

define f € endp(M) by f(w(N)) = w(AP) for all
A € DIX3 where m : D3 — M is the canonical

projection onto M. Then, using results obtained in [4],
we get coim f = D1¥3/(D1*4 ), where

—c0Oy cOy 0
g ved, 0y ¢l —c) —co,
—c O, —c0Oy 0 ’
c(vA—c) 0 —c0Oy
and ker f = D4 /(D4 (LT ST)T), where
] 0 0 0 1
L=—|wvd. 100 |,
0 0 1 0
and Sy = (v 85 —c —0; 0 0y) (see [4]). Using a

Grobner basis computation, we get:

A¢ =0,
S¢(=0 & cCo+0y¢3=0,
cC+0: (=0,
G=-20:,
1
N C2=—anC37
G =G,
A3 =0.
Moreover, we have:
Ty = —V 0y T1,
< L )7':0 & =0,
So T4 =0,
(vA—-c)m =0.
Finally, we have Uy L + Uz So + SV = I, where
0 O 0 -1
U, — 0 0 0 Ug—l 0
0 0y —c |’ c 0 ’
0 0 0 v,
v, 0 0 1
V:—C% 0 1 0 0 ,
V20,0, vd, 0 v,

i.e., M = ker f @ coim f ([4]). We note that Uy, Us and
V' can be computed using the package OREMODULES
([31). Then, we get (u; up p)T =(+Vr,ie,

up = —% (C%Cs-i-%ayﬁ),

Uzzl (—87,@34‘%3171)7

p:<37

o



where (3 (resp., 71) satisfies the PD equation A (3 =0
(resp., (VA —¢c)m =0).

C. Decomposition of the Stokes system

We now apply results developed in [4] to obtain
a decomposition of the matrix R defined by (9) and
defining the Stokes equations (8). More precisely, if

GLy(D) =
{UeDr? |3V eDP?: UV =VU=1,},

then we compute two matrices U € GL3(D) and
V € GL3(D) such that R = V RU~! is a block-
diagonal matrix. All the calculations can be performed
by means of the OREMORPHISMS package ([5]) built
on OREMODULES ([3)).

The isomorphism M 2 ker f & coim f was proved
in Section III-B. The matrices P = Q = (1 — 2 A) I3
define an idempotent e € endp (M ). Moreover, we have
P? = P+ Z R, where Z € D3*3 is defined by:

Z =
—85 0z Oy 0 (VA —¢)
5 8, 9, —92 9,(vA o)
0, WA —¢) 9,(vA—-c) (A-c)?

Searching for solutions A of the algebraic Riccati equa-
tion A\RA+ (P —I5) A+ AQ+ Z =0 ([4]) of order
2, we obtain the following solution

. -1 0 0
A = — 0 —1 0 9
&
v, vdy v(vA-—c)
which yields the following idempotent matrices
0 0 0,
P=P+AR=—— 1|0 0 9, |,
0 0 —c

02 0,0, 0, (VA-—c)

Q=Q+RA=-| 0,9, & 09,(vA-c) |,
-8, -9, —vA+e
ie, P = P,Q° = Q and RP = QR, which

finally shows that the idempotent e can be defined
by means of the idempotent matrices P and (). For

more details, see [4]. Since P- = P and @2 = Q.
the D = Q(v, ¢)[0x, 9y]-modules kerp(.P), imp(.P),

kerpp(.Q)) and imp (.Q)) are projective (see [4]), and thus
free by the Quillen-Suslin theorem ([9]). Syzygy module

computations yield kerp(.P) = D3 X, kerp(.Q) =
DY*3 Y where

c 0 O 1 0 v,
X=| -0, 9, 0 Y= -0, 0, 0
0 c Oy 0 1 v,

imp(.P) = kerp(.(Is — P)) = D(0 0 1) and
imp(.Q) = kerp(.(I3 —Q)) =D (0. 9, vA-c).
The matrix X does not define a basis of kerp(.P) since

rankp(kerp(.P)) < 2 and X has three rows. A similar

comment holds for Y and kerp(.Q)). Hence, the rows
of X and Y are not D-linearly independent, i.e.:

kerp(.X)=D (-0, —c 0y),
kerp(.Y)=D (-9, —1 0,).

Hence, if X;o denotes the i™ row of X, then we have

CX20 = _8y Xlo + 8x XSO;
5/20 = _8y Ylo + a.L Y3o-

Consequently, a basis of kerp(.P) (resp., kerp(.Q)) is
defined by the first and third rows of X (resp., Y), i.e.,
kerp(.P) = D2 Uy, kerp(.Q) = D'*2 Vi, where:

U_c()am
1_Oc[“)y’

1 0 vo,
Vl:(o 1 yay>’
c 0 O,
U=|0 ¢ 0, | €GLyD),
0 0 1
=
1 0 v 0O,
V= 0 1 v Oy € GL3(D).
0 Oy VA—c

Thus, using [4], the matrix R is equivalent to:

7Va§76 v 0y Oy 0
C C

R=VRU'= vd, 9,  vdi-—c 0
Cc C

0 0 A

Now, applying Algorithm 1 to the D-module O =
D2 /(DY*2T) finitely presented by the first diagonal
block T of R, we obtain that endp(O) is finitely
generated by {g;}i=1,.._4, where the g;’s are defined by



gi(k(\)) = k(A P;) forall A\ € D% and i =1,... .4,

P 0 v0,0, P
1 — 0 1/3570 ) 2 — 12,
P 0 —yaj [0 <oy
3 — ) 4 = )
0 19,0, 0 —cd,

and x : D'*2 — O is the canonical projection. More-
over, the g;’s satisfies the following D-linear relations:

-1 1/85—0 0 0
0

—c 0 vV Oy g

9, 0 8, 1 S
0  co, 0 1 g3
0 0 c vy o

The previous D-linear relations show that endp(O) is a
cyclic D-module generated by g» = idp since we have
g1= (92 —¢) g2, g3 =1y 0y g2 and gy = —c O, ga.
where go satisfies (VA —c¢) g2 =0, i.e.

endp(O)=Dgs = D/(v A —c).

Hence, if & € D, then e = ags is an idempotent of
endp(O) iff e? = e, i.e., iff there exists 8 € D such that
a(a—1) =8 (v A—c). Since v A —c is an irreducible
polynomial (see Section III-A) and o and o — 1 do not
admit a common factor since « + (v — 1) = 1, then
v A — c either divides « or « — 1, ie., a =y (VA —¢)
ora = 1+~v(WA —¢), for a certain v € D, which
shows that we either have e = v (v A —¢)g2 = 0 or
e = (14~ (¥ A—c)) g2 = g2. Therefore, endp(O) only
admits the trivial idempotents 0 and idp, which finally
proves that O is an indecomposable D-module and 7" is
not equivalent to a diagonal matrix over D.

IV. FACTORIZATION PROBLEMS

Finally, we investigate the possible factorizations of
the form R = LS of the linear PD systems considered
above. The existence of such a factorization is equivalent
to the existence of a non-injective element in end p (M)
(see [4]). Now, f = didy; defines a non-injective D-
endomorphism iff there exists 0 # m € M such that
f(m) = dm = 0, ie., iff m is a non-trivial torsion
element of M and d € annp(id,s). Consequently, com-
puting a primary decomposition annp (idys), i.e., find-
ing the possible factors of a generator of annp(idys),
we get all the possible factorizations. For instance, if
we consider again the Oseen equations given by (5),
then the endomorphisms of M defined by f; = Aidy,
and fo = (0 + b.V — vA)idy are not injective
since (8; +b.V —vA)fy = 0and Af, = 0 and

thus f1((8; +b.V —vA)m) = 0 and fo(Am) = 0
for all m € M. Then, R admits the two non-trivial
factorizations R = L1 S; and R = Lo S5 where

00 1 0
Li=|l00 0 1],
01 00
v O, v 0Oy -1
D dy 0
Sy = Lo
o +b.V—-vA 0 .
0 & +b.V—-vA 9,
0 0 0 -1
Ly=| bi-vd -1 0 0 |
0 0 -1 0
~9, D 0
g, — (Vdy —b1)0, —ba0y, — 0 +vd,> -9,
~0: ~9, 0
VA -8, —b.V 0 —0,

In particular, the matrices S; and S are such that
coim f; = D*3/(D'*3 ;) for i = 1,2. They can be
computed using the package OREMORPHISMS ([5]) and
then, L1 and Lo are easily obtained by means of a fac-
torization which can be computed by the OREMODULES
package ([3]). Similar factorizations for the Stokes,
Euler or Maxwell equations in R? can be obtained.
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