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Abstract— Using new results on the general Monge
parametrization (see [25] and the references therein) recently
obtained in [21], i.e., on the possibility to extend the con-
cept of image representation to non-controllable multidimen-
sional linear systems, we show that we can transform some
quadratic variational problems (e.g., optimal control prob-
lems) with differential constraints into free variational ones
directly solvable by means of the standard Euler-Lagrange
equations. This result generalizes for non-controllable multi-
dimensional linear systems the results obtained in [11], [19]
for controllable ones. In particular, in the 1-D case, this result
allows us to avoid the controllability condition commonly
used in the behavioural approach literature for the study of
optimal control problems with a finite horizon and replace it
by the stabilizability condition for the ones with an infinite
horizon.

Keywords— Monge problem, parametrizability, multidi-
mensional optimal control, variational problems, controlla-
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I. INTRODUCTION

Let D = A[∂1, . . . , ∂n] be a ring of differential operators
with coefficients in the differential ring A (e.g., A =
R, R[x1, . . . , xn], R(x1, . . . , xn)), ∂i = ∂/∂xi. Moreover
let R ∈ Dq×p be a matrix of differential operators and F
a left D-module (e.g., C∞(Rn)), namely, it satisfies:

∀ P1, P2 ∈ D, ∀ y1, y2 ∈ F : P1 y1 + P2 y2 ∈ F .

A linear system of partial differential equations (PDEs) is
then defined by:

kerF (R.) , {η ∈ Fp | R η = 0}.

kerF (R.) is called behaviour in the behavioural approach
to multidimensional linear systems ([11], [13], [24]).

The classical Monge problem questions the existence
of a matrix of differential operators Q ∈ Dp×m which
satisfies:

kerF (R.) = imF (Q.) , QFm.

See [25] for more historical details. If such a matrix
Q exists, then we say that Q is a parametrization
of the system kerF (R.). In the behavioural approach
to multidimensional linear systems, we say that the
behaviour kerF (R.) admits an image representation
([11], [13], [18], [24]). We refer to [3], [22] for an
introduction to the Monge problem and new results. It
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was shown by Pillai and Shankar that the existence of
a parametrization of a multidimensional linear system
defined by PDEs with constant coefficients is equivalent
to the C∞-controllability of the system in terms of the
possibility to patch two solutions ([11]). This last result
extends for n-D linear systems with constant coefficients
a result of J. C. Willems obtained for 1-D linear systems
([13]). See also [14], [16], [17].

Multidimensional optimal control theory has recently
been developed in [11], [14], [19], [20]. Let us recall one
of the main results. We refer to [11], [14], [19], [20] for
more mathematical information.

Theorem 1 ([11], [14], [19], [20]): Let R ∈ Dq×p, F
a left D-module and kerF (R.) = {η ∈ Fp | R η = 0} a
linear system of PDEs of order r. Let us suppose that we
have the following parametrization

η = Qξ, ∀ ξ ∈ Fm,

of the system kerF (R.), i.e., kerF (R.) = QFm, where
Q ∈ Dp×m. Let us consider the problem of extremizing
the quadratic cost

I =
∫

1
2

ηT
r Lηr dx,

where:

ηr = (∂α η = ∂α1
1 . . . ∂αn

n η, 0 ≤ |α| = α1+. . .+αn ≤ r)

and L is a symmetric matrix with entries in A, under the
differential constraint R η = 0. The optimal system is then
defined by {

η = Qξ,

A ξ = 0,
∀ ξ ∈ Fm,

with η = (ηl)1≤l≤p,

πα
k =

∑
1≤l≤p,0≤|β|≤r

Lα,β
k,l ∂β ηl, A = Q̃ · B ·Q,

where

B η =

 ∑
0≤|α|≤r

(−1)|α|∂α πα
k

T

1≤k≤p

and Q̃ denotes the formal adjoint of Q obtained by
contracting Qξ by a vector of test functions ϕ ∈ Dp and
integrating by parts, i.e.,

∫
Rn(ϕ, Q ξ) dx =

∫
Rn(Q̃ ϕ, ξ) dx,

where ( · , · ) denotes the standard inner product of Rp.



Let us illustrate this result on two explicit examples.

Example 1: Let us consider the quadratic optimal prob-
lem to minimize

1
2

∫ T

0

(x(t)2 + u(t)2) dt (1)

under the differential constraint defined by the Kalman
system ẋ(t) + x(t) − u(t) = 0 and the initial condition
x(0) = x0.

We can easily check that the F = C∞(R)-solutions of
the system ẋ(t) + x(t)− u(t) = 0 are parametrized by:{

x(t) = ξ(t),

u(t) = ξ̇(t) + ξ(t),
∀ ξ ∈ F . (2)

Therefore, by substituting (2) into the cost functional (1),
we are then led to minimize the free variational problem,
i.e., the variational problem without differential constraint,
defined by:

1
2

∫ T

0

(ξ(t)2 + (ξ̇(t) + ξ(t))2) dt.

Therefore, the computation of the Euler-Lagrange equa-
tions then gives the following optimal system:

ξ(t) = x(t),

ξ̇(t) + ξ(t) = u(t),

ξ̈(t)− 2 ξ(t) = 0,

ξ̇(T ) + ξ(T ) = 0,

ξ(0) = x0.

Integrating this last system and eliminating the initial
condition x0 from u(t) and x(t) finally gives the optimal
controller:

u(t) =
−e

√
2(t−T ) + e−

√
2(t−T )

(1−
√

2) e
√

2(t−T ) − (1 +
√

2) e−
√

2(t−T )
x(t).

We now illustrate Theorem 1 on a variational problem
studied in mathematical physics.

Example 2: Let us extremize the electromagnetism La-
grangian defined by∫ (

1
2 µ0

‖ ~B ‖2 −ε0
2
‖ ~E ‖2

)
dx1 dx2 dx3 dt, (3)

where µ0 (resp., ε0) denotes the dielectric (magnetic)
constant and the electromagnetism field ( ~B, ~E) satisfies
the following equations:

~∇. ~B = 0,

~∇∧ ~E +
∂ ~B

∂t
= 0.

(4)

If Ω is an open convex subset of R4, then the C∞(Ω)-
solutions of the first set of Maxwell equations (4) is known

to be parametrizable by means of the quadri-potential
( ~A, V ), i.e.:

∂ ~B

∂t
+ ~∇∧ ~E = ~0,

~∇ . ~B = 0,

⇐⇒

 ~E = −~∇V − ∂ ~A

∂t
,

~B = ~∇∧ ~A.
(5)

Hence, if we substitute (5) into (3), we then obtain
a variational problem in ~A and V without differential
constraint. Then, the Euler-Lagrange equations and the
Lorentz gauge condition, namely,

~∇. ~A +
1
c2

∂V

∂t
= 0,

give the following electromagnetic waves traveling at the
speed of light c = 1/

√
(ε0 µ0) in the vacuum:

1
c2

∂2 ~A

∂t2
−∆ ~A = 0,

1
c2

∂2V

∂t2
−∆ V = 0,

~∇∧ ~A = ~B,

−~∇V − ∂ ~A

∂t
= ~E.

II. MODULE-THEORETIC APPROACH TO LINEAR
SYSTEMS

In this section, we recall the module-theoretic
background ([23], [9]) for the study of multidimensional
linear systems that follows. We refer to [3] for more details.

Let D = A[∂1, . . . , ∂n] be a ring of differential opera-
tors1, where A is a differential ring which is also an algebra
over a field k containing Q as in Section I (e.g., k = R).
With a given linear system of partial differential equations
R η = 0, R ∈ Dq×p, for unknown functions η1, . . . , ηp

of independent variables x1, . . . , xn we associate the left
D-module:

M = D1×p/(D1×q R).

If all coefficients of the linear system are real numbers,
then the coefficient domain A of D can be chosen to
be R so that D is a commutative polynomial ring and
M is a D-module. More generally, if all coefficients
of R η = 0 are polynomials in x1, . . . , xn (resp.,
rational functions in x1, . . . , xn), then we choose
A = R[x1, . . . , xn] (resp., A = R(x1, . . . , xn)). Then, D
is a Weyl algebra ([9]), which is a non-commutative ring,
and M = D1×p/(D1×q R) is a left D-module as a factor
module of the left D-module D1×p.

The left D-module M which is associated with the
given linear system is an intrinsic object, by which we

1All notions and statements of this section can be applied in the more
general framework of Ore algebras D, but we shall consider only the
case D = A[∂1, . . . , ∂n] in what follows.



mean that two equivalent systems of equations R1 η = 0
and R2 η = 0 give rise to the same module M . This
can be seen by viewing the row vectors r ∈ D1×p as
representatives of equations r η = 0. By construction
of M , it is then clear that the equations R η = 0 and
all their left D-linear combinations (i.e., consequences)
are represented by zero in M . Therefore, the structural
properties of the linear system can be studied with
algebraic methods by considering the module M .

For the algebraic characterization of parametrizability
of a linear system (and also controllability), the following
submodule of M is of particular importance.

Definition 1: Let M be a left D-module. Then

t(M) , {m ∈M | ∃ 0 6= P ∈ D : P m = 0}

is called the torsion submodule of M . Its elements are
the torsion elements of M .

We introduce a few notations from homological algebra.
We refer to [23] for more details.

Definition 2: 1) A family of left D-modules (resp.,
abelian groups) (Pi)i∈Z together with a family of
homomorphisms of left D-modules (resp. of abelian
groups) (di)i∈Z, where di : Pi −→ Pi−1, is called a
complex if di ◦ di+1 = 0, i.e., im di+1 ⊆ ker di, for
all i ∈ Z.

2) A complex is said to be exact at Pr if
im dr+1 = ker dr. It is said to be exact if it
is exact at Pi for all i ∈ Z. Then, it is also called an
exact sequence (of left D-modules, resp., of abelian
groups).

3) If only three consecutive modules of an exact
sequence are non-zero, then it is called a short exact
sequence.

Example 3: Let M be a left D-module and N a sub-
module of M . Then

0 −→ N −→M −→M/N −→ 0

is a short exact sequence of left D-modules, where the first
non-zero map is the canonical injection of N into M and
the following morphism is the canonical projection of M
onto M/N . In particular,

0 −→ t(M) −→M −→M/t(M) −→ 0

is a short exact sequence of left D-modules.

The following notions will be of crucial importance in
what follows. They form only a part of a more detailed
classification of module properties.

Definition 3: [23] Let M be a finitely generated left
D-module.

1) M is said to be free if there exists
r ∈ Z+ = {0, 1, 2, . . .} such that M ∼= D1×r,
where ∼= denotes isomorphism of left D-modules.

2) M is said to be projective if there exist r ∈ Z+ and
a left D-module P such that M ⊕ P ∼= D1×r.

3) M is said to be torsion-free if t(M) = 0.

4) M is said to be torsion if M = t(M).

We have the following implications for the module-
theoretic concepts introduced in the previous definition.

Proposition 1 ([23]): Let M be a finitely generated
left D-module. If M is free, then M is projective. If M
is projective, then M is torsion-free.

We are going to recall the characterization of the above
module properties in the language of homological algebra.
For more details, see [15], [18], [3].

Definition 4: Let M be a finitely generated left D-
module. An exact sequence of left D-modules

. . . −→ D1×pr
dr−→ . . .

d1−→ D1×p0 d0−→M −→ 0 (6)

is called a free resolution of M .

Remark 1: If a given left D-module M has a finite
presentation M = D1×p/(D1×q R), where R ∈ Dq×p

has full row-rank, then

0 −→ D1×q .R−→ D1×p −→M −→ 0

is a free resolution of M . More generally, starting with a
finite presentation of M , a free resolution of M can be
constructed by iteratively computing generating sets of the
kernels of di (syzygies), i ≥ 1, starting with d1 = (.R). In
the cases which are relevant here, i.e., D = A[∂1, . . . , ∂n]
is a commutative polynomial ring or a Weyl algebra over
a field which contains Q, every finitely generated left
D-module has a free resolution in which at most d0, d1,
. . . , dn are non-zero morphisms.

Definition 5: Let M be a finitely generated left D-
module, F a left D-module and let (6) be a free resolution
of M . Then

. . .←− homD(D1×pr ,F)
d∗r←− homD(D1×pr−1 ,F)

d∗r−1←−−− . . .
d∗1←− homD(D1×p0 ,F)←− 0

is a complex of abelian groups, where d∗i is defined by
d∗i (f) = f ◦ di for f ∈ homD(D1×pi−1 ,F). The defects



of exactness of this complex are denoted by:

ext0D(M,F) = ker(d∗1),
exti

D(M,F) = ker(d∗i+1)/im(d∗i ), i ≥ 1.

Proposition 2 ([23]): The abelian groups exti
D(M,F)

only depend on M and not on the free resolution of M
which is chosen to define exti

D(M,F).

Effective methods for computing these homological
invariants were described in [3] and have been
implemented in the Maple package OREMODULES
[2]. We recall only two of the important characterizations
of module properties in the language of homological
algebra.

Theorem 2 ([3]): Let D = A[∂1, . . . , ∂n] be a ring
of differential operators with either a commutative
polynomial ring or a Weyl algebra, R ∈ Dq×p and finitely
presented M = D1×p/(D1×q R). We define the left
D-module Ñ = D1×q/(D1×p R̃), where R̃ denotes the
formal adjoint of R. Then we have:

1) t(M) ∼= ext1D(Ñ ,D). In particular, M is torsion-
free if and only if ext1D(Ñ ,D) = 0.

2) M is projective if and only if exti
D(Ñ ,D) = 0 for

all i = 1, . . . , n.

Using the module-theoretic approach to linear systems,
structural properties of the behaviour kerF (R.), where F
is a left D-module as in Section I, are deduced from the
properties of the left D-module M = D1×p/(D1×q R)
which is associated with the linear system R η = 0.
However, the relations between kerF (R.) and M also
depend on the properties of the left D-module F . A good
duality between behaviours kerF (R.) and left D-modules
M only holds for injective cogenerators F ([10]). We
may think of an injective cogenerator F as a sufficiently
rich space of functions. Before recalling the definition of
an injective cogenerator, we state the following important
remark by B. Malgrange ([8]).

Remark 2: Let R ∈ Dq×p and M = D1×p/(D1×q R).
Then, we have

kerF (R.) ∼= homD(M,F)

as abelian groups (or k-vector spaces), i.e., the set of
solutions of R η = 0 in Fp and the set of left D-
morphisms from M to F are isomorphic abelian groups
(resp. k-vector spaces).

Definition 6: 1) [23] A left D-module F is called
injective if, for every left D-module M , and, for all
i ≥ 1, we have exti

D(M,F) = 0.

2) [23] A left D-module F is called cogenerator if, for
every left D-module M , we have:

homD(M,F) = 0 =⇒ M = 0.

We note the following (non-constructive) existence
theorem.

Theorem 3 ([23]): An injective cogenerator left D-
module F exists for every ring D.

Lemma 1: 1) If F is an injective left D-module,
then homD( · ,F) transforms exact sequences of left
D-modules into exact sequences of abelian groups.

2) If the left D-module F is an injective cogenerator,
then the exactness of the complex of abelian groups
obtained by applying the functor homD( · ,F) to a
complex of left D-modules implies the exactness of
this latter complex.

We give a few examples of modules over the
commutative polynomial ring R[∂1, . . . , ∂n] and the
localized Weyl algebra R(t)

[
d
dt

]
which are injective

cogenerators.

Example 4: 1) If Ω is an open convex subset of Rn,
then the space C∞(Ω) (resp., D′(Ω)) of smooth
functions (resp., distributions) on Ω is an injective
cogenerator module over the ring R[∂1, . . . , ∂n] of
differential operators with coefficients in R [8].

2) [26] If F denotes the set of all functions that
are smooth on R except for a finite number of
points, then F is an injective cogenerator left
R(t)

[
d
dt

]
-module.

We finish this section by recalling the characterization
of parametrizability of a behaviour in terms of the
associated module.

Proposition 3 ([3]): Let R ∈ Dq×p and F an injective
cogenerator left D-module. The behaviour kerF (R.) has
a parametrization (or image representation) Q ∈ Dp×m,
i.e., kerF (R.) = QFm, if and only if the left D-module
M = D1×p/(D1×q R) which is associated with the linear
system R η = 0 is torsion-free. By Theorem 2, M is
torsion-free if and only if ext1D(Ñ , D) = 0 for the left
D-module:

Ñ = D1×q/(D1×p R̃).

III. MAIN RESULTS ON THE GENERAL MONGE
PROBLEM

The first main purpose of this paper is to prove the
following new theorem.



Theorem 4: Let R ∈ Dq×p, M = D1×p/(D1×q R), F
an injective cogenerator left D-module ([3], [8], [11], [18],
[24]) and consider the linear system

kerF (R.) = {η ∈ Fp | R η = 0}.

Then, we obtain a parametrization of kerF (R.) by
applying the following algorithm:

1) Following the constructive algorithms developed in
[2], [3], [16], compute R′ ∈ Dq′×p and R′′ ∈ Dq×q′

such that:
R = R′′ R′,

t(M) = (D1×q′ R′)/(D1×q R),

M/t(M) = D1×p/(D1×q′ R′).

2) Compute a matrix Q ∈ Dp×m such that:

kerD(.Q) = (D1×q′ R′).

This is always possible and general algorithms are
given in [3], [16] and implemented in OREMOD-
ULES ([2]). Then, using the fact that F is an injective
left D-module, we obtain

kerF (R′.) = QFm,

i.e., Q is a parametrization of the system kerF (R′.)
([3], [11], [18]).

3) Compute a matrix T ∈ Dr′×q′ such that:

kerD(.R′) = D1×r′ T,

i.e., compute the first syzygy module of (D1×q′ R′)
[2], [3]. Using the fact that F is an injective left
D-module, we then have:

kerF (T.) = R′ Fp.

4) Find a fundamental solution τ ∈ Fq′ of the au-
tonomous linear system:{

R′′ τ = 0,

T τ = 0.
(7)

Such a fundamental solution always exists as F is
a cogenerator left D-module.

5) Find the general solution of the inhomogeneous
linear system:

R′ η = τ , η ∈ Fp.

It is well-known that this problem can be
decomposed into the following two subproblems:

a) Find a particular solution η ∈ Fp of the
inhomogeneous linear system R′ η = τ .

b) Find the general solution of R′ η = 0. However,
we already know that we have:

kerF (R′.) = QFm.

6) Finally, the general solution of R η = 0 in Fp is of
the form:

η = η + Qξ, ∀ ξ ∈ Fm. (8)

Proof: We are going to verify the assertions stated
in the given algorithm.

1) An algorithm to compute R′ ∈ Dq′×p such that
M/t(M) = D1×p/(D1×q′ R′) was described in
[3]. The existence and the possibility to compute
R′′ ∈ Dq×q′ satisfying R′′ R′ = R was explained
in [21]. Using OREMODULES [2], R′′ can be
computed using the command Factorize.

2) We have the exact sequence of left D-modules

D1×q′ .R′

−−→ D1×p .Q−→ D1×m.

Since F is injective, by Lemma 1 1) the complex

Fq′ R′.←−− Fp Q.←− Fm

is also exact, i.e., kerF (R′.) = QFm.

3) Similarly to 2), the injectivity of F implies that
homD( · ,F) transforms the exact sequence of left
D-modules

D1×r′ .T−→ D1×q′ .R′

−−→ D1×p

into the exact sequence

Fr′ T.←− Fq′ R′.←−− Fp,

which means kerF (T.) = R′ Fp.

4) By combining Remark 2 and Definition 6 2) we
conclude that a fundamental solution τ of (7) always
exists in Fq′ .

5) is clear.

6) Finally, we show that (8) is the general solution of
R η = 0 in Fp. Due to step 1), R η = 0 is equivalent
to R′′ R′ η = 0, and therefore equivalent to{

R′′ τ = 0,

τ = R′ η.
(9)

Because of step 3) we know that R′ Fp = kerF (T.).
Hence, the component τ of every solution (τ, η)
of (9) satisfies (7), and conversely, every solution
τ of (7) yields a solution (τ,R′ η) of (9). Having
computed a fundamental solution of (7) in step 4),
the second equation in (9) is solved for η ∈ Fp in
step 5). Therefore, the algorithm described in this
theorem determines the general solution of R η = 0
in Fp.



Remark 3: If t(M) = 0 in Theorem 4, then we can
choose R′ = R and R′′ as the identity matrix. Then the
algorithm can already be stopped in step 2) because

kerF (R.) = kerF (R′.) = QFm.

In this case all solutions of R η = 0 in Fp are
parametrized in terms of arbitrary functions ξ1, . . . , ξm of
the independent variables x1, . . . , xn. When t(M) 6= 0,
the algorithm described in Theorem 4 constructs a
parametrization of kerF (R.) in terms of such arbitrary
functions, (integration) constants and arbitrary functions
depending only on certain of the independent variables.

Let us illustrate Theorem 4 first on a simple ordinary
differential example.

Example 5: Let us parametrize all F = C∞(R)-
solutions of the time-varying linear system:

ÿ(t)− t u̇(t)− u(t) = 0.

We consider D = A1(R) = R[t]
[

d
dt

]
and:

R =
(

d2

dt2
− t

d

dt
− 1
)
∈ D1×2.

We can check that R′′ = d
dt , R′ =

(
d
dt − t

)
and T = 0.

Then, we need to find all F-solutions of:

ẏ(t)− t u(t) = C, C ∈ R. (10)

We easily check that (y? u?)T = (C t 0)T is a par-
ticular solution of (10). Hence, we only need to find a
parametrization of all F-solutions of the homogeneous
linear system ẏ(t) − t u(t) = 0. But, it is well-known
that F is not an injective cogenerator left D-module ([5]).
However, we can prove that we have the following split
exact sequence

0 −→ D
.R−→ D1×2 .Q−→ D1×2 .P−→ D −→ 0,

where

Q =

(
t2 t d

dt − 1

t d
dt + 2 d2

dt2

)
∈ D2×2

and
P =

(
d
dt
−t

)
∈ D2.

See [3], [15], [16] for more details. Therefore, if we
apply the functor homD( · ,F) to the previous split exact
sequence, we then obtain the exact sequence

0←− F R.←− F2 Q.←− F2 P.←− F ←− 0,

which shows that we have the following parametrization
of kerF (R′.):{

y(t) = t2 ξ1(t) + t ξ̇2(t)− ξ2(t),

u(t) = t ξ̇1(t) + 2 ξ1(t) + ξ̈2(t),
∀ ξ1, ξ2 ∈ F .

Using the previous parametrization of all F-solutions of
the homogeneous part of (10), we obtain the following
parametrization of kerF (R.):{

y(t) = C t + t2 ξ1(t) + t ξ̇2(t)− ξ2(t),

u(t) = t ξ̇1(t) + 2 ξ1(t) + ξ̈2(t),
∀ ξ1, ξ2 ∈ F .

Finally, we can easily prove that C = ẏ(0).

Let us now give an example of a multidimensional
linear system defined by PDEs.

Example 6: We consider the system grad (div ~B) = ~0,
i.e.: 

∂1 (∂1 B1 + ∂2 B2 + ∂3 B3) = 0,

∂2 (∂1 B1 + ∂2 B2 + ∂3 B3) = 0,

∂3 (∂1 B1 + ∂2 B2 + ∂3 B3) = 0.

(11)

This system commonly appears in mathematical physics
([6], [7]). Let us parametrize all the F = C∞(R3)-
solutions of (11). Using the algorithms developed in [3],
[15], [16], we obtain the following matrices:

R = grad (div), R′ = div, R′′ = grad, T = 0.

See [2] for explicit computations. Therefore, there is one
autonomous element in (11) defined by:

τ = div ~B,

∂1 τ = 0,

∂2 τ = 0,

∂3 τ = 0.

Hence, we need to parametrize all F-solutions of the
following PDE:

div ~B = C, C ∈ R. (12)

We then easily check that a particular solution of (12) is
given by:

~B? = (C x1 0 0)T .

Therefore, all F-solutions of (11) are finally given by

~B = ~B? + curl ~Ψ, ∀ ~Ψ ∈ F3,

where curl denotes the standard curl operator in R3.

We can wonder when it is possible to obtain a particular
solution of the inhomogeneous system R′ η = τ , where
τ ∈ Fq′ is fixed, by means of purely algebraic techniques,
i.e., by means of a kind of variation of constants which
does not use any integration. This problem was solved in
[21].

Theorem 5 ([21]): Let R ∈ Dq×p and the left D-
module M = D1×p/(D1×q R) presented by R. Then, we
have

M ∼= t(M)⊕ (M/t(M)) (13)



if and only if there exist S ∈ Dp×q′ and V ∈ Dq′×q such
that:

R′ −R′ S R′ = V R. (14)

We note that (14) always holds if D is a left hereditary
ring as, for instance, D = K

[
d
dt

]
, where K is a differential

field [16] (e.g., K = R, R(t)), or if D is the first Weyl
algebra A1(k) = k[t]

[
d
dt

]
. Moreover, (14) also holds if

M/t(M) is a projective left D-module, a fact that can
be constructively checked ([3], [15]). Finally, constructive
algorithms have been developed in [21] for computing
the matrices S and V appearing in (14). See [2] for the
implementations of all these algorithms in OREMODULES.

We then have the following interesting corollary of
Theorem 5.

Corollary 1 ([21]): We assume the same notations and
hypotheses as in Theorem 4. Let us consider a fundamental
solution τ ∈ Fq′ of the following system:{

R′′ τ = 0,

T τ = 0.

Then, S τ is a particular solution of the inhomogeneous
linear system R′ η = τ and the general solution of
kerF (R.) is exactly of the form:

η = S τ + Qξ, ∀ ξ ∈ Fm.

Let us illustrate Theorem 5 and Corollary 1 on two
explicit examples.

Example 7: Let us consider D = R[∂1, ∂2, ∂3], the
divergence operator div = (∂1 ∂2 ∂3) and the left D-
module F = C∞(R3). We parametrize the linear system
of PDEs

P (∂) (∂1 B1+∂2B2+∂3B3) = 0, 0 6= P (∂) ∈ D, (15)

namely, kerF ((P div).). Using the constructive algorithms
developed in [3], [15], [16], we obtain:{

R′ = div,

R′′ = P (∂).

Therefore, kerF ((P div).) admits the following au-
tonomous element:{

τ = ∂1B1 + ∂2 B2 + ∂3 B3,

P (∂) τ = 0.

Let τ ∈ F be a fundamental solution of P (∂) τ = 0
(it always exists because F = C∞(R3) was recalled in
Example 4 1) to be an injective cogenerator). We then
have to solve the inhomogeneous system:

div ~B = τ . (16)

Therefore, we need to:

1) Find a particular solution ~B? of the inhomogeneous
linear system (16). Using Theorem 5, we can try
to find S = (S1 S2 S3)T ∈ D3 and V ∈ D
satisfying (14), namely:

R′ −R′ S R′ = V R ⇔
3∑

i=1

∂iSi − V P (∂) = 1

⇔ (∂1, ∂2, ∂3, P (∂)) = D ⇔ P (0) 6= 0.

Hence, if P (0) 6= 0, then we obtain (13), where
M = D1×3/(D (P (d) div)) and:

M/t(M) = D1×3/(D div).

Then, by Corollary 1, we get that

~B? = (S1 S2 S3)T τ

is a particular solution of the inhomogeneous linear
system (16) as we have:

(∂1 ∂2 ∂3) ~B? = (1 + V P (∂)) τ = τ .

2) Find a general solution of div ~A = 0. However, it is
well-known that we have ([3], [11], [24]):

div ~B = 0 ⇔ ~B = curl ~Ψ, ~Ψ ∈ F3.

We finally obtain the following parametrization of (15):

~B = (S1 S2 S3)T τ + curl ~Ψ, ∀ ~Ψ ∈ F3.

Finally, we note that if P (∂) = ∂1, then P (0) = 0, and
thus, (13) does not hold over the ring D = R[∂1, ∂2, ∂3].
However, if we consider the non-commutative ring
A3(R) = R[x1, x2, x3][∂1, ∂2, ∂3] instead of D, we easily
check that S = (x1 0 0)T satisfies

R′ −R′ S R′ = x1 R,

which proves that (13) holds over A3(R). By Corollary 1,
a particular solution of the inhomogeneous linear system
div ~B = Φ(x2, x3), where Φ ∈ C∞(R2) is a fundamental
solution of ∂1 τ = 0, is given by:

~B? = (x1 Φ(x2, x3) 0 0)T .

All F-solutions of ∂1 div ~B = 0 are then given by:

~B = ~B? + curl ~Ψ, ∀ ~Ψ ∈ F3.

Finally, let us finish by giving another example
appearing in linear elasticity [7].

Example 8: In linear elasticity, we sometimes need to
solve the following PDE

∆ ∆ A = c∆ V, ∆ = ∂2
1 + ∂2

2 , c ∈ R \ {0}, (17)

where A is the Airy function and V a potential. See [19] for
more details. Let us parametrize all F = D′(R2)-solutions
of (17).



Let us introduce the ring D = R[∂1, ∂2] and the matrix
R = (∆ ∆ − c∆) ∈ D1×2. Using the algorithms
developed in [3], [15], [16], we easily obtain the following
matrices:

R′′ = ∆, R′ = (∆ −c), T = 0, Q = (1 ∆/c)T .

In particular, (17) admits the following trivial autonomous
element: {

τ = ∆ A− c V,

∆ τ = 0,

A fundamental solution of ∆ τ = 0 in F is given by:

τ = ln
(

1/
√

x2
1 + x2

2

)
.

Now, the matrix S = (0 − 1/c)T satisfies

R′ S = 1 ⇒ R′ −R′ S R′ = 0 ⇒ V = 0

which shows that(
A?

V?

)
= S τ =

 0

−τ

c


is a particular solution of the inhomogeneous linear equa-
tion ∆ A − c V = τ . Finally, all F-solutions of (17) are
then given by: A = A,

V =
1
c

(∆ A− τ),
∀A ∈ F .

We note that the D-module M/t(M) = D1×2/(D R′)
is free (i.e., projective), explaining why a right-inverse S
of R′ gives a particular solution of the inhomogeneous
equation. See [21] for more details.

IV. APPLICATIONS TO MULTIDIMENSIONAL OPTIMAL
CONTROL

The second main purpose of this paper is to present the
following application of Theorem 4 to multidimensional
optimal control.

Theorem 6: Let R ∈ Dq×p, F a left D-module and
kerF (R.) = {η ∈ Fp | R η = 0} a linear system of
PDEs of order r. Let us suppose that we have the general
parametrization

η = η + Qξ, ∀ ξ ∈ Fm,

of kerF (R.) given by Theorem 4. We consider the problem
of extremizing the quadratic cost

I =
∫

1
2

ηT
r Lηr dx,

where

ηr = (∂α η = ∂α1
1 . . . ∂αn

n η, 0 ≤ |α| = α1+. . .+αn ≤ r)

and L is a symmetric matrix with entries in A, under the
differential constraint R η = 0. The optimal system is then
defined by{

η = η + Qξ,

A ξ + (Q̃ · B) η = 0,
∀ ξ ∈ Fm,

where η = (ηl)1≤l≤p and:

πα
k =

∑
1≤l≤p,0≤|β|≤r

Lα,β
k,l ∂β ηl, A = Q̃ · B ·Q

and

B η =

 ∑
0≤|α|≤r

(−1)|α|∂α πα
k

T

1≤k≤p

.

Proof: In [19], it was shown that the optimal system
is given by {

R η = 0,

B η − R̃ λ = 0,
(18)

where R̃ is the formal adjoint of R and λ is Lagrange
multiplier. We denote by Q̃ the formal adjoint of Q. Due
to step 2) of the algorithm described by Theorem 4, we
have R′ Q = 0, where the factorization R = R′′ R′ is
obtained in step 1) of the same algorithm. Therefore, we
have

Q̃ R̃ = Q̃ R̃′′ R′ = Q̃ R̃′ R̃′′ = R̃′ QR̃′′ = 0.

By multiplying Q̃ on the left of the second equation in
(18), we thus find

Q̃B η = 0. (19)

Now, we have

R η = 0 ⇔ η = η + Qξ, ξ ∈ Fm. (20)

Substitution easily shows that (19) together with the first
equation in (18) is equivalent to{

η = η + Qξ,

Q̃ · B (η + Qξ) = 0,

which proves the theorem.

Remark 4: 1) By substituting the parametrization of
the behaviour kerF (R.), the Lagrange multiplier λ
is eliminated.

2) If all solutions of R η = 0 in Fm are parametrized
by means of the matrix of differential operators Q ∈
Dp×m, i.e.,

R η = 0 ⇔ η = Qξ, ξ ∈ Fm

holds instead of (20), then the same argument as
in the previous proof gives a proof of Theorem 1,
which is a particular case of Theorem 6.



We point out that no controllability hypothesis is
required in Theorem 6, as it was the case in [11],
[14], [19], [20]. Hence, Theorem 6 generalizes for
non-controllable multidimensional linear systems with
constant coefficients the results obtained in [11], [14],
[19], [20] for controllable ones. In particular, in the 1-D
case, this result allows us to remove the controllability
condition used in the behavioural approach literature
in the study of optimal control problems with a finite
horizon and replace it by the stabilizability condition for
the ones with an infinite horizon. In particular, this last
result shows that, within the behavioural approach, we
can recover the general results previously developed in
the literature on optimal control of 1-D linear systems
([1], [4]) and generalize them to multidimensional linear
systems defined by partial differential equations.

Let us illustrate Theorem 6 on two examples.

Example 9: Let us consider the following quadratic
optimal problem

I =
∫ T

0

1
2

(x2
1(t) + x2

2(t) + u2(t)) dt, (21)

under the differential constraint defined by the Kalman
system: 

ẋ1 = x2 + u,

ẋ2 = x1 + u,

x1(0) = x0
1,

x2(0) = x0
2.

(22)

Let us denote by F = C∞(]0,+∞[). Using Theorem 4, we
can prove that all the F-solutions of (22) are parametrized
by:

x1(t) = (x0
1 − x0

2) e−t + ξ(t),

x2(t) = ξ(t),

u(t) = −(x0
1 − x0

2) e−t + ξ̇(t)− ξ(t).

∀ ξ ∈ F .

(23)
If we substitute (23) into (21), we then obtain a variational
problem without differential constraint and computing the
corresponding Euler-Lagrange equations, we finally get the
following optimal system:

ξ̈(t)− 3 ξ(t) = (x0
1 − x0

2) e−t,

ξ̇(T )− ξ(T ) = (x0
1 − x0

2) e−T ,

ξ(0) = x0
2.

(24)

The integration of (24) yields ξ(t) given in (25). Hence, if
we substitute ξ into (23), then we obtain

(
x1(t)
x2(t)

)
= P (t)

(
x0

1 − x0
2

x0
2

)
,

u(t) = Q(t)
(

x0
1 − x0

2

x0
2

)
,

(26)

where P (t) and Q(t) are given in (27) resp. (28). Elimi-
nating the initial conditions x0

1−x0
2 and x0

2 from (26), we
finally obtain the optimal controller

u(t) = K(t)
(

x1(t)
x2(t)

)
,

where K(t) is given in (29). Finally, we note that if T
tends to +∞, we only need the system to be stabilizable
and not controllable as it is usually required in the
behavioural approach to optimal control. See [11] and the
references therein.

The computations given in Theorem 6 have been
implemented in the 1-D case in the library OREMODULES.
See [2] for more details and examples.

Example 10: Let us consider the following multidimen-
sional linear system:

(∂1 + 1) (∂1 y1(x) + ∂2 y2(x)) = 0. (30)

Let us extremize the cost defined by

I =
1
2

∫
(y2

1(x) + y2
2(x)) dx1 dx2, (31)

under the differential constraint formed by the system (30).
All F = C∞(R2)-solutions of (30) are given by{

y1(x) = Φ(x2) e−x1 − ∂2 ξ(x),
y2(x) = ∂1 ξ(x),

(32)

for all ξ ∈ F and Φ ∈ C∞(R). Hence, by substituting
(32) into (31), we obtain a variational problem without
differential constraint. Euler-Lagrange equations then give:

∆ ξ(x) = Φ̇(x2) e−x1 ,

y1(x) = Φ(x2) e−x1 − ∂2 ξ(x),

y2(x) = ∂1 ξ(x).
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