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Abstract— This paper aims at showing that noncommutative
geometric structures such as connections and curvatures exist
on internally stabilizable infinite-dimensional linear systems
and on their stabilizing controllers. To see this new geometry,
using the noncommutative geometry developed by Connes,
we have to replace the standard differential calculus by the
quantized differential calculus and classical vector bundles by
projective modules. We give an explicit description of the
connections on an internally stabilizable system and on its
stabilizing controllers in terms of the projectors of the closed-
loop system classically used in robust control. These connections
aim at studying the variations of the signals in the closed-loop
system in response to a disturbance or a change of the reference.
We also compute the curvatures of these connections.

I. STABILIZABILITY
In what follows, we shall consider the fractional rep-

resentation approach to analysis and synthesis problems
developed by Vidyasagar, Desoer, Callier, . . . in the eighties.
See [3], [4], [13]. Within this approach, an integral domain
A (i.e., a commutative ring with no non-zero divisors) of
stable transfer functions is considered and the set of SISO
transfer functions is defined by the field of fractions of A:

K := Q(A) =
{n
d
| 0 6= d, n ∈ A

}
.

Hence, a transfer function p ∈ K is A-stable if p ∈ A and
A-unstable if p ∈ K \A. Standard rings A of stable transfer
functions are RH∞, H∞(C+), Â, W+, A(D) [3], [4], [13].

Definition 1: Let A be an integral domain of stable SISO
plants, K := Q(A) and P ∈ Kq×r a transfer matrix.
Then, the plant P is internally stabilizable if there exists
a controller C ∈ Kr×q such that all the entries of the matrix

H(P, C) :=

(
Iq P

C Ir

)−1

=

(
(Iq − P C)−1 −(Iq − P C)−1 P

−C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)

=

(
Iq + P (Ir − C P )−1 C −P (Ir − C P )−1

−(Ir − C P )−1 C (Ir − C P )−1

)
(1)

belong to A. Then, C is called a stabilizing controller of P ,
which is denoted by C ∈ Stab(P ).

With the notations of Figure 1, we have:(
e1

e2

)
= H(P, C)

(
u1

u2

)
.

1Alban Quadrat is with Inria Saclay - Île-de-France, DISCO project,
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Fig. 1. Closed-loop system

It can be shown that internal stabilization, simply called
stabilization, implies that any transfer matrix of Figure 1
is A-stable, i.e., all its entries belong to A. See [4], [13].

Let us introduce the following transfer matrices:

• Output sensitivity transfer matrix So := (Iq − P C)−1.
• Input sensitivity transfer matrix Si := (Ir − C P )−1.
• U := C (Iq − P C)−1 = (Ir − C P )−1 C.
• Complementary input sensitivity transfer matrix
Ti := U P .

• Complementary output sensitivity transfer matrix
To := P U .

Lemma 1: The following assertions are equivalent:

1) C ∈ Kr×p stabilizes P ∈ Kp×r.
2) ΠC := (STo UT )T (Iq − P ) satisfies:

Π2
C = ΠC ∈ A(q+r)×(q+r).

3) ΠP := (PT ITr )T (−Si U) satisfies:

Π2
P = ΠP ∈ A(q+r)×(q+r).

Proof: The controller C ∈ Kr×p stabilizes the plant
P ∈ Kp×r iff H(P,C) ∈ A(q+r)×(q+r), where H(P,C)
is the transfer matrix defined by (1) (see Definition 1), and
thus iff ΠC ∈ A(q+r)×(q+r), or iff ΠP ∈ A(q+r)×(q+r).
Using So−P U = Iq and U −Si P = Ir, we can check that
Π2
C = ΠC , Π2

P = ΠP and ΠC+ΠP = Iq+r, i.e., ΠC and ΠP

are complementary idempotents of the ring A(q+r)×(q+r).

With the notations of Figure 1, we note that we have(
e1

y1

)
=
(

(Iq − P C)−1 −(Iq − P C)−1 P

C (Iq − P C)−1 −C (Iq − P C)−1 P

) (
u1

u2

)
= ΠC

(
u1

u2

)
,

(2)



(
y2

e2

)
=
(
−P (Ir − C P )−1 C P (Ir − C P )−1

−(Ir − C P )−1 C (Ir − C P )−1

) (
u1

u2

)
= ΠP

(
u1

u2

)
,

i.e., ΠC (resp., ΠP ) projects the disturbance and the
reference (uT1 uT2 )T onto the graph (eT1 yT1 )T (resp.,
(yT2 eT2 )T ) of the controller C (resp., the plant P ).

The two projectors ΠC and ΠP play a fundamental role
in robust control theory and particularly the two quantities
bP,C :=‖ ΠP ‖−1

A and bC,P :=‖ ΠC ‖−1
A . In particular, if

A = RH∞ or H∞(C+), the optimal robust radius [7] is:

bopt := sup
C∈Stab(P )

bP,C = ( inf
C∈Stab(P )

‖ ΠC ‖∞)−1

= ( inf
C∈Stab(P )

‖ ΠP ‖∞)−1.

In module theory, a finitely generated A-module M is
projective if there exist r ∈ Z≥0 := {0, 1, . . .} and an A-
module P such that M⊕P ∼= Ar, where ⊕ (resp., ∼=) denotes
the direct sum (resp., isomorphic modules, i.e. the existence
of a bijective A-homomorphism (i.e., A-linear map)) [11].

The idempotents ΠC and ΠP of the ring A(q+r)×(q+r)

define the projective modules MC := ΠC A
(q+r)×1 and

MP := A1×(q+r) ΠP of rank respectively q and r since:

MC⊕kerA(ΠC .) = A(q+r)×1, MP⊕kerA(.ΠP ) = A1×(q+r),{
kerA(ΠC .) = {ξ ∈ A(q+r)×1 | ΠC ξ = 0} = ΠP A

(q+r)×1,

kerA(.ΠP ) = {µ ∈ A1×(q+r) | µΠP = 0} = A1×(q+r) ΠC .

Thus, P is stabilizable, i.e., is stabilized by a controller C, iff
the two finitely generated A-modules MC := ΠC A

(q+r)×1

and MP := A1×(q+r) ΠP are projective of rank q and r [8].

Let us now consider the following two A-modules:

L := (Iq − P )A(q+r)×1, M := A1×(q+r) (PT ITr )T .

L (resp., M) is a finitely generated A-submodule of Kq

(resp., K1×r) called a lattice of Kq (resp., K1×r). See [8].

Let us consider the following two A-homomorphisms:

L = (Iq − P )A(q+r)×1 ι1−→ MC = ΠC A
(q+r)×1

η1 = (Iq − P ) ξ 7−→ (STo UT )T η1 = ΠC ξ,
(3)

M = A1×(q+r) (PT ITr )T ι2−→ MP = A1×(q+r) ΠP

η2 = µ (PT ITr )T 7−→ η2 (−Si U) = µΠP .

Since So − P U = Iq and U − Si P = Ir, we get

(Iq − P ) ι1(η1) = η1, ι2(η2) (PT ITr )T = η2,

which yield that ι1 and ι2 are injective A-homomorphisms,
and thus P is stabilizable iff L ∼= ι1(L) = ΠC A

(q+r)×1 is
a projective A-module of rank q, or equivalently iff M ∼=
ι2(M) = A1×(q+r) ΠP is a projective A-module of rank r.

Let us note F := (Iq −P ), fj := Fj• the jth column of
F , G := (STo UT )T , gk := G•k the kth row of G. Then,

C ∈ Kr×q stabilizes P ∈ Kq×r iff ΠC ∈ A(q+r)×(q+r), i.e.,
(STo UT )T (Iq − P )A(q+r)×1 ⊆ A(q+r)×1, and thus iff
gk η1 ∈ A for all η1 ∈ L = (Iq − P )Aq+r and k =
1, . . . , q + r, i.e., iff the following A-homomorphisms hold

αk : L = (Iq − P )Aq+r −→ A

η1 7−→ gk η1,
(4)

for k = 1, . . . , q + r. Now, F G = So − P U = Iq yields

η1 = F Gη1 =
q+r∑
j=1

fj (gj η1) =
q+r∑
j=1

fj αj(η1),

which shows that every element of L =
∑q+r
j=1 fj A has the

form of η1 =
∑q+r
j=1 fj αj(η1), where αj is the form of L de-

fined by (4). The pair S := ({fj}j=1,...,q+r, {αj}j=1,...,q+r)
formed by the set of generators {fj}j=1,...,q+r of L and the
forms {αj}j=1,...,q+r is called a projective basis of L [11].

Proposition 1: P ∈ Kq×r is stabilizable iff the finitely
generated A-module L := (Iq − P )A(q+r)×1 admits a
projective basis, i.e., iff L ∼= ΠC A

(q+r)×1 is a projective
A-module of rank q. Similarly for M∼= A1×(q+r) ΠP .

We point out that a projective basis of L is explicitly
defined by means of the stabilizing controller C ∈ Kr×q , i.e.,
the existence of a stabilizing controller C of P is equivalent
to the existence of an embedding of L = (Iq −P )A(q+r)×1

into A(q+r)×1. In algebra, projective bases play the role of a
system of coordinates in differential geometry: the “variety”
L can be embedded into the “affine space” Aq+r. Only the
stabilizable plants have this important property. This fact
will play a crucial role in Section III where this embedding
is used to develop a differential geometric approach to
stabilizable plants based on a differential calculus on A and
the concept of parallel transport, i.e., of connections [12]
(connections play a fundamental role in modern physics).
Finally, the links between algebra and differential geometry
are at the core of mathematical results connecting these two
realms: the Serre-Swan theorem states that the category of
finitely generated projective A = C∞(X)-modules is equiv-
alent to the category of vector bundles over the manifold
X [12]. See also [1], [10]. Prototypical examples of vector
bundles are the tangent or cotangent vector bundles.

A particular instance of Serre-Swan theorem is well-
known in control theory: it is the equivalence of Kalman’s
criterion of controllability of ẋ = Ax + B u in terms of
rankR(B AB A2B . . . An−1B) = n and Hautus’ test
ranks∈C(s In − A − B) = n. Indeed, on the one hand,
Kalman’s test is equivalent to the existence of a right inverse
S := (X(s)T Y (s)T )T ∈ R[s](n+m)×n of the polynomial
matrix R := (s In −A −B) ∈ R[s]n×(n+m), and thus of
a projector Π := S R of R[s](n+m)×(n+m) (since RS = In
implies that Π2 = Π), i.e., and thus is equivalent to the fact
that the R[s]-module Π R[s](n+m)×1 ∼= RR[s](n+m)×1 is a
projective R[s]-module of rank n. On the other hand, Hautus’
test asserts that the following family of vector C-spaces

E : C −→ Cn×1

s 7−→ Es := (s In −A −B) C(n+m)×1



forms a vector bundle over C of rank n [12].

II. QUANTIZED CALCULUS

“One way to quantify how sensitive T is to variations in
P is to take the limiting ratio of a relative perturbation in T
(i.e., ∆T/T ) to a relative perturbation in P (i.e., ∆P/P ).

. . . lim
∆P→0

∆T/T
∆P/P

=
dT

dP

P

T
= S.

In this way, S is the sensitivity of the closed-loop transfer
function T to an infinitesimal perturbation in P .” p. 40 of
[5]. Following Connes’ theory [1], the aim of this section
is to give a precise meaning of the above statement by
mathematically characterizing the variations, i.e., the dif-
ferential dT of T ∈ L∞(iR) or T ∈ H∞(C+). We
show that the 1-dimensional quantized calculus [1] gives a
complete answer by interpreting these differentials as certain
bounded operators on the separable Hilbert space H :=
L2(iR) [14]. The quantized differential calculus then inherits
a noncommutative structure from the noncommutative C?-
algebra L(H) of bounded operators on H [10], [14].

In what follows, k will always denote a commutative ring
containing Q and A a unital k-algebra, i.e., a k-algebra A
with a unit 1 ∈ A, i.e., 1 a = a 1 for all a ∈ A.

Let us give a general definition of a differential calculus.

Definition 2 ([1], [6]): 1) A k-algebra A is said to
be graded if there exists a family of k-submodules
(Ai)i∈Z≥0 of A satisfying:

a) A =
⊕

i∈Z≥0
Ai.

b) ∀ i, j ∈ Z≥0, AiAj ⊆ Ai+j , i.e.:

∀ ai ∈ Ai, ∀ aj ∈ Aj , ai aj ∈ Ai+j .

2) A graded algebra A is graded-commutative if:

∀ ai ∈ Ai, ∀ aj ∈ Aj , ai aj = (−1)ij aj ai.

3) A graded algebra A is a differential graded algebra if
there exist k-homomorphisms di : Ai −→ Ai+1 for
i ∈ Z≥0 satisfying the two following conditions:

a) di+1 ◦ di = 0 for all i ∈ Z≥0.
b) For ai ∈ Ai and aj ∈ Aj , we have:

di+j(ai aj) = (diai) aj + (−1)i ai (djaj). (5)

We simply note d = di for all i ∈ Z≥0. Then, the
identity di+1 ◦ di = 0 yields d2 = 0 and (5) becomes:

∀ ai ∈ Ai, ∀ aj ∈ Aj , d(ai aj) = (dai) aj+(−1)i ai (daj).

4) A differential calculus on a k-algebra A is a graded
differential algebra (Ω•A =

⊕
i∈N ΩiA, d) with:

Ω0
A = A.

If ω ∈ ΩiA, then i is called the degree of ω, which is
denoted by deg(ω) or simply by |ω|.

Example 1: Let X be a smooth manifold of dimension
n, A = C∞(X) the ring of smooth k-valued functions

on X (k = R, C), and ΩiA = Ωi(X) the A-module of
the differential i-forms on X [12]. Then, the A-module
Ω•A =

⊕
i∈Z≥0

ΩiA equipped with the wedge product ∧ of
differential forms and the exterior derivative d defined in a
local coordinate system x = (x1, . . . , xn) by

d
(
fI dx

I
)

=
n∑
i=1

∂fI
∂xi

dxi ∧ dxI , I = (i1, . . . , ik),

where 1 ≤ i1 < i2 < · · · < ik ≤ n, dxI = dxi1∧ . . . ∧dxik ,
is a differential graded algebra over A. Moreover, (Ω•A, d) is
graded-commutative:

∀ ωi ∈ ΩiA, ∀ ωj ∈ ΩjA, ωi ∧ ωj = (−1)ij ωj ∧ ωi.

Finally, note that ΩiA = 0 for i > n, i.e., Ω•A =
⊕n

i=0 ΩiA.

We introduce the 1-dimensional quantized calculus devel-
oped in [1] which plays a key role in the rest of the paper.

Example 2: [1] Let A = L∞(T) be the space of Lebesgue
measurable C-valued functions on the unit circle

T = {z ∈ C | |z| = 1}

which are essentially bounded [14], i.e.:

∀ a ∈ A, ‖ a ‖∞:= ess supz∈T|a(z)| < +∞.

The complex Banach space (A, ‖ · ‖∞) is a commutative
von Neumann algebra. Let H = L2(T) be the Hilbert space
of Lebesgue measurable C-valued functions on T which are
square-integrable, i.e., such that ‖ h ‖2=

√
< h, h > is finite,

where the inner product < · , · > of H is defined by:

< g, h > :=
1

2π

∫ 2π

0

g(eiθ)h(eiθ) dθ =
1

2πi

∮
T
g(z)h(z)

dz

z
.

We note that h ∈ H has a unique expression

h =
∑
n∈Z

hn e
inθ =

∑
n∈Z

hn z
n

in the orthogonal basis
(
zn = einθ

)
n∈Z of H, where:

hn =< h, einθ >=
1

2π

∫ 2π

0

h(eiθ) e−inθ dθ.

Let L(H) be the noncommutative C?-algebra of the
bounded operators on H. Since H is an A-module, we have
the following representation χ : A −→ L(H) of A on H:

a := χ(a) : H −→ H
h 7−→ a h.

We have ‖ a ‖L(H)=‖ a ‖∞ ([3], [14]), which shows that
the involutive representation χ, i.e., χ(a?) = χ(a)? for all
a ∈ A, where a?(z) = a(z) = a(z−1), is an isometry from
A to χ(A). In particular, χ is a faithful representation.

Let sign : Z −→ Z be the sign function, i.e., sign(n) = n
for n ∈ Z≥0 = {0, 1, . . .} and −n for n ∈ Z \ N, and the
self-adjoint bounded operator F on H defined by:

∀ n ∈ Z, F
(
einθ

)
= sign(n) einθ.



Then, we can define the differential da of a ∈ A as:

∀ a ∈ A, da := [F, a] = F ◦ a− a ◦ F ∈ L(H). (6)

Using a ◦ b = a b, the Leibniz rule holds for d since

d(a b) = F ◦ a b− a b ◦ F
= (F ◦ a− a ◦ F ) ◦ b+ a ◦ (F ◦ b− b ◦ F )
= da ◦ b+ a ◦ db,

(7)

for all a, b ∈ A. The C-vector space Ω1
A of the 1-forms on

A is then defined by:

Ω1
A =

{
r∑
i=1

a0 ◦ dai | a0, . . . , an ∈ A

}
.

The trivial identity b◦ (a0 ◦da1) = (b a0)◦da1 for all b ∈ A
shows that Ω1

A has a left A-module structure [11]. Ω1
A also

has a right A-module [11] since (7) yields:

∀ b ∈ A, da ◦ b = d(a b)− a ◦ db ∈ Ω1
A. (8)

Using the associativity of the composition of operators of
L(H), we get (c ◦ da) ◦ b = c ◦ (da ◦ b) for all a, b, c ∈ A,
which shows that Ω1

A is an A−A-bimodule [11].

The C-vector space ΩiA of the i-forms on A is defined by
the C-linear span of bounded operators of the form

a0 ◦ da1 ◦ · · · ◦ dai = a0 ◦ [F, a1] ◦ · · · ◦ [F, ai] ∈ L(H),

where a0, . . . , ai ∈ A. The product of forms is the compo-
sition of bounded operators:

ΩiA × ΩjA −→ Ωi+jA

(ωi, ωj) 7−→ ωi ◦ ωj .

The differential d : ΩiA −→ Ωi+1
A is then defined by:

∀ωi ∈ ΩiA : dωi = F ◦ ωi − (−1)i ωi ◦ F. (9)

Using F 2 = I , we get d2 = 0 since:

d2(ωi) = F ◦ (F ◦ ωi − (−1)i ωi ◦ F )
−(−1)i+1 (F ◦ ωi − (−1)i ωi ◦ F ) ◦ F

= ωi − (−1)i F ◦ ωi ◦ F + (−1)i F ◦ ωi ◦ F − ωi = 0.

Now, using F ? = F , we get:

(da)? = (F ◦ a− a ◦ F )? = a? ◦ F ? − F ? ◦ a?

= a? ◦ F − F ◦ a? = −[F, a?] = −da?.

Then, the involution ? of A can be extended to ΩiA by:

(a0 ◦ da1 ◦ · · · ◦ dai)? := (−1)i da?i ◦ · · · ◦ da?1 ◦ a0
?.

Then, (Ω•A =
⊕

ΩiA, d) is a differential calculus on A.

Let us introduce the following bounded operators on H:

P+ :=
1
2

(I + F ), P− := I − P+ =
1
2

(I − F ). (10)

Since F 2 = I , P+ and P− are two complementary projectors
of L(H), i.e., P 2

+ = P+, P 2
− = P− and P+ + P− = I . The

Hilbert space H can then be decomposed as follows:

H = imP+ ⊕ kerP+ = imP+ ⊕ imP−.

Let H+ = P+H = H2(D) and H− = P−H = H2(D)⊥,{
H2(D) :=

{
h ∈ L2(T) | h =

∑
n∈N hn z

n
}
,

H2(D)⊥ :=
{
h ∈ L2(T) | h =

∑
n≤−1 hn z

n
}
,

where D = {z ∈ C | |z| < 1} is the open unit disc.
The Hardy space H2(D) is the Hilbert space formed by
holomorphic functions in D which are square-integrable, i.e.,

‖ f ‖H2(D):= sup
0≤|r|<1

(
1

2π

∫ 2π

0

|f(r eiθ)|2 dθ
)1/2

.

Then, F|H+ = I and F|H+ = −I . Since da anti-commutes
with F , i.e., F ◦ da = −da ◦ F , we get:

da+ F ◦ da = da− da ◦ F ⇔ P+ ◦ da = da ◦ P−.

Post-multiplying the last equality by P+, pre-multiplying it
by P−, and using P− ◦ P+ = 0, we obtain:{

P+ ◦ da ◦ P+ = da ◦ P− ◦ P+ = 0,
P− ◦ da ◦ P− = P− ◦ P+ ◦ da = 0.

(11)

Let us now decompose da in H = H+ ⊕H−, namely:

da : H+ ⊕H− −→ H+ ⊕H−

h =

(
h+

h−

)
7−→

(
X Y

U V

) (
h+

h−

)
.

Then, (11) implies X = 0 and V = 0 since:

(P+ ◦ da ◦ P+)(H) = (P+ ◦ da)(H+) = P+(da(H+)) = 0,
(P− ◦ da ◦ P−)(H) = (P− ◦ da)(H−) = P−(da(H−)) = 0.

Let us now explicitly characterize the operators Y and U .
Let a ∈ A and h+ ∈ H+. Since F (h+) = h+, we then get

da(h+) = F (a h+)−aF (h+) = F (a h+)−a h+ = −2P− (a h+),

i.e., U = −2P−◦a. If h− ∈ H−, then F (h−) = −h− yields

da(h−) = F (a h−)−aF (h−) = F (a h−)+a h− = 2P+ (a h−),

i.e., Y = 2P+ ◦ a. Thus, for a ∈ A, da is defined by:

da : H+ ⊕H− −→ H+ ⊕H−

h =

(
h+

h−

)
7−→

(
0 2P+ ◦ a

−2P− ◦ a 0

) (
h+

h−

)
.

(12)
Let us now study the differential of an element of the

subalgebra H∞(D) of A formed by the holomorphic func-
tions in the unit disc D which are bounded for the norm
‖ a ‖∞= supz∈D |a(z)|. It is well-known that H+ = H2(D)
is a H∞(D)-module, i.e., a h+ ∈ H+ for all a ∈ H∞(D)
and h+ ∈ H+ ([3], [14]), which yields da(h+) = 0 for
all a ∈ H∞(D) and h+ ∈ H+, i.e., U = 0. Hence, if
a ∈ H∞(D), then da reduces to the Hankel operator [3],
[7], [14] with symbol 2 a, i.e.:

da : H− −→ H+

h− 7−→ P+(2 a h−).
(13)

If H∞(C \ D) is the Banach algebra of bounded holo-
morphic functions in C \ D = {z ∈ C | |z| > 1}, then



H∞(C\D) ⊆ L∞(T), and H2(D)⊥ is a H∞(C\D)-module
[14], and thus, P+(a(h−)) = 0 for all a ∈ H∞(C \ D) and
for all h− ∈ H−. If a ∈ H∞(C \D), then da is defined by:

da : H+ −→ H−
h+ 7−→ P−(−2 a h+).

(14)

If a1, a2 ∈ A, then ω = da1 ◦ da2 ∈ Ω2
A is defined by

−4

(
P+ ◦ a1 ◦ P− ◦ a2 0

0 P− ◦ a1 ◦ P+ ◦ a2

)
in the decomposition H = H+ ⊕H−. If a1, a2 ∈ H∞(D),
then ω = 0 since P−(a2 h+) = 0 and P+(a2 h−) ∈ H+ ⇒
g+ := a1 P+(a2 h−) ∈ H+ ⇒ P−(g+) = 0. Therefore, any
2-form over H∞(D) or H∞(D)⊥ vanishes.

Example 3: We can similarly consider the quantized cal-
culus on the real axis R. It is defined by A := L∞(R),
H := L2(R) and F is the Hilbert transform

F (a) = p.v.
1
π i

∫ +∞

−∞

a(t)
t− x

dt,

for all a ∈ A, x ∈ R, where p.v. is the Cauchy principal
value of the convolution of i/(π x) by a, i.e.:

F (a)(x) = lim
ε→0+

1
π i

∫
R\[−ε,+ε]

a(t)
t− x

dt

= lim
ε→0+

1
π i

∫ +∞

ε

a(x+ t)− a(x− t)
t

dt.

For more details, see [1]. Then, we can check that we have:

∀ h ∈ H, (da(h))(x) = p.v.
1
π i

∫ +∞

−∞

a(x)− a(t)
x− t

h(t) dt.

III. CONNECTIONS ON STABILIZABLE PLANTS
In what follows, we shall consider a differential calculus

(Ω•A =
⊕

i∈N ΩiA, d) on a k-algebra A.

Let us introduce the fundamental concept of a connection.

Definition 3 ([1], [6]): A connection of a right A-module
M is a k-linear map ∇ : M −→M ⊗A Ω1

A satisfying

∀ a ∈ A, ∀ m ∈M, ∇(ma) = ∇(m) a+m⊗da, (15)

where ⊗A denotes the tensor product of the right A-module
M and the left A-module Ω1

A [11].

Remark 1: If ∇ and ∇′ are two connections on M , then
(15) yields (∇−∇′)(ma) = (∇−∇′)(m) a for all a ∈ A,
which shows that ∇−∇′ is a right A-homomorphism from
M to M⊗AΩ1

A, denoted by ∇−∇′ ∈ homA(M,M⊗AΩ1
A)

[11]. Thus the space of all the connections on M is an affine
space over the C-vector space homA(M,M ⊗A Ω1

A).

Theorem 1 ([2]): A left/right A-module M admits a con-
nection iff M is a finitely generated projective module.

The results obtained in Section I then yields the result.

Corollary 1: Let A be a domain, K := Q(A) and a plant
P ∈ Kq×r. Then, the lattice L := (Iq − P )A(q+r)×1 of
Kr admits a connection iff P is a stabilizable plant.

Proposition 2 ([11]): If M is a finitely generated projec-
tive right A-module and N a right A-module, then:

homA(M,N) ∼= N ⊗A homA(M,A).

If M is a finitely generated projective left/right A-
module and if we denote the projective right/left A-module
homA(M,A) by M?, then Proposition 2 yields:

∀ i ∈ Z≥0, homA(M,M ⊗A ΩiA) ∼= M ⊗A ΩiA ⊗AM?.
(16)

Example 4: If M = Ar is a finitely generated free right
A-module, then M ⊗A Ω1

A
∼= (Ω1

A)r. Let us consider the
following k-linear map:

d : M −→ M ⊗A Ω1
A

m = (a1 . . . ar)T 7−→ dm = (da1 . . . dar)T .

We have d(ma) = (dm) a+mda for all m ∈M and a ∈ A,
which shows that d is a connection on M . If ∇ is another
connection on M , then Remark 1 and (16) show that:

∇−d ∈ homA(M,M⊗AΩ1
A) ∼= Ar⊗Ω1

A⊗AA1×r ∼= (Ω1
A)r×r.

Let Λ ∈ (Ω1
A)r×r be such that ∇ − d = γ, where γ is the

left A-homomorphism defined by:

γ : M −→ M ⊗A Ω1
A

m 7−→ Λm.

Thus, we get that ∇(m) = dm+ Λm for all m ∈M .

Let us now suppose that A is an integral domain of SISO
stable plants, K = Q(A) and P ∈ Kq×r a stabilizable
plant. Using the results of Section I, the finitely generated
A-module L := (Iq −P )A(q+r)×1, i.e., the lattice of Kq ,
is projective. Using the embedding ι1 defined by (3), we
get L ∼= ι1(L) = MC := ΠC A

(q+r)×1, where ΠC is the
projector of A(q+r)×(q+r), i.e., Π2

C = ΠC ∈ A(q+r)×(q+r),
defined in Lemma 1. Hence, without loss of generality, we
can consider the projective A-module MC of rank q. Using
the differential calculus (Ω•A =

⊕
i∈N ΩiA, d) on A, let us

define the so-called Levi-Civita or Grassmann connection on
MC . Let us consider the following right A-homomorphisms

MC
i−→ A(q+r)×1 d−→ A(q+r)×1 ⊗A Ω1

A

ξ 7−→ ξ 7−→
∑q+r
j=1 ej ⊗ dξj ,

where i is the embedding MC ⊆ A(q+r)×1, ej is the column
vector of A(q+r)×1 defined by 1 at the jth position and 0
elsewhere, {ej}j=1,...,q+r the standard basis of the free A-
module A(q+r)×1 of rank q+r, and ξ = (ξ1 . . . ξq+r)T . We
note that

∑q+r
j=1 ej ⊗ dξj corresponds to dξ ∈ (Ω1

A)(q+r)×1

written in the standard basis of A(q+r)×1. Let us also
consider the following right A-homomorphism:

A(q+r)×1 ⊗A Ω1
A

ΠC⊗idΩ1
A−−−−−−→ MC ⊗A Ω1

A∑q+r
j=1 ej ⊗ dξj 7−→

∑q+r
j=1 ΠC ej ⊗ dξj .

Using the embedding i : MC −→ A(q+r)×1, we can identify
MC⊗AΩ1

A with its image in (Ω1
A)(q+r)×1, i.e., we can iden-

tity
∑q+r
j=1 ΠC ej⊗dξj with ΠC dξ = ΠC (dξ1 . . . dξq+r)T .



Definition 4: The Levi-Civita/Grassmann connection on
the projective A-module MC = ΠC A

(q+r)×1 is defined by:

∇ : MC −→ MC ⊗A Ω1
A

ξ = ΠC η 7−→ ∇ ξ = ΠC dξ.
(17)

Let us interpret the Levi-Civita/Grassmann connection
(17). With the notations of Figure 1, using (2), we have:

∇ : MC −→ MC ⊗A Ω1
A(

e1

y1

)
7−→ ΠC

(
de1

dy1

)
.

(18)

For instance, if A = H∞(D), then de1 and dy1 have to be
interpreted as in Example 2, i.e., as two Hankel operators.

Using the identity ξ = ΠC ξ for all ξ ∈ MC , we get
dξ = d(ΠC ξ) = dΠC ξ + ΠC dξ, which yields:

∀ ξ ∈MC , ∇ ξ = dξ − dΠC ξ. (19)

Since ξ ∈ MC = ΠC A
(q+r)×1 is of the form of ξ = ΠC η

for a certain η ∈ A(q+r)×1, (17) and Π2
C = ΠC then yield:

∇ΠC η = ΠC d(ΠC η) = ΠC (ΠC dη + dΠC η)
= ΠC dη + ΠC dΠC η = ΠC (dη + dΠC η).

With the notations of Figure 1, using (2) again, we have:

∇ : MC −→ MC ⊗A Ω1
A

ΠC

(
u1

u2

)
7−→ ΠC

((
du1

du2

)
+ dΠC

(
u1

u2

))
.

Let us characterize all the connections on MC . Applying
Proposition 2 to the projective A-module MC , we get:

homA(MC ,MC ⊗A Ω1
A) ∼= MC ⊗A Ω1

A ⊗AM?
C

∼= ΠC A
(q+r)×1 ⊗A Ω1

A ⊗A A1×(q+r) ΠC

= ΠC (Ω1
A)(q+r)×(q+r) ΠC .

By Remark 1, all the connections on MC are of the form of

∀ ξ ∈MC , ∇′ξ = (ΠC d+ΠC Γ ΠC) ξ = ΠC (d+Γ) ΠC ξ,

where Γ ∈ (Ω1
A)(q+r)×(q+r) is any matrix of 1-differential

forms. The term ΠC Γ ΠC added to the connection (17) is a
so-called gauge potential.

Similar results can be obtained for the finitely generated
projective A-module MP = A1×(q+r) ΠP

∼=M [9].

IV. CURVATURES

Let us extend the definition of a connection.

Proposition 3 ([1], [6]): If ∇ : M −→ M ⊗A Ω1
A is a

connection on a right A-module M , then ∇ admits a unique
extension to ∇̃ : M ⊗A Ω•A −→M ⊗A Ω•A satisfying

∇̃(ωi ⊗ ωj) = ∇̃(ωi)⊗ ωj + (−1)i ωi ⊗ dωj , (20)

for all ωi ∈M ⊗A ΩiA and ωj ∈ Ωj(A).

A connection has a curvature. Let us define this concept.

Definition 5: The curvature of the connection ∇ is de-
fined by ∇2 = ∇ ◦∇ : M −→M ⊗A Ω2

A.

Let m ∈M and a ∈ A. Then, using (20), we obtain

∇2(ma) = ∇((∇m) a+m⊗ da)

= (∇2m) a−∇m⊗ da+∇m⊗ da+m⊗ d2a

= ∇2ma,
(21)

i.e., ∇2 ∈ homA(M,M ⊗A Ω2
A) ∼= homA(M,M)⊗A Ω2

A.

Let MC = ΠC A
(q+r)×1 be the finitely generated projec-

tive A-module and ∇ : MC −→ MC ⊗A Ω1
A a connection

on MC defined by ∇ ξ = ΠC dξ+Λ ξ, where Λ = ΠC Γ ΠC

for a certain Γ ∈ (Ω1
A)(q+r)×(q+r). Using (20), the curvature

∇2 of ∇ is then defined by:

∇2 ξ = (ΠC d+ Λ)(ΠC dξ + Λ ξ)

= ΠC d(ΠC dξ) + ΠC d(Λ ξ) + Λ ΠC dξ + Λ2 ξ

= ΠC dΠC dξ + Π2
C d

2ξ + ΠC dΛ ξ −ΠC Λ dξ

+ Λ ΠC dξ + Λ2 ξ

= ΠC dΠC dξ + ΠC dΛ ξ + Λ2 ξ.

From (21), ∇2 is a right A-homomorphism. It means that
the term ΠC dΠC dξ can be rewritten as a sum of products of
matrices of 2-forms multiplied by ξ. To do that, we first note
that ξ = ΠC ξ for all ξ ∈ MC , which yields ΠC dΠC dξ =
ΠC dΠC d(ΠC ξ) = ΠC dΠC dΠC ξ+ΠC dΠC ΠC dξ. Now,
Π2
C = ΠC gives dΠC ΠC + ΠC dΠC = dΠC , i.e.,

dΠC ΠC = (Iq+r − ΠC) dΠC , and thus ΠC dΠC ΠC =
(ΠC (Iq+r−ΠC)) dΠC = 0, which shows that ΠC dΠC dξ =
ΠC dΠC dΠC ξ and finally proves that:

∀ ξ ∈MC , ∇2 ξ = (ΠC (dΠC)2 + ΠC dΛ + Λ2) ξ.

If M = Ar is a free right A-module (i.e., a “trivial vector
bundle”), then ΠC = Iq+r and ∇2 ξ = (dΛ + Λ2) ξ.

Similar results can be obtained for the finitely generated
projective A-module MP = A1×(q+r) ΠP

∼=M [9].
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