
Using morphism computations for factoring and decomposing
general linear functional systems

Thomas Cluzeau and Alban Quadrat

Abstract— Within a constructive homological algebra ap-
proach, we study the factorization and decomposition prob-
lems for general linear functional systems and, in particular,
for multidimensional linear systems appearing in control
theory. Using the concept of Ore algebras of functional
operators (e.g., ordinary/partial differential operators, shift
operators, time-delay operators), we first concentrate on
the computation of morphisms from a finitely presented
left module M over an Ore algebra to another one M ′,
where M (resp., M ′) is a module intrinsically associated
with the linear functional system R y = 0 (resp., R′ z = 0).
These morphisms define applications sending solutions of the
system R′ z = 0 to the ones of R y = 0. We explicitly
characterize the kernel, image, cokernel and coimage of a
general morphism. We then show that the existence of a
non-injective endomorphism of the module M is equivalent
to the existence of a non-trivial factorization R = R2 R1 of
the system matrix R. The corresponding system can then
be integrated in cascade. Under certain conditions, we also
show that the system R y = 0 is equivalent to a system
R′ z = 0, where R′ is a block-triangular matrix. We show
that the existence of projectors of the ring of endomorphisms
of the module M allows us to reduce the integration of the
system R y = 0 to the integration of two independent systems
R1 y1 = 0 and R2 y2 = 0. Furthermore, we prove that, under
certain conditions, idempotents provide decompositions of the
system R y = 0, i.e., they allow us to compute an equivalent
system R′ z = 0, where R′ is a block-diagonal matrix. Many
applications of these results in mathematical physics and
control theory are given. Finally, the different algorithms of
the paper are implemented in a package MORPHISMS based
on the library OREMODULES.
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I. INTRODUCTION

Many systems coming from mathematical physics, ap-
plied mathematics and engineering sciences can be de-
scribed by means of systems of ordinary or partial dif-
ferential equations, difference equations, differential time-
delay equations. . . If these systems are linear, they can
then be defined by means of matrices with entries in non-
commutative algebras of functional operators such as the
rings of differential operators, shift operators, time-delay
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operators. . . An important class of such algebras is called
Ore algebras ([12]). See also [14].

The methods of algebraic analysis give a way to in-
trinsically study a linear functional system by considering
its associated finitely presented left module over an Ore
algebra ([14], [28], [38], [40], [43], [61], [62]). This
idea is natural as the structural properties of the linear
functional systems can be studied by handling algebraic
manipulations on the system matrix of functional opera-
tors, i.e., by performing linear algebra over a ring which
is also called module theory ([29], [37], [56]). The tools
of homological algebra have been developed in order
to study the properties of modules ([56]), and thus, the
structural properties of the corresponding systems. Using
recent developments and implementations of Gröbner and
Janet bases over Ore algebras ([12], [32]), it has been
shown in [14], [43], [44], [45], [46], [47], [53], [54] how
to make effective some of these tools as, for instance,
free resolutions, parametrizations, projective dimensions,
torsion-free degrees, Hilbert series, extension functors,
classification of modules (torsion, torsion-free, reflexive,
projective, stably free, free). Applications of these algo-
rithms in multidimensional control theory have recently
been given in [13], [14], [27], [40], [41], [43], [44], [45],
[46], [47], [51], [52], [53], [54], [55], [61], [62], [63].

Continuing the development of constructive homological
algebra for linear systems over Ore algebras and, in
particular [48], [53], [52], the first part of the paper aims
at computing effectively morphisms from a left D-module
M , finitely presented by a matrix R with entries in an
Ore algebra D, to a left D-module M ′ presented by a
matrix R′. In particular, we show that a morphism from
M to M ′ defines a transformation sending a solution of
the system R′ z = 0 into a solution of Ry = 0. In the case
where R′ = R, the ring endD(M) of endomorphisms of
M corresponds to the “Galois symmetries” of the system
Ry = 0. In the case of 1-D linear systems, we explain how
to find again classical results on the concept of eigenring
developed in the system theory and symbolic computation
literatures. Algorithms for computing morphisms are given
in the cases where the underlying Ore algebra is commuta-
tive or non-commutative. As an application, we show how
to use the computation of the morphisms from two modules
in order to obtain quadratic first integrals of motion and
conservation laws.

We then explicitly characterize the kernel, coimage, im-
age and cokernel of a morphism from M to M ′ and deduce
a method to check the equivalence of the corresponding



systems Ry = 0 and R′ z = 0. In Theorem 1, we prove
that the existence of a non-injective endomorphism of a
left D-module M , finitely presented by a matrix R with
entries in an Ore algebra D, corresponds to a factorization
of the form R = R2R1, where R1 and R2 are two matrices
with entries in D. As a consequence, the integration of the
system Ry = 0 is reduced to a cascade of integrations.
In Theorem 2, under certain conditions on the morphism
(freeness), we show that the system Ry = 0 is equivalent
to a system of the form(

T1 T2

0 T3

) (
z1
z2

)
= 0, (1)

where T1, T2 and T3 are three matrices with entries in D
and such that (1) has the same dimensions as R. We finish
the section by giving a way to constructively compute r-
pure autonomous elements of a linear system ([43], [51]).

In the fourth part of the paper, we show how to effec-
tively compute the projectors of endD(M) and we prove
in Theorem 3 that they allow us to decompose the system
Ry = 0 into two decoupled systems S1 y1 = 0 and
S2 y2 = 0, where S1 and S2 are two matrices with entries
in D. Consequently, the integration of the system Ry = 0
is then equivalent to the integrations of the two independent
systems S1 y1 = 0 and S2 y2 = 0. Then, under certain
conditions on the projectors (e.g., idempotent, freeness),
we prove in Theorem 4 that the system Ry = 0 is
equivalent to a block diagonal system of the form(

T1 0
0 T2

) (
z1
z2

)
= 0, (2)

where T1 and T2 are two matrices with entries in D and
such that (2) has the same dimensions as R. In particular,
these conditions always hold in the case of a univariate
Ore algebra over a field of coefficients (i.e., ordinary
differential/difference systems over the field of rational
functions) and in the case of a multivariate commutative
Ore algebras due to the Quillen-Suslin theorem ([35], [56])
(e.g., linear system of partial differential equations with
constant coefficients). Moreover, if some rank conditions
on the projector are fulfilled, then, using a result due to
Stafford ([37], [54]), we prove that a similar result also
holds for the Weyl algebras An(k) and Bn(k) over a field
k of characteristic 0 (i.e., linear system of partial dif-
ferential equations with polynomial/rational coefficients).
Using recent implementations of both Quillen-Suslin and
Stafford results in the library OREMODULES ([13], [27],
[54], [55]), we obtain a constructive way to compute the
decomposition (2) of Ry = 0 when it exists.

We point out that, for all the above-mentioned results
and, hence, for all the corresponding algorithms, no con-
dition on the system Ry = 0 is required such as D-
finite, determined, underdetermined, overdetermined, i.e.,
this approach handles general linear systems over an Ore
algebra. To our knowledge, the problem of factoring or
decomposing linear functional systems has been studied
only for a few particular cases. For scalar linear differential

operators or linear determined differential systems, we
refer to [3], [7], [8], [11], [21], [23], [24], [25], [57], [59],
[60]. Generalizations to linear determined difference and
q-difference systems appear in [3], [9] and for D-finite par-
tial differential systems (and finite-dimensional determined
systems over a Ore algebra with rational coefficients), see
[34], [64], [65]. A more general work in that direction is
included in [33]. For similar cases where the base field is
of positive characteristic and also for modular approaches,
see [6], [15], [16], [17], [18], [22], [49].

All along the paper, we illustrate our results by consider-
ing some applications coming from mathematical physics
(e.g., Galois symmetries of the linearized Euler equations,
quadratic first integrals of motion and conservation laws,
equivalence of systems appearing in linear elasticity) and
control theory (controllability, r-autonomous elements, de-
coupling of the autonomous and controllable subsystems).

The different algorithms presented in the paper have
been implemented in the package MORPHISMS based
on the library OREMODULES ([13]). This package is
available on the author’s web pages and on the one of
OREMODULES (see [13] for the precise address) with a
library of examples which demonstrates the main results
of the paper.

II. MORPHISMS OF LINEAR FUNCTIONAL SYSTEMS

A. Finitely presented modules and linear functional sys-
tems

In this paper, we consider linear functional systems
defined by matrices with entries in an Ore algebra D
and we study them by means of their associated left
D-modules. In this first subsection, we gather many useful
definitions and properties on these concepts.

Definition 1 ([12], [14]): Let A be a commutative ring,
σ an endomorphism of A, namely,

∀ a, b ∈ A,

{
σ(a+ b) = σ(a) + σ(b),
σ(a b) = σ(a)σ(b),

and δ a σ-derivation, namely, δ : A→ A satisfies:

∀ a, b ∈ A,

{
δ(a+ b) = δ(a) + δ(b),
δ(a b) = σ(a) δ(b) + δ(a) b.

1) A (non-commutative) polynomial ring A[∂;σ, δ] in
∂ is called skew if it satisfies the commutation rule:

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a). (3)

An element P of A[∂;σ, δ] has the canonical form:

P =
r∑

i=0

ai ∂
i, r ∈ Z+, ∀ i ∈ {1, . . . , r}, ai ∈ A.

If ar 6= 0, then the order ord(P ) of P is r.

2) Let k be a field and A be either k, the commutative
polynomial ring k[x1, . . . , xn] or the commutative



ring of rational functions k(x1, . . . , xn). The skew
polynomial ring

D = A[∂1;σ1, δ1] · · · [∂m;σm, δm]

is then called an Ore algebra if the following con-
ditions are fulfilled:

σi δj = δj σi, ∀ 1 ≤ i, j ≤ m,
σi(∂j) = ∂j , ∀ 1 ≤ j < i ≤ m,
δi(∂j) = 0, ∀ 1 ≤ j < i ≤ m.

An element P of D has the canonical form

P =
∑

0≤|ν|≤r

aν ∂
ν , r ∈ Z+, aν ∈ A,

where ν = (ν1, . . . , νn) ∈ Zn
+ denotes a multi-index

of non-negative integers, |ν| = ν1 + · · · + νn its
length, and ∂ν = ∂ν1

1 · · · ∂νn
n .

We note that the commutation rule (3) must be under-
stood as a generalization of the Leibniz rule for functional
operators, namely, for an unknown y, we have:

∂(a y) = σ(a) ∂ y + δ(a) y.

Let us give a few examples of skew polynomial rings
and Ore algebras.

Example 1: 1) Let k be a field, A = k, k[n] or
k(n), σ : A → A the forward shift operator,
namely, σ(a)(n) = a(n + 1), and δ = 0. Then,
the skew polynomial ring A[∂;σ, 0] is the ring of
shift operators with coefficients in A (i.e., constant,
polynomial or rational coefficients).

2) Let k be a field, A = k, k[t] or k(t), σ = idA

and δ : A → A the standard derivation d
dt . The

skew polynomial ring A
[
∂; idA,

d
dt

]
is then the

ring of differential operators with coefficients in
A (i.e., constant, polynomial or rational coefficients).

3) More generally, if k is a field and A is respectively k,
k[x1, . . . , xn] or k(x1, . . . , xn), then we can consider
σi = idA[∂1;σ1,δ1]···[∂i−1;σi−1,δi−1] and δi(a) = ∂a

∂xi

the standard derivation of a ∈ A with respect to xi.
Then, the Ore algebra A[∂1; id, δ1] · · · [∂n; id, δn] is
the ring of differential operators with respectively
constant, polynomial or rational coefficients. The last
two algebras are called the Weyl algebras and they
are respectively denoted by:

An(k) = k[x1, . . . , xn][∂1; id, δ1] · · · [∂n; id, δn],

Bn(k) = k(x1, . . . , xn)[∂1; id, δ1] · · · [∂n; id, δn].

4) Let k be a field, A = k, k[t] or k(t), and
A
[
∂1; idA,

d
dt

]
the ring of differential operators

with coefficients in A. Let h ∈ R+ be a positive
real and let us denote by σ2(a) = a(t − h) the
time-delay operator and δ2(a) = 0 for all a ∈ A.

Then, A
[
∂1; idA,

d
dt

]
[∂2;σ2, 0] is the Ore algebra

of differential time-delay operators with coefficients
in the ring A.

We refer the reader to [12] for more examples of
functional operators such as, for instance, difference,
divided difference, q-difference, q-dilation operators and
their applications in the study of special functions as well
as in combinatorics.

We recall that a ring A is said to be left noetherian
if every left ideal I of A is finitely generated as
a left A-module, namely, if there exists a finite
family {ai}i=1,...,l(I) of elements of A which satisfies
I = Da1 + · · · + Dal(I). A similar definition exists for
right noetherian rings.

Proposition 1 ([37]): If A is a left (resp., right)
noetherian ring and σ is an automorphism of A, then
the skew polynomial ring D = A[∂;σ, δ] is a left (resp.,
right) noetherian.

The examples of Ore algebras given in Example 1
are left and right noetherian rings. Moreover, they are
domains, namely, the product of non-zero elements is
non-zero.

Proposition 2 ([12]): Let k be a computable field (e.g.,
k = Q, Fp), A be either k, k[x1, . . . , xn] or k(x1, . . . , xn)
and A[∂1;σ1, δ1] . . . [∂m;σm, δm] an Ore algebra satisfying
the following conditions{

σi(xj) = aij xj + bij ,

δi(xj) = cij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n,

for certain aij ∈ k \{0}, bij ∈ k, cij ∈ A. If the cij are of
total degree at most 1 in the xi’s, then a non-commutative
version of Buchberger’s algorithm terminates for any
monomial order on x1, . . . , xn, ∂1, . . . , ∂m, and its result
is a Gröbner basis with respect to the given monomial
order.

Proposition 2 holds for the examples of Ore algebras
given in Example 1. In the rest of the paper, we shall
only consider left noetherian domains which satisfy the
hypotheses of Proposition 2.

In what follows, we shall assume that a linear functional
system (LFS) is defined by means of a matrix of functional
operators R ∈ Dq×p, where D is an Ore algebra. Then,
we consider the D-morphism of left D-modules (i.e., the
left D-linear application) defined by:

D1×q .R−→ D1×p,
(λ1, . . . , λq) 7−→ (λ1, . . . , λq)R =

(
∑q

i=1 λiRi1, . . . ,
∑q

i=1 λiRip).
(4)



Generalizing an important idea coming from number the-
ory and algebraic geometry, we shall consider the left D-
module

M = D1×p/(D1×q R)

which is the cokernel of the D-morphism defined by (4).

This idea can be traced back to the work of B. Mal-
grange ([38]) on linear systems of PDEs with constant
coefficients and it has been extended to the variable co-
efficients case by M. Kashiwara ([28]). We refer to [14]
for the extension to linear functional systems.

Finally, we note that if k is a field, V a finite-
dimensional k-vector space of dimension p, E ∈ kp×p

and D = k[X], the D-module defined by

Dp/((X Ip − E)Dp) = D1×p/(D1×p (X Ip − E)T )

plays a central role in the study of the reduction of the
endomorphism E of V (see [10]).

Before explaining the main interest of the left D-module
M , we first recall some basic concepts of homological
algebra used in the sequel. We refer the reader to [56] for
more details.

Definition 2: A sequence (Mi, di)i∈Z+ of left D-
modules Mi and D-morphisms di : Mi −→ Mi−1, with
the convention that M−1 = 0, is said to be:

1) a complex if, for all i ∈ Z+, di ◦di+1 = 0 or, equiv-
alently, im di+1 ⊆ ker di. The defect of exactness at
Mi is then defined by H(Mi) = ker di/im di+1 and
the complex (Mi, di)i∈Z+ is denoted by:

. . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . . .

2) exact at Mi if ker di = im di+1, i.e., H(Mi) = 0.

3) exact if ker di = im di+1, for all i ∈ Z+.

4) split exact if it is exact and there further exist left
D-morphisms si : Mi−1 −→ Mi satisfying the
following conditions:

∀ i ∈ Z+,

{
si+1 ◦ si = 0,
si ◦ di + di+1 ◦ si+1 = idMi .

The complex (Mi−1, si)i∈Z+ is then exact.

Using (4), we obtain the exact sequence

D1×q .R−→ D1×p π−→M = D1×p/(D1×q R) −→ 0, (5)

where π denotes the canonical projection of D1×p onto
M that sends an element of D1×p onto its residue class in
M . The exact sequence (5) is called a finite presentation
of M and M is said to be a finitely presented left
D-module.

Let us describe M in terms of its generators and
relations. Let {ei}1≤i≤p (resp., {fj}1≤j≤q) be the standard
basis of D1×p (resp., D1×q), namely, the basis of D1×p

formed by the row vectors ei defined by 1 at the ith position
and 0 elsewhere. We denote by yi the residue class of ei in
M , i.e., yi = π(ei). Then, {yi}1≤i≤p is a set of generators
of M as every element m ∈ M is trivially of the form
π(µ), where µ = (µ1, . . . , µp) ∈ D1×p, and thus, we
obtain m = π(µ) =

∑p
i=1 µi π(ei) =

∑p
i=1 µi yi. The left

D-module M is then said to be finitely generated. Now,
for j = 1, . . . , q, we have:

fj R = (Rj1, . . . , Rjp) ∈ (D1×q R)⇒ π(fj R) = 0.

Making explicit π(fj R), we obtain:

π(fj R) =
p∑

k=1

Rjk π(ek) =
p∑

k=1

Rjk yk, j = 1, . . . , q.

Hence, the generators {yi}1≤i≤p of M satisfy the relations∑p
k=1Rjk yk = 0 for j = 1, . . . , q, or, more compactly,

Ry = 0 where y = (y1, . . . , yp)T .

Example 2: Let us consider the equations of a fluid in
a tank satisfying Saint-Venant’s equations and subjected to
a one dimensional horizontal move, developed in [26]:{

y1(t− 2h) + y2(t)− 2 u̇(t− h) = 0,
y1(t) + y2(t− 2h)− 2 u̇(t− h) = 0.

(6)

Let D = Q
[
∂1; 1, d

dt

]
[∂2;σ2, 0] be the Ore algebra of

differential time-delay operators with coefficients in Q
defined in 4) of Example 1 and let us consider the matrix:

R =

(
∂2
2 1 −2 ∂1 ∂2

1 ∂2
2 −2 ∂1 ∂2

)
∈ D2×3. (7)

The D-module M = D1×3/(D1×2R) is then defined by
the following finite presentation:

0 −→ D1×2 .R−→ D1×3 π−→M −→ 0.
To develop the relations between the properties of

the finitely presented left D-module M in (5) and the
solutions of the system Ry = 0, we need to introduce a
few more concepts of module theory (see [56] for details).

Definition 3: 1) Let N be a left D-module. We
denote by homD(M,N) the abelian group of
D-morphisms from M to N . If M has a D-D′

bimodule structure, i.e., M is a right D′-module
which satisfies (am) b = a (mb) for all a in D
and b in D′, then homD(M,N) inherits a right
D′-module. In particular, if D is a commutative
ring, then homD(M,N) inherits a D-module
structure.

2) If N = M , then we denote the non-commutative
ring of endomorphisms of M by endD(M).
Moreover, we denote by isoD(M) the non-abelian
group of isomorphisms of M , namely, the group of



injective and surjective D-morphisms from M to M .

3) A finitely generated left D-module is called free if
M is isomorphic to a finite power of D, i.e., there
exists an injective and surjective D-morphism from
M to D1×r, where r is a non-negative integer.

4) A finitely generated left D-module M is called
projective if there exist a left D-module N and a
non-negative integer r such that that M⊕N ∼= D1×r,
where ⊕ denotes the direct sum of left D-modules
and ∼= an isomorphism. N is then also projective.

5) A projective resolution of a left D-module M is an
exact sequence of the form

. . .
d3−→ P2

d2−→ P1
d1−→ P0

d0−→M −→ 0, (8)

where the Pi are projective left D-modules. If all
the Pi are free left D-modules, then (8) is called
a free resolution of M . Finally, if there exists a
non-negative integer s such that Pr = 0 for all
r ≥ s and the Pi are finitely generated free left
D-modules, then (8) is called a finite free resolution
of M .

6) Let (8) be a projective resolution of a left D-module
M . We call truncated projective resolution of M the
complex defined by:

. . .
d3−→ P2

d2−→ P1
d1−→ P0 −→ 0.

Let us suppose that a finitely presented left D-module
admits a finite free resolution (we note that it is always
the case for the Ore algebras defined in Example 1 as it is
proved in [14]):

0 −→ D1×pl
.Rl−−→ . . .

.R1−−→ D1×p0 π−→M −→ 0. (9)

Let F be a left D-module. Then, applying the functor
hom(·,F) to the truncated free resolution of M

0 −→ D1×pl
.Rl−−→ . . .

.R2−−→ D1×p1 .R1−−→ D1×p0 −→ 0,

we get the following complex (see [14], [56])

0←− Fpl
Rl.←−− . . . R2.←−− Fp1 R1.←−− Fp0 ←− 0, (10)

where, for i = 1, . . . , l, Ri. : Fpi−1 −→ Fpi is defined
by (Ri.) ζ = Ri ζ for all ζ = (ζ1, . . . , ζpi−1)

T ∈ Fpi−1 .
We can prove that, up to isomorphisms, the defects of
exactness of (10) only depend on M and F and not on
the choice of the finite free resolution (9) of M . See [56]
for more details. In particular, we note that these defects of
exactness can be defined by using any projective resolution
of M and not necessarily a finite free resolution of M as
we have done for simplicity reasons. They are denoted by:{

ext0D(M,F) ∼= kerF (R1.) = {η ∈ Fp0 |R1 η = 0},
exti

D(M,F) ∼= kerF (Ri+1.)/imF (Ri.), i ≥ 1.

It is quite easy (see [56]) to show that

ext0D(M,F) = homD(M,F),

which proves that the abelian group kerF (R1.) of F-
solutions of the linear functional system R1 η = 0 is
isomorphic to homD(M,F). We refer to [14] for more de-
tails. The abelian group kerF (R1.) is sometimes called the
behaviour of the left D-module M = D1×p0/(D1×p1 R1).
Moreover, if we want to solve the inhomogeneous system
R1 η = ζ, where ζ ∈ Fp1 is fixed, then, using the fact that
(9) is exact, we obtain that a necessary condition for the
existence of a solution η ∈ Fp0 is given by R2 ζ = 0 as
we have:

R1 η = ζ ⇒ R2(R1 η) = R2 ζ ⇒ R2 ζ = 0.

In order to understand if the compatibility condition
R2 ζ = 0 is also sufficient, we need to investigate the
residue class of ζ in ext1D(M,F) = kerF (R2.)/(R1 Fp0).
If its residue class is 0, then it means that ζ ∈ Fp1

satisfying R2 ζ = 0 is such that ζ ∈ (R1 Fp0), i.e.,
there exists η ∈ Fp0 such that R1 η = ζ. The solution
η is generally not unique as we can add any element of
kerF (R1.) = {η ∈ Fp0 | R1 η = 0} to it.

Definition 4 ([56]): 1) A left D-module F is called
injective if, for every left D-module M , we have:

exti
D(M,F) = 0, i ≥ 1.

2) A left D-module F is called cogenerator if:

homD(M,F) = 0⇒M = 0.

If F is an injective left D-module, then R2 ζ = 0
is a necessary and sufficient condition for the existence
of η ∈ Fp0 satisfying R1 η = ζ. Moreover, if F is a
cogenerator left D-module and M is not reduced to the
trivial module 0, then homD(M,F) 6= 0, meaning that
the system R1 η = 0 admits at least one solution in Fp0 .
Finally, if F is an injective cogenerator left D-module,
then we can prove that any complex of the form (10) is
exact if and only if the corresponding complex (9) is exact.

Proposition 3 ([56]): For every ring D, there exists an
injective cogenerator left D-module F .

In some interesting situations, explicit injective
cogenerators are known. Let us give some examples.

Example 3: 1) If Ω is a convex open subset of Rn,
then the space C∞(Ω) (resp., D′(Ω)) of smooth
functions (resp., distributions) on Ω is an injective
cogenerator module over the commutative ring
R[∂1; id, δ1] · · · [∂n; id, δn] (see [38]).

2) If F is the set of all functions that are smooth on
R except for a finite number of points, then F is



an injective cogenerator left R(t)
[
∂; idR(t),

d
dt

]
-

module. See [63] for more details.

To finish, let us recall two classical results of
homological algebra.

Proposition 4 ([56]): 1) Let us consider the follow-
ing exact sequence of left D-modules:

0 −→M ′ f−→M
g−→M ′′ −→ 0.

If M ′′ is a projective left D-module, then the previ-
ous exact sequence splits (see 4) of Definition 2).

2) Let F be a left D-module. Then, the functor
homD(·,F) transforms split exact sequences of left
D-modules into split exact sequences of abelian
groups.

B. Morphisms of finitely presented modules

1) Definitions and results: Let us first introduce a few
definitions of homological algebra concerning morphisms
of complexes. See [56] for more details.

Definition 5: 1) Let (Pi, di)i∈Z+ and (P ′
i , d

′
i)i∈Z+

be two complexes of left D-modules. A morphism
of complexes f : (Pi, di)i∈Z+ −→ (P ′

i , d
′
i)i∈Z+ is a

set of D-morphisms fi : Pi −→ P ′
i such that

∀ i ≥ 1, d′i ◦ fi = fi−1 ◦ di,

i.e., we have the following commutative diagram:

Pi+1
di+1−−−→ Pi

di−→ Pi−1

↓ fi+1 ↓ fi ↓ fi−1

P ′
i+1

d′i+1−−−→ P ′
i

d′i−→ P ′
i−1.

2) A morphism of complexes

f : (Pi, di)i∈Z+ −→ (P ′
i , d

′
i)i∈Z+

is said to be homotopic to zero if there exist D-
morphisms si : Pi −→ P ′

i+1 such that:

∀ i ≥ 1, fi = d′i+1 ◦ si + si−1 ◦ di.

By extension, two morphisms of complexes

f, f ′ : (Pi, di)i∈Z+ −→ (P ′
i , d

′
i)i∈Z+

are homotopic if f − f ′ is homotopic to zero.

3) A morphism of complexes

f : (Pi, di)i∈Z+ −→ (P ′
i , d

′
i)i∈Z+

is called a homotopy equivalence or a homotopism
if there exists a morphism of complexes

g : (P ′
i , d

′
i)i∈Z+ −→ (Pi, di)i∈Z+

such that f ◦g− idP ′ and g ◦f − idP are homotopic
to zero, where idP = (Pi, idPi)i∈Z+ . The complexes
(Pi, di)i∈Z+ and (P ′

i , d
′
i)i∈Z+ are then said to be

homotopy equivalent.

We have the following important result. See [47], [56]
for a proof.

Proposition 5 ([47], [56]): Let (Pi, di)i∈Z+ (resp.,
(P ′

i , d
′
i)i∈Z+) be a truncated projective resolution of M

(resp., M ′). Then, a morphism f : M −→ M ′ induces a
morphism of complexes f̃ : (Pi, di)i∈Z+ −→ (P ′

i , d
′
i)i∈Z+

defined uniquely up to a homotopy.
Conversely, a morphism of complexes

f̃ : (Pi, di)i∈Z+ −→ (P ′
i , d

′
i)i∈Z+

from a truncated projective resolution (Pi, di)i∈Z+ of M
to a truncated projective resolution (P ′

i , d
′
i)i∈Z+ of M ′

induces a morphism f : M −→M ′.

We deduce the following interesting corollary.

Corollary 1: Let

D1×q .R−→ D1×p π−→M −→ 0,

D1×q′ .R′

−→ D1×p′ π′−→M ′ −→ 0,

be a finite presentation of respectively M and M ′.
1) The existence of a morphism f : M −→ M ′ is

equivalent to the existence of two matrices

P ∈ Dp×p′ , Q ∈ Dq×q′

satisfying the commutation relation:

RP = QR′. (11)

We then have the commutative exact diagram:

D1×q .R−→ D1×p π−→ M −→ 0
↓ .Q ↓ .P ↓ f

D1×q′ .R′

−→ D1×p′ π′−→ M ′ −→ 0.
(12)

2) Moreover, if we denote by R′2 ∈ Dr′×q′ the matrix
satisfying

kerD(.R′) = D1×r′ R2,

then P and Q are defined up to a homotopy, i.e., the
matrices {

P = P + Z1R
′,

Q = Q+RZ1 + Z2R
′
2,

where Z1 ∈ Dp×q′ and Z2 ∈ Dq×r′ are two
arbitrary matrices, also satisfy the relation:

RP = QR′.

3) Finally, for all m ∈ M , we have f(m) = π′(λP ),
where λ ∈ D1×p is any element such that m = π(λ).

In the particular case where R′ = R, from Corollary 1,
we obtain that the existence of an endomorphism f of M



is equivalent to the existence of two matrices P ∈ Dp×p

and Q ∈ Dq×q satisfying the commutation relation:

RP = QR. (13)

Before illustrating Corollary 1, let us give a direct
consequence of this corollary which shows one interest
of computing morphisms between finitely presented left
D-modules.

Corollary 2: With the same hypotheses and notations as
in Corollary 1, if F is a left D-module, then the morphism
f? of abelian groups defined by

∀ ζ ∈ Fp′ , f?(ζ) = P ζ,

sends the elements of kerF (R′.) to elements kerF (R.),
i.e., F-solutions of the system R′ ζ = 0 to F-solutions of
the system Rη = 0.

Proof: Applying the right-exact functor homD(·,F)
(see [56]) to the exact commutative exact diagram (12),
we obtain the following exact commutative exact diagram:

0
↑

cokerf?

↑
Fq R.←− Fp π?

←− homD(M,F) ←− 0
↑ Q. ↑ P. ↑ f?

Fq′ R′.←− Fp′ (π′)?

←−−− homD(M ′,F) ←− 0.
↑

ker f?

↑
0

Up to an isomorphism, we have seen at the end of the
previous subsection that we can identify homD(M,F)
(resp., homD(M ′,F)) with kerF (R.) (resp., kerF (R′.)).
A chase in the previous exact diagram easily proves that,
for all ζ ∈ kerF (R′.), we have f?(ζ) = P ζ ∈ kerF (R.).

Remark 1: From Corollary 2, we see that the
computation of morphisms from a finitely presented
left D-module M to a finitely presented left D-module
M ′ gives some kind of “Galois symmetries” which send
solutions of the second system to solutions of the first one.
This fact is particularly clear when we have M = M ′: we
then send a solution of the system to another one.

As an example, we now apply Corollary 1 to a
particular case and recover in a unified way the so-called
eigenring introduced in the literature (see [59], [3], [9],
[15], [16], [22], [65]).

Example 4: Let D = A[∂;σ, δ] be a skew polynomial
ring over a commutative ring A and E,F ∈ Ap×p. We
consider the matrix R = (∂ Ip − E) ∈ Dp×p (resp., R′ =
(∂ Ip−F ) ∈ Dp×p) of functional operators and the finitely

presented left D-module M = D1×p/(D1×pR) (resp.,
M ′ = D1×p/(D1×pR′)). Let π (resp., π′) be the canonical
projection of D1×p onto M (resp., M ′) and {ei}1≤i≤p the
standard basis of D1×p. As we have seen in Subsection II-
A, {yi = π(ei)}1≤i≤p and {zi = π′(ei)}1≤i≤p satisfy:

∂ yi =
∑p

j=1Eij yj , i = 1, . . . , p,

∂ zi =
∑p

j=1 Fij zj , i = 1, . . . , p.
(14)

Let f be a morphism from M to M ′. Then, there exist
Pij ∈ D (i, j = 1, . . . , p) such that f(yi) =

∑p
j=1 Pij zj .

Using (14), we easily check that we can always suppose
that all the Pij belong to A, i.e., P ∈ Ap×p. By Corol-
lary 1, there exists Q ∈ Dp×p satisfying (11).

Clearly, f is the zero morphism if and only if there exists
a matrix Z ∈ Dp×p satisfying P = Z R′. As the order of
P is 0 and that of R′ is 1, we obtain that Z = 0, i.e.,
P = 0 and Q = 0.

Now, let us suppose that P and Q are different from
zero. As both the orders of RP and R′ in ∂ are 1, we
deduce that the order of Q must be 0, i.e., Q ∈ Ap×p.
Then, we get:

(11) ⇔ (∂ Ip − E)P = Q (∂ Ip − F )
⇔ σ(P ) ∂ + δ(P )− E P = Q∂ −QF
⇔ (σ(P )−Q) ∂ + (δ(P )− E P +QF ) = 0. (15)

The first order polynomial matrix in the left-hand side of
Equation (15) must be equal to 0 so that:

(15)⇔

{
Q = σ(P ),

δ(P ) = E P − σ(P )F.
(16)

We then obtain the following commutative exact diagram:

0 −→ D1×p .R−→ D1×p π−→ M −→ 0
↓ .σ(P ) ↓ .P ↓ f

0 −→ D1×p .R′

−→ D1×p π′−→ M ′ −→ 0.
(17)

Conversely, if there exist P ∈ Ap×p and Q ∈ Ap×p

which satisfy (16), we then check that we have (11), i.e.,
the commutative exact diagram (17) where the morphism
f : M −→M ′ is defined by

∀ m ∈M, f(m) = π′(λP ),

where λ ∈ D1×p is any element such that m = π(λ).

The previous results prove that we have:

homD(M,M ′) = {f : M −→M ′ | f(yi) =
∑p

j=1 Pij zj ,

i = 1, . . . , p, P ∈ Ap×p, δ(P ) = E P − σ(P )F},

endD(M) = {f : M −→M | f(yi) =
∑p

j=1 Pij yj ,

i = 1, . . . , p, P ∈ Ap×p, δ(P ) = E P − P E}.

For instance, if we consider the ring A = k[t] or k(t)
and D = A

[
∂; idA,

d
dt

]
, then (16) becomes{

Q(t) = P (t),

Ṗ (t) = E(t)P (t)− P (t)F (t),
(18)



whereas, if we consider the ring A = k[n] or A = k(n)
and D = A[∂;σ, 0] with σ(a)(n) = a(n + 1), then (16)
gives:{

Qn = σ(Pn) = Pn+1,

En Pn − σ(Pn)Fn = En Pn − Pn+1 Fn = 0.
(19)

We find again in a unified way known results concerning
the eigenring of a linear system (see [59], [3], [9], [15],
[16], [22], [65]).

Finally, if F is a left D-module, then applying the
functor homD(·,F) to the commutative exact diagram
(17), we obtain the following commutative exact diagram:

Fp R.←− Fp ←− homD(M,F) ←− 0
↑ σ(P ). ↑ P. ↑ f?

Fp R′.←−− Fp ←− homD(M ′,F) ←− 0.

If η ∈ homD(M ′,F), i.e., η ∈ Fp is a solution of the
system ∂ η = F η, then the previous commutative exact
diagram shows that ζ = P η is a solution of ∂ ζ = E ζ,
i.e., ζ = f?(η) ∈ homD(M,F). Indeed, we have:

∂ ζ − E ζ = ∂ (P η)− E (P η)
= σ(P ) ∂ η + δ(P ) η − (E P ) η
= σ(P ) (∂ η − F η) = 0.

For instance, if D = A
[
∂; idA,

d
dt

]
, using (18), we obtain:

∂ ζ(t)− E(t) ζ(t) = ∂ (P (t) η(t))− (E(t)P (t)) η(t)

= P (t) ∂ η(t)− Ṗ (t) η(t)− (E P ) η(t)
= P (t) (∂ η(t)− F η(t)) = 0.

If we now consider D = A[∂;σ, 0], using (19), we have:

ζn+1 − En ζn = Pn+1 ηn+1 − En Pn ηn

= Pn+1 (ηn+1 − Fn ηn) = 0.

2) Algorithms: Before giving two algorithms for the
computation of morphisms between two finitely presented
left modules, we first recall the notion of the Kronecker
product of two matrices.

Definition 6: Let E ∈ Dq×p and F ∈ Dr×s be two
matrices with entries in a ring D. The Kronecker product
of E and F , denoted by E ⊗ F , is the matrix defined by:

E ⊗ F =

 E11 F . . . E1p F
...

...
...

Eq1 F . . . Eqp F

 ∈ D(q r)×(p s).

The next result is very classical.

Lemma 1: Let D be a commutative ring, E ∈ Dr×q,
F ∈ Dq×p and G ∈ Dp×m three matrices. If we denote
by row(F ) = (F1•, . . . , Fq•) ∈ D1×q p the row vector
obtained by stacking the rows of F one after the other,
then the product of the three matrices can be obtained by:

E F G = row(F ) (ET ⊗G).

We point out that Lemma 1 is only valid for commu-
tative rings. Let us consider a commutative ring D and
the matrices R ∈ Dq×p, R′ ∈ Dq′×p′ , P ∈ Dp×p′ and
Q ∈ Dq×q′ . Then, from the previous lemma, we have{

RP = RP Ip′ = row(P ) (RT ⊗ Ip′),
QR′ = Iq QR

′ = row(Q) (Iq ⊗R′),

which implies that (11) is equivalent to:

(row(P ) row(Q))

(
RT ⊗ Ip′
−Iq ⊗R′

)
= 0.

This leads to an algorithm for computing matrices
P ∈ Dp×p′ and Q ∈ Dq×q′ satisfying (11) in the case
where the Ore algebra D is commutative.

Algorithm 1: • Input: A commutative Ore algebra
D and two matrices R ∈ Dq×p and R′ ∈ Dq′×p′ .

• Output: A finite family of generators {fi}i∈I of the
D-module homD(M,M ′), where

M = D1×p/(D1×q R), M ′ = D1×p′/(D1×q′ R′),

and each fi is defined by means of two matrices Pi

and Qi satisfying the commutation relation (11), i.e.:

∀ λ ∈ D1×p : fi(π(λ)) = π′(λPi), i ∈ I.

1) Form the following matrix with entries in D:

K =

(
RT ⊗ Ip′
−Iq ⊗R′

)
∈ D(p p′+q q′)×q p′ .

2) Compute kerD(.K), i.e., the first syzygy left D-
module of D1×(p p′+q q′)K, by means of a compu-
tation of a Gröbner basis for an elimination order
(see [14]). We obtain a matrix L ∈ Ds×(p p′+q q′)

satisfying:
kerD(.K) = D1×s L.

3) For i = 1, . . . , s, construct the following matrices{
Pi(j, k) = ri(L)(1, (j − 1) p′ + k),
Qi(l,m) = ri(L)(1, p p′ + (l − 1) q′ +m),

where ri(L) denotes the ith row of L, E(i, j) the i×j
entry of the matrix E, j = 1, . . . , p, k = 1, . . . , p′,
l = 1, . . . , q and m = 1, . . . , q′. We then have:

RPi = QiR
′, i = 1, . . . , s.

4) Compute a Gröbner basis G of the rows of R′ for
a total order.

5) For i = 1, . . . , s, reduce the rows of Pi with respect
to G by computing their normal forms with respect
to G. We obtain the matrices P i which satisfy

P i = Pi + ZiR
′,

where Zi ∈ Dp×q′ are certain matrices which can
be easily obtained by means of a factorization (see



[13] for details).

6) For i = 1, . . . , s, define the following matrices

Qi = Qi +RZi.

The pair (Pi, Qi) then satisfies the relation:

RP i = QiR
′.

Remark 2: If we denote by R′2 ∈ Dr′×q′ a matrix
satisfying kerD(.R) = D1×r′ R2, we then note that any
matrix of the form

Qi = Qi +RZi + Z ′i R
′
2,

where Z ′i ∈ Dq′×r′ is an arbitrary matrix, also satisfies
the relation RP i = QiR

′.

Remark 3: As D is a commutative ring, we know that
homD(M,M ′) has a D-module structure. In particular,
if {fi}i∈I is a family of generators of homD(M,M ′)
defined the pairs of matrices (P i, Qi), then any element
f ∈ homD(M,M ′) has the form f =

∑
i∈I αi fi, where

αi ∈ D for i ∈ I , and f can then be defined by the pair:(∑
i∈I

αi P i,
∑
i∈I

αiQi

)
.

Example 5: Let us consider again Example 2. Applying
Algorithm 1 to the matrix R defined by (7), we obtain that
the D-endomorphisms of M are generated by the matrices

Pα =

 α1

α2 + 2α4 ∂1 + 2α5 ∂1 ∂2

α4 ∂2 + α5

α2 2α3 ∂1 ∂2

α1 − 2α4 ∂1 − 2α5 ∂1 ∂2 2α3 ∂1 ∂2

−α4 ∂2 − α5 α1 + α2 + α3 (∂2
2 + 1)

 ,

and

Qα =

(
α1 − 2α4 ∂1 α2 + 2α4 ∂1

α2 + 2α5 ∂1 ∂2 α1 − 2α5 ∂1 ∂2

)
,

where α1, . . . , α5 are arbitrary elements of D, i.e.,

∀ λ ∈ D1×3, fα(π(λ)) = π(λPα).

As it is noticed in 1) of Definition 3, if D is a
non-commutative ring, then homD(M,M ′) is an abelian
group or an infinite-dimensional k-vector space. Hence,
the only possibility to access to homD(M,M ′) is to
use a certain filtration, i.e., to only consider morphisms
of homD(M,M ′) which can be defined by means of
a matrix P with a fixed total order in the functional
operators ∂i, and a fixed degree in xi for the numerators
and denominators of the polynomial/rational coefficients.
We obtain the following algorithm:

Algorithm 2: • Input: An Ore algebra D, two matri-
ces R ∈ Dq×p, R′ ∈ Dq′×p′ and three non-negative
integers α, β, γ.

• Output: A family of pairs (P i, Qi)i∈I satisfying:

RP i = QiR
′,

ord∂(P i) ≤ α, i.e., P i =
∑

0≤|ν|≤α a
(i)
ν ∂ν ,

and ∀ 0 ≤ |ν| ≤ α, a(i)
ν ∈ A satisfies :

degx(num(a(i)
ν )) ≤ β,

degx(denom(a(i)
ν )) ≤ γ,

where ord∂(P i) denotes the maximal of the total
orders of the entries of P i, degx(num(a(i)

ν )) (resp.,
degx(denom(a(i)

ν ))) the degree of the numerator
(resp., denominator) of a

(i)
ν . For all i ∈ I , the

morphisms fi are then defined by:

∀ λ ∈ D1×p : fi(π(λ)) = π′(λP i).

1) Take an ansatz for P satisfying the input

P (i, j) =
∑

0≤|ν|≤α

a(i,j)
ν ∂ν , 1 ≤ i ≤ p, 1 ≤ j ≤ p′,

where a(i,j)
ν is a rational function whose numerator

(resp., denominator) has a total degree β (resp., γ).

2) Compute RP and denote the result by F .

3) Compute a Gröbner basis G of the rows of R′.

4) Reduce the rows of F with respect to G by
computing their normal forms with respect to G.

5) Solve the system for the coefficients of a(i,j)
ν so

that all the normal forms vanish.

6) Substitute the solutions into the matrix P . Denote
the set of solutions by {Pi}i∈I .

7) For i ∈ I , reduce the rows of Pi with respect to G
by computing their normal forms with respect to G.
We obtain P i for i ∈ I .

8) Using rj(RP i) ∈ (D1×q′ R′), j = 1, . . . , q, where
rj(RP i) denotes the jth row of RP i, compute
a matrix Qi ∈ Dq×q′ satisfying RP i = QiR, i ∈ I .

Let us illustrate Algorithm 2 by means of an example.

Example 6: We consider the so-called Euler-Tricomi
equation ∂2

1 u(x1, x2)−x1 ∂
2
2 u(x1, x2) = 0 which appears

in the study of transonic flow. Let D = A2(Q) denote the
Weyl algebra, R = (∂2

1 − x1 ∂
2
2) ∈ D and M = D/(DR)

be the associated left D-module. Using Algorithm 2, we
can compute the endomorphisms of M defined by P ∈ D
with given total order in ∂i and total degree in xi. We



denote by endD(M)α,β the Q-vector space of all the
elements of endD(M) defined by a differential operator
Pα,β which total order (resp., degree) in ∂i (resp., xi) is
less or equal to α (resp., β), where α and β are two non-
negative integers. Below is a list of some of these vector
spaces obtained by means of Algorithm 2:

• endD(M)0,0 is defined by P = Q = a, a ∈ Q.
• endD(M)1,1 is defined by{

P = a1 + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1,

Q = (a1 + 2 a3) + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1,

where a1, a2 and a3 ∈ Q.
• endD(M)2,0 is defined by:

P = Q = a1 + a2 ∂2 + a3 ∂
2
2 , a1, a2, a3 ∈ Q.

• endD(M)2,1 is defined by (a1, . . . , a5 ∈ Q):
P =a1 + a2 ∂2 + 3

2 a3 x2 ∂2 + a3 x1 ∂1

+a4 ∂
2
2 + 3

2 a5 x2 ∂
2
2 + a5 x1 ∂1 ∂2,

Q = (a1 + 2 a3) + a2 ∂2 + 3
2 a3 x2 ∂2 + a3 x1 ∂1

+a4 ∂
2
2 + a5 x1 ∂1 ∂2 + 2 a5 ∂2 + 3

2 a5 x2 ∂
2
2 .

Remark 4: If D is a non-commutative ring, we
then note that homD(M,M ′) is generally an infinite-
dimensional k-vector space and an abelian group. In par-
ticular, homD(M,M ′) has no non-trivial module structure,
a fact implying that there does not exist a finite family of
generators of homD(M,M ′) as a left or right D-module.

However, if M and M ′ are two finite-dimensional k-
vector spaces (e.g., the linear systems defined in Exam-
ple 4, connections, D-finite modules [12]), we can then
compute a basis of the finite-dimensional k-vector space
homD(M,M ′). In order to do that, we need to know some
bounds on the orders and degrees of the entries of solutions
of (11) so that we can know whether or not Algorithm 2
finds a k-basis of the morphisms. In some cases, such
bounds are known. Let us recall some known results.

In Example 4, we saw that if D = A[∂;σ, δ] was a skew
polynomial ring over a commutative ring A, E,F ∈ Ap×p

and R = (∂ Ip − E), R′ = (∂ Ip − F ), the morphisms
from M = D1×p/(D1×pR) to M ′ = D1×p/(D1×pR)
are defined by means of matrices P ∈ Ap×p satisfying:

δ(P ) = E P − σ(P )F. (20)

Hence, we need to solve (20). There are two main cases:
1) If A = k[t] or k(t) and D = A

[
∂; idA,

d
dt

]
, then (20)

becomes Ṗ (t) = E(t)P (t) − P (t)F (t). A direct
method to solve the previous linear system of ODEs
is developed in [7]. Another method, based on the
fact that the entries of the matrices E, F and P
belong to a commutative ring A, uses the equivalent
of the previous system with the following first order
linear system of ODEs

δ(row(P )) = row(P ) ((ET ⊗Ip)−(Ip⊗F )), (21)

where ⊗ denotes the Kronecker product (see
Definition 6). Hence, computing homD(M,M ′)
is equivalent to computing the A-solutions of an
auxiliary linear differential system (21) (see for
example [7], [15], [16], [22], [59]). Consequently,
we can use the bounds appearing in [2], [4] on
the degrees of numerators (and denominators) of
polynomial (rational) solutions to deduce bounds
on the entries of P . We note that in that case, the
matrices P and Q have necessarily 0 order. We
may precise that these bounds depend only on the
valuations and degrees of the entries of the two
matrices E and F .

2) If we consider the ring A = k[n] or A = k(n)
and D = A[∂;σ, 0] with σ(a)(n) = a(n + 1), then
(20) becomes Pn+1 Fn = En Pn. A direct method
to solve the previous linear difference system is
developed in [5]. Another one, based again on the
fact that the entries of the matrices En, Fn and Pn

belong to a commutative ring A, uses the equivalent
of the previous system with the following first order
linear discrete system:

row(Pn+1) (ET
n ⊗ Ip) = row(Pn) (Ip ⊗ Fn). (22)

Moreover, if E ∈ GLp(A), i.e., the matrix E is
invertible, then (22) becomes

row(Pn+1) = row(Pn) ((Ip ⊗ F ) (ET
n ⊗ Ip)−1).

As in the differential case, some bounds exist on the
degrees of numerators (and denominators) of polyno-
mial (rational) solutions of the previous system (see
[1], [5]), and thus, for the matrices P and Q.

Finding bounds in more general situations is a subject
for future researches.

3) Applications: quadratic first integrals of motion
and conservation laws: We give two applications which
illustrate the interest of the computation of morphisms in
the search of quadratic first integrals of motion of linear
systems of ODEs and quadratic conservation laws of
linear systems of PDEss.

We consider the Ore algebra D = A
[
∂; idA,

d
dt

]
of

ordinary differential operators with coefficients in the k-
algebra A (e.g., A = k[t], k(t)), where k is a field, and
the matrix R = (∂ Ip − E) ∈ Dp×p. Using (18), we
easily check that any solution P ∈ Ap×p of the following
Liapunov equation

Ṗ (t) + ET (t)P (t) + P (t)E(t) = 0

defines a morphism from the left D-module
M ′ = D1×p/(D1×p R̃) to the left D-module
M = D1×p/(D1×pR), where R̃ = (∂ Ip + ET ) ∈ Dp×p

denotes, up to a sign, the formal adjoint of R.
We recall that the formal adjoint R̃ of a matrix R of

differential operators is obtained by contracting the column



vector Rη by a row vector λ and integrating the result by
parts (see [44], [45], [46]). Hence, there exists a bilinear
application Φ which satisfies:

< λ,R η >=< R̃ λ, η > +∂ (Φ(λ, η)). (23)

In particular, in our case, we have:

λT (∂η − E η) = −ηT (∂λ+ ET λ) + ∂ (ηT λ). (24)

If F is a left D-module and η ∈ Fp satisfies the system
∂η − E η = 0, then, following the results obtained in
Example 4, λ = P η is a solution of ∂ λ + ET λ = 0.
Hence, using (24), we then get

∂ (ηT λ) = ∂(ηT P η) = 0,

which proves that the quadratic form V = ηT P η is a first
integral of the motion of the system ∂η−E η = 0. Hence,
we obtain that there exists a one-to-one correspondence
between the quadratic first integrals of the motion
of the form V = ηT P η, where P ∈ Aq×p, of the
system ∂ η−E η = 0 and the morphisms between the left
D-modules Ñ and M , i.e., the elements of homD(Ñ ,M).

Let us illustrate the previous result.

Example 7: Let us consider the example of a linear
system of ODEs defined in p. 117 of [30]. In order to do
that, let us introduce the following matrix of coefficients

E =


0 1 0 0
−ω2 0 α 0

0 0 0 1
0 0 −ω2 α

 ∈ Q(ω, α)4×4,

the ring D = Q(ω, α)
[
∂; id, d

dt

]
of differential operators,

the matrix R = (∂ I4−E) ∈ D4×4 of differential operators
and the D-module M = D1×4/(D1×4R). Then, we have
R̃ = (∂ I4 + ET ) and Ñ = D1×4/(D1×4 R̃). Using
Algorithm 1, we obtain that an element of the D-module
homD(Ñ ,M) can be defined by means of the matrix

P =


c1 ω

4 c2 ω
2

−c2 ω2 c1 ω
2

−ω2 (c1 α− c2) −c1 ω2 − c2 α
c1 ω

2 c2

−ω2 (c1 α+ c2) c1 ω
2

−c1 ω2 + c2 α −c2
c1 (α2 + ω2) −c1 α+ c2
−c1 α− c2 c1

 ,

where c1 and c2 are two constants, which leads to the
quadratic first integral V (x) = xT P x, i.e.:

V (x) = c1 ω
4 x1(t)2 − 2 c1 αω2 x1(t)x3(t)

+2 c1 ω2 x1(t)x4(t) + c1 ω
2 x2(t)2

−2 c1 ω2 x2(t)x3(t) + c1 α
2 x3(t)2

+c1 ω2 x3(t)2 − 2 c1 αx3(t)x4(t)
+c1 x4(t)2.

More generally, let us consider a matrix R ∈ Dq×p of
differential operators, R̃ ∈ Dp×q its formal adjoint and the
finitely presented left D-modules M = D1×p/(D1×q R)
and Ñ = D1×q/(D1×p R̃). Let us suppose that there exists
a morphism f from Ñ to M defined by P ∈ Dq×p and
Q ∈ Dp×q, i.e., we have the commutative exact diagram:

D1×p . eR−→ D1×q π′−→ Ñ −→ 0
↓ .Q ↓ .P ↓ f

D1×q .R−→ D1×p π−→ M −→ 0.

Applying the right exact functor homD(·,F) to the pre-
vious commutative exact diagram, we then obtain the
following commutative exact diagram

Fp
eR.←− Fq ←− kerF (R̃.) ←− 0

↑ Q. ↑ P. ↑ f?

Fq R.←− Fp ←− kerF (R.) ←− 0,

where f?(η) = P η. Hence, if η ∈ Fp is a solution of
Rη = 0, then λ = P η is a solution of R̃ λ = 0 as:

R̃ (P η) = Q (Rη) = 0.

Therefore, using (23), we obtain that V = Φ(P η, η) is a
quadratic first integral of the motion of system Rη = 0,
i.e., V satisfies ∂ V = 0.

An extension of the previous ideas exists for the
computation of quadratic conservation laws of linear
system of PDEs, namely, a vector Φ = (Φ1, . . . ,Φn)T

of quadratic functions of the system variables and their
derivatives which satisfies div Φ =

∑n
i=1 ∂i Φi = 0,

where n denotes the number of independent variables. Let
us give a simple example as the general theory follows
exactly the same lines.

Example 8: Consider the PDE ∆ y(x1, x2) = 0, where
∆ = ∂2

1 + ∂2
2 ∈ D = Q

[
∂1; id, ∂

∂x1

] [
∂2; id, ∂

∂x2

]
is the

Laplacian operator. Multiplying ∆ y(x1, x2) by a function
λ(x1, x2) and integrating the result by parts, we obtain:

λ (∆ y)− (∆λ) y
= ∂1 (λ (∂1 y)− (∂1 λ) y) + ∂2 (λ (∂2 y)− (∂2 λ) y).

(25)
Using the fact that R = ∆ is a differential operator
with constant coefficients and R̃ = R, we then obtain
homD(Ñ ,M) = endD(M) = D. Hence, if F is a D-
module (e.g., C∞(Ω)), then, for all α ∈ D and y ∈ F
satisfying ∆ y = 0, λ = α y is then a solution of ∆λ = 0.
Substituting λ = α y in (25), we finally obtain

div Φ = ∂1 Φ1 + ∂2 Φ2 = 0,

with the notation:

Φ =

(
(α y) (∂1 y)− y (∂1 α y)
(α y) (∂2 y)− y (∂2 α y)

)
.



III. REDUCIBLE MODULES AND FACTORIZATIONS

A. Modules associated with a morphism and equivalences

Let f : M −→ M ′ be a morphism between two left
D-modules. Then, we can define the following left D-
modules:

ker f = {m ∈M | f(m) = 0},
im f = {m′ ∈M ′ | ∃ m ∈M : m′ = f(m)},
coim f = M/ ker f,
coker f = M ′/im f.

Let us explicitly characterize the above-mentioned
kernel, image, coimage and cokernel of a morphism
f : M −→ M ′ between two finitely presented left
D-modules M and M ′.

Proposition 6: Let R ∈ Dq×p, R′ ∈ Dq′×p′ ,

M = D1×p/(D1×q R), M ′ = D1×p′/(D1×q′ R′).

Let f : M −→M ′ be a morphism defined by two matrices
P ∈ Dp×p′ and Q ∈ Dq×q′ satisfying (11). Then, we have:

1) ker f = (D1×r S)/(D1×q R), where S ∈ Dr×p is
the matrix defined by:

kerD

(
.

(
P
R′

))
= D1×r (S −T ), T ∈ Dr×q′ .

(26)
2) coim f = D1×p/(D1×r S),

3) im f =
(
D1×(p+q′)

(
P
R′

))
/(D1×q′ R′),

4) coker f = D1×p′/

(
D1×(p+q′)

(
P
R′

))
.

Proof: 1. Let m ∈ ker f and write m = π(λ) for a
certain λ ∈ D1×p. Then, f(m) = π′(λP ) = 0 implies that
λP ∈ (D1×q′ R′), i.e., there exists µ ∈ D1×q′ satisfying
λP = µR′. Hence, m = π(λ) ∈ ker f implies that there
exists µ ∈ D1×q′ such that λP = µR′. Conversely, we
easily check that any element of

(λ − µ) ∈ kerD

(
.

(
P
R′

))
gives m = π(λ) ∈ ker f , which proves the result.

2. Using the canonical short exact sequence

0 −→ ker f i−→M
ρ−→ coim f −→ 0,

where i (resp., ρ) denotes the canonical injection (resp.,
surjection), and the fact that M = D1×p/(D1×q R) and
ker f = (D1×r S)/(D1×q R), we obtain the following
exact sequence

0 −→ (D1×r S)/(D1×q R) i−→ D1×p/(D1×q R)
ρ−→ coim f −→ 0,

which proves that coim f = D1×p/(D1×r S) (see [56]).

3. For all λ ∈ D1×p, we have f(π(λ)) = π′(λP ), which
clearly proves that we have:

im f =
(
D1×(p+q′)

(
P
R′

))
/(D1×q′ R′).

4. Using the canonical short exact sequence

0 −→ im f
j−→M ′ σ−→ coker f −→ 0,

where j (resp., σ) denotes the canonical injection (resp.,
surjection), and the fact that M ′ = D1×p′/(D1×q′ R′) and
im f = (D1×p P +D1×q′ R′)/(D1×q′ R′), we then obtain
the following exact sequence

0 −→
(
D1×(p+q′)

(
P
R′

))
/(D1×q′ R′)

j−→ D1×p′/(D1×q′ R′) σ−→ coker f −→ 0,

which proves that:

coker f = D1×p′/

(
D1×(p+q′)

(
P
R′

))
.

Let us state the first main result of the paper.
Theorem 1: With the notations of Proposition 6, any

non-injective morphism f : M −→ M ′ leads to a non-
trivial factorization of R ∈ Dq×p of the form R = LS,
where L ∈ Dq×r and S ∈ Dr×p.

Proof: Using (26) and the fact that RP = QR′, i.e.,

(R −Q)
(

P
R′

)
= 0,

we obtain that (D1×q (R − Q)) ⊆ (D1×r (S − T )),
and thus, there exists a matrix L ∈ Dq×r satisfying:{

R = LS,

Q = LT.
(27)

We then obtain the following commutative exact diagram

0
↓

0 ker f
↓ ↓

D1×q .R−→ D1×p π−→ M −→ 0
↓ .L ‖ ↓ ρ

D1×r .S−→ D1×p κ−→ coim f −→ 0,
↓ ↓
0 0

(28)

where ρ : M −→ coim f denotes the canonical projection.

Let us illustrate Theorem 1 by means of an example.



Example 9: We consider the linearized Euler equations
for an incompressible fluid (p. 519 of [36]) div~v(x, t) = 0,

∂ ~v(x, t)
∂t

+ grad p(x, t) = 0,
(29)

where ~v = (v1, v2, v3)T (resp., p) denotes the perturbations
of the speed (resp., pressure) around a steady-state position
and x = (x1, x2, x3). If we denote by D the Ore algebra

Q
[
∂1; id,

∂

∂x1

] [
∂2; id,

∂

∂x2

] [
∂3; id,

∂

∂x3

] [
∂t; id,

∂

∂t

]
of differential operators with rational constant coefficients,
the system matrix corresponding to (29) can be defined by:

R =


∂1 ∂2 ∂3 0
∂t 0 0 ∂1

0 ∂t 0 ∂2

0 0 ∂t ∂3

 ∈ D4×4.

Let M = D1×4/(D1×4R) be the left D-module associ-
ated with the system (29). An endomorphism f of M is
defined by the matrices:

P =


0 0 0 0
0 ∂2

3 −∂2 ∂3 0
0 −∂2 ∂3 ∂2

2 0
0 0 0 0

 ,

Q =


0 0 0 0
0 0 0 0
0 0 ∂2

3 −∂2 ∂3

0 0 −∂2 ∂3 ∂2
2

 .

We then obtain the following factorization R = LS where:

S =


1 0 0 0
0 ∂2 ∂3 0
0 −∂t 0 0
0 0 ∂t 0
0 0 0 1

 ,

L =


∂1 1 0 0 0
∂t 0 0 0 ∂1

0 0 −1 0 ∂2

0 0 0 1 ∂3

 .

We can check that ker f = (D1×5 S)/(D1×4R) 6= 0,
which shows that R = LS is a non-trivial factorization of
R. The solutions of the system S η = 0 are in particular
solutions of Rη = 0. If we consider F = C∞(Ω), where
Ω is an open convex subset of R4, we easily check that
all F-solutions of S η = 0 are given by

η =
(

0, −∂ξ(x)
∂x3

,
∂ξ(x)
∂x2

, 0
)T

, (30)

where ξ is any function of C∞(Ω ∩ R3). In other words,
(30) gives a family of stationary solutions of (29).

Let us state a useful lemma.

Lemma 2: Let R ∈ Dq×p, R′ ∈ Dq′×p, R′′ ∈ Dq×q′

be three matrices satisfying the relation R = R′′R′ and
let T ′ ∈ Dr′×q′ be such that kerD(.R′) = D1×r′ T ′. Let
us also consider the following canonical projections:

π1 : (D1×q′ R′) −→M1 = (D1×q′ R′)/(D1×q R),

π2 : D1×q′ −→M2 = D1×q′/(D1×q R′′ +D1×r′ T ′).

Then, the morphism ψ defined by

ψ : M2 −→ M1

m2 = π2(λ) 7−→ ψ(m2) = π1(λR′),

is an isomorphism and its inverse φ is defined by:

φ : M1 −→ M2

m1 = π1(λR′) 7−→ φ(m1) = π2(λ).

In other words, we have the following isomorphism:

(D1×q′ R′)/(D1×q R) ∼= D1×q′/(D1×q R′′ +D1×r′ T ′).
(31)

Proof: Let us first prove that ψ is a well-defined
morphism. We assume that we have m2 = π2(λ) = π2(λ′),
where λ, λ′ ∈ D1×q′ . Then, we have π2(λ − λ′) = 0,
i.e., λ − λ′ ∈ (D1×q R′′ + D1×r′ T ′) so that there exist
µ ∈ D1×q and ν ∈ D1×r′ such that λ−λ′ = µR′′+ν T ′.
We then have:

(λ− λ′)R′ = (µR′′ + ν T ′)R′ = µR

⇒ π1((λ− λ′)R′) = π1(µR) = 0

⇒ π1(λ′R′) = π1(λR′) = ψ(m2).

Now, let us prove that the morphism φ is also well-
defined. Let us suppose that:

m1 = π1(λR′) = π1(λ′R′), λ, λ′ ∈ D1×q′ .

We have π1(λR′)−π1(λ′R′) = π1((λ−λ′)R′) = 0, and
thus, (λ− λ′)R′ ∈ (D1×q R), i.e., there exists µ ∈ D1×q

such that (λ− λ′)R′ = µR. Now, using the factorization
R = R′′R′, we then get (λ−λ′−µR′′)R′ = 0 so that we
have λ−λ′−µR′′ ∈ kerD(.R′) = (D1×r′ T ′). Therefore,
there exists ν ∈ D1×r′ such that λ − λ′ = µR′′ + ν T ′

and then:

π2(λ)− π2(λ′) = π2(λ− λ′) = π2(µR′′ + ν T ′) = 0.

Finally, for all

m1 = π1(λR′) ∈M1, m2 = π2(λ) ∈M2,

where λ ∈ D1×q′ , we have{
(ψ ◦ φ)(m1) = ψ(π2(λ)) = π1(λR′) = m1,

(φ ◦ ψ)(m2) = φ(π1(λR′)) = π2(λ) = m2,

which proves that ψ ◦ φ = idM1 , φ ◦ ψ = idM2 and we
thus have (31).

We deduce the following corollary of Lemma 2 and
Proposition 6.



Corollary 3: With the notations of Proposition 6:
1) If L ∈ Dq×r denotes a matrix satisfying R = LS

and kerD(.S) = D1×r2 S2, where S2 ∈ Dr2×r, we
then have:

ker f ∼= D1×r/

(
D1×(q+r2)

(
L
S2

))
.

2) We have im f ∼= coim f .

Proof: 1. It is a straightforward application of the
isomorphism (31) to this particular case.

2. Using the following two facts
R′ = (0 Iq′)

(
P
R′

)
,

kerD

(
.

(
P
R′

))
= (D1×r (S − T )),

where S ∈ Dr×p and T ∈ Dr×q, applying Lemma 2 to 3)
of Proposition 6, we get:

im f ∼= D1×(p+q)/

(
D1×(q′+r)

(
0 Iq′

S −T

))
∼= D1×p/(D1×r S) = coim f.

We give a corollary of Proposition 6 and Corollary 3.

Corollary 4: With the notations of Corollary 3 and
Proposition 6, a morphism f : M −→M ′ is:

1) the zero morphism (f = 0) if and only if one of the
following conditions holds:

a) There exists a matrix Z ∈ Dp×q′ such that:

P = Z R′.

In this case, there exists a matrix Z ′ ∈ Dq×q′2

such that
Q = RZ + Z ′R′2,

where kerD(.R′) = (D1×q′2 R′2).

b) The matrix S admits a left-inverse.

2) injective if and only if one of the following condi-
tions holds:

a) There exists a matrix F ∈ Dr×q such that:

S = F R.

b) The matrix (LT ST
2 )T admits a left-inverse.

3) surjective if and only if (PT R′T )T admits a
left-inverse.

4) an isomorphism (f ∈ iso(M)) if the matrices
(LT ST

2 )T and (PT R′T )T admit left-inverses.

Proof: 1. Using 3) of Proposition 6, im f = 0 if and
only if we have

(D1×p P ) + (D1×q′ R′) = (D1×q′ R′),

that is, if and only if (D1×p P ) ⊆ (D1×q′ R′) which is
equivalent to the existence of a matrix Z ∈ Dp×q′ such
that P = Z R′. Now, substituting P = Z R′ into (11), we
then get:

RZ R′ = QR′ ⇒ (Q−RZ)R′ = 0.

Thus, there exists Z ′ ∈ Dq×q′2 satisfying

Q−RZ = Z ′R′2,

which proves the result. We note also that 1.a) is a trivial
consequence of Corollary 1.

Let us prove 1.b). Using the standard isomorphism

ε : coim f −→ im f, ∀ m ∈M : ε(σ(m)) = f(m),

where σ : M −→ coim f denotes the canonical projection,
we obtain that im f = 0 if and only if

coim f = D1×p/(D1×r S) = 0⇔ (D1×r S) = D1×p,

i.e., if and only if S admits a left-inverse.

2. From 1) of Proposition 6, ker f = 0 if and only if
(D1×r S) = (D1×q R), i.e., if and only if there exists
F ∈ Dr×q satisfying S = F R.

Moreover, using Corollary 3, we have ker f = 0 if and
only if (D1×q L) + (D1×r2 S2) = D1×r, i.e., if and only
if the matrix (LT ST

2 )T admits a left-inverse.

3. f is surjective if and only if coker f = 0,
i.e., from 4) of Proposition 6, if and only if
(D1×p P ) + (D1×q′ R′) = D1×p which is equivalent to
the fact that the matrix (PT R′T )T admits a left-inverse.

4. The result is a direct consequence of 2.b) and 3).

Let us see how to apply the previous results in order
to check the equivalence between two modules, and thus,
between two systems.

Example 10: We consider two systems of PDEs appear-
ing in the theory of linear elasticity (see [43]): one half of
the so-called Killing operator, namely, the Lie derivative
of the euclidean metric defined by ωij = 1 for i = j and 0
otherwise (1 ≤ i, j ≤ 2) and the Spencer operator of the



Killing operator:


d1 ξ1 = 0,
1
2 (d2 ξ1 + d1 ξ2) = 0,
d2 ξ2 = 0,



d1 z1 = 0,
d2 z1 − z2 = 0,
d1 z2 = 0,
d1 z3 + z2 = 0,
d2 z3 = 0,
d2 z2 = 0.

Let D = Q
[
∂1; id, ∂

∂x1

] [
∂2; id, ∂

∂x2

]
be the ring of dif-

ferential operators and let us define the following matrices

R =

 ∂1 0
1
2 ∂2

1
2 ∂1

0 ∂2

 , R′ =



∂1 0 0
∂2 −1 0
0 ∂1 0
0 1 ∂1

0 0 ∂2

0 ∂2 0


,

and the associated finitely presented D-modules:

M = D1×2/(D1×3R), M ′ = D1×3/(D1×6R′).

Using Algorithm 1, we find that the matrices

P =
(

1 0 0
0 0 1

)
, Q =

1
2

 2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0

 ,

satisfy the relation RP = QR′, i.e., they define a
morphism f : M −→M ′ by:{

f(ξ1) = z1,

f(ξ2) = z3.

The morphism f is injective as the matrix S (with the same
notations as in Corollary 4) defined by

S =
(
∂2 ∂1 ∂2

2 0
∂1 0 0 ∂2

)T

satisfies the relation S = F R, where:

F =


0 2 0
1 0 0
0 2 ∂2 −∂1

0 0 1

 .

Moreover, f is surjective as the matrix (PT R′T )T

admits the following left-inverse: 1 0 0 0 0 0 0 0
0 −∂1 0 0 0 1 0 0
0 1 0 0 0 0 0 0

 .

This proves that f is an isomorphism and M ∼= M ′.

To finish this section, we show an important application
of Lemma 2. In order to simplify the exposition, we only
consider a commutative Ore algebra of partial differential
operators but the extension to non-commutative one can
be easily obtained by using the concept of formal adjoint

instead of the simple transposition ([14], [43], [44], [45]).

Let M be a D-module defined by a finite free resolution
of the form (9). If we consider (10) with F = D, we then
obtain the D-modules:

exti
D(M,D) ∼= kerD(Ri+1.)/(RiD

pi−1), i ≥ 1,
∼= kerD(.RT

i+1)/(D
1×pi−1 RT

i ), i ≥ 1.

Computing the first syzygy module of kerD(.RT
i+1), we

obtain a matrix QT
i ∈ Dp′i−1×pi such that:

kerD(.RT
i+1) = (D1×p′i−1 QT

i ).

Therefore, we obtain:

exti
D(M,D) ∼= (D1×p′i−1 QT

i )/(D1×pi−1 RT
i ).

Using Lemma 2, we obtain

exti
D(M,D) ∼= D1×p′i−1/((D1×pi−1 FT

i )+(D1×p′i−2 PT
i )),

(32)
where FT

i ∈ Dpi−1×p′i−1 and PT
i ∈ Dp′i−2×p′i−1 satisfy:{

RT
i = FT

i QT
i ,

kerD(.QT
i ) = (D1×p′i−2 PT

i ).

The isomorphism (32) is useful for computation of

extj
D(exti

D(M,D)), 1 ≤ i, j ≤ n,

which play a crucial role in the study of r-pure differential
modules as it is explained in [43], [51].

Example 11: Let us consider the linear system of PDEs:
∂2y

∂x2
2

= 0,

∂2y

∂x1 ∂x2
= 0.

(33)

We easily check that we have:

z1 =
∂y

∂x2
,

∂z1
∂x1

= 0,

∂z1
∂x2

= 0,


z2 =

∂y

∂x1
,

∂z2
∂x2

= 0,

We obtain that z1 is an arbitrary constant, i.e., the Krull
dimension of z1 is 0, whereas z2 is an arbitrary function of
x1, i.e., the Krull dimension of z2 is 1. An important issue
in system theory is to be able to classify the observables of
a system of PDEs, namely, the differential linear combina-
tions of the system variables ([14], [43]), in terms of their
Krull dimensions. As it was explained in [43], we need to
be able to compute extj

D(exti
D(M,D)), 1 ≤ i, j ≤ n, in

order to achieve this classification. Let us illustrate these
computations of the system (33).

Let D = Q
[
∂1; id, ∂

∂x1

] [
∂2; id, ∂

∂x2

]
be the ring of

differential operators with constant coefficients, the matrix



R = (d2
2 d1 d2)T and the D-module M = D/(D1×2R).

Let us compute extj
D(exti

D(M,D)), 1 ≤ i, j ≤ 2.
We have the following finite free resolution of M

0 −→ D
.R2−−→ D1×2 .R−→ D

π−→M −→ 0,

where R2 = (d1 − d2). The defects of exactness of the

complex 0←− D .RT
2←−− D1×2 .RT

←−− D ←− 0 are:
ext0D(M,D) ∼= kerD(.RT ) = 0,

ext1D(M,D) ∼= kerD(.RT
2 )/(DRT ),

ext2D(M,D) ∼= D/(D1×2RT
2 ).

Using the finite free resolution of ext2D(M,D)

0 −→ D
.L−→ D1×2 .RT

2−−→ D −→ ext2D(M,D) −→ 0,

where L = (d2 d1), the defects of exactness of the

complex 0←− D .LT

←−− D1×2 .R2←−− D ←− 0 are:
ext0D(ext2D(M,D), D) ∼= kerD(.R2) = 0,

ext1D(ext2D(M,D), D) ∼= kerD(.LT )/(DR2),

ext2D(ext2D(M,D), D) ∼= D/(D1×2 LT ).

We easily check that kerD(.LT ) = (DR2), which proves:

ext1D(ext2D(M,D), D) = 0.

We check that we have kerD(.RT
2 ) = (DL), which shows

that ext1D(M,D) = (DL)/(DRT ). Using Lemma 2, we
then have

ext1D(M,D) ∼= (DL)/(DRT ) ∼= D/(Dd2),

as RT = d2 L and kerD(.L) = 0. Using the following
finite free resolution of ext1D(M,D) ∼= D/(Dd2)

0 −→ D
.d2−→ D −→ ext1D(M,D) −→ 0,

the defects of exactness of the complex

0←− D .d2←− D ←− 0,

are then defined:{
ext0D(ext1D(M,D), D) ∼= kerD(.d2) = 0,

ext1D(ext1D(M,D), D) ∼= D/(Dd2).

If we denote by tr(M) = {m ∈M | dim(Dm) ≤ 1− r},
r = 0, 1, the D-submodule M formed by the elements of
M of Krull dimension less or equal to 1− r, t0(M) = M
and t2(M) = 0, we then have ([43]):

0 −→ tr(M) −→ tr−1(M) −→ extr
D(extr

D(M,D), D)
−→ 0.

Hence, we obtain that{
t1(M) = ext2D(ext2D(M,D), D) ∼= D/(D1×2 LT ),

M/t1(M) ∼= D/(Dd2).

Finally, using the fact that exti
D(exti

D(M,D), D) is a pure
D-module of Krull dimension n − i ([43]), from the first

equality, we find again that the Krull dimension of the
residue class z1 of 1 in t1(M) is 0, which was easy to
find directly on the simple example (33) but could be much
more difficult on more general linear systems.

B. Reducible modules and block-triangular matrices

The next proposition will play an important role in
what follows.

Proposition 7: Let us consider a matrix P ∈ Dp×p.
The following assertions are equivalent:

1) The left D-modules kerD(.P ) and coimD(.P ) are
free of rank respectively m and p−m.

2) There exists a unimodular matrix U ∈ Dp×p, i.e.,
U ∈ GLp(D), and a matrix J ∈ Dp×p of the form

J =
(

0 0
J1 J2

)
,

where J1 ∈ D(p−m)×m and J2 ∈ D(p−m)×(p−m),
(J1 J2) has full row rank, satisfying the relation:

U P = J U. (34)

The matrix U has then the form

U =
(
U1

U2

)
, (35)

where the full row rank matrix U1 ∈ Dm×p is defined
by kerD(.P ) = (D1×m U1) and U2 ∈ D(p−m)×p is any
matrix such that U is invertible over D.

In particular, we have the relations:{
U1 P = 0,
U2 P = J1 U1 + J2 U2.

Proof: (1 ⇒ 2). Let us suppose that kerD(.P )
and coimD(.P ) are two free left D-modules of rank
respectively m and p−m.

Let U1 ∈ Dm×p be a basis of kerD(.P ), i.e., the full row
rank matrix U1 satisfies kerD(.P ) = (D1×m U1). Using
the fact that we have the exact sequence

0 −→ kerD(.P ) −→ D1×p κ−→ coimD (.P ) −→ 0

and kerD(.P ) = (D1×m U1), we then obtain the following
exact sequence:

0 −→ D1×m .U1−−→ D1×p κ−→ coimD (.P ) −→ 0.

If we denote by L = D1×p/(D1×m U1), then we get:

coim (.P ) = D1×p/ kerD(.P ) = L.

Using the fact that L is a free left D-module of rank p−m
and if we denote by φ : L −→ D1×(p−m) the previous
isomorphism, by κ : D1×p −→ L the canonical projection
and by W2 ∈ Dp×(p−m) the matrix corresponding to the



D-morphism φ ◦ κ in the canonical bases of D1×p and
D1×(p−m), we then obtain the exact exact sequence:

0 −→ D1×m .U1−−→ D1×p .W2−−→ D1×(p−m) −→ 0.

Using the fact that D1×(p−m) is a free left D-module,
by 1) of Proposition 4, the previous short exact sequence
splits, and thus, there exist two matrices W1 ∈ Dp×m and
U2 ∈ D(p−m)×p such that we have the Bézout identities:

(
U1

U2

)
(W1 W2) = Ip,

(W1 W2)
(
U1

U2

)
= Ip.

Using the fact that U−1 = (W1 W2) ∈ Dp×p, we have

U P =
(
U1

U2

)
P =

(
U1 P
U2 P

)
=
(

0
(U2 P U

−1)U

)
=
(

0
U2 P U

−1

)
U,

which proves the result with the notation:

J =
(

0
U2 P U

−1

)
∈ Dp×p.

Finally, if λ ∈ kerD(.(U2 P U
−1)), we then have

λ (U2 P U
−1) = 0⇔ (λU2)P = 0

⇔ λU2 ∈ kerD(.P ) = (D1×m U1)

⇔ ∃ µ ∈ D1×m : λU2 = µU1

⇔ ∃ µ ∈ D1×m : (µ, λ) ∈ kerD(.U) = 0,

(36)

which proves that λ = 0, i.e., kerD(.(U2 P U
−1)) = 0,

and the matrix (J1 J2) has full row rank.

(2 ⇒ 1). Using the relation (34) and the fact that U
is a unimodular matrix, we have the commutative exact
diagram:

0 0
↑ ↑

0 −→ kerD(.P ) −→ D1×p .P−→ D1×p

↑ .U ↑ .U

0 −→ kerD(.J) −→ D1×p .J−→ D1×p,
↑ ↑
0 0

which shows that kerD(.P ) ∼= kerD(.J) (more precisely,
kerD(.P ) = (kerD(.J))U ). Let us characterize kerD(.J).
Let us consider (λ1, λ2) ∈ kerD(.J). We then have
λ2 (J1 J2) = 0 and using the fact that (J1 J2) has full
row rank, we obtain that λ2 = 0 and λ1 is any arbitrary
element of D1×m, which proves that kerD(.J) = D1×m

and kerD(.P ) is a free left D-module of rank m.
Similarly, we have imD(.P ) = (imD(.J))U as U is a

unimodular matrix and:

∀ λ, µ ∈ D1×p,

{
λP = ((λU−1) J)U,
(µJ)U = (µU)P.

Therefore, we have:

imD(.P ) ∼= imD(.J) = (D1×(p−m) (J1 J2)).

Using the fact that the matrix (J1 J2) has full row rank,
we obtain that (D1×(p−m) (J1 J2)) ∼= D1×(p−m), which
proves that coimD(.P ) ∼= imD(.P ) (see 2 of Corollary 3)
is a free left D-module of rank p−m.

Remark 5: We note that (34) is equivalent to

P = U−1 J U,

which means that the two matrices P and J are similar.

We shall need the next two lemmas.

Lemma 3: Let R ∈ Dq×p, P ∈ Dp×p and Q ∈ Dq×q

be three matrices satisfying (11). Assume further that there
exist U ∈ GLp(D) and V ∈ GLq(D) such that{

U P = JP U,

V Q = JQ V,
(37)

for certain matrices JP ∈ Dp×p and JQ ∈ Dq×q. Then,
we have the following equality:

(V RU−1) JP = JQ (V RU−1). (38)

Proof: We easily check that we have the following
commutative diagram

D1×q D1×p

D1×q D1×p

D1×q D1×p

D1×q D1×p

��

.JQzzttttt.V

//
.(V R U−1)

��

.Jpzzttttt.U

��

.Q

//.R

��

.P

zzttttt.V

//
.(V R U−1)

zzttttt.U

//.R

from which we obtain (38). Let us give the corresponding
explicit computations. Starting with the second equation of
(37) and multiplying it on the right by R and using (11),
we obtain:

JQ V R = V QR = V RP = (V RU−1) (U P ).

Now, using the first equation of (37), we get

JQ V R = (V RU−1) (JP U),

and multiplying the previous equality by U−1 on the right,
we finally have JQ (V RU−1) = (V RU−1) JP , which
proves (38).



Lemma 4: Let us consider two matrices of the form
JP =

(
0 0
J1 J2

)
,

JQ =
(

0 0
J3 J4

)
,

(39)

with the notations

J1 ∈ D(p−m)×m, J2 ∈ D(p−m)×(p−m),

J3 ∈ D(q−l)×l, J4 ∈ D(q−l)×(q−l),

and 1 ≤ m ≤ p, 1 ≤ l ≤ q. Moreover, let us suppose
that the matrix (J1 J2) has full row rank. If the matrix
R ∈ Dq×p satisfies the relation

RJP = JQR,

then there exist three matrices

R1 ∈ Dl×m, R2 ∈ Dl×(p−m), R3 ∈ D(q−l)×(p−m),

such that:

R =
(
R1 0
R2 R3

)
. (40)

Proof: Let us write

R =
(
R11 R12

R21 R22

)
,

where R11 ∈ Dl×m, R12 ∈ Dl×(p−m), R21 ∈ D(q−l)×m,
R22 ∈ D(q−l)×(p−m), then, we have:

RJP =
(
R12 J1 R12 J2

R22 J1 R22 J2

)
,

JQR =
(

0 0
J3R11 + J4R21 J3R12 + J4R21

)
.

Therefore, we obtain R12 (J1 J2) = 0. Using the fact
that (J1 J2) has full row rank, we then get R12 = 0,
which proves the result.

Let us state the second main result of the paper (the
first fairy’s theorem).

Theorem 2: Let R ∈ Dq×p and M = D1×p/(D1×q R).
Let f : M −→ M be an endomorphism defined by two
matrices P ∈ Dp×p and Q ∈ Dq×q satisfying (11). If
the left D-modules kerD(.P ), coimD(.P ), kerD(.Q),
coimD(.Q) are free of rank respectively m, p−m, l and
q − l (for some 1 ≤ m ≤ p and 1 ≤ l ≤ q), then the
following results hold:

1) There exist U ∈ GLp(D) and V ∈ GLq(D)
satisfying the relations{

P = U−1 JP U,
Q = V −1 JQ V,

where JP and JQ are the matrices defined by (39).
In particular, the matrices U and V are defined by

U =
(
U1

U2

)
, U1 ∈ Dm×p, U2 ∈ D(p−m)×p,

V =
(
V1

V2

)
, V1 ∈ Dl×q, V2 ∈ D(q−l)×q,

where the matrices U1 and V1 respectively define
the bases of the free left D-modules kerD(.P ) and
kerD(.Q), i.e.,{

kerD(.P ) = D1×m U1,

kerD(.Q) = D1×l V1,

and U2, and V2 are any matrices such that:{
U = (UT

1 UT
2 )T ∈ GLp(D),

V = (V T
1 V T

2 )T ∈ GLq(D).

2) The matrix R is equivalent to R = V RU−1.

3) If we denote by

U−1 = (W1 W2), W1 ∈ Dp×m, W2 ∈ Dp×(p−m),

we then have:

R =
(
V1RW1 0
V2RW1 V2RW2

)
∈ Dq×p.

Proof: 1. The result directly follows from 2) of
Proposition 7.

2. Using the fact that the matrices U and V are
unimodular, we obtain R = V −1RU , which proves the
result.

3. From Lemma 3, the matrix R = V RU−1 satisfies
Relation (38). Then, applying Lemma 4 to R, we obtain
that R has the triangular form (40), where R1 ∈ Dl×m,
R2 ∈ Dl×(p−m) and R3 ∈ D(q−l)×(p−m). We have

R = V RU−1 =
(
V1RW1 V1RW2

V2RW1 V2RW2

)
∈ Dq×p,

where V1RW1 ∈ Dl×m, V2RW1 ∈ D(p−l)×m and
V1RW2 ∈ Dl×(p−m), V2RW2 ∈ D(p−l)×(p−m), which
finally proves the result.

We refer to Remark 10 of Section IV-B for more
details on the way that we can constructively obtain the
unimodular matrices U and V defined in Theorem 2 by
computing bases of free modules over different classes of
skew polynomial rings and Ore algebras.

Example 12: Let us consider the linearized equations of
a bipendulum subjected to a horizontal move described in

ÿ1 +
g

l1
y1 −

g

l1
u = 0,

ÿ2 +
g

l2
y2 −

g

l2
u = 0,



where l1 and l2 are the length of the two pendulum and
g is gravity. For more details, see [13] and the references
therein. Let us define the ring D = Q(g, l1, l2)

[
∂; id, d

dt

]
of differential operators with constant coefficients and the
system matrix

R =

 ∂2 +
g

l1
0 − g

l1

0 ∂2 +
g

l2
− g
l2

 ∈ D2×3,

and the D-module M = D1×3/(D1×2R).
Using Algorithm 1, we obtain that an endomorphism f

of M is defined by the matrices

P =

 0 0 g l2

0 g (l2 − l1) g l1

0 0 l1 l2 ∂
2 + g l2

 ,

Q =
(

0 0
0 g (l2 − l1)

)
.

Using algorithms developed in [14], we obtain that
kerD(.P ), imD(.P ), kerD(.Q) and imD(.Q) are free D-
modules of rank respectively 1, 2, 1 and 1. We can easily
compute the bases of kerD(.P ), coimD (.P ), kerD(.Q)
and coim (.Q), which are defined by means of the follow-
ing matrices:

U1 = (l1 ∂2 + g 0 − g),

U2 =

 1
g

0 0

0 1 0

 ,

V1 = (1 0),

V2 = (0 1).

We can check that the matrices U = (UT
1 UT

2 )T ∈ D3×3

and V = (V T
1 V T

2 )T ∈ D2×2 are unimodular and:

JP = U P U−1 =


0 0 0

− l2
g

l2 (l1 ∂2 + g) 0

−l1 g l1 (l1 ∂2 + g) g (l2 − l1)

 ,

JQ = V QV −1 =
(

0 0
0 g (l2 − l1)

)
.

Finally, we obtain that R is similar to the following
triangular matrix:

R = V RU−1 =


1
l1

0 0

1
l2

g

l2
(l1 ∂2 + g) ∂2 +

g

l2

 .

Remark 6: If D = A[∂;σ, δ] is a skew polynomial ring
over a commutative ring A, R = (∂ Ip − E) ∈ Dp×p

and M = D1×p/(D1×q R) the left D-module associated
with the linear functional system ∂y = E y, using the
results proved in Example 4, we then know that any
endomorphism f can always be defined by means of two

matrices P ∈ Ap×p and Q ∈ Aq×q. Hence, if A is
a field (e.g., A = k(t), k(n)), then we can do linear
algebra in order to compute the bases of the A-vector
spaces kerA(.P ), coimA(.P ), kerA(.Q) and coimA(.Q),
i.e., compute the matrices U1 ∈ Am×p, U2 ∈ A(p−m)×p,
V1 ∈ Al×q and V2 ∈ A(q−l)×q defined in Theorem 2 as
we then have{

kerD(.P ) = D ⊗A kerA(.P ),
coimD(.P ) = D ⊗A coimA(.P ),

and similarly for kerD(.Q) = D ⊗A kerA(.Q) and
coimD(.Q) = D ⊗A coimA(.Q).

IV. PROJECTORS, IDEMPOTENTS AND
DECOMPOSITIONS

A. Projectors of endD(M) and decompositions

We start this section by a lemma which characterizes
the projectors of endD(M) and we deduce an algorithm
for computing them.

Lemma 5: Let us consider a finite free resolution of M

D1×q2 .R2−−→ D1×q .R−→ D1×p π−→M −→ 0,

and a morphism f : M −→ M defined by two matrices
P ∈ Dp×p and Q ∈ Dq×q satisfying (13). Then, f is a
projector of endD(M), i.e., f2 = f , if and only if there
exists a matrix Z ∈ Dp×q satisfying:

P 2 = P + Z R. (41)

Then, there exists Z ′ ∈ Dq×q2 such that:

Q2 = Q+RZ + Z ′R2. (42)

In particular, if R ∈ Dq×p has full row rank, namely,
R2 = 0, we then have:

Q2 = Q+RZ. (43)

Proof: Multiplying (13) on the right by P , we obtain
RP 2 = QRP and using again (13), we get

RP 2 = Q2R,

which shows that f2 : M −→ M can be defined by
the matrices P 2 and Q2. From 1) of Corollary 4, the
morphism f2 − f is 0 if and only if there exists a matrix
Z ∈ Dp×q satisfying (41). Then, there also exists a matrix
Z ′ ∈ Dq×q2 such that (42) holds (see also Corollary 1).
The end of the lemma is straightforward.

From this lemma, we deduce an algorithm which
computes projectors of endD(M).

Algorithm 3: • Input: An Ore algebra D, a matrix
R ∈ Dq×p and the output of Algorithm 2 for fixed
α, β and γ.



• Output: A family of pairs (P i, Qi)i∈I and a set of
matrices {Zi}i∈I satisfying

RP i = QiR,

P
2

i = P i + ZiR, for Zi ∈ Dp×q,

ord∂(P i) ≤ α, i.e., P i =
∑

0≤|ν|≤α a
(i)
ν ∂ν ,

and ∀ 0 ≤ |ν| ≤ α, a(i)
ν ∈ A satisfies :

degx(num(a(i)
ν )) ≤ β,

degx(denom(a(i)
ν )) ≤ γ,

where ord∂(P i) denotes the maximal of the total
orders of the entries of P i, degx(num(a(i)

ν )) (resp.,
degx(denom(a(i)

ν ))) the degree of the numerator
(resp., denominator) of a(i)

ν . The morphisms fi are
then defined by:

∀ λ ∈ D1×p : fi(π(λ)) = π′(λP i), i ∈ I.

1) Consider a generic element P of the outpout of
Algorithm 2 for fixed α, β and γ.

2) Compute P 2 − P and denote the result by F .

3) Compute a Gröbner basis G of the rows of R.

4) Reduce the rows of F with respect to G by
computing their normal forms with respect to G.

5) Solve the system on the coefficients of a(i,j)
ν so that

all the normal forms vanish.

6) Substitute the solutions into the matrix P . Denote
the set of solutions by {Pi}i∈I .

7) For i ∈ I , reduce the rows of Pi with respect to G
by computing their normal forms with respect to G.
We obtain P i for i ∈ I .

8) Using rj(P
2

i−P i) ∈ (D1×q R), j = 1, . . . , p, where
rj(P

2

i−P i) denotes the jth row of P
2

i−P i, compute
a matrix Zi ∈ Dq×q′ satisfying P

2

i − P i = ZiR,
for i ∈ I .

We are now going to show how projectors can be
used to decompose the system Ry = 0 into decoupled
(independent) systems S1 y1 = 0 and S2 y2 = 0 or, in
other words, to decompose the left D-module M into two
direct summands. We start with a first lemma.

Lemma 6: Let R ∈ Dq×p and M = D1×p/(D1×q R).
Let f ∈ endD(M) be a projector, i.e., f2 = f .

1) We have the following split exact sequence

0 −→ ker f i−→ M
ρ−→ coim f −→ 0,

idM−f←−−−− f]

←−

where f ] : coim f −→M is defined by:

∀ m ∈M, f ](ρ(m)) = f(m). (44)

2) We have the following isomorphism

ϕ : ker f −→ coker f
m 7−→ σ(m),

whose inverse is defined by

ψ : coker f −→ ker f
σ(m) 7−→ m− f(m),

where σ : M −→ coker f denotes the canonical
projection.

Proof: 1. For all ρ(m) ∈ coim f , we have

((idM − f) ◦ f ])(ρ(m)) = f(m)− f2(m) = 0,

i.e., (idM − f) ◦ f ] = 0. Moreover, we easily check that
(idM − f) ◦ i = idker f . Now, for all m ∈M , we have

(i ◦ (idM − f) + f ] ◦ ρ)(m) = m− f(m) + f(m) = m,

i.e., (i ◦ (idM − f)) + f ] ◦ ρ = idM . Multiplying the last
identity by ρ on the left and using the fact that ρ ◦ i = 0,
we get ρ ◦ f ] ◦ ρ = ρ which proves ρ ◦ f ] = idcoim f and
ends the proof of 1).

2. We check that ψ is well-defined as m−f(m) ∈ ker f .
For all m ∈ ker f , we have (ψ◦ϕ)(m) = m−f(m) = m,
i.e., ψ ◦ ϕ = idker f .

On the other hand, for all σ(m) ∈ coker f , we have

(ϕ ◦ ψ)(σ(m)) = ϕ(m− f(m)) = σ(m),

and thus, ϕ ◦ ψ = idcoker f , which proves the result.

The next proposition gives a necessary and sufficient
condition for the existence of projector f of endD(M),
i.e., for the existence of a direct summand of the finitely
presented left D-module M .

Proposition 8: Let R ∈ Dq×p, M = D1×p/(D1×q R).
With the notations of Proposition 6, if f : M −→M is an
endomorphism of M , the following results are equivalent:

1) f is a projector of endD(M), namely, f2 = f .

2) There exists X ∈ Dp×r satisfying:

P = Ip −X S. (45)

Then, we have the following commutative exact diagram

0
.X←− ↓

D1×r .S−→ D1×p κ−→ coim f −→ 0
↓ .T ↓ .P ↓ f]

D1×q .R−→ D1×p π−→ M −→ 0,
↓

ker f
↓
0



where f ] is defined by (44).

Proof: (1 ⇒ 2). By 1) of Lemma 6, the morphism
f ] defined by (44) satisfies the relation ρ ◦ f ] = idcoim f ,
and thus, we have M = i(ker f) ⊕ f ](coim f). Using
the relation S P = T R, we obtain that f ] induces the
following morphism of complexes:

D1×r .S−→ D1×p κ−→ coim f −→ 0
↓ .T ↓ .P ↓ f]

D1×q .R−→ D1×p π−→ M −→ 0.

Composing the morphisms of complexes corresponding to
ρ (see Theorem 1) and f ], we obtain that the morphism
id − ρ ◦ f ] = 0 is defined by the following morphism of
complexes

D1×r2
.S2−→ D1×r .S−→ D1×p

↓ .(Iq − L T ) ↓ .(Ip − P )

D1×r2
.S2−→ D1×r .S−→ D1×p

which must be homotopic to zero. Thus, there exist a
matrix X ∈ Dp×r and X2 ∈ Dr×r2 such that:{

Ip − P = X S,

Iq − LT = S X +X2 S2.

We note that, using the relation Q = LT , the previous
system leads to (45) and Q = Iq − S X −X2 S2.

(2⇒ 1). Using (45) and S P = T R, we obtain

P 2 = (Ip −X S)P
= P −X S P

= P − (X T )R,

which proves that f is a projector by Lemma 5.

We remark that, substituting (45) into S P = T R, we
obtain:

S (Ip −X S) = T R⇔ S − S X S = T R.

We now give a necessary and sufficient condition for a
module to be a direct summand of another one.

Proposition 9: Let R ∈ Dq×p and S ∈ Dr×p be two
matrices satisfying (D1×q R) ⊆ (D1×r S). Then, the left
D-module M ′ = D1×p/(D1×r S) is isomorphic to a direct
summand of M = D1×p/(D1×q R), i.e., we have

M ∼= M ′ ⊕ ker ρ, (46)

where ρ : M −→M ′ is defined by

∀ λ ∈ D1×p, ρ(π(λ)) = κ(λ),

and κ : D1×p −→ M ′ denotes the canonical projection,
if and only if there exist two matrices X ∈ Dp×r and
T ∈ Dr×q satisfying the following relation:

S − S X S = T R. (47)

Proof: (⇒). The isomorphism (46) is equivalent to
the existence of a morphism g : M ′ −→ M which
satisfies ρ ◦ g = idM ′ (see [14], [56]). Following the same
techniques as the ones used in the proof of Proposition 8,
(46) is then equivalent to the existence of P ∈ Dp×p,
T ∈ Dr×q and X ∈ Dp×r satisfying:{

S P = T R,

Ip − P = X S,
⇒ S − S X S = T R.

(⇐). From (47), we obtain S (Ip − X S) = T R, and,
if we set P = Ip − X S, then we have the following
commutative diagram

D1×r .S−→ D1×p κ−→ M ′ −→ 0
↓ .T ↓ .P

D1×q .R−→ D1×p π−→ M −→ 0,

which induces a morphism g : M ′ −→M defined by:

∀ λ ∈ D1×p, g(κ(λ)) = π(λP ).

Using κ = ρ ◦ π, for all λ ∈ D1×p, we obtain:

(ρ ◦ g)(κ(λ)) = ρ(π(λP )) = κ(λP )
= κ(λ)− κ((λX)S) = κ(λ).

We then have ρ ◦ g = idM ′ , which shows that the exact
sequence 0 −→ ker ρ i−→ M

ρ−→ M ′ −→ 0 splits, and
thus, we finally obtain M = ker ρ⊕ g(M ′).

Remark 7: If S has full row rank, i.e., kerD(.S) = 0,
using the factorization R = LS, (47) becomes:

(Ir − S X − T L)S = 0⇒ S X + T L = Ir. (48)

Hence, we obtain that the matrix (XT LT )T admits
a left-inverse. Note that (48) is nothing else than
the generalization for matrices and non-commutative
rings of the classical decomposition of a commutative
polynomial into coprime factors. Indeed, if R belongs
to a commutative polynomial ring D = k[x1, . . . , xn],
where k is a field, then (48) becomes X S + T L = 1
(Bézout identity), i.e., the ideal of D generated by S and
L is the whole ring D and we obtain that R = LS is a
factorization of R into coprime factors L and S.

We have the following corollary of Proposition 8.

Corollary 5: With the hypotheses and notations of
Proposition 8, we have the equality:

(D1×r S) =
(
D1×(p+q)

(
Ip − P
R

))
.

Proof: Using the factorization R = LS and (45), we
obtain the following equality(

Ip − P
R

)
=
(
X
L

)
S,



which proves the first inclusion. The second inclusion is a
direct consequence of (47) as we have X S = Ip−P and:

S = S X S + T R = (S T )
(
X S
R

)
.

Let us state the third main result of the paper.

Theorem 3: Let R ∈ Dq×p and let us assume that the
finitely presented left D-module M = D1×p/(D1×q R)
admits a decomposition of the form M ∼= ker f ⊕ im f ,
where f ∈ endD(M). Moreover, let us suppose that F
is an injective left D-module. Then, with the notations
previously introduced in this section, we obtain that a
solution η ∈ Fp of Rη = 0 has the form η = ζ + X τ ,
where ζ ∈ Fp is a fundamental solution of S ζ = 0 and
τ ∈ Fr is a fundamental solution of the system:{

Lτ = 0,
S2 τ = 0.

(49)

Hence, the integration of the system Rη = 0 is equivalent
to the integration of the two independent systems S ζ = 0
and (49).

Proof: Applying the functor homD(·,F) to the
commutative exact diagram (28), we obtain the following
commutative exact diagram:

Fq R.←− Fp ←− kerF (R.) ←− 0
↑ L. ‖ ↑ ρ?

Fr2
S2.←−− Fr S.←− Fp ←− kerF (S.) ←− 0.

Let us first prove that an element of the form

η = ζ +X τ,

where ζ ∈ Fp (resp., τ ∈ Fr) satisfies S ζ = 0 (resp.,
(49)) is a solution of the system Rη = 0. Using the
factorization R = LS and S ζ = 0, we get:

Rη = Rζ +R (X τ) = L (S ζ) + L (S (X τ))
= L (S (X τ)).

Using the fact that τ satisfies the second equation of (49)
and the exactness of the last horizontal exact sequence
of the previous commutative exact diagram, there exists
η ∈ Fp satisfying τ = S η. Substituting this relation into
the first equation of (49), we obtain:

Lτ = L (S η) = Rη = 0.

Then, using (47), we obtain:

S η − S (X (S η)) = T (Rη) = 0

⇒ S (X τ) = S η ⇒ L (S (X τ)) = L (S η) = Rη = 0.

This last result proves that Rη = 0, and thus, η = ζ+X τ
is a solution of the system Rη = 0.

Conversely, let us prove that any solution η ∈ Fp of
Rη = 0 has the form of η = ζ + X τ , where ζ ∈ Fp

satisfies S ζ = 0 and τ ∈ Fr satisfies (49). Let us consider
η ∈ Fp satisfying Rη = 0, i.e., (LS) η = 0. Using the
previous commutative exact diagram, we obtain that the
element τ ∈ Fr defined by τ = S η ∈ Fr satisfies (49).
Then, from (47), we obtain:

S η − S (X (S η)) = T (Rη) = 0⇒ S (X τ) = τ.

All the solutions of the inhomogeneous system S η = τ are
defined by the sum of the general solution of S ζ = 0 and
a particular solution of S η = τ , i.e., we have η = ζ+X τ ,
which ends the proof.

We note that the previous result has already been ob-
tained in [52] in the particular case where

M ∼= t(M)⊕ (M/t(M)),

where the torsion submodule t(M) is defined by

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0},

i.e., in the control theoretical language, when a
behaviour homD(M,F) can be split into the autonomous
behaviour homD(t(M),F) and the controllable behaviour
homD(M/t(M),F). We refer the reader to [52], [53] for
more details and examples.

Let us illustrate Theorem 3 by means of an example.

Example 13: Let D be the Weyl algebra A1(k), namely,
D = k[t]

[
∂; idk[t],

d
dt

]
, where k is a field of characteristic

0 and let us consider the matrix of differential operators

R =


∂ −t t ∂
∂ t ∂ − t ∂ −1
∂ −t ∂ + t ∂ − 1
∂ ∂ − t t ∂

 ∈ D4×4, (50)

and the left D-module M = D1×4/(D1×4R) associated
with the linear system Ry = 0. We can easily check that
an endomorphism f of M can be defined by means of the
following two matrices

P = Q =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ∈ k4×4, (51)

i.e., we have RP = P R. With the notations used in this
section, we obtain the following matrices:

S =


∂ −t 0 0
0 ∂ 0 0
0 0 1 0
0 0 0 1

 ,

L =


1 0 t ∂
1 t ∂ −1
1 0 ∂ + t ∂ − 1
1 1 t ∂

 .



Moreover, we easily check that P 2 = P , i.e., P is an
idempotent of D3×3. Then, using (45), we obtain:

X =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .

We can also verify that kerD(.S) = 0 which implies
S2 = 0 (with the notations of this section). Theorem 3
then asserts that the integration of Rη = 0 is equivalent
to both the integration of S ζ = 0, which easily gives

ζ1 =
1
2
C1 t+ C2, ζ2 = C1, ζ3 = 0, ζ4 = 0,

where C1 and C2 are two constants, and the integration of
Lτ = 0, which can be seen to be equivalent to:

τ1 = 0,
τ2 = 0,
t τ3 + ∂ τ4 = 0,
∂ τ3 − τ4 = 0.

⇔


τ1 = 0,
τ2 = 0,
∂2 τ3 + t τ3 = 0,
τ4 = ∂ τ3.

The third equation can be integrated by means of the
Airy functions Ai and Bi which are the two independent
solutions of ∂2 y(t)− t y(t) = 0 (see [31]). We then have

τ1 = 0,
τ2 = 0,
τ3(t) = C3 Ai(t) + C4 Bi(t),
τ4(t) = C3 ∂Ai(t) + C4 ∂ Bi(t),

where C3 and C4 are two constants. The general solution
of Rη = 0 is then given by

η = ζ +X τ =


1
2 C1 t+ C2

C1

C3 Ai(t) + C4 Bi(t)
C3 ∂Ai(t) + C4 ∂ Bi(t)

 , (52)

where C1, C2, C3 and C4 are four arbitrary constants.

B. Idempotents of Dp×p and decompositions

We are now going further by proving that, under
certain conditions, the existence of idempotents P of
Dp×p allows us to obtain a system Ry = 0 equivalent to
Ry = 0, where R is a block-diagonal matrix of the same
size than R. We shall need the following lemmas.

Lemma 7: Let R ∈ Dq×p be a full row rank matrix,
i.e., kerD(.R) = 0, and P ∈ Dp×p, Q ∈ Dq×q be two
matrices satisfying (13). Then, if P is an idempotent,
namely P 2 = P , so is Q, i.e., Q2 = Q.

Proof: Multiplying (13) on the right by P , we obtain
RP 2 = QRP . Using again (13), we get RP 2 = Q2R.
Then, the relation P 2 = P implies RP = Q2R, and using
again (13), we obtain Q2R = QR, i.e., (Q2 −Q)R = 0.

Finally, the fact that R has full row rank implies Q2 = Q.

Lemma 8: Let R ∈ Dq×p be a full row rank matrix,
i.e., kerD(.R) = 0, and M = D1×p/(D1×q R). Let us
consider a projector f : M −→M defined by two matrices
P ∈ Dp×p and Q ∈ Dq×q satisfying (13), P 2 = P +Z R
and Q2 = Q+RZ (see Lemma 5). If there exists a solution
Λ ∈ Dp×q of the following Riccati equation

ΛRΛ + (P − Ip) Λ + ΛQ+ Z = 0, (53)

then the matrices {
P = P + ΛR,

Q = Q+RΛ,
(54)

satisfy RP = QR, i.e., they define an endomorphism of
M and are idempotents, i.e., we have:

P
2

= P , Q
2

= Q.

Proof: By hypothesis, the matrices P and Q satisfy
(41) and (43). Let us define P = P + ΛR for a certain
matrix Λ ∈ Dp×q. Then, we have:

P
2

= (P + ΛR) (P + ΛR)
= P 2 + P ΛR+ ΛRP + ΛRΛR.

Using (13) and P 2 = P + Z R, we then get:

P
2

= P 2 + (P Λ + ΛQ+ ΛRΛ)R.

Then, from (41) and P = P + ΛR, we finally obtain:

P
2

= P + (Z − Λ + P Λ + ΛQ+ ΛRΛ)R.

Hence, we have P
2

= P if and only if Λ satisfies the
following equation

(Z − Λ + P Λ + ΛQ+ ΛRΛ)R = 0,

i.e., satisfies (53) since R has full row rank.
Finally, we have:

Q
2

= (Q+RΛ) (Q+RΛ)
= Q2 +QRΛ +RΛQ+RΛRΛ.

Using (11), we get

Q
2

= Q2 +R (P Λ + ΛQ+ ΛRΛ),

and using (43) and Q = Q+RΛ, we then obtain:

Q
2

= Q+R (Z − Λ + P Λ + ΛQ+ ΛRΛ) = Q.

Remark 8: We are currently not able to understand
when the Riccati equation (53) admits a solution. This
problem will be studied with care in the future. However,
we can always try to compute a solution Λ of (53)
with fixed order and fixed degrees for numerators and
denominators by substituting an ansatz in (53) and solving
the corresponding system obtained on the coefficients.



Example 14: Let D be the Weyl algebra
A1(Q), i.e., D = Q[t]

[
∂; id, d

dt

]
, the matrix

R =
(

d2

dt2 − t d
dt − 1

)
∈ D1×2 and the finitely

presented left D-module M = D1×2/(DR). Searching
for projectors of total order 1 and total degree 2,
Algorithm 3 gets P1 = 0, P2 = I2 and P3 =

(
−(t+ a) ∂ + 1 t2 + a t

0 1

)
,

Q3 = −((t+ a) ∂ + 1), P4 =

(
(t− a) ∂ −t2 + a t

0 0

)
,

Q4 = (t− a) ∂ + 2,

where a is an arbitrary constant of Q. We can check that
P 2

i = Pi + ZiR, i = 3, 4, where:

Z3 = ((t+ a)2 0)T , Z4 = ((t− a)2 0)T .

We obtain that (53) admits respectively the solution:

Λ3 = (a t a ∂ − 1)T , Λ4 = (a t a ∂ + 1)T .

The matrices (54) are then defined by

P 3 =
(
a t ∂2 − (t+ a) ∂ + 1 t2 (1− a ∂)

(a ∂ − 1) ∂2 −a t ∂2 + (t− 2 a) ∂ + 2

)
,

Q3 = 0,

P 4 =
(
a t ∂2 + (t− a) ∂ −t2 (1 + a ∂)

(a ∂ + 1) ∂2 −a t ∂2 − (t+ 2 a) ∂ − 1

)
,

Q4 = 1,

and we can easily check that we have:

P
2

i = P i, Q
2

i = Qi, i = 3, 4.

The next lemma characterizes the kernel and the image
of an idempotent P of Dp×p in terms of module theory.

Lemma 9: Let P ∈ Dp×p be an idempotent, i.e.,
P 2 = P . Then, we have the following results:

1) kerD(.P ) and imD(.P ) are projective left D-
modules of rank respectively m and p − m, with
0 ≤ m ≤ p.

2) We have the following equalities:{
imD(.P ) = kerD(.(Ip − P )),
imD(.(Ip − P )) = kerD(.P ).

Proof: 1. We have the following short exact sequence:

0 −→ kerD(.P ) −→ D1×p .P−→ imD(.P ) −→ 0.

Let us define the D-morphism i : imD(.P ) −→ D1×p by
i(m) = m, for all m ∈ imD(.P ). Now, for every element
m ∈ imD(.P ), there exists λ ∈ D1×p such that m = λP .

Therefore, we have ((.P )◦i)(m) = mP = λP 2 and using
the fact that P 2 = P , we get ((.P ) ◦ i)(m) = λP = m,
i.e., ((.P ) ◦ i) = idimD(.P ), which shows that the previous
short exact sequence splits, and thus, we obtain:

D1×p = kerD(.P )⊕ imD(.P ). (55)

This proves that kerD(.P ) and imD(.P ) are two finitely
generated projective left D-modules. Finally, we have

rankD(D1×p) = rankD(kerD(.P )) + rankD(imD(.P )),

and using the fact that, by hypothesis, D is a left
noetherian ring, and thus, D has the Invariant Basis
Number (IBN) ([29]), we finally get rankD(D1×p) = p,
which proves the first result.

2. The fact that P 2 = P implies that P (Ip − P ) = 0,
which shows that imD(.P ) ⊆ kerD(.(Ip − P )). Now, let
λ ∈ kerD(.(Ip − P )) and let us prove that λ ∈ imD(.P ).
Applying λ on the left of the identity Ip = P + (Ip −P ),
we obtain λ = λP , which proves the equality.

The second result can be proved similarly.

We note that if P = 0 (resp., P = Ip) is the trivial
idempotent, then we have kerD(.P ) = D1×p and
imD(.P ) = 0 (resp., kerD(.P ) = 0, imD(.P ) = D1×p),
i.e., kerD(.P ) and imD(.P ) are two trivial free left
D-modules. We are going to show that the case where
kerD(.P ) and imD(.P ) are two non-trivial free left
D-modules plays an important role in the decomposition
problem.

The next proposition will play in important role in what
follows.

Proposition 10: Let P ∈ Dp×p be an idempotent, i.e.,
P 2 = P . The following assertions are equivalent:

1) The left D-modules kerD(.P ) and imD(.P ) are
free of rank respectively m and p−m.

2) There exists a unimodular matrix U ∈ Dp×p, i.e.,
U ∈ GLp(D), and a matrix JP ∈ Dp×p of the form

JP =
(

0 0
0 Ip−m

)
,

which satisfy the relation:

U P = JP U. (56)

The matrix U has then the form

U =
(
U1

U2

)
, (57)

where the matrices U1 ∈ Dm×p and U2 ∈ D(p−m)×p have
full row ranks and satisfy the conditions:{

kerD(.P ) = D1×m U1,

imD(.P ) = D1×(p−m) U2.
(58)



In particular, we have U1 P = 0 and U2 P = U2.

Proof: (1⇒ 2). Let us suppose that kerD(.P ) (resp.,
imD(.P )) is a free left D-module of rank m (resp., p−m)
and let U1 ∈ Dm×p (resp., U2 ∈ D(p−m)×p) be a basis of
kerD(.P ) (resp., imD(.P )) , i.e., (58) holds. Let us form
the matrix U defined by (57).

Now, using (55), for all λ ∈ D1×p, there exist unique
λ1 ∈ kerD(.P ) and λ2 ∈ im(.P ) such that λ = λ1 + λ2.
Then, there exist unique µ1 ∈ D1×m and µ2 ∈ D1×(p−m)

such that λ1 = µ1 U1 and λ2 = µ2 U2, and thus, a unique
µ = (µ1, µ2) ∈ D1×p satisfying λ = µU . Hence, using
the standard basis {ei}1≤i≤p of D1×p, for i = 1, . . . , p,
there exists a unique Vi ∈ D1×p such that ei = Vi U .
The matrix V = (V T

1 , . . . , V
T
p )T is thus a left-inverse of

U . By hypothesis, D is a left noetherian ring, and thus,
D is stably finite ([29]), which implies that we then have
U V = Ip, i.e., U ∈ GLp(D).

Finally, for all µ ∈ D1×p, we have µU2 ∈ imD(.P ),
and thus, there exists ν ∈ D1×p such that µU2 = ν P .
Using the fact that P 2 = P , we get:

µU2 P = ν P 2 = ν P = µU2.

In particular, we have ei (U2 P ) = ei U2, for i = 1, . . . , p,
which proves that U2 P = U2. Using U1 P = 0, we obtain:

U P =
(
U1

U2

)
P =

(
U1 P
U2 P

)
=
(

0
U2

)
=
(

0 0
0 Ip−m

)
U.

(2 ⇒ 1). Using the relation (56) and the fact that U
is a unimodular matrix, we have the commutative exact
diagram:

0 0
↑ ↑

0 −→ kerD(.P ) −→ D1×p .P−→ D1×p

↑ .U ↑ .U

0 −→ kerD(.JP ) −→ D1×p .JP−→ D1×p,
↑ ↑
0 0

which shows that kerD(.P ) ∼= kerD(.JP ) (more precisely,
kerD(.P ) = kerD(.JP )U ). Using the fact that we have
trivially kerD(.JP ) = D1×m, we obtain that kerD(.P )
is a free left D-module of rank m. Similarly, we have
imD(.P ) = imD(.JP )U as U is a unimodular matrix and:

∀ λ, µ ∈ D1×p,

{
λP = ((λU−1) Jp)U,
(µJP )U = (µU)P.

Therefore, we have imD(.P ) ∼= imD(.JP ). We now easily
check that imD(.JP ) = D1×(p−m), which proves that
imD(.P ) is a free left D-module of rank p−m.

Remark 9: We note that (56) is equivalent to

P = U−1 JP U,

which means that the two matrices P and JP are similar.

We shall need the next lemma.

Lemma 10: Let us consider the following two matrices
JP =

(
0 0
0 Ip−m

)
∈ Dp×p,

JQ =
(

0 0
0 Iq−l

)
∈ Dq×q,

(59)

where 1 ≤ m ≤ p and 1 ≤ l ≤ q and a matrix R ∈ Dq×p

satisfying the following relation:

RJP = JQR. (60)

Then, there exist R1 ∈ Dl×m and R2 ∈ D(q−l)×(p−m)

such that:
R =

(
R1 0
0 R2

)
. (61)

Proof: If we write

R =
(
R11 R12

R21 R22

)
,

where R11 ∈ Dl×m, R12 ∈ Dl×(p−m), R21 ∈ D(q−l)×m,
R22 ∈ D(q−l)×(p−m), then, we have:

RJP =
(
R11 R12

R21 R22

) (
0 0
0 Ip−m

)
=
(

0 R12

0 R22

)
,

JQR =
(

0 0
0 Iq−l

) (
R11 R12

R21 R22

)
=
(

0 0
R21 R22

)
.

Therefore, (60) implies that R12 = 0 and R21 = 0, which
proves the result.

We are now in position to state the last main result of
the paper (the second fairy’s theorem).

Theorem 4: Let R ∈ Dq×p and M = D1×p/(D1×q R).
Let f : M −→M be a projector defined by two matrices
P ∈ Dp×p and Q ∈ Dq×q satisfying (11) and let us
assume that:

P 2 = P, Q2 = Q.

If the left D-modules kerD(.P ), imD(.P ), kerD(.Q),
imD(.Q) are free of rank respectively m, p − m, l and
q − l (for some 1 ≤ m ≤ p and 1 ≤ l ≤ q), then the
following results hold:

1) There exist U ∈ GLp(D) and V ∈ GLq(D)
satisfying the relations{

P = U−1 JP U,
Q = V −1 JQ V,

where JP and JQ are the matrices defined by (59).
In particular, the matrices U and V are defined by

U =
(
U1

U2

)
, U1 ∈ Dm×p, U2 ∈ D(p−m)×p,

V =
(
V1

V2

)
, V1 ∈ Dl×q, V2 ∈ D(q−l)×q,



where the matrices U1, U2, V1 and V2 respectively
define the bases of the corresponding free left D-
modules, i.e., we have:

kerD(.P ) = D1×m U1,

imD(.P ) = D1×(p−m) U2,

kerD(.Q) = D1×l V1,

imD(.Q) = D1×(q−l) V2.

2) The matrix R is equivalent to R = V RU−1.

3) If we denote by

U−1 = (W1 W2), W1 ∈ Dp×m, W2 ∈ Dp×(p−m),

we then have:

R =
(
V1RW1 0

0 V2RW2

)
∈ Dq×p. (62)

Proof: 1. The result directly follows from 2) of
Proposition 10.

2. Using the fact that the matrices U and V are
unimodular, we obtain R = V −1RU , which proves the
result.

3. From Lemma 3, the matrix R = V RU−1 satisfies
the relation (60). Then, applying Lemma 10 to R, we
obtain that R has the block diagonal form (61), where
R1 ∈ Dl×m and R2 ∈ D(q−l)×(p−m). Finally, we have

R = V RU−1 =
(
V1RW1 V1RW2

V2RW1 V2RW2

)
∈ Dq×p,

where V1RW1 ∈ Dl×m, V2RW1 ∈ D(p−l)×m and
V1RW2 ∈ Dl×(p−m), V2RW2 ∈ D(p−l)×(p−m), which
proves the result.

Example 15: Let us consider again system (6) defined
in Example 2. We can easily check that the matrices

P =
1
2

 1 1 0
1 1 0
0 0 2

 , Q =
1
2

(
1 1
1 1

)
,

define a projector f ∈ endD(M) and satisfy P 2 = P
and Q2 = Q. As P and Q are two matrices with rational
coefficients, we obtain that kerD(.P ), imD(.P ), kerD(.Q)
and imD(.Q) are trivially free D-modules since we have{

kerD(.P ) = D ⊗D kerQ(.P ),
imD(.P ) = D ⊗D imQ(.P ),

and similarly with kerD(.Q) and imD(.Q). We get

U1 = kerQ(.P ) =
(

1 −1 0
)
,

U2 = imQ(.P ) =
(

1 1 0
0 0 1

)
,

V1 = kerQ(.Q) =
(

1 −1
)
,

V2 = imQ(.Q) =
(

1 1
)
,

and thus, we obtain the following unimodular matrices:

U =

 1 −1 0
1 1 0
0 0 1

 , V =
(

1 −1
1 1

)
.

We finally verify that:

R = V RU−1 =
(
∂2
2 − 1 0 0
0 1 + ∂2

2 −4 ∂1 ∂2

)
.

We note that the first scalar diagonal block corresponds to
the autonomous (uncontrollable) subsystem{

z1(t) = y1(t)− y2(t),
z1(t− 2h)− z1(t) = 0,

i.e., z1 is a 2h-periodic function, whereas the second
diagonal block corresponds to the controllable subsystem

z2(t) = y1(t) + y2(t),
v(t) = u(t),
z2(t) + z2(t− 2h)− 4 v̇(t− h) = 0,

of the system R (y1, y2, u)T = 0. Finally, the previous
decomposition can be seen as a generalization of the
classical Kalman decomposition of state-space control
systems for multidimensional linear systems.

We have the following important corollary of
Theorem 4.

Corollary 6: Let us consider R ∈ Dq×p and the left
D-module M = D1×p/(D1×q R). Let f : M −→ M
be a projector defined by two matrices P ∈ Dp×p and
Q ∈ Dq×q satisfying (11) and let us suppose that:

P 2 = P, Q2 = Q.

Assume further that one of the following condition holds:
1) D = A[∂;σ, δ] is a skew polynomial ring over

a division ring A (e.g., A is a field) and σ is
injective, as, e.g., the ring D = k(t)

[
∂; idk(t),

d
dt

]
of differential operators with rational coefficients or
the ring D = k(n)[∂;σ, 0] of shift operators with
rational coefficients (σ(a)(n) = a(n+ 1)),

2) D = k[∂1;σ1, δ1] . . . [∂n;σn, δn] is a commutative
Ore algebra where k is a field as, e.g., the ring of
differential operators with constant coefficients,

3) D = A[∂1; id, δ1] . . . [∂n; id, δn] is a Weyl algebra
(∀ a ∈ A, δi(a) = ∂a/∂xi, 1 ≤ i ≤ n), where



A = k[x1, . . . , xn] or k(x1, . . . , xn) and k is a field
of characteristic 0, and:

rankD(kerD(.P )) ≥ 2,
rankD(imD (.P )) ≥ 2,
rankD(kerD(.Q)) ≥ 2,
rankD(imD (.Q)) ≥ 2.

Then, there exist U ∈ GLp(D) and V ∈ GLq(D) such
that R = V RU−1 is a block diagonal matrix of the form

R =
(
R1 0
0 R2

)
∈ Dq×p,

where R1 ∈ Dl×m, R2 ∈ D(p−l)×(p−m) and:

m = rankD(kerD(.P )), l = rankD(kerD(.Q)).
Proof: 1. By Lemma 9, we know that kerD(.P ),

kerD(.Q), imD (.P ) and imD (.Q) are projective D-
modules. By ii) of Theorem 1.2.9 of [37], D is a left
principal ideal domain. Therefore, kerD(.P ), kerD(.Q),
imD (.P ) and imD (.Q) are free left D-modules of rank
respectively m, l, p −m and q − l (see [14], [37], [56]).
The result directly follows from Theorem 4.

2. By Lemma 9, we obtain that kerD(.P ), kerD(.Q),
imD (.P ) and imD (.Q) are projective D-modules. As
D is a commutative polynomial ring over a field k, by
the famous Quillen-Suslin theorem, we know that they
are free D-modules of rank respectively m, l, p−m and
q − l. See [27], [56] for more details. Then, the result
directly follows from Theorem 4.

3. By Lemma 9, we obtain that kerD(.P ), kerD(.Q),
imD (.P ) and imD (.Q) are projective left D-modules. A
result of J. T. Stafford asserts that projective modules of
rank at least 2 over a Weyl algebra with a field k of
characteristic 0 are free. For more details, we refer to [54],
[55], [58]. The result directly follows from Theorem 4.

Remark 10: In order to constructively obtain the
unimodular matrices U and V defined in Corollary 6,
we need to compute bases of the free left D-modules
kerD(.P ) and imD (.P ), kerD(.Q) and imD (.Q). In the
first case of Corollary 6, we can use Smith or Jacobson
forms in order to compute bases of these modules over
D = A[∂;σ, δ] (see [37], [42]). In the second case of
Corollary 6, we can use constructive versions of the
famous Quillen-Suslin theorem of Serre’s conjecture
([56]). For more details, we refer to [35] and references
therein. See also [27] for an implementation. In the last
case of Corollary 6, we can use the constructive algorithm
recently obtained in [54], [55] and its implementation
developed in the package STAFFORD of OREMODULES
available in [13].

Remark 11: Let D = A[∂;σ, δ] be a skew polynomial
ring over a ring A, E ∈ Ap×p, R = (∂ Ip − E) ∈ Dp×p

and M = D1×p/(D1×pR) the left D-module associated
with the linear functional system ∂ y = E y. In Example 4,
we proved that we can always suppose with any restriction
that f ∈ endD(M) is defined by P ∈ Ap×p and Q ∈ Aq×q

satisfying (16) where F = E. By Lemma 5, we obtain
that any projector f of endD(M) is defined by a matrix
P ∈ Ap×p satisfying P 2 = P + Z R, where Z ∈ Dp×q.
Using the fact that R is a first order matrix and P is a
zero order matrix, we obtain that Z = 0, i.e., P 2 = P .
Now, the fact that R has full row rank, i.e., kerD(.R) = 0,
by Lemma 7, we obtain that Q2 = Q. Hence, if A is
division ring and σ is injective, then the hypotheses
of 1) of Corollary 6 are satisfied, and thus, there exist
U ∈ GLp(D) and V ∈ GLq(D) such that the matrix
R = V RU−1 is block diagonal. We can then consider
again each of the blocks separately. If A is a field,
then the matrices U and V can easily be obtained by
doing linear algebra as we have kerA(.P ) = (Am×p U1),
imA(.P ) = (A(p−m)×p U2), kerA(.Q) = (Al×q V1),
imA(.P ) = (A(q−l)×q V2) and U = (UT

1 UT
2 )T ,

V = (V T
1 V T

2 )T .

Example 16: Let us consider again Example 13, i.e.,
let us consider the Weyl algebra D = A1(Q), the matrix
R ∈ D4×4 of differential operator defined by (50) and the
left D-module M = D1×4/(D1×4R). Using the algorithm
for computing projectors of endD(M), we obtain that
the matrix P = Q defined by (51) generates a projector
f , which proves that M is decomposable. Moreover, we
easily check that P 2 = P , i.e., P is an idempotent of
D3×3. Now, using the fact that the entries of P belong to
the field k, we can easily compute bases of kerk(.P ) and
imk(.P ) = kerk(.(I4 − P )). This way, we obtain that the
following unimodular matrices (see Theorem 4):

U =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , V = U.

We then obtain that R is equivalent to the following block
diagonal matrix:

R = V RU−1 =


∂ −1 0 0
t ∂ 0 0
0 0 ∂ −t
0 0 0 ∂

 .

The diagonal blocks of the matrix R are equivalent to the
two systems that we had to solve in Example 13 in order
to integrate the solutions of Rη = 0. Hence, we find again
that the general solution of Rη = 0 is given by (52).

We note that rankD(kerD(.P )) = 2 and
rankD(imD(.P )) = 2. Hence, if we had some other
idempotents P ′ and Q′ over D, then we could have used
the constructive algorithm for the computation of bases
over D developed in [54], [55] in order to compute the
corresponding decomposition of M .



Example 17: If we consider the idempotent P 3 ∈ D2×2

defined in Example 14, where D = A1(Q), we have
rankD(kerD(.P 3)) = 1 and rankD(imD(.P 3)) = 1.
Hence, we cannot use Corollary 6 in order to conclude
that R = (∂2 − t ∂ − 1) is equivalent to R = (α 0),
α ∈ D, by means of unimodular matrices over D. Indeed,
we easily prove that kerD(.P 3)) = D (∂ − t) , which
implies that kerD(.P 3)) is a free left D-module of rank
1. However, we have imD(.P 3) ∼= D1×2/(D (∂ − t))
and it was proved in [54] that the last left D-module
was not free. A similar comment holds for P 4 as we
have kerD(.P 4) ∼= D1×2/(D (∂ − t)). Of course, if we
consider the Weyl algebra B1(Q) instead of D, namely,
B1(Q) = Q(t)

[
∂; id, d

dt

]
, using a computation of a

Jacobson form, we can easily prove that R is equivalent
to the matrix R = (∂ 0). However, we point out that
some singularities appear in the matrices U and V defined
in Theorem 4.

Example 18: Let us consider the differential time-delay
model of a flexible rod with a torque developed in [39]:{

ẏ1(t)− ẏ2(t− 1)− u(t) = 0,
2 ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.

(63)

Let us define the Ore algebra D = Q
[
∂1; 1, d

dt

]
[∂2;σ2, 0]

of differential time-delay operators with rational constant
coefficients defined in 4) of Example 1 and the correspond-
ing matrix of the system (63) defined by:

R =

(
∂1 −∂1 ∂2 −1

2 ∂1 ∂2 −∂1 ∂
2
2 − ∂1 0

)
.

Let M = D1×3/(D1×2R) be the left D-module asso-
ciated with (63). Using Algorithm 3, we obtain that the
following matrices

P =

 1 + ∂2
2 − 1

2 ∂
2
2 (1 + ∂2) 0

2 ∂2 −∂2
2 0

0 0 1

 ,

Q =

(
1 − 1

2 ∂2

0 0

)
,

define a projector f ∈ endD(M). Moreover, we can
check that P 2 = P and Q2 = Q, i.e., P and Q are
idempotents. Then, using 2) of Corollary 6, we obtain that
R is equivalent to a block diagonal matrix. Let us compute
it. Using the implementation of the Quillen-Suslin theorem
developed in [27] or the heuristics given in [14], we obtain
the following unimodular matrices:

U =

 −2 ∂2 ∂2
2 + 1 0

−2 ∂2 0
0 0 1

 , V =

(
0 −1
2 −∂2

)
.

Using the fact that the inverse of U is then defined by

U−1 =

 −
1
2 ∂2 − 1

2 (∂2
2 + 1) 0

1 −∂2 0
0 0 1

 ,

we finally obtain:

R = V RU−1 =

(
∂1 0 0
0 ∂1 (∂2

2 − 1) −2

)
.

As in Example 15 for the tank model, we obtain that the
first scalar diagonal block corresponds to the autonomous
(uncontrollable) subsystem, whereas the second diagonal
block defines the controllable subsystem.

More examples of decomposable modules coming from
mathematical physics can be given. For instance, we refer
the interested reader to [53] for examples of PDEs such
as R = grad ◦ div or R = (∆2 − ∆), ∆ = ∂2

1 + ∂3
2 ,

which appear in linear elasticity.

V. CONCLUSION AND IMPLEMENTATION

Within a constructive homogical algebra approach
developed in this paper, we have obtained new and
general results on the factorization and decomposition
problems of linear systems over Ore algebras. We
point out that no particular assumption on the linear
functional systems was required. Hence, the different
results of the paper can be applied to underdetermined
or overdetermined as well as D-finite ([12]) or general
determined linear systems. In particular, we have shown
how some classical results of the literature of the
factorization and decomposition problems such as the
ones using the concept of the eigenring ([3], [9], [59],
[33], [22], [15]) can be seen as particular cases of
Theorems 1, 2, 3 and 4.

Moreover, we have shown how our results could be
applied in mathematical physics (e.g., Galois symmetries
of the linearized Euler equations, quadratic first integrals
of motion, quadratic conservation laws, equivalence of
linear systems appearing in linear elasticity) and in control
theory (controllability, autonomous elements, decoupling
the autonomous and the controllable subsystems of a tank
and a flexible rod). More details and applications will be
developed in [20].

Finally, all the algorithms presented in the paper have
been implemented in the package MORPHISMS ([19]) of
OREMODULES (see [13]). This package is available on the
authors’ web pages as well as the ones of OREMODULES
(see [13] for the precise address). A library of examples,
including the ones of the paper, is also available and it
illustrates the main results obtained in this paper and the
main functions of MORPHISMS.
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