Noncommutative geometric structures on stabilizable infinite-dimensional linear systems

Alban Quadrat ${ }^{1}$

Abstract

This paper aims at showing that noncommutative geometric structures such as connections and curvatures exist on internally stabilizable infinite-dimensional linear systems and on their stabilizing controllers. To see this new geometry, using the noncommutative geometry developed by Connes, we have to replace the standard differential calculus by the quantized differential calculus and classical vector bundles by projective modules. We give an explicit description of the connections on an internally stabilizable system and on its stabilizing controllers in terms of the projectors of the closedloop system classically used in robust control. These connections aim at studying the variations of the signals in the closed-loop system in response to a disturbance or a change of the reference. We also compute the curvatures of these connections.

I. STABILIZABILITY

In what follows, we shall consider the fractional representation approach to analysis and synthesis problems developed by Vidyasagar, Desoer, Callier, \ldots in the eighties. See [3], [4], [13]. Within this approach, an integral domain A (i.e., a commutative ring with no non-zero divisors) of stable transfer functions is considered and the set of SISO transfer functions is defined by the field of fractions of A :

$$
K:=Q(A)=\left\{\left.\frac{n}{d} \right\rvert\, 0 \neq d, n \in A\right\} .
$$

Hence, a transfer function $p \in K$ is A-stable if $p \in A$ and A-unstable if $p \in K \backslash A$. Standard rings A of stable transfer functions are $R H_{\infty}, H^{\infty}\left(\mathbb{C}_{+}\right), \widehat{\mathcal{A}}, W_{+}, A(\mathbb{D})$ [3], [4], [13].

Definition 1: Let A be an integral domain of stable SISO plants, $K:=Q(A)$ and $P \in K^{q \times r}$ a transfer matrix. Then, the plant P is internally stabilizable if there exists a controller $C \in K^{r \times q}$ such that all the entries of the matrix

$$
\begin{gather*}
H(P, C):=\left(\begin{array}{cc}
I_{q} & P \\
C & I_{r}
\end{array}\right)^{-1} \\
=\left(\begin{array}{cc}
\left(I_{q}-P C\right)^{-1} & -\left(I_{q}-P C\right)^{-1} P \\
-C\left(I_{q}-P C\right)^{-1} & I_{r}+C\left(I_{q}-P C\right)^{-1} P
\end{array}\right) \\
=\left(\begin{array}{cc}
I_{q}+P\left(I_{r}-C P\right)^{-1} C & -P\left(I_{r}-C P\right)^{-1} \\
-\left(I_{r}-C P\right)^{-1} C & \left(I_{r}-C P\right)^{-1}
\end{array}\right) \tag{1}
\end{gather*}
$$

belong to A. Then, C is called a stabilizing controller of P, which is denoted by $C \in \operatorname{Stab}(P)$.

With the notations of Figure 1, we have:

$$
\binom{e_{1}}{e_{2}}=H(P, C)\binom{u_{1}}{u_{2}} \text {. }
$$

[^0]

Fig. 1. Closed-loop system

It can be shown that internal stabilization, simply called stabilization, implies that any transfer matrix of Figure 1 is A-stable, i.e., all its entries belong to A. See [4], [13].

Let us introduce the following transfer matrices:

- Output sensitivity transfer matrix $S_{o}:=\left(I_{q}-P C\right)^{-1}$.
- Input sensitivity transfer matrix $S_{i}:=\left(I_{r}-C P\right)^{-1}$.
- $U:=C\left(I_{q}-P C\right)^{-1}=\left(I_{r}-C P\right)^{-1} C$.
- Complementary input sensitivity transfer matrix $T_{i}:=U P$.
- Complementary output sensitivity transfer matrix $T_{o}:=P U$.
Lemma 1: The following assertions are equivalent:

1) $C \in K^{r \times p}$ stabilizes $P \in K^{p \times r}$.
2) $\Pi_{C}:=\left(\begin{array}{ll}S_{o}^{T} & U^{T}\end{array}\right)^{T}\left(\begin{array}{ll}I_{q} & -P\end{array}\right)$ satisfies:

$$
\Pi_{C}^{2}=\Pi_{C} \in A^{(q+r) \times(q+r)}
$$

3) $\Pi_{P}:=\left(\begin{array}{ll}P^{T} & I_{r}^{T}\end{array}\right)^{T}\left(\begin{array}{ll}-S_{i} & U\end{array}\right)$ satisfies:

$$
\Pi_{P}^{2}=\Pi_{P} \in A^{(q+r) \times(q+r)}
$$

Proof: The controller $C \in K^{r \times p}$ stabilizes the plant $P \in K^{p \times r}$ iff $H(P, C) \in A^{(q+r) \times(q+r)}$, where $H(P, C)$ is the transfer matrix defined by (1) (see Definition 1), and thus iff $\Pi_{C} \in A^{(q+r) \times(q+r)}$, or iff $\Pi_{P} \in A^{(q+r) \times(q+r)}$. Using $S_{o}-P U=I_{q}$ and $U-S_{i} P=I_{r}$, we can check that $\Pi_{C}^{2}=\Pi_{C}, \Pi_{P}^{2}=\Pi_{P}$ and $\Pi_{C}+\Pi_{P}=I_{q+r}$, i.e., Π_{C} and Π_{P} are complementary idempotents of the ring $A^{(q+r) \times(q+r)}$.

With the notations of Figure 1, we note that we have

$$
\begin{align*}
\binom{e_{1}}{y_{1}} & =\left(\begin{array}{cc}
\left(I_{q}-P C\right)^{-1} & -\left(I_{q}-P C\right)^{-1} P \\
C\left(I_{q}-P C\right)^{-1} & -C\left(I_{q}-P C\right)^{-1} P
\end{array}\right)\binom{u_{1}}{u_{2}} \\
& =\Pi_{C}\binom{u_{1}}{u_{2}}, \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\binom{y_{2}}{e_{2}} & =\left(\begin{array}{cc}
-P\left(I_{r}-C P\right)^{-1} C & P\left(I_{r}-C P\right)^{-1} \\
-\left(I_{r}-C P\right)^{-1} C & \left(I_{r}-C P\right)^{-1}
\end{array}\right)\binom{u_{1}}{u_{2}} \\
& =\Pi_{P}\binom{u_{1}}{u_{2}}
\end{aligned}
$$

i.e., Π_{C} (resp., Π_{P}) projects the disturbance and the reference $\left(\begin{array}{ll}u_{1}^{T} & u_{2}^{T}\end{array}\right)^{T}$ onto the graph $\left(\begin{array}{ll}e_{1}^{T} & y_{1}^{T}\end{array}\right)^{T}$ (resp., $\left(\begin{array}{ll}y_{2}^{T} & e_{2}^{T}\end{array}\right)^{T}$) of the controller C (resp., the plant $\left.P\right)$.

The two projectors Π_{C} and Π_{P} play a fundamental role in robust control theory and particularly the two quantities $b_{P, C}:=\left\|\Pi_{P}\right\|_{A}^{-1}$ and $b_{C, P}:=\left\|\Pi_{C}\right\|_{A}^{-1}$. In particular, if $A=R H_{\infty}$ or $H^{\infty}\left(\mathbb{C}_{+}\right)$, the optimal robust radius [7] is:

$$
\begin{aligned}
b_{\mathrm{opt}}:=\sup _{C \in \operatorname{Stab}(P)} b_{P, C} & =\left(\inf _{C \in \operatorname{Stab}(P)}\left\|\Pi_{C}\right\|_{\infty}\right)^{-1} \\
& =\left(\inf _{C \in \operatorname{Stab}(P)}\left\|\Pi_{P}\right\|_{\infty}\right)^{-1} .
\end{aligned}
$$

In module theory, a finitely generated A-module M is projective if there exist $r \in \mathbb{Z}_{\geq 0}:=\{0,1, \ldots\}$ and an A module P such that $M \oplus P \cong A^{\bar{r}}$, where \oplus (resp., \cong) denotes the direct sum (resp., isomorphic modules, i.e. the existence of a bijective A-homomorphism (i.e., A-linear map)) [11].

The idempotents Π_{C} and Π_{P} of the ring $A^{(q+r) \times(q+r)}$ define the projective modules $M_{C}:=\Pi_{C} A^{(q+r) \times 1}$ and $M_{P}:=A^{1 \times(q+r)} \Pi_{P}$ of rank respectively q and r since:
$M_{C} \oplus \operatorname{ker}_{A}\left(\Pi_{C}.\right)=A^{(q+r) \times 1}, M_{P} \oplus \operatorname{ker}_{A}\left(. \Pi_{P}\right)=A^{1 \times(q+r)}$, $\left\{\begin{array}{l}\operatorname{ker}_{A}\left(\Pi_{C} .\right)=\left\{\xi \in A^{(q+r) \times 1} \mid \Pi_{C} \xi=0\right\}=\Pi_{P} A^{(q+r) \times 1}, \\ \operatorname{ker}_{A}\left(. \Pi_{P}\right)=\left\{\mu \in A^{1 \times(q+r)} \mid \mu \Pi_{P}=0\right\}=A^{1 \times(q+r)} \Pi_{C} .\end{array}\right.$ Thus, P is stabilizable, i.e., is stabilized by a controller C, iff the two finitely generated A-modules $M_{C}:=\Pi_{C} A^{(q+r) \times 1}$ and $M_{P}:=A^{1 \times(q+r)} \Pi_{P}$ are projective of rank q and r [8].

Let us now consider the following two A-modules:

$$
\mathcal{L}:=\left(\begin{array}{ll}
I_{q} & -P) A^{(q+r) \times 1}, \mathcal{M}:=A^{1 \times(q+r)}\left(P^{T} \quad I_{r}^{T}\right.
\end{array}\right)^{T}
$$

\mathcal{L} (resp., \mathcal{M}) is a finitely generated A-submodule of K^{q} (resp., $K^{1 \times r}$) called a lattice of K^{q} (resp., $K^{1 \times r}$). See [8].

Let us consider the following two A-homomorphisms:

$$
\begin{aligned}
& \mathcal{L}=\left(\begin{array}{ll}
I_{q} & -P
\end{array}\right) A^{(q+r) \times 1} \quad \xrightarrow{\iota_{1}} \quad M_{C}=\Pi_{C} A^{(q+r) \times 1} \\
& \eta_{1}=\left(\begin{array}{ll}
I_{q} & -P) \\
& \longmapsto \quad\left(S_{o}^{T} \quad U^{T}\right.
\end{array}\right)^{T} \eta_{1}=\Pi_{C} \xi, \\
& \mathcal{M}=A^{1 \times(q+r)}\left(P^{T} \quad I_{r}^{T}\right)^{T} \quad \xrightarrow{\iota_{2}} \quad M_{P}=A^{1 \times(q+r)} \Pi_{P} \\
& \eta_{2}=\mu\left(P^{T} \quad I_{r}^{T}\right)^{T} \quad \longmapsto \quad \eta_{2}\left(\begin{array}{ll}
-S_{i} & U
\end{array}\right)=\mu \Pi_{P} .
\end{aligned}
$$

Since $S_{o}-P U=I_{q}$ and $U-S_{i} P=I_{r}$, we get

$$
\left(I_{q} \quad-P\right) \iota_{1}\left(\eta_{1}\right)=\eta_{1}, \quad \iota_{2}\left(\eta_{2}\right)\left(P^{T} \quad I_{r}^{T}\right)^{T}=\eta_{2}
$$

which yield that ι_{1} and ι_{2} are injective A-homomorphisms, and thus P is stabilizable iff $\mathcal{L} \cong \iota_{1}(\mathcal{L})=\Pi_{C} A^{(q+r) \times 1}$ is a projective A-module of $\operatorname{rank} q$, or equivalently iff $\mathcal{M} \cong$ $\iota_{2}(\mathcal{M})=A^{1 \times(q+r)} \Pi_{P}$ is a projective A-module of rank r.

Let us note $F:=\left(\begin{array}{ll}I_{q} & -P), f_{j}:=F_{j} \text { • the } j^{\text {th }} \text { column of }\end{array}\right.$ $F, G:=\left(\begin{array}{ll}S_{o}^{T} & U^{T}\end{array}\right)^{T}, g_{k}:=G_{\bullet k}$ the $k^{\text {th }}$ row of G. Then,
$C \in K^{r \times q}$ stabilizes $P \in K^{q \times r}$ iff $\Pi_{C} \in A^{(q+r) \times(q+r)}$, i.e., $\left(\begin{array}{ll}S_{o}^{T} & U^{T}\end{array}\right)^{T}\left(\begin{array}{ll}I_{q} & -P) A^{(q+r) \times 1} \subseteq A^{(q+r) \times 1} \text {, and thus iff }\end{array}\right.$ $g_{k} \eta_{1} \in A$ for all $\eta_{1} \in \mathcal{L}=\left(I_{q}-P\right) A^{q+r}$ and $k=$ $1, \ldots, q+r$, i.e., iff the following A-homomorphisms hold

$$
\begin{align*}
\alpha_{k}: \mathcal{L}=\left(\begin{array}{ll}
I_{q} & -P) A^{q+r}
\end{array}\right. & \longrightarrow A \tag{4}\\
\eta_{1} & \longmapsto g_{k} \eta_{1}
\end{align*}
$$

for $k=1, \ldots, q+r$. Now, $F G=S_{o}-P U=I_{q}$ yields

$$
\eta_{1}=F G \eta_{1}=\sum_{j=1}^{q+r} f_{j}\left(g_{j} \eta_{1}\right)=\sum_{j=1}^{q+r} f_{j} \alpha_{j}\left(\eta_{1}\right)
$$

which shows that every element of $\mathcal{L}=\sum_{j=1}^{q+r} f_{j} A$ has the form of $\eta_{1}=\sum_{j=1}^{q+r} f_{j} \alpha_{j}\left(\eta_{1}\right)$, where α_{j} is the form of \mathcal{L} defined by (4). The pair $S:=\left(\left\{f_{j}\right\}_{j=1, \ldots, q+r},\left\{\alpha_{j}\right\}_{j=1, \ldots, q+r}\right)$ formed by the set of generators $\left\{f_{j}\right\}_{j=1, \ldots, q+r}$ of \mathcal{L} and the forms $\left\{\alpha_{j}\right\}_{j=1, \ldots, q+r}$ is called a projective basis of \mathcal{L} [11].

Proposition 1: $P \in K^{q \times r}$ is stabilizable iff the finitely generated A-module $\mathcal{L}:=\left(\begin{array}{ll}I_{q} & -P\end{array}\right) A^{(q+r) \times 1}$ admits a projective basis, i.e., iff $\mathcal{L} \cong \Pi_{C} A^{(q+r) \times 1}$ is a projective A-module of rank q. Similarly for $\mathcal{M} \cong A^{1 \times(q+r)} \Pi_{P}$.

We point out that a projective basis of \mathcal{L} is explicitly defined by means of the stabilizing controller $C \in K^{r \times q}$, i.e., the existence of a stabilizing controller C of P is equivalent to the existence of an embedding of $\mathcal{L}=\left(I_{q}-P\right) A^{(q+r) \times 1}$ into $A^{(q+r) \times 1}$. In algebra, projective bases play the role of a system of coordinates in differential geometry: the "variety" \mathcal{L} can be embedded into the "affine space" A^{q+r}. Only the stabilizable plants have this important property. This fact will play a crucial role in Section III where this embedding is used to develop a differential geometric approach to stabilizable plants based on a differential calculus on A and the concept of parallel transport, i.e., of connections [12] (connections play a fundamental role in modern physics). Finally, the links between algebra and differential geometry are at the core of mathematical results connecting these two realms: the Serre-Swan theorem states that the category of finitely generated projective $A=C^{\infty}(X)$-modules is equivalent to the category of vector bundles over the manifold X [12]. See also [1], [10]. Prototypical examples of vector bundles are the tangent or cotangent vector bundles.

A particular instance of Serre-Swan theorem is wellknown in control theory: it is the equivalence of Kalman's criterion of controllability of $\dot{x}=A x+B u$ in terms of $\operatorname{rank}_{\mathbb{R}}\left(B A B \quad A^{2} B \ldots A^{n-1} B\right)=n$ and Hautus' test $\operatorname{rank}_{s \in \mathbb{C}}\left(s I_{n}-A-B\right)=n$. Indeed, on the one hand, Kalman's test is equivalent to the existence of a right inverse $S:=\left(X(s)^{T} \quad Y(s)^{T}\right)^{T} \in \mathbb{R}[s]^{(n+m) \times n}$ of the polynomial matrix $R:=\left(s I_{n}-A-B\right) \in \mathbb{R}[s]^{n \times(n+m)}$, and thus of a projector $\Pi:=S R$ of $\mathbb{R}[s]^{(n+m) \times(n+m)}$ (since $R S=I_{n}$ implies that $\Pi^{2}=\Pi$), i.e., and thus is equivalent to the fact that the $\mathbb{R}[s]$-module $\Pi \mathbb{R}[s]^{(n+m) \times 1} \cong R \mathbb{R}[s]^{(n+m) \times 1}$ is a projective $\mathbb{R}[s]$-module of rank n. On the other hand, Hautus' test asserts that the following family of vector \mathbb{C}-spaces

$$
\begin{aligned}
& E: \mathbb{C} \longrightarrow \mathbb{C}^{n \times 1} \\
& s \longmapsto E_{s}:=\left(s I_{n}-A\right. \\
&-B) \mathbb{C}^{(n+m) \times 1}
\end{aligned}
$$

forms a vector bundle over \mathbb{C} of rank n [12].

II. QUANTIZED CALCULUS

"One way to quantify how sensitive T is to variations in P is to take the limiting ratio of a relative perturbation in T (i.e., $\Delta T / T$) to a relative perturbation in P (i.e., $\Delta P / P$).

$$
\ldots \lim _{\Delta P \rightarrow 0} \frac{\Delta T / T}{\Delta P / P}=\frac{d T}{d P} \frac{P}{T}=S
$$

In this way, S is the sensitivity of the closed-loop transfer function T to an infinitesimal perturbation in P." p. 40 of [5]. Following Connes' theory [1], the aim of this section is to give a precise meaning of the above statement by mathematically characterizing the variations, i.e., the differential $d T$ of $T \in L^{\infty}(i \mathbb{R})$ or $T \in H^{\infty}\left(\mathbb{C}_{+}\right)$. We show that the 1-dimensional quantized calculus [1] gives a complete answer by interpreting these differentials as certain bounded operators on the separable Hilbert space $\mathcal{H}:=$ $L^{2}(i \mathbb{R})$ [14]. The quantized differential calculus then inherits a noncommutative structure from the noncommutative C^{\star} algebra $\mathcal{L}(\mathcal{H})$ of bounded operators on \mathcal{H} [10], [14].

In what follows, k will always denote a commutative ring containing \mathbb{Q} and A a unital k-algebra, i.e., a k-algebra A with a unit $1 \in A$, i.e., $1 a=a 1$ for all $a \in A$.

Let us give a general definition of a differential calculus.
Definition 2 ([1], [6]): 1) A k-algebra A is said to be graded if there exists a family of k-submodules $\left(A_{i}\right)_{i \in \mathbb{Z}_{\geq 0}}$ of A satisfying:
a) $A=\bigoplus_{i \in \mathbb{Z}_{\geq 0}} A_{i}$.
b) $\forall i, j \in \mathbb{Z}_{\geq 0}, A_{i} A_{j} \subseteq A_{i+j}$, i.e.:

$$
\forall a_{i} \in A_{i}, \quad \forall a_{j} \in A_{j}, \quad a_{i} a_{j} \in A_{i+j}
$$

2) A graded algebra A is graded-commutative if:

$$
\forall a_{i} \in A_{i}, \quad \forall a_{j} \in A_{j}, \quad a_{i} a_{j}=(-1)^{i j} a_{j} a_{i} .
$$

3) A graded algebra A is a differential graded algebra if there exist k-homomorphisms $d_{i}: A_{i} \longrightarrow A_{i+1}$ for $i \in \mathbb{Z}_{\geq 0}$ satisfying the two following conditions:
a) $d_{i+1} \circ d_{i}=0$ for all $i \in \mathbb{Z}_{\geq 0}$.
b) For $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$, we have:

$$
\begin{equation*}
d_{i+j}\left(a_{i} a_{j}\right)=\left(d_{i} a_{i}\right) a_{j}+(-1)^{i} a_{i}\left(d_{j} a_{j}\right) \tag{5}
\end{equation*}
$$

We simply note $d=d_{i}$ for all $i \in \mathbb{Z}_{\geq 0}$. Then, the identity $d_{i+1} \circ d_{i}=0$ yields $d^{2}=0$ and (5) becomes:
$\forall a_{i} \in A_{i}, \forall a_{j} \in A_{j}, d\left(a_{i} a_{j}\right)=\left(d a_{i}\right) a_{j}+(-1)^{i} a_{i}\left(d a_{j}\right)$.
4) A differential calculus on a k-algebra A is a graded differential algebra $\left(\Omega_{A}^{\bullet}=\bigoplus_{i \in \mathbb{N}} \Omega_{A}^{i}, d\right)$ with:

$$
\Omega_{A}^{0}=A
$$

If $\omega \in \Omega_{A}^{i}$, then i is called the degree of ω, which is denoted by $\operatorname{deg}(\omega)$ or simply by $|\omega|$.

Example 1: Let X be a smooth manifold of dimension $n, A=C^{\infty}(X)$ the ring of smooth k-valued functions
on $X(k=\mathbb{R}, \mathbb{C})$, and $\Omega_{A}^{i}=\Omega^{i}(X)$ the A-module of the differential i-forms on X [12]. Then, the A-module $\Omega_{A}^{\bullet}=\bigoplus_{i \in \mathbb{Z}_{\geq 0}} \Omega_{A}^{i}$ equipped with the wedge product \wedge of differential forms and the exterior derivative d defined in a local coordinate system $x=\left(x^{1}, \ldots, x^{n}\right)$ by

$$
d\left(f_{I} d x^{I}\right)=\sum_{i=1}^{n} \frac{\partial f_{I}}{\partial x_{i}} d x^{i} \wedge d x^{I}, \quad I=\left(i_{1}, \ldots, i_{k}\right)
$$

where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n, d x^{I}=d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}$, is a differential graded algebra over A. Moreover, $\left(\Omega_{A}^{\bullet}, d\right)$ is graded-commutative:

$$
\forall \omega_{i} \in \Omega_{A}^{i}, \quad \forall \omega_{j} \in \Omega_{A}^{j}, \quad \omega_{i} \wedge \omega_{j}=(-1)^{i j} \omega_{j} \wedge \omega_{i}
$$

Finally, note that $\Omega_{A}^{i}=0$ for $i>n$, i.e., $\Omega_{A}^{\bullet}=\bigoplus_{i=0}^{n} \Omega_{A}^{i}$.
We introduce the 1-dimensional quantized calculus developed in [1] which plays a key role in the rest of the paper.

Example 2: [1] Let $A=L^{\infty}(\mathbb{T})$ be the space of Lebesgue measurable \mathbb{C}-valued functions on the unit circle

$$
\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}
$$

which are essentially bounded [14], i.e.:

$$
\forall a \in A, \quad\|a\|_{\infty}:=\operatorname{ess} \sup _{z \in \mathbb{T}}|a(z)|<+\infty
$$

The complex Banach space $\left(A,\|\cdot\|_{\infty}\right)$ is a commutative von Neumann algebra. Let $\mathcal{H}=L^{2}(\mathbb{T})$ be the Hilbert space of Lebesgue measurable \mathbb{C}-valued functions on \mathbb{T} which are square-integrable, i.e., such that $\|h\|_{2}=\sqrt{<h, h>}$ is finite, where the inner product $<\cdot, \cdot>$ of \mathcal{H} is defined by:
$<g, h>:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{g\left(e^{i \theta}\right)} h\left(e^{i \theta}\right) d \theta=\frac{1}{2 \pi i} \oint_{\mathbb{T}} \overline{g(z)} h(z) \frac{d z}{z}$.
We note that $h \in \mathcal{H}$ has a unique expression

$$
h=\sum_{n \in \mathbb{Z}} h_{n} e^{i n \theta}=\sum_{n \in \mathbb{Z}} h_{n} z^{n}
$$

in the orthogonal basis $\left(z^{n}=e^{i n \theta}\right)_{n \in \mathbb{Z}}$ of \mathcal{H}, where:

$$
h_{n}=<h, e^{i n \theta}>=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(e^{i \theta}\right) e^{-i n \theta} d \theta
$$

Let $\mathcal{L}(\mathcal{H})$ be the noncommutative C^{\star}-algebra of the bounded operators on \mathcal{H}. Since \mathcal{H} is an A-module, we have the following representation $\chi: A \longrightarrow \mathcal{L}(\mathcal{H})$ of A on \mathcal{H} :

$$
\begin{aligned}
\underline{a}:=\chi(a): \mathcal{H} & \longrightarrow \mathcal{H} \\
h & \longmapsto a h .
\end{aligned}
$$

We have $\|\underline{a}\|_{\mathcal{L}(\mathcal{H})}=\|a\|_{\infty}$ ([3], [14]), which shows that the involutive representation χ, i.e., $\chi\left(a^{\star}\right)=\chi(a)^{\star}$ for all $a \in A$, where $a^{\star}(z)=\overline{a(\bar{z})}=\overline{a\left(z^{-1}\right)}$, is an isometry from A to $\chi(A)$. In particular, χ is a faithful representation.

Let sign : $\mathbb{Z} \longrightarrow \mathbb{Z}$ be the sign function, i.e., $\operatorname{sign}(n)=n$ for $n \in \mathbb{Z}_{\geq 0}=\{0,1, \ldots\}$ and $-n$ for $n \in \mathbb{Z} \backslash \mathbb{N}$, and the self-adjoint bounded operator F on \mathcal{H} defined by:

$$
\forall n \in \mathbb{Z}, \quad F\left(e^{i n \theta}\right)=\operatorname{sign}(n) e^{i n \theta}
$$

Then, we can define the differential $d a$ of $a \in A$ as:

$$
\begin{equation*}
\forall a \in A, \quad d a:=[F, \underline{a}]=F \circ \underline{a}-\underline{a} \circ F \in \mathcal{L}(\mathcal{H}) . \tag{6}
\end{equation*}
$$

Using $\underline{a} \circ \underline{b}=\underline{a b}$, the Leibniz rule holds for d since

$$
\begin{align*}
d(a b) & =F \circ \underline{a} b-\underline{a b} \circ F \\
& =(F \circ \underline{a}-\underline{a} \circ F) \circ \underline{b}+\underline{a} \circ(F \circ \underline{b}-\underline{b} \circ F) \tag{7}\\
& =d a \circ \underline{b}+\underline{a} \circ d b,
\end{align*}
$$

for all $a, b \in A$. The \mathbb{C}-vector space Ω_{A}^{1} of the 1 -forms on A is then defined by:

$$
\Omega_{A}^{1}=\left\{\sum_{i=1}^{r} \underline{a_{0}} \circ d a_{i} \mid a_{0}, \ldots, a_{n} \in A\right\} .
$$

The trivial identity $\underline{b} \circ\left(\underline{a_{0}} \circ d a_{1}\right)=\left(b a_{0}\right) \circ d a_{1}$ for all $b \in A$ shows that Ω_{A}^{1} has a left A-module structure [11]. Ω_{A}^{1} also has a right A-module [11] since (7) yields:

$$
\begin{equation*}
\forall b \in A, \quad d a \circ \underline{b}=d(a b)-\underline{a} \circ d b \in \Omega_{A}^{1} . \tag{8}
\end{equation*}
$$

Using the associativity of the composition of operators of $\mathcal{L}(\mathcal{H})$, we get $(\underline{c} \circ d a) \circ \underline{b}=\underline{c} \circ(d a \circ \underline{b})$ for all $a, b, c \in A$, which shows that Ω_{A}^{1} is an $\overline{A-A}$-bimodule [11].

The \mathbb{C}-vector space Ω_{A}^{i} of the i-forms on A is defined by the \mathbb{C}-linear span of bounded operators of the form

$$
\underline{a_{0}} \circ d a_{1} \circ \cdots \circ d a_{i}=\underline{a_{0}} \circ\left[F, \underline{a_{1}}\right] \circ \cdots \circ\left[F, \underline{a_{i}}\right] \in \mathcal{L}(\mathcal{H})
$$

where $a_{0}, \ldots, a_{i} \in A$. The product of forms is the composition of bounded operators:

$$
\begin{aligned}
\Omega_{A}^{i} \times \Omega_{A}^{j} & \longrightarrow \Omega_{A}^{i+j} \\
\left(\omega_{i}, \omega_{j}\right) & \longmapsto \omega_{i} \circ \omega_{j} .
\end{aligned}
$$

The differential $d: \Omega_{A}^{i} \longrightarrow \Omega_{A}^{i+1}$ is then defined by:

$$
\begin{equation*}
\forall \omega_{i} \in \Omega_{A}^{i}: \quad d \omega_{i}=F \circ \omega_{i}-(-1)^{i} \omega_{i} \circ F \tag{9}
\end{equation*}
$$

Using $F^{2}=I$, we get $d^{2}=0$ since:

$$
\begin{gathered}
d^{2}\left(\omega_{i}\right)=F \circ\left(F \circ \omega_{i}-(-1)^{i} \omega_{i} \circ F\right) \\
-(-1)^{i+1}\left(F \circ \omega_{i}-(-1)^{i} \omega_{i} \circ F\right) \circ F \\
=\omega_{i}-(-1)^{i} F \circ \omega_{i} \circ F+(-1)^{i} F \circ \omega_{i} \circ F-\omega_{i}=0 .
\end{gathered}
$$

Now, using $F^{\star}=F$, we get:

$$
\begin{aligned}
(d a)^{\star} & =(F \circ \underline{a}-\underline{a} \circ F)^{\star}=\underline{a^{\star}} \circ F^{\star}-F^{\star} \circ \underline{a^{\star}} \\
& =\underline{a^{\star}} \circ F-F \circ \underline{a^{\star}}=-\left[F, \underline{a^{\star}}\right]=-d a^{\star} .
\end{aligned}
$$

Then, the involution \star of A can be extended to Ω_{A}^{i} by:

$$
\left(\underline{a_{0}} \circ d a_{1} \circ \cdots \circ d a_{i}\right)^{\star}:=(-1)^{i} d a_{i}^{\star} \circ \cdots \circ d a_{1}^{\star} \circ{\underline{a_{0}}}^{\star} .
$$

Then, $\left(\Omega_{A}^{\bullet}=\bigoplus \Omega_{A}^{i}, d\right)$ is a differential calculus on A.
Let us introduce the following bounded operators on \mathcal{H} :

$$
\begin{equation*}
P_{+}:=\frac{1}{2}(I+F), \quad P_{-}:=I-P_{+}=\frac{1}{2}(I-F) \tag{10}
\end{equation*}
$$

Since $F^{2}=I, P_{+}$and P_{-}are two complementary projectors of $\mathcal{L}(\mathcal{H})$, i.e., $P_{+}^{2}=P_{+}, P_{-}^{2}=P_{-}$and $P_{+}+P_{-}=I$. The Hilbert space \mathcal{H} can then be decomposed as follows:

$$
\mathcal{H}=\operatorname{im} P_{+} \oplus \operatorname{ker} P_{+}=\operatorname{im} P_{+} \oplus \operatorname{im} P_{-}
$$

Let $\mathcal{H}_{+}=P_{+} \mathcal{H}=H^{2}(\mathbb{D})$ and $\mathcal{H}_{-}=P_{-} \mathcal{H}=H^{2}(\mathbb{D})^{\perp}$,

$$
\left\{\begin{array}{l}
H^{2}(\mathbb{D}):=\left\{h \in L^{2}(\mathbb{T}) \mid h=\sum_{n \in \mathbb{N}} h_{n} z^{n}\right\} \\
H^{2}(\mathbb{D})^{\perp}:=\left\{h \in L^{2}(\mathbb{T}) \mid h=\sum_{n \leq-1} h_{n} z^{n}\right\}
\end{array}\right.
$$

where $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ is the open unit disc. The Hardy space $H^{2}(\mathbb{D})$ is the Hilbert space formed by holomorphic functions in \mathbb{D} which are square-integrable, i.e.,

$$
\|f\|_{H^{2}(\mathbb{D})}:=\sup _{0 \leq|r|<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{1 / 2}
$$

Then, $F_{\mid \mathcal{H}_{+}}=I$ and $F_{\mid \mathcal{H}_{+}}=-I$. Since $d a$ anti-commutes with F, i.e., $F \circ d a=-d a \circ F$, we get:

$$
d a+F \circ d a=d a-d a \circ F \Leftrightarrow P_{+} \circ d a=d a \circ P_{-}
$$

Post-multiplying the last equality by P_{+}, pre-multiplying it by P_{-}, and using $P_{-} \circ P_{+}=0$, we obtain:

$$
\left\{\begin{array}{l}
P_{+} \circ d a \circ P_{+}=d a \circ P_{-} \circ P_{+}=0 \tag{11}\\
P_{-} \circ d a \circ P_{-}=P_{-} \circ P_{+} \circ d a=0
\end{array}\right.
$$

Let us now decompose $d a$ in $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$, namely:

$$
\begin{array}{rll}
d a: \mathcal{H}_{+} \oplus \mathcal{H}_{-} & \longrightarrow & \mathcal{H}_{+} \oplus \mathcal{H}_{-} \\
h=\binom{h_{+}}{h_{-}} & \longmapsto\left(\begin{array}{ll}
X & Y \\
U & V
\end{array}\right)\binom{h_{+}}{h_{-}} .
\end{array}
$$

Then, (11) implies $X=0$ and $V=0$ since:
$\left(P_{+} \circ d a \circ P_{+}\right)(\mathcal{H})=\left(P_{+} \circ d a\right)\left(\mathcal{H}_{+}\right)=P_{+}\left(d a\left(\mathcal{H}_{+}\right)\right)=0$,
$\left(P_{-} \circ d a \circ P_{-}\right)(\mathcal{H})=\left(P_{-} \circ d a\right)\left(\mathcal{H}_{-}\right)=P_{-}\left(d a\left(\mathcal{H}_{-}\right)\right)=0$.
Let us now explicitly characterize the operators Y and U. Let $a \in A$ and $h_{+} \in \mathcal{H}_{+}$. Since $F\left(h_{+}\right)=h_{+}$, we then get $d a\left(h_{+}\right)=F\left(a h_{+}\right)-a F\left(h_{+}\right)=F\left(a h_{+}\right)-a h_{+}=-2 P_{-}\left(a h_{+}\right)$, i.e., $U=-2 P_{-} \circ \underline{a}$. If $h_{-} \in \mathcal{H}_{-}$, then $F\left(h_{-}\right)=-h_{-}$yields $d a\left(h_{-}\right)=F\left(a h_{-}\right)-a F\left(h_{-}\right)=F\left(a h_{-}\right)+a h_{-}=2 P_{+}\left(a h_{-}\right)$, i.e., $Y=2 P_{+} \circ \underline{a}$. Thus, for $a \in A, d a$ is defined by:

$$
\begin{array}{rll}
d a: \mathcal{H}_{+} \oplus \mathcal{H}_{-} & \longrightarrow & \mathcal{H}_{+} \oplus \mathcal{H}_{-} \\
h=\binom{h_{+}}{h_{-}} & \longmapsto & \left(\begin{array}{cc}
0 & 2 P_{+} \circ \underline{a} \\
-2 P_{-} \circ \underline{a} & 0
\end{array}\right)\binom{h_{+}}{h_{-}} . \tag{12}
\end{array}
$$

Let us now study the differential of an element of the subalgebra $H^{\infty}(\mathbb{D})$ of A formed by the holomorphic functions in the unit disc \mathbb{D} which are bounded for the norm $\|a\|_{\infty}=\sup _{z \in \mathbb{D}}|a(z)|$. It is well-known that $\mathcal{H}_{+}=H^{2}(\mathbb{D})$ is a $H^{\infty}(\mathbb{D})$-module, i.e., $a h_{+} \in \mathcal{H}_{+}$for all $a \in H^{\infty}(\mathbb{D})$ and $h_{+} \in \mathcal{H}_{+}([3],[14])$, which yields $d a\left(h_{+}\right)=0$ for all $a \in H^{\infty}(\mathbb{D})$ and $h_{+} \in \mathcal{H}_{+}$, i.e., $U=0$. Hence, if $a \in H^{\infty}(\mathbb{D})$, then $d a$ reduces to the Hankel operator [3], [7], [14] with symbol $2 a$, i.e.:

$$
\begin{align*}
d a: \mathcal{H}_{-} & \longrightarrow \mathcal{H}_{+} \\
h_{-} & \longmapsto P_{+}\left(2 a h_{-}\right) . \tag{13}
\end{align*}
$$

If $H^{\infty}(\mathbb{C} \backslash \overline{\mathbb{D}})$ is the Banach algebra of bounded holomorphic functions in $\mathbb{C} \backslash \overline{\mathbb{D}}=\{z \in \mathbb{C}| | z \mid>1\}$, then
$H^{\infty}(\mathbb{C} \backslash \overline{\mathbb{D}}) \subseteq L^{\infty}(\mathbb{T})$, and $H^{2}(\mathbb{D})^{\perp}$ is a $H^{\infty}(\mathbb{C} \backslash \overline{\mathbb{D}})$-module [14], and thus, $P_{+}\left(\underline{a}\left(h_{-}\right)\right)=0$ for all $a \in H^{\infty}(\mathbb{C} \backslash \overline{\mathbb{D}})$ and for all $h_{-} \in \mathcal{H}-$. If $a \in H^{\infty}(\mathbb{C} \backslash \overline{\mathbb{D}})$, then $d a$ is defined by:

$$
\begin{align*}
d a: \mathcal{H}_{+} & \longrightarrow \mathcal{H}_{-} \tag{14}\\
h_{+} & \longmapsto P_{-}\left(-2 a h_{+}\right) .
\end{align*}
$$

If $a_{1}, a_{2} \in A$, then $\omega=d a_{1} \circ d a_{2} \in \Omega_{A}^{2}$ is defined by

$$
-4\left(\begin{array}{cc}
P_{+} \circ \underline{a_{1}} \circ P_{-} \circ \underline{a_{2}} & 0 \\
0 & P_{-} \circ \underline{a_{1}} \circ P_{+} \circ \underline{a_{2}}
\end{array}\right)
$$

in the decomposition $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$. If $a_{1}, a_{2} \in H^{\infty}(\mathbb{D})$, then $\omega=0$ since $P_{-}\left(a_{2} h_{+}\right)=0$ and $P_{+}\left(a_{2} h_{-}\right) \in \mathcal{H}_{+} \Rightarrow$ $g_{+}:=a_{1} P_{+}\left(a_{2} h_{-}\right) \in \mathcal{H}_{+} \Rightarrow P_{-}\left(g_{+}\right)=0$. Therefore, any 2-form over $H^{\infty}(\mathbb{D})$ or $H^{\infty}(\mathbb{D})^{\perp}$ vanishes.

Example 3: We can similarly consider the quantized calculus on the real axis \mathbb{R}. It is defined by $A:=L^{\infty}(\mathbb{R})$, $\mathcal{H}:=L^{2}(\mathbb{R})$ and F is the Hilbert transform

$$
F(a)=\text { p.v. } \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{a(t)}{t-x} d t
$$

for all $a \in A, x \in \mathbb{R}$, where p.v. is the Cauchy principal value of the convolution of $i /(\pi x)$ by a, i.e.:

$$
\begin{aligned}
F(a)(x) & =\lim _{\varepsilon \rightarrow 0_{+}} \frac{1}{\pi i} \int_{\mathbb{R} \backslash[-\varepsilon,+\varepsilon]} \frac{a(t)}{t-x} d t \\
& =\lim _{\varepsilon \rightarrow 0_{+}} \frac{1}{\pi i} \int_{\varepsilon}^{+\infty} \frac{a(x+t)-a(x-t)}{t} d t
\end{aligned}
$$

For more details, see [1]. Then, we can check that we have: $\forall h \in \mathcal{H},(d a(h))(x)=$ p.v. $\frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{a(x)-a(t)}{x-t} h(t) d t$.

III. CONNECTIONS ON STABILIZABLE PLANTS

In what follows, we shall consider a differential calculus $\left(\Omega_{A}^{\bullet}=\bigoplus_{i \in \mathbb{N}} \Omega_{A}^{i}, d\right)$ on a k-algebra A.

Let us introduce the fundamental concept of a connection.
Definition 3 ([1], [6]): A connection of a right A-module M is a k-linear map $\nabla: M \longrightarrow M \otimes_{A} \Omega_{A}^{1}$ satisfying

$$
\begin{equation*}
\forall a \in A, \quad \forall m \in M, \quad \nabla(m a)=\nabla(m) a+m \otimes d a \tag{15}
\end{equation*}
$$

where \otimes_{A} denotes the tensor product of the right A-module M and the left A-module Ω_{A}^{1} [11].

Remark 1: If ∇ and ∇^{\prime} are two connections on M, then (15) yields $\left(\nabla-\nabla^{\prime}\right)(m a)=\left(\nabla-\nabla^{\prime}\right)(m) a$ for all $a \in A$, which shows that $\nabla-\nabla^{\prime}$ is a right A-homomorphism from M to $M \otimes_{A} \Omega_{A}^{1}$, denoted by $\nabla-\nabla^{\prime} \in \operatorname{hom}_{A}\left(M, M \otimes_{A} \Omega_{A}^{1}\right)$ [11]. Thus the space of all the connections on M is an affine space over the \mathbb{C}-vector space $\operatorname{hom}_{A}\left(M, M \otimes_{A} \Omega_{A}^{1}\right)$.

Theorem 1 ([2]): A left/right A-module M admits a connection iff M is a finitely generated projective module.

The results obtained in Section I then yields the result.
Corollary 1: Let A be a domain, $K:=Q(A)$ and a plant $P \in K^{q \times r}$. Then, the lattice $\mathcal{L}:=\left(\begin{array}{ll}I_{q} & -P) A^{(q+r) \times 1} \text { of }\end{array}\right.$ K^{r} admits a connection iff P is a stabilizable plant.

Proposition 2 ([11]): If M is a finitely generated projective right A-module and N a right A-module, then:

$$
\operatorname{hom}_{A}(M, N) \cong N \otimes_{A} \operatorname{hom}_{A}(M, A)
$$

If M is a finitely generated projective left/right A module and if we denote the projective right/left A-module $\operatorname{hom}_{A}(M, A)$ by M^{\star}, then Proposition 2 yields:

$$
\begin{equation*}
\forall i \in \mathbb{Z}_{\geq 0}, \operatorname{hom}_{A}\left(M, M \otimes_{A} \Omega_{A}^{i}\right) \cong M \otimes_{A} \Omega_{A}^{i} \otimes_{A} M^{\star} \tag{16}
\end{equation*}
$$

Example 4: If $M=A^{r}$ is a finitely generated free right A-module, then $M \otimes_{A} \Omega_{A}^{1} \cong\left(\Omega_{A}^{1}\right)^{r}$. Let us consider the following k-linear map:

$$
\begin{aligned}
d: M & \longrightarrow M \otimes_{A} \Omega_{A}^{1} \\
m=\left(a_{1} \ldots a_{r}\right)^{T} & \longmapsto d m=\left(d a_{1} \ldots d a_{r}\right)^{T} .
\end{aligned}
$$

We have $d(m a)=(d m) a+m d a$ for all $m \in M$ and $a \in A$, which shows that d is a connection on M. If ∇ is another connection on M, then Remark 1 and (16) show that:
$\nabla-d \in \operatorname{hom}_{A}\left(M, M \otimes_{A} \Omega_{A}^{1}\right) \cong A^{r} \otimes \Omega_{A}^{1} \otimes_{A} A^{1 \times r} \cong\left(\Omega_{A}^{1}\right)^{r \times r}$.
Let $\Lambda \in\left(\Omega_{A}^{1}\right)^{r \times r}$ be such that $\nabla-d=\gamma$, where γ is the left A-homomorphism defined by:

$$
\begin{aligned}
\gamma: M & \longrightarrow M \otimes_{A} \Omega_{A}^{1} \\
m & \longmapsto \Lambda m .
\end{aligned}
$$

Thus, we get that $\nabla(m)=d m+\Lambda m$ for all $m \in M$.
Let us now suppose that A is an integral domain of SISO stable plants, $K=Q(A)$ and $P \in K^{q \times r}$ a stabilizable plant. Using the results of Section I, the finitely generated A-module $\mathcal{L}:=\left(\begin{array}{ll}I_{q} & -P\end{array}\right) A^{(q+r) \times 1}$, i.e., the lattice of K^{q}, is projective. Using the embedding ι_{1} defined by (3), we get $\mathcal{L} \cong \iota_{1}(\mathcal{L})=M_{C}:=\Pi_{C} A^{(q+r) \times 1}$, where Π_{C} is the projector of $A^{(q+r) \times(q+r)}$, i.e., $\Pi_{C}^{2}=\Pi_{C} \in A^{(q+r) \times(q+r)}$, defined in Lemma 1. Hence, without loss of generality, we can consider the projective A-module M_{C} of rank q. Using the differential calculus $\left(\Omega_{A}^{\bullet}=\bigoplus_{i \in \mathbb{N}} \Omega_{A}^{i}, d\right)$ on A, let us define the so-called Levi-Civita or Grassmann connection on M_{C}. Let us consider the following right A-homomorphisms

$$
\begin{array}{ccccc}
M_{C} & \xrightarrow{i} & A^{(q+r) \times 1} & \xrightarrow{d} & A^{(q+r) \times 1} \otimes_{A} \Omega_{A}^{1} \\
\xi & \longmapsto & \xi & \longmapsto & \sum_{j=1}^{q+r} e_{j} \otimes d \xi_{j},
\end{array}
$$

where i is the embedding $M_{C} \subseteq A^{(q+r) \times 1}, e_{j}$ is the column vector of $A^{(q+r) \times 1}$ defined by 1 at the $j^{\text {th }}$ position and 0 elsewhere, $\left\{e_{j}\right\}_{j=1, \ldots, q+r}$ the standard basis of the free A module $A^{(q+r) \times 1}$ of rank $q+r$, and $\xi=\left(\xi_{1} \ldots \xi_{q+r}\right)^{T}$. We note that $\sum_{j=1}^{q+r} e_{j} \otimes d \xi_{j}$ corresponds to $d \xi \in\left(\Omega_{A}^{1}\right)^{(q+r) \times 1}$ written in the standard basis of $A^{(q+r) \times 1}$. Let us also consider the following right A-homomorphism:

$$
\begin{array}{ccc}
A^{(q+r) \times 1} \otimes_{A} \Omega_{A}^{1} & \xrightarrow{\Pi_{C} \otimes \mathrm{id}_{\Omega_{A}^{1}}} & \begin{array}{c}
M_{C} \otimes_{A} \Omega_{A}^{1} \\
\sum_{j=1}^{q+r} e_{j} \otimes d \xi_{j}
\end{array} \quad \longmapsto \quad
\end{array} \begin{gathered}
\sum_{j=1}^{q+r} \Pi_{C} e_{j} \otimes d \xi_{j} .
\end{gathered}
$$

Using the embedding $i: M_{C} \longrightarrow A^{(q+r) \times 1}$, we can identify $M_{C} \otimes_{A} \Omega_{A}^{1}$ with its image in $\left(\Omega_{A}^{1}\right)^{(q+r) \times 1}$, i.e., we can identity $\sum_{j=1}^{q+r} \Pi_{C} e_{j} \otimes d \xi_{j}$ with $\Pi_{C} d \xi=\Pi_{C}\left(d \xi_{1} \ldots d \xi_{q+r}\right)^{T}$.

Definition 4: The Levi-Civita/Grassmann connection on the projective A-module $M_{C}=\Pi_{C} A^{(q+r) \times 1}$ is defined by:

$$
\begin{array}{rll}
\nabla: M_{C} & \longrightarrow & M_{C} \otimes_{A} \Omega_{A}^{1} \tag{17}\\
\xi=\Pi_{C} \eta & \longmapsto & \nabla \xi=\Pi_{C} d \xi
\end{array}
$$

Let us interpret the Levi-Civita/Grassmann connection (17). With the notations of Figure 1, using (2), we have:

$$
\begin{align*}
& \nabla: M_{C}
\end{align*} \quad \longrightarrow \quad M_{C} \otimes_{A} \Omega_{A}^{1} .
$$

For instance, if $A=H^{\infty}(\mathbb{D})$, then $d e_{1}$ and $d y_{1}$ have to be interpreted as in Example 2, i.e., as two Hankel operators.

Using the identity $\xi=\Pi_{C} \xi$ for all $\xi \in M_{C}$, we get $d \xi=d\left(\Pi_{C} \xi\right)=d \Pi_{C} \xi+\Pi_{C} d \xi$, which yields:

$$
\begin{equation*}
\forall \xi \in M_{C}, \quad \nabla \xi=d \xi-d \Pi_{C} \xi \tag{19}
\end{equation*}
$$

Since $\xi \in M_{C}=\Pi_{C} A^{(q+r) \times 1}$ is of the form of $\xi=\Pi_{C} \eta$ for a certain $\eta \in A^{(q+r) \times 1}$, (17) and $\Pi_{C}^{2}=\Pi_{C}$ then yield:

$$
\begin{aligned}
\nabla \Pi_{C} \eta & =\Pi_{C} d\left(\Pi_{C} \eta\right)=\Pi_{C}\left(\Pi_{C} d \eta+d \Pi_{C} \eta\right) \\
& =\Pi_{C} d \eta+\Pi_{C} d \Pi_{C} \eta=\Pi_{C}\left(d \eta+d \Pi_{C} \eta\right) .
\end{aligned}
$$

With the notations of Figure 1, using (2) again, we have:

$$
\begin{array}{rll}
\nabla: M_{C} & \longrightarrow & M_{C} \otimes_{A} \Omega_{A}^{1} \\
\Pi_{C}\binom{u_{1}}{u_{2}} & \longmapsto & \Pi_{C}\left(\binom{d u_{1}}{d u_{2}}+d \Pi_{C}\binom{u_{1}}{u_{2}}\right) .
\end{array}
$$

Let us characterize all the connections on M_{C}. Applying Proposition 2 to the projective A-module M_{C}, we get:

$$
\begin{aligned}
& \operatorname{hom}_{A}\left(M_{C}, M_{C} \otimes_{A} \Omega_{A}^{1}\right) \cong M_{C} \otimes_{A} \Omega_{A}^{1} \otimes_{A} M_{C}^{\star} \\
& \cong \Pi_{C} A^{(q+r) \times 1} \otimes_{A} \Omega_{A}^{1} \otimes_{A} A^{1 \times(q+r)} \Pi_{C} \\
& =\Pi_{C}\left(\Omega_{A}^{1}\right)^{(q+r) \times(q+r)} \Pi_{C} .
\end{aligned}
$$

By Remark 1, all the connections on M_{C} are of the form of $\forall \xi \in M_{C}, \nabla^{\prime} \xi=\left(\Pi_{C} d+\Pi_{C} \Gamma \Pi_{C}\right) \xi=\Pi_{C}(d+\Gamma) \Pi_{C} \xi$, where $\Gamma \in\left(\Omega_{A}^{1}\right)^{(q+r) \times(q+r)}$ is any matrix of 1-differential forms. The term $\Pi_{C} \Gamma \Pi_{C}$ added to the connection (17) is a so-called gauge potential.

Similar results can be obtained for the finitely generated projective A-module $M_{P}=A^{1 \times(q+r)} \Pi_{P} \cong \mathcal{M}$ [9].

IV. CURVATURES

Let us extend the definition of a connection.
Proposition 3 ([1], [6]): If $\nabla: M \longrightarrow M \otimes_{A} \Omega_{A}^{1}$ is a connection on a right A-module M, then ∇ admits a unique extension to $\widetilde{\nabla}: M \otimes_{A} \Omega_{A}^{\bullet} \longrightarrow M \otimes_{A} \Omega_{A}^{\bullet}$ satisfying

$$
\begin{equation*}
\widetilde{\nabla}\left(\omega_{i} \otimes \omega_{j}\right)=\widetilde{\nabla}\left(\omega_{i}\right) \otimes \omega_{j}+(-1)^{i} \omega_{i} \otimes d \omega_{j} \tag{20}
\end{equation*}
$$

for all $\omega_{i} \in M \otimes_{A} \Omega_{A}^{i}$ and $\omega_{j} \in \Omega^{j}(A)$.
A connection has a curvature. Let us define this concept.
Definition 5: The curvature of the connection ∇ is defined by $\nabla^{2}=\nabla \circ \nabla: M \longrightarrow M \otimes_{A} \Omega_{A}^{2}$.

Let $m \in M$ and $a \in A$. Then, using (20), we obtain

$$
\begin{align*}
\nabla^{2}(m a) & =\nabla((\nabla m) a+m \otimes d a) \\
& =\left(\nabla^{2} m\right) a-\nabla m \otimes d a+\nabla m \otimes d a+m \otimes d^{2} a \\
& =\nabla^{2} m a \tag{21}
\end{align*}
$$

i.e., $\nabla^{2} \in \operatorname{hom}_{A}\left(M, M \otimes_{A} \Omega_{A}^{2}\right) \cong \operatorname{hom}_{A}(M, M) \otimes_{A} \Omega_{A}^{2}$.

Let $M_{C}=\Pi_{C} A^{(q+r) \times 1}$ be the finitely generated projective A-module and $\nabla: M_{C} \longrightarrow M_{C} \otimes_{A} \Omega_{A}^{1}$ a connection on M_{C} defined by $\nabla \xi=\Pi_{C} d \xi+\Lambda \xi$, where $\Lambda=\Pi_{C} \Gamma \Pi_{C}$ for a certain $\Gamma \in\left(\Omega_{A}^{1}\right)^{(q+r) \times(q+r)}$. Using (20), the curvature ∇^{2} of ∇ is then defined by:

$$
\begin{aligned}
\nabla^{2} \xi= & \left(\Pi_{C} d+\Lambda\right)\left(\Pi_{C} d \xi+\Lambda \xi\right) \\
= & \Pi_{C} d\left(\Pi_{C} d \xi\right)+\Pi_{C} d(\Lambda \xi)+\Lambda \Pi_{C} d \xi+\Lambda^{2} \xi \\
= & \Pi_{C} d \Pi_{C} d \xi+\Pi_{C}^{2} d^{2} \xi+\Pi_{C} d \Lambda \xi-\Pi_{C} \Lambda d \xi \\
& +\Lambda \Pi_{C} d \xi+\Lambda^{2} \xi \\
= & \Pi_{C} d \Pi_{C} d \xi+\Pi_{C} d \Lambda \xi+\Lambda^{2} \xi
\end{aligned}
$$

From (21), ∇^{2} is a right A-homomorphism. It means that the term $\Pi_{C} d \Pi_{C} d \xi$ can be rewritten as a sum of products of matrices of 2-forms multiplied by ξ. To do that, we first note that $\xi=\Pi_{C} \xi$ for all $\xi \in M_{C}$, which yields $\Pi_{C} d \Pi_{C} d \xi=$ $\Pi_{C} d \Pi_{C} d\left(\Pi_{C} \xi\right)=\Pi_{C} d \Pi_{C} d \Pi_{C} \xi+\Pi_{C} d \Pi_{C} \Pi_{C} d \xi$. Now, $\Pi_{C}^{2}=\Pi_{C}$ gives $d \Pi_{C} \Pi_{C}+\Pi_{C} d \Pi_{C}=d \Pi_{C}$, i.e., $d \Pi_{C} \Pi_{C}=\left(I_{q+r}-\Pi_{C}\right) d \Pi_{C}$, and thus $\Pi_{C} d \Pi_{C} \Pi_{C}=$ $\left(\Pi_{C}\left(I_{q+r}-\Pi_{C}\right)\right) d \Pi_{C}=0$, which shows that $\Pi_{C} d \Pi_{C} d \xi=$ $\Pi_{C} d \Pi_{C} d \Pi_{C} \xi$ and finally proves that:

$$
\forall \xi \in M_{C}, \nabla^{2} \xi=\left(\Pi_{C}\left(d \Pi_{C}\right)^{2}+\Pi_{C} d \Lambda+\Lambda^{2}\right) \xi
$$

If $M=A^{r}$ is a free right A-module (i.e., a "trivial vector bundle"), then $\Pi_{C}=I_{q+r}$ and $\nabla^{2} \xi=\left(d \Lambda+\Lambda^{2}\right) \xi$.

Similar results can be obtained for the finitely generated projective A-module $M_{P}=A^{1 \times(q+r)} \Pi_{P} \cong \mathcal{M}$ [9].

REFERENCES

[1] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[2] J. Cuntz and D. Quillen, "Algebra extensions and nonsingularity", J. Amer. Math. Soc. vol. 8, 1995, 251-289.
[3] R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, TAM 21, Springer-Verlag, 1991.
[4] C. A. Desoer, R. W, Liu, J. Murray, and R. Saeks, "Feedback system design: the fractional representation approach to analysis and synthesis", IEEE Trans. Automat. Control, vol. 25, 1980, 399-412.
[5] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan, 1992.
[6] M. Karoubi, Homologie cyclique et K-théorie, Astérique 149, Société Mathématique de France, 1987.
[7] J. R. Partington, Linear Operators and Linear Systems, Cambridge University Press, 2004.
[8] A. Quadrat, "A lattice approach to analysis and synthesis problems", Math. Control Signals Systems, vol. 18, 2006, 147-186.
[9] A. Quadrat, "A noncommutative geometric approach to infinitedimensional systems theory", Inria Research Report, to appear, 2014.
[10] J. Rosenberg, Algebraic K-Theory and Its Applications, Graduate Texts in Mathematics 147, Springer, 1994.
[11] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.
[12] C. H. Taubes, Differential Geometry, Oxford Graduate Texts in Mathematics 23, Oxford, 2011.
[13] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.
[14] N. Young, An Introduction to Hilbert Space, Cambridge University Press, 1988.

[^0]: ${ }^{1}$ Alban Quadrat is with Inria Saclay - Île-de-France, DISCO project, L2S, Supélec, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France. alban.quadrat@inria.fr

