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Introduction by the Organisers

The mini-workshop entitled Formal Methods in Commutative Algebra: A View
Toward Constructive Homological Algebra, organised by Thierry Coquand (Uni-
versity of Göteborg), Alban Quadrat (INRIA Sophia Antipolis) and Ihsen Yengui
(University of Sfax) was held from November 8th to November 14th, 2009. This
meeting was attended by 14 participants coming from England, France, Germany,
Spain, Sweden and Tunisia (one participant from Morocco was not able to come
due to health problems).

Homological algebra is nowadays playing a significant role in different parts of
pure mathematics (e.g., algebraic topology, algebraic geometry, sheaf theory, D-
modules), mathematical physics and more surprisingly in different applied fields
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of mathematics (e.g., mathematical systems theory, control theory, dynamical sys-
tems). This can easily be explained by the fact that homological algebra develops
universal, powerful and intrinsic mathematical methods which can be applied to
a large part of mathematics especially where linear systems of equations over a
ring are involved. However, the methods of homological algebra generally involve
large and tricky computations which cannot be easily achieved by hand and thus
require the use of computers. To do that, the mathematician first needs to make
them constructive at least for his particular field of interest. Generally, this is not
an easy task. But the fast development of computer algebra and proof-assisted
systems gives our generation the nice opportunity to develop the first efficient
softwares dedicated to homological algebra and its applications.

The purpose of the mini-workshop was firstly to bring into the same place differ-
ent mathematical communities that share a common interest for the development
of constructive homological algebra, its implementations in computer algebra and
computer-assisted proof systems as well as for its applications in different math-
ematical fields (e.g., constructive algebra, symbolic computation, proof theory,
algebraic topology, mathematical systems theory, D-modules, dynamical systems
theory) so that these communities can exchange their knowledge, experiences, re-
sults and softwares.

Secondly, all along the three lectures, a unified terminology was developped, and
common mathematical problems which naturally appear when making homological
algebra constructive were discussed (e.g., when can we say that a homology can
be computed? what kind of algebraic conditions does it require? which kind of
results and techniques of homological algebra can be made constructive, how to
implement them and in which languages?).

Finally, the last goal of this mini-workshop was to federate researchers inter-
ested in the constructive aspects of homological algebra, their implementations in
computer algebra and proof assistant systems and their applications in different
mathematical fields. We hope that this mini-worksop will be the starting point for
the development of a new community, dedicated to these issues, who will exchange
on regular basis through meetings, conferences, summer schools. . .

The mini-workshop was divided into three lectures on constructive algebra and
constructive homological algebra:

(1) Introduction to homological algebra, M. Barakat, D. Robertz (6
hours)

(2) Introduction to constructive algebra, H. Lombardi (4 hours)
(3) Constructive homological algebra, F. Sergeraert (3 hours)

and into five specialized talks which studied different aspects of constructive ho-
mological algebra and their applications in mathematical fields:

(1) Ring theory (Serre-Auslander-Buchsbaum theorem, coherent rings, char-
acterization of module properties)
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(2) Algebraic topology (constructive algebraic topology, perturbation
lemma, spectral sequences, exact couples)

(3) Mathematical systems theory (parametrizability, factorization, reduc-
tion and decomposition problems, Serre’s reduction)

(4) Noncommutative ring theory and algebraic D-modules (Gelfand-
Kirilov dimension, Cohen-Macaulay property, Auslander regularity for
noncommutative G-algebra)

(5) Dynamical systems (conley index, spectral sequences)
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Abstracts

Spectral sequences and effective computations

Mohamed Barakat

1. Introduction

This extended abstract of a series of talks held during the MFO-mini-workshop
“A View Toward Constructive Homological Algebra” is also meant to be a short
guide to [1]. All modules are understood as modules over an associative ring with
one.

An m-step filtration on a module C induces an m-step filtration on any of its
subfactor modules. This easy consequence of the isomorphism theorems is detailed
in Section 2 for the case of a 2-step filtration.

On the other hand, the modules Cn of an m-step filtered complex

C : · · · Cn−1

∂n−1
oo Cn

∂noo Cn+1

∂n+1
oo · · ·

∂n+2
oo

are by definition m-step filtered. A complex is called filtered if the boundary maps
∂ respect the filtrations of its modules. For example, a 2-step filtered complex is
thus nothing but a complex C together with a subcomplex A ≤ C.

Combining the two remarks above it follows that the homologies

Hn(C) := Zn(C)/Bn(C) := ker ∂n/ im ∂n+1

as subfactor modules of the modules Cn of an m-step filtered complex C are again
m-step filtered.

This provides a mechanism to construct filtrations on a given module W by
realizing it as the homology Hn(C) ∼= W of some filtered complex C. Often
enough this is the only known way to construct certain desired filtrations on W .

2. A generality on submodule lattices

Let C be a module, Z, B, and A submodules with B ≤ Z. Then the submodule
lattice of C is at most a degeneration of the one in Figure 1.

This lattice makes no statement about the “size” ofB or Z compared toA, since,
in general, neither B nor Z is in a ≤-relation with A. The second1 isomorphism
theorem can be applied ten times within this lattice, two for each of the five
parallelograms. The submodule A leads to the intermediate submodule A′ :=
(A + B) ∩ Z sitting between B and Z, which in general neither coincides with
Z nor with B. Hence, a 2-step filtration 0 ≤ A ≤ C induces a 2-step filtration
0 ≤ A′/B ≤ Z/B.

This can be generalized to objects and subobjects in abelian categories. Arguing
in terms of subobject lattices is a manifestation of the isomorphism theorems, all
being immediate corollaries of the homomorphism theorem (cf. [2]).

1Here we follow the numbering in Emmy Noether’s fundamental paper [2].
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C

A

B

Z

A′

Figure 1. A general lattice with submodules B ≤ Z and A

3. Spectral sequences generalize long exact sequences

The main idea behind spectral sequences of filtered complexes can already be
demonstrated in the case of a 2-step filtered complex C ≥ A. A 2-step filtered

complex C induces a short exact sequence of complexes 0 ←− R
ν
←− C

ι
←− A ←− 0

with R := C/A.
The homologies of the three complexes (A, ∂A), (C, ∂), and (R, ∂R) fit together

in a long exact (homology) sequence

· · · Hn−1(A)oo Hn(R)
∂∗oo Hn(C)

ν∗oo Hn(A)
ι∗oo Hn+1(R)

∂∗oo · · · ,oo

with so-called connecting homomorphisms ∂∗ of degree −1. They detect the
remaining off-diagonal information ∂R→A of the boundary map ∂ which is not
covered by ∂A and ∂R:

∂ =

(
∂A ∂R→A

0 ∂R

)
.

A more provocative (inexact but suggestive) notation would be

∂ =

(
∂A ∂∗
0 ∂R

)
.

In other words, the degree 0 maps ∂R and ∂A capture the level preserving informa-
tion in ∂, while the degree −1 connecting homomorphisms detect the remaining
inter-level communication between R and A. In a 2-step filtered complex this cov-
ers all of ∂. Viewing things in this way it is now not surprising that for an m-step
filtered complex one would in general still need degree −2 till degree −m maps to
get a full grasp on ∂.

As long exact sequences are more or less2 tailored for the 2-step filtered com-
plexes, they do not generalize to m-step filtrations whenever m > 2. The language
of spectral sequences offers in this respect a better alternative.

2In fact, any module homomorphism induces a long exact sequence.
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Before introducing the language of spectral sequences we first point out how
the long exact sequence encodes the induced 2-step filtration on Hn(C). This is
indicated in the following diagram:

(1) Hn−1(A) Hn(R)
∂∗oo Hn(C)

ν∗oo Hn(A)
ι∗oo Hn+1(R)

∂∗oo

•

• •
oo

• •
oo ∂∗

•
oo

• •
oo

ν∗

ι∗

} coker(ι∗)

ker(ν∗)

{ •
oo

• •
oo

•
oo

• •
oo

∂∗

•

Finally to motivate the transition to spectral sequences we note that the two
graded parts

coker(ι∗) =: gr1Hn(C) and ker(ν∗) =: gr0Hn(C)

shown in (1) of the filtration of Hn(C) both have an alternative description in
terms of the connecting homomorphisms:

(2) coker(ι∗) ∼= ker(∂∗) and ker(ν∗) ∼= coker(∂∗).

These natural isomorphisms are nothing but the statement of the homomorphism
theorem applied to ι∗ and ν∗.

Figure 2 shows the submodule lattice of Cn with all relevant submodules to-
gether with the submodule lattice of the filtered total homology Hn(C) extracted
to its left.

Cn
Zn(R)

Bn(R)

An

Zn(A)

Bn(A)

Zn(C)

Bn(C)

Hn(C) Hn(C)

∼= ker(∂∗)

∼= coker(∂∗)

Figure 2. The 2-step filtration 0 ≤ A ≤ C and the induced
2-step filtration on Hn(C)



10 Oberwolfach Report 50

Part of the data we have in the context of long exact sequences can be organized
in three successive “pages” E0, E1, and E2. They describe the approximation of
the graded parts of Hn(C) in three steps:

(An, Rn) =: (gr0 Cn, gr1 Cn)

��
�O
�O
�O

(Hn(A), Hn(R)) := (Zn(A)/Bn(A), Zn(R)/Bn(R))

��
�O
�O
�O

(coker(∂∗), ker(∂∗)) =: (gr0Hn(C), gr1Hn(C)).

This approximation is achieved by successively taking deeper inter-level inter-
action into account. Since we are dealing with a 2-step filtration each page Ea has
exactly two columns:

Cn
Rn = E0

1,n−1

An = E0
0,nHn(C)

An+1

∂A
��

Rn+2

∂R
��

E0
0,n−1

∂A
��

E0
1,n−1

∂R
��

An

∂A
��

Rn+1

=∂R
��

E0
0,n

∂A
��

E0
1,n

∂R
��

An−1

∂A
��

Rn

∂R
��

E0
0,n−1

∂A
��

E0
1,n−1

∂R
��

An−2 Rn−1 E0
0,n−2 E0

1,n−2

homologytake

��
�O
�O
�O
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Cn

An

Hn(R) = E1
1,n−1

Hn(A) = E1
0,n

Hn(C)

Hn+1(A) Hn+2(R)
∂∗oo E1

0,n−1 E1
1,n−1

∂∗oo

Hn(A) Hn+1(R)

=

∂∗oo E1
0,n E1

1,n
∂∗oo

Hn−1(A) Hn(R)
∂∗oo E1

0,n−1 E1
1,n−1

∂∗oo

Hn−2(A) Hn−1(R)
∂∗oo E1

0,n−2 E1
1,n−2

∂∗oo

homologytake

��
�O
�O
�O

Cn

An

ker(∂∗) = E2
1,n−1

coker(∂∗) = E2
0,n

Hn(C)

coker(∂∗) ker(∂∗) E2
0,n−1 E2

1,n−1

coker(∂∗) ker(∂∗)

=

E2
0,n E2

1,n

coker(∂∗) ker(∂∗) E2
0,n−1 E2

1,n−1

coker(∂∗) ker(∂∗) E2
0,n−2 E2

1,n−2

This is the spectral sequence of a 2-filtered complex.
Figure 3 below shows how the objects E∞

0,n = E2
0,n and E∞

1,n−1 = E2
1,n−1 in the

last page E∞ = E2 of the spectral sequence filter the total homology Hn(C). The
second isomorphism theorem is used to travel inside the subobject lattice of Cn.
The diagram suggests the notion of generalized embeddings introduced in [1,
Section 4].

References

[1] Mohamed Barakat, Spectral Filtrations via Generalized Morphisms, (submitted)
(http://arxiv.org/abs/0904.0240).

[2] Emmy Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktio-
nenkörpern, Math. Ann. 96 (1927), no. 1, 26–61. MR MR1512304
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Cn

An

E∞
1,n−1

E∞
0,n

Hn(C)
Hn(C)
ι

ι

ι0

ι1

Figure 3. ι0ι
−1 and ι1ι

−1 filter Hn(C)

Constructive homological algebra

Francis Sergeraert

(joint work with Ana Romero and Julio Rubio)

Constructive homological algebra.

Talk 1: The Problem. The computability problem in Topological Algebra was
born in 1953 when Jean-Pierre Serre proved most homology and homotopy groups
of “reasonable” spaces are Z-modules of finite type. The first positive result was
obtained by Edgar Brown for the computability of the homotopy groups of finite
simply connected simplicial sets, but his method is not concretely usable.

The main problem, practical and theoretical, is in the frequent appearance of
objects not of finite type, mainly simplicial sets and chain complexes, objects which
cannot be directly handled on a practical or theoretical machine. The standard
tools to overcome such obstacles are exact and spectral sequences, but except in
simple situations, these methods are not algorithms.

Functional programming is then a natural tool to process these infinite objects,
at least if a finite set of data is finally sufficient to obtain the desired output of a
computation.

The notion of SHP = Solution for the Homological Problem for a chain complex
allows one to functionnally organize the workspace, describing how a finite set of
data and a few functions constructively describe the homological nature of a chain
complex, even if not of finite type.

If we consider the framework where the ground ring R is Cramer (= coherent +
strongly discrete), that is, when the traditional computations around the Cramer
systems in vector spaces can be processed, then an object of finite type is a mod-
ule given through a finite presentation. It is natural to decide such a module is
an effective R-module: the ordinary calculations of kernels and cokernels can be
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executed by a machine. However and unfortunately, this in general is not enough
for the isomorphism problem between such modules, a serious gap in this area.

Finally the notions of locally effective and fuzzy R-modules are defined, allowing
one to handle in a functional way various sorts of modules not of finite type. The
standard decision problems for these modules in general cannot be solved.

Talk 2: Homological Perturbations. In general a SHP is made of “set-theoretic”
maps, non-compatible with the module structures. This is a source of serious dif-
ficulties which can be frequently avoided when the theory of Homological Pertur-
bations can be applied.

A reduction ρ : Ĉ∗ ⇒⇒ C∗ is a strong chain equivalence between two chain

complexes, expressing the big chain complex Ĉ∗ as the direct sum of the small
one C∗ and another one which is explicitly acyclic, thanks to a Hodge decomposi-
tion. Often, the big chain complex is only locally effective, while the small one is
effective. The last one being effective, a SHP can be elementarily computed, and

the reduction ρ then gives also a SHP for the big chain complex Ĉ∗.
Another property of these reductions is essential: if the differential of the big

chain complex Ĉ∗ is perturbed, it is often possible to modify also the other data of

the reductions to obtain an analogous reduction Ĉ′
∗ ⇒⇒ C′

∗; it is the so called Basic
Perturbation Lemma (BPL). It so happens a fibration is nothing but a perturbed
product, a point which is the source of many applications of the BPL: Jean-Pierre
Serre in the fifties proved many problems in Algebraic Topology can be reduced
to problems about appropriate fibrations, and the BPL is then the ideal tool to
transform the main spectral sequences, Serre and Eilenberg-Moore, into algorithms
computing the desired homology groups.

A remarkable solution for the Adams’ problem, due to Julio Rubio, is so ob-
tained. If a simplicial set X is given with effective homology and is sufficiently
reduced, then an algorithm produces a version with effective homology of the loop
space ΩX . The data type of the output is the same as the data type of the input
and the process can therefore be trivially iterated. The algorithm is implemented
and computes some homology groups of loop spaces previously unreachable.

Talk 3: Using fuzzy modules. The BPL does not give a solution to make
effective the spectral sequences not coming from a filtered chain complex, that is,
when the spectral sequence is produced by an exact couple. Typical examples of
such spectral sequences are the Bockstein and Bousfield-Kan spectral sequences,
the last one describing the so rich, complex and interesting connection between
homology and homotopy groups, leading to the famous Adams’ spectral sequence.

An exact couple is a diagram:

D D

E

i

jk
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where D and E are modules and the morphisms i, j and k are a circular exact
sequence. A simple process produces a derived exact couple, and iterating this
process often produces spectral sequences.

In the last talk it is proved that if D is a fuzzy module, if E is an effective
module, and if the required exactness properties are effective, then an algorithm
produces the derived exact couple, the last one satisfying the same effectiveness
properties.

This gives algorithms computing for example the Bockstein and Bousfield-Kan
spectral sequences. The particular case of the bicomplex spectral sequence is used
to explain the method: then a solution for the SHP of every column is enough to
make effective the initial exact couple. Iteratively applying the construction of the
derived exact couple then computes the corresponding spectral sequence.

An effective version of the famous Bousfield-Kan spectral sequence is now the
main goal to be reached following these lines. A quite fascinating workspace.

-o-o-o-o-o-o-

Constructive commutative algebra

Henri Lombardi

We will consider only commutative rings.

Finitely presented modules

A finitely presented module M is a module isomorphic to the cokernel of a linear
map γ : Am −→ Aq. The columns of the matrix G ∈ Aq×m of γ form a generating
system of the module of syzygies of the generating system g1, . . . , gq obtained
as the image, under the surjective linear map π : Aq → M , of the canonical
basis of Aq. When we change the generating system it is possible to compute a
presentation matrix for the new system by using the following trick. The structure
of M remains unchanged if one applies to the presentation matrix G one of the
following transformations.
— Insertion of a null column,
— Removal of a null column, except in case this leads to an empty matrix,
— Replacement of G, of size q × m, by the matrix G′ of size (q + 1) × (m + 1)
obtained from G by adding a null row at the bottom and then a column to the
right with 1 as entry in position (q + 1,m+ 1) (this means adding a vector to the
list of generators, and giving a linear expression of the added vector in terms of
previous generators):

G 7→ G′ =

[
G C

01,m 1

]
,

— The inverse operation of the previous one, except in case this leads to an empty
matrix,
— Addition to a column of a linear combination of the others (this leaves un-
changed the module of syzygies of the given generators),
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— Addition to a row of a linear combination of the others (if we let Li be the i-th
row the replacing for instance L1 L1 + γL2 consists in replacing the generator g2
by g2 − γg1),
— Row or columns exchange

Theorem. For given matrices G ∈ Aq×m and H ∈ Ar×n the following properties
are equivalent.
— The cokernels of G and H are isomorphic.
— The two matrices of figure 1 are elementarily equivalent.
— The two matrices of figure 1 are equivalent.

m r q n

q G 0 0 0

r 0 Ir 0 0

m r q n

q 0 0 Iq 0

r 0 0 0 H

Figure 1. The two matrices.

The category of finitely presented modules. The category of finitely pre-
sented modules over a ring A may be constructed from the one of finite rank free
A-modules by the following purely categorical process.
— A finitely presented module M is described by a triple (KM ,GM ,AM ), where
AM is a linear map between the finite rank free modules KM and GM . We have
M ≃ CokerAM and the isomorphism is derived from a surjective linear map
πM : GM →M of kernel ImAM . The matrix of AM is a presentation of M .
— A linear map ϕ from the module M , given through (KM ,GM ,AM ), to the
module N , given through (KN ,GN ,AN ), is described by two linear maps Kϕ :
KM → KN and Gϕ : GM → GN subject to commutation relation Gϕ ◦ AM =
AN ◦Kϕ.

KM
AM //

Kϕ

��

GM

Gϕ

��

πM // // M

ϕ

��

KN
AN

// GN πN

// // N

— The sum of two maps maps ϕ and ψ ofM to N , given respectively by (Kϕ,Gϕ)
and (Kψ,Gψ), is represented by (Kϕ + Kψ,Gϕ + Gψ). In the same way, given
a ∈ A the linear map map aϕ is represented by (aKϕ, aGϕ).
— The representation of the composition of two linear maps is obtained by com-
posing their representations.
— Finally, a linear map ϕ from M to N represented by (Kϕ,Gϕ) is zero if and
only if there exists Zϕ : GM → KN such that AN ◦ Zϕ = Gϕ.

The above categorical construction shows that the questions concerning finitely
presented modules may always be interpreted as questions concerning matrices,
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and very often reduce to linear system solving over the ring A. For example, if one
is givenM , N and ϕ and looks for a linear map σ : N →M satisfying ϕ◦σ = IdN ,
the question reduces to find Kσ : KN → KM , Gσ : GN → GM and Z : GN → KN
such that Gσ ◦AN = AM ◦Kσ and AN ◦Z = Gϕ ◦Gσ − IdGN

. This is nothing
but a linear system whose unknowns are the entries of the matrices of the linear
maps Gσ, Kσ and Z.

Stability properties, coherence, discreteness. Finitely presented modules
are stable by change of base ring and tensor products.

When the base ring is coherent (finitely generated ideals are finitely presented),
finitely presented modules are coherent (finitely generated submodules are finitely
presented) and stable for the Hom functor. Moreover one can compute a resolution
by finite free modules for an arbitrary finitely presented module.

Theorem. A module is coherent exactly when
— the intersection of two arbitrary finitely generated submodules is finitely gener-
ated, and
— the annihilator of each element is a finitely generated ideal.

A set is said to be discrete when there is an equality test between the elements
of the set, i.e. if ∀x, y ∈ E, x = y or x 6= y. The real number field is not discrete.
From a classical point of view, all sets are discrete.

A module M (or a ring) is said to be strongly discrete if for every fintely gener-
ated submodule N , the quotient moduleM/N is discrete. Over a strongly discrete
ring, a finitely presented module is strongly discrete.

A discrete field k is a ring in which each element is zero or invertible. A discrete
field k is a discrete set if and only if 1 =k 0 or 1 6=k 0, if and only if k = {0} or
not.

Fitting ideals. Let G ∈ Aq×m be a presentation matrix of an A-module M given
by q generators. The Fitting ideals of M are the ideals FA,n(M) = Fn(M) :=
DA,q−n(G) (n ∈ Z). They are well defined, i.e., they do not depend on the chosen
presentation of M . We have the following chain of inclusions:

〈0〉 = F−1(M) ⊆ F0(M) ⊆ · · · ⊆ Fq(M) = 〈1〉 .

Also Ann(M)q ⊆ F0(M) ⊆ Ann(M).

Theorem. The following properties are equivalent.
— The Fitting ideals of M are generated by idempotent elements.
— There exist a matrix H s.t. GHG = G.
— M is projective finitely generated, i.e., is isomorphic to a direct summand in a
finite rank free module.

As a consequence, if A is strongly discrete, we have an effective procedure for
deciding if a given finitely generated module is projective. For “fast” algorithms
see [3].
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Flatness and finite presentation. Theorem. For a module M the following
properties are equivalent.
— M is flat.
— Any linear map N → M where N is finitely presented, factorizes through a
finite rank free module.

Theorem. Let M be a module and X ∈Mn×1 a column vector whose coefficients
x1, . . . , xn are a generating system for M . Then M is flat if and only if for each
linear dependence relation LX = 0 (L ∈ A1×n), there exist matrices G,H ∈
Mn(A) s.t. H +G = In, LG = 0 and HX = 0.
In particular a module M = Ay is flat if and only if

∀a ∈ A, ay = 0 ⇒ ∃s ∈ A, as = 0, sy = y.

Theorem. For a module M the following properties are equivalent.
— M is finitely presented and flat.
— M is projective finitely generated.

By definition a ring is local if x+ y invertible implies x or y invertible.

Theorem. Let M be a finitely generated flat module over a local ring A. Assume
that M is strongly discrete. Then M is free and a basis can be extracted from any
generating system.

By definition a ring A is integral (we say also that A is a domain) if each
element is zero or regular. Constructively this notion is slightly stronger than the
notion of a ring without zero divisors, that means xy = 0 implies x = 0 or y = 0.

Theorem. Let A be a domain and K its total ring of fractions (which is a
discrete field). Let M be a finitely generated flat module over A. Assume that the
finitely generated vector space K⊗A M has a basis. Then M is projective finitely
generated.

Theorem. For a ring A the following properties are equivalent.
— Each principal ideal is generated by an idempotent.
— Each module is flat.
— A is von Neuman regular ( ∀x ∃y x2y = x, y2x = y).

A bit more about coherence

From a constructive point of view, coherence is a crucial concept, more im-
portant than noetherianity. Here is a constructive definition (equivalent to the
classical one in classical mathematics) for noetherianity.

Definition. A module is said to be Noetherian if it satisfies the following ascend-
ing chain condition: any ascending sequence of finitely generated submodules has
two consecutive equal terms. A ring A is called Noetherian if it is Noetherian as
an A-module.

With this definition one has strong constructive results. E.g.,
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Theorem. If A is a coherent Noetherian ring then any finitely presented A-
module is coherent Noetherian.

In classical mathematics, any Noetherian ringA is coherent since all submodules
of An are finitely generated, and any finitely generated module is coherent for the
same reason. From an algorithmic point of view, it seems however hopeless to find
a constructive and satisfactory formulation of noetherianity that implies coherence.

We have the following constructive version of Hilbert Basis Theorem (see [5]):

Theorem. If A is a coherent Noetherian ring then so is any finitely presented
A-algebra B. Moreover if A is strongly discrete then so is B.

Definition.
— A system of elements s1, . . . , sn in A is called comaximal if and only if 〈1〉 =
〈s1, . . . , sn〉.
— A system of monoids S1, . . . , Sn of a ring A is called comaximal if for any
s1 ∈ S1, . . . , sn ∈ Sn the si’s are comaximal.

Definition. A ring A is said to be arithmetical if it satisfies one of the following
equivalent properties.
— Each finitely generated ideal is locally principal, i.e., it becomes principal after
localization at suitable comaximal elements.
— The intersection of two finitely generated ideals is finitely generated, and finitely
generated ideals form a distributive lattice.
— ∀x, y, ∃u, v, s, t sx = uy, ty = vx, s+ t = 1.

An arithmetical domain is called a Prüfer domain. It is easily seen that a
Prüfer domain is coherent. Moreover it is strongly discrete if and only if the
divisibility relation is explicite. Over a Prüfer domain each finitely generated ideal
is projective. Also the kernel of a matrix is always a direct summand, so the kernel
and the image of a matrix are projective finitely generated. The class of Prüfer
domains seems important in applications, e.g. to control theory.

The following results are important and provable in classical mathematics, but
we don’t know any constructive proof. Perhaps some facts which are always true
in classical mathematics have to be added to the hypotheses in order to get con-
structive theorems.

Theorem⋆ If A is a Prüfer domain, then A[X1, . . . , Xn] is a coherent ring.

This is a particular case for a far more general result. A ring is called a coherent
regular ring if each finitely generated ideal admits a finite projective resolution.

Theorem⋆ If A is a coherent regular ring, then so is A[X1, . . . , Xn].

Local-global principles: concrete and abstract. Theorem. (basic concrete
local-global principle)
Let S1, . . . , Sn be comaximal monoids of a ring A, B a matrix in Am×p and C a
column vector in Am×1. Then the following properties are equivalent.
— The linear system BX = C has a solution in Ap.
— For each i the linear system BX = C has a solution in Ap

Si
.
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Theorem. (basic abstract local-global principle)
Let A be a ring, B a matrix in Am×p and C be a column vector in Am×1. Then
the following properties are equivalent.
— The linear system BX = C has a solution in Ap.
— For each prime ideal p the linear system BX = C has a solution in Ap

p.

The abstract theorem has the advantage that it is not needed to find comaximal
monoids. The inconvenient is that it does not give any algorithm for solving the
given linear system. Moreover some concrete local-global principles are strong but
there is no corresponding abstract local-global principle. E.g. the four first ones
in the following list.

Theorem. (some concrete local-global principles for modules)
Let S1, . . . , Sn be comaximal monoids of a ring A, and M , N , P be A-modules.
— M is finitely generated if and only if each MSi

is finitely generated.
— M is finitely presented if and only if each MSi

is finitely presented.
— M is projective finitely generated if and only if each MSi

is projective finitely
generated.
— M is coherent if and only if each MSi

is coherent.
— M is flat if and only if each MSi

is flat.
— M is Noetherian if and only if each MSi

is Noetherian.

— A sequence of linear maps M
ϕ
−→ N

ψ
−→ P is exact if and only if each sequence

MSi

ϕSi−→ NSi

ψSi−→ PSi
is exact.

Dynamical method (∼ lazzy evaluation)

The dynamical method has been introduced as a general tool for deciphering
classical proofs without clear constructive counterpart.

This method is very similar to lazzy evaluation in Computer Algebra.
The method D5 in Computer Algebra (see [2]) was invented in order to compute

in a secure way inside the algebraic closure of a computable field without using
factorization algorithms.

The fact that this method is very simple offers a strong contrast with the diffi-
culties occurring when one wants to construct the algebraic closure of an arbitrary
discrete field.

So the idea came that some abstract objects, as the algebraic closure of a field
or the Zariski spectrum of a commutative ring, do have a constructive version if
one allows dynamical objects rather that usual static objects.

A systematic use of these dynamical objects is made in recent papers which
offer constructive understanding of e.g., algebraic closure, Zariski spectrum, Krull
dimension and lead to constructive proofs of many important theorems which have
previously only abstract proofs (see [4]).
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The Auslander-Buchsbaum-Serre theorem

D. Robertz

The Auslander-Buchsbaum-Serre Theorem characterizes among the Noetherian
commutative local rings the regular ones, i.e. those for which Krull dimension and
embedding dimension coincide, as the ones whose global dimension is finite.

The geometric meaning of this notion of regularity is nonsingularity of the point
corresponding to the maximal ideal of the local ring. More precisely, let V be an
algebraic variety, which we assume irreducible for simplicity, and p a point of V .
Then p is nonsingular if and only if the tangent space of V at p has the same
dimension as V . If O is the coordinate ring of V , then the vector space dual of the
tangent space of V at p is, up to isomorphism, given by mp,V /m

2
p,V , where mp,V is

the maximal ideal of the local ring Op,V of V at p. By Nakayama’s Lemma, a set
of elements of mp,V is a minimal generating set for the ideal mp,V if their cosets
modulo m2

p,V form a vector space basis of mp,V /m
2
p,V . Therefore, p is nonsingular

if and only if the Krull dimension of Op,V equals its embedding dimension, which
is defined to be the dimension of mp,V /m

2
p,V .

The Koszul complex is a chain complex of free modules over the Noetherian
commutative local ring R which is parametrized by a finite number of ring elements
g1, . . . , gn. Its homology detects the (common) length s of maximal regular
sequences in the ideal I of R generated by g1, . . . , gn, i.e. sequences of elements
r1, . . . , rs in I such that multiplication by ri on the module R/(r1, . . . , ri−1)R is
an injective map for every i = 1, . . . , s and such that no extension to a sequence
of length s+ 1 is possible satisfying the corresponding property. The number s is
called the depth of I on R. More generally, if M is a finitely generated non-zero
R-module, then the homology of the complex obtained by tensoring the Koszul
complex for g1, . . . , gn with M detects the (common) length of maximal regular
sequences on M in the ideal I, i.e. the depth of I on M . As it is an arithmetic
measure of I and since in the case s = n, i.e. vanishing homology, the Koszul
complex is a free resolution of R/I, these concepts are ubiquitous in commutative
algebra, cf. e.g. [3].

The global dimension of R is the supremum of the projective dimensions of
R-modules, i.e. the lengths of their shortest projective resolutions. By a result
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of Auslander, this supremum is the same if it is taken for all finitely generated
R-modules.

Letm be the maximal ideal of the local ring R. For a finitely generated non-zero
R-moduleM with finite projective dimension, the Auslander-Buchsbaum Formula
states that its projective dimension is the difference of the depth of m on R and
the depth of m on M .

A proof of the Auslander-Buchsbaum-Serre Theorem can be outlined as follows
[3]: If R is regular, then it can be shown that R is an integral domain, from which
one easily derives that m is minimally generated by a regular sequence g1, . . . , gn.
The Koszul complex for g1, . . . , gn is therefore a minimal free resolution of R/m.

For a finitely generated R-module M , the homology TorR(M,R/m) arising from
tensoring a free resolution ofM with R/m characterizes the length of the resolution

as the smallest non-negative integer i such that TorRi+1(M,R/m) vanishes. Since
this homology can also be computed by tensoring a free resolution of R/m by M ,
the projective dimension of R/m is shown to be an upper bound for the projective
dimensions of finitely generated R-modules. Hence, the global dimension of R
equals the length of the Koszul complex for g1, . . . , gn, which is n.

If R has finite global dimension, then it equals the projective dimension of
R/m by the above argument involving TorR(M,R/m). However, it is not clear
whether the Koszul complex for a minimal generating set g1, . . . , gn of m is a
free resolution of R/m. The Auslander-Buchsbaum Formula, applied to the R-
module R/m, shows that the depth of m on R equals the projective dimension of
R/m, which is finite. Since the Koszul complex for g1, . . . , gn is a subcomplex of
any minimal free resolution of R/m, the depth of m on R is therefore bounded
below by n. Since the Krull dimension of R is an upper bound for this depth and
the former is at most n by Krull’s Principal Ideal Theorem, the equality of Krull
dimension and embedding dimension of R is proved.
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Using constructive homological algebra for decomposing and reducing
linear functional systems

Thomas Cluzeau

(joint work with Mohamed S. Boudellioua, Alban Quadrat)

The main purpose of this work is to show how symbolic computation meth-
ods can be used to simplify linear functional systems coming from mathematical
physics, applied mathematics, engineering sciences and control theory. Simplifying
a linear functional system is important problem which needs to be studied before
investigating the structural properties and the existence of solutions of the system.

If D is an Ore algebra (i.e., a non-commutative polynomial ring of operators)
and R ∈ Dq×p a matrix, then we can study the following four problems:

(1) Factorization problem: Find two matrices L ∈ Dq×t and S ∈ Dt×p

such that R = LS.
(2) Reduction problem: Find two unimodular matrices W ∈ GLp(D) and

V ∈ GLq(D) such that V RW is a block-triangular matrix.
(3) Decomposition problem: Find two unimodular matrices W ∈ GLp(D)

and V ∈ GLq(D) such that V RW = diag(Q1, Q2).
(4) Serre’s reduction problem: Find two unimodular matricesW ∈ GLp(D)

and V ∈ GLq(D) such that V RW = diag(Iq−1, Q).

We study these problems within a module theoretical framework. The techniques
used are module theory and constructive homological algebra. All along the talk,
the theoretical results are illustrated with explicit examples coming from mathe-
matical physics, applied mathematics, engineering sciences or control theory. The
different algorithms presented here have been implemented in two packages: Ore-
Morphisms 1 and Serre2 which are both built upon OreModules3.

In what follows, we consider a linear functional system of the formRy = 0 where
R ∈ Dq×p and D is an Ore algebra of functional operators for which Gröbner bases
exist for all monomial orders and can be computed by Buchberger’s algorithm.
This is not too restrictive as it allows us to handle linear systems of partial differ-
ential equations, differential time-delay systems, difference equations. . . Note that
the fact that Gröbner bases exist and can be computed is crucial for our algorithms.
Following an important idea developed in algebraic analysis, we systematically as-
sociate the finitely presented left D-module M = D1×p/(D1×pR) with the linear

functional system Ry = 0. LetM = D1×p/(D1×pR) and M ′ = D1×p′/(D1×p′ R′)
be two finitely presented left D-modules. The existence of a left D-homomorphism
f : M −→ M ′ is then equivalent to the existence of two matrices P ∈ Dp×p′ and
Q ∈ Dq×q′ satisfying RP = QR′. In particular, we have f(π(λ)) = π′(λP ) for
all λ ∈ D1×p, where π (resp. π′) denotes the canonical projection from D1×p

1freely available at http://perso.ensil.unilim.fr/~cluzeau/OreMorphisms/ with a library
of examples

2soon available with a library of examples
3http://wwwb.math.rwth-aachen.de/OreModules/
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(resp. D1×p′) to M (resp. M ′). Such a left D-homomorphism is defined up to a
homotopy equivalence. The abelian group homD(M,M ′) can be written as

homD(M,M ′) = E/(Dp×q′ R′),

where E = {P ∈ Dp×p′ | ∃Q ∈ Dq×q′ : RP = QR′}. If M ′ = M , endD(M)
is then the quotient of the ring E = {P ∈ Dp×p | ∃Q ∈ Dq×q : RP = QR}
by the two-sided ideal Dp×q R, i.e., endD(M)op ∼= E/(Dp×q R). Now, if D is
a commutative ring, then homD(M,M ′) is a D-module and we can compute a
family of generators with their relations whenever D is a noetherian ring. Using

the Kronecker product ⊗, we can compute kerD

(
.

(
RT ⊗ Ip′

−Iq ⊗R
′

))
and we get a

family {P1, . . . , Pr} of generators of E. Then, we can reduce the rows of the Pi’s
with respect to a Gröbner basis of the rows of R′ to get a family of generators
{f1, . . . , fr} of homD(M,M ′). Using another syzygy computation, we can also
compute the D-linear relations between generators

∑r
j=1Xij fj = 0, i = 1, . . . , s.

In the case where M = M ′, the table of multiplication of the generators fj ’s,
namely, fj ◦ fk =

∑r
l=1 γjkl fl, for j, k = 1, . . . , r, can also be obtained. If we

denote by D〈F1, . . . , Fr〉 the free associated algebra generated by the symbols
Fi’s, then endD(M) = D〈F1, . . . , Fr〉/I, where I is the following two-sided ideal:

I =

〈
r∑

j=1

Xij Fj , i = 1, . . . , s, Fj ◦ Fk −
r∑

l=1

γjkl Fl, i, j = 1, . . . , r

〉
.

If D is a non-commutative ring, then homD(M,M ′) is an abelian group and gen-
erally an infinite-dimensional k-vector space when D is a k-algebra. In this case,
we can only find a k-basis of homomorphisms with fixed degrees in xi and in ∂j .

In a second part, we consider the factorization problem. If f ∈ homD(M,M ′),
then we show that ker f = (D1×t S)/(D1×q R) where S ∈ Dt×p is defined by

kerD

(
.

(
P
R′

))
= D1×t (S − T ). Since D1×q (R −Q) ∈ kerD

(
.

(
P
R′

))
,

there exists L ∈ Dq×t such that R = LS. Hence, this method yields a non-trivial
factorization of the matrix R when f is not injective.

In the third part of the talk, we consider the reduction problem. We show the
following result: if R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) is defined
by two matrices P ∈ Dp×p and Q ∈ Dq×q satisfying RP = QR and if the left
D-modules kerD(.P ), coimD(.P ), kerD(.Q), coimD(.Q) are free, then there exist
two matrices U ∈ GLp(D) and V ∈ GLq(D) such that the matrix R = V RU−1

is block-triangular. The matrices U and V can be obtained by means of basis
computation of free modules which can be achieved by means of the packages
OreModules4, QuillenSuslin5 and Stafford6.

We then study the decomposition problem. To do that, we first need to search
for idempotents of the endomorphism ring endD(M) ofM . A leftD-endomorphism

4freely available at http://wwwb.math.rwth-aachen.de/OreModules/index.html
5http://wwwb.math.rwth-aachen.de/QuillenSuslin/
6freely available at http://wwwb.math.rwth-aachen.de/OreModules/index.html
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f of M = D1×p/(D1×q R), defined by the matrices P ∈ Dp×p and Q ∈ Dq×q, is
an idempotent, namely f2 = f , if and only if there exist Z ∈ Dp×q and Z ′ ∈ Dq×u

such that P 2 = P + Z R and Q2 = Q + RZ + Z ′R2, where R2 ∈ D
t×q is such

that kerD(.R) = D1×uR2. Consequently, we can try to compute idempotents
of endD(M) when a family of endomorphisms of M is known. Idempotents are
then used to decompose the solution space kerF(R.) = {η ∈ Fp | Rη = 0},
where F is a left D-module. Let f ∈ endD(M) be an idempotent defined by
P ∈ Dp×p and Q ∈ Dq×q, coimf = D1×p/(D1×r S), R = LS, Ip − P = X S
and kerD(.S) = D1×r2 S2. Then, we have the decomposition of the solution space
kerF(R.) = kerF(S.) ⊕X kerF((L

T ST2 )
T .). Furthermore, if the matrices P and

Q satisfy the condition P 2 = P and Q2 = Q and if the left D-modules kerD(.P ),
imD(.P ), kerD(.Q) and imD(.Q) are free, then there exist two unimodular matrices
U ∈ GLp(D) and V ∈ GLq(D) such that R = V RU−1 is a block-diagonal matrix,
i.e., of the form diag(R11, R22). Once again U and V are obtained by computing
bases of free modules. In the case of a full row rank matrix R, i.e., kerD(.R) = 0,
a way to get idempotent elements of endD(M) defined by idempotent matrices P
and Q, i.e., P 2 = P and Q2 = Q, is to find solutions Λ ∈ Dp×q of the algebraic
Riccatti equation ΛRΛ + (P − Ip) Λ + ΛQ + Z = 0 and to define P = P + ΛR

and Q = Q+RΛ which then satisfy RP = QR, P
2
= P and Q

2
= Q.

The last part of the talk concerns Serre’s reduction which aims at reducing the
number of equations and unknowns of a linear functional system. First, we explain
the following result: let R ∈ Dq×p be a full row rank matrix and Λ ∈ Dq such
that there exists U ∈ GLp+1(D) satisfying (R − Λ)U = (Iq 0). Then, we have

M = D1×p/(D1×q R) ∼= D1×(p+1−q)/(DQ2), where Q2 is the row vector formed
by the p+1− q last elements of the last row of U . In particular, this implies that
the linear system Ry = 0 is equivalent to a sole equation Q2 z = 0. If D is either
a principal left ideal domain or a commutative polynomial ring with coefficients
in a field or the Weyl algebra An(k) or Bn(k) (k is a field of characteristic 0) and
p− q ≥ 1, then the existence of a right-inverse of (R −Λ) over D is equivalent to
the existence of the matrix U . Moreover, if Λ ∈ Dq admits a left-inverse and if the
left D-module kerD(.Q1) is free, where Q1 ∈ D

p×(p+1−q) is the sub-matrix of U
located above Q2 in U , then there exist W ∈ GLp(D) and V ∈ GLq(D) such that
V RW = diag(Iq−1, Q2). The talk ends with recent results. Let D be the Weyl
algebra An(k) or Bn(k), where k is a field of characteristic 0, R ∈ Dq×p a full row
rank matrix, M = D1×p/(D1×q R) and ext1D(M,D) = Dq/(RDp). If ext1D(M,D)

is a holonomic right D-module and p− q ≥ 1, then there exists Q2 ∈ D
1×(p+1−q)

such that M ∼= D1×(p+1−q)/(DQ2). Furthermore, if q ≥ 3, then there exist two
unimodular matrices U and V such that V RU = diag(Iq−1, Q2).
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Parametrizing linear systems

D. Robertz

(joint work with Frédéric Chyzak, Alban Quadrat)

Given a system of (homogeneous) linear equations, an adequate way to represent
the space of solutions is as the image of an operator to be constructed from the
equations. In case the equations have coefficients in a field, Gaussian elimination
achieves this objective. If the system is underdetermined, then the corresponding
Gauss-reduced matrix singles out some variables of the system as parameters and
specifies how all other variables are expressed (linearly) in terms of the parameters.
This procedure can be viewed as identifying the kernel of the linear map induced
by the system matrix as the image of another linear map. In particular, every
tuple of values assigned to the parameters yields a solution, i.e. the parameters
are not subject to any constraints.

More generally, if the equations have coefficients in a ring, that is not necessar-
ily a (skew-) field, the question arises whether it is still possible to construct an
operator which is defined over the same ring and whose image equals the space
of solutions. For instance, a system of (homogeneous) linear partial differential
equations may be written as an equation whose left hand side is a matrix differ-
ential operator applied to the vector of unknown functions and whose right hand
side is zero. Is it possible to parametrize the system, i.e. to construct another
matrix differential operator whose image equals the kernel of the given one? In
general, the answer is negative. This question, and even a generalized one for the
context of nonlinear differential equations, is known as Monge’s problem; we refer
to [7, 25, 8] for historical details. Important applications abound, e.g. in control
theory [13, 14, 15, 16, 24, 26].

Ore algebras [4] form a suitable class of (not necessarily commutative) rings
to address the parametrization problem. Types of linear systems which can be
effectively dealt with by choosing an appropriate ring in this class include, e.g.,
time-varying systems of ordinary differential equations, differential time-delay sys-
tems, underdetermined systems of partial differential equations, multidimensional
discrete systems, multidimensional convolutional codes, and many others. An Ore
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algebra is a certain iterated skew polynomial extension of a field or a commuta-
tive polynomial algebra. If this field or algebra is a Noetherian domain, then those
Ore algebras which are relevant for parametrizing linear systems of the above types
are Noetherian, have (left and right) quotient division rings [11], and even admit
a Buchberger algorithm to compute Gröbner bases of their one-sided ideals [1, 9].
Prominent examples of Ore algebras are e.g. Weyl algebras and algebras of shift
operators.

The algebraic approach to the parametrization problem for a linear system
Ry = 0 which is defined over a (Noetherian) Ore algebra D, as developed in [2], is
outlined as follows: To Ry = 0, where R ∈ Dq×p, corresponds the left D-module
M := D1×p/D1×qR. Linear equations that are equivalent to Ry = 0 give rise
to the same module M up to isomorphism. The entries of the unknown vector
y are assumed to be elements of a left D-module F. It is easy to check that the
set of solutions to Ry = 0 and homD(M,F) are isomorphic vector spaces [10].
Depending on the properties of F, the duality defined by homD(−,F) allows to a
certain extent to characterize structural information about the solutions in Fp in
terms of properties of M . Suitable choices for F are injective cogenerators for the
category of left D-modules, cf. e.g. [12] and the references therein. For instance,
formal or convergent power series, smooth functions, (tempered) distributions and
Sato’s hyperfunctions, all defined over appropriate real or complex domains Ω,
are injective cogenerators for the module category over commutative polynomial
algebras whose generators act by partial differentiation.

There is a one-to-one correspondence between the torsion elements of M and
the left D-linear combinations of the entries of y which have a non-zero anni-
hilator in D. Therefore, non-trivial torsion elements give rise to constraints for
possible parameters for the solution space. In fact, parametrizability of the linear
system is equivalent to the triviality of the torsion submodule t(M) of M . If a
parametrization exists, then the algorithm which determines t(M) constructs a
parametrization at the same time. Methods from homological algebra allow to de-
scribe a hierarchy of parametrizability in terms of vanishing of certain extiD(N,D),
where N := Dq×1/RDp×1 is the Auslander transposed module. For instance,
ext1D(N,D) ∼= t(M) is trivial if and only if M is torsion-free, i.e. the system is
parametrizable; extiD(N,D) = {0} for i ∈ {1, 2} if and only if M is reflexive, i.e. a
parametrization of the system is again parametrizable, etc. The de Rham complex
is a well-known example which satisfies these conditions, if the differential forms
are defined on a domain for which Poincaré’s lemma applies.

Whereas in the case of linear equations with coefficients in a field it is always
achieved that the solution set is parametrized by an injective linear map, the
possibility to find an injective parametrization is not given in general. In system
theoretic applications, linear and also nonlinear systems of differential equations
whose solution sets have injective parametrizations in terms of arbitrary functions
are nowadays said to be flat [6]. In the framework described above, a linear system
Ry = 0 is flat if and only if M is free. An algorithm which computes bases of free
modules over the Weyl algebras, when the ground field is of characteristic zero,
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has recently been obtained in [19, 21] based on Stafford’s theorems (see also [5] for
an implementation of the Quillen-Suslin theorem, which is relevant for computing
bases of free modules over commutative polynomial algebras).

The methods developed in [2] have been implemented in the Maple package
OreModules [3], which is available online together with a library of examples with
origin in control theory and mathematical physics.
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Constructive problems (and solutions) in homological algebra

Julio Rubio

One of the fundamental problems in Constructive Homological Algebra is the
essential asymmetry existing between the concepts of kernel and image:

• The property x ∈ Ker(f) is decidable
(if the test to zero is decidable in the target module, and the homomor-
phism f is computable).
• The property y ∈ Im(f) is undecidable.

In order to overcome this difficulty several strategies can be considered. For
instance, we can work with constructive morphisms. A constructive morphism is a
couple (f, sf ) where f : A→ B is a homomorphism of Z-modules, and sf : B → A
is a (computable) set-theoretic function such that fsff = f .

This concept generalises smoothly to other more general situations, where two
categories are involved. For instance, f = ring homomorphism and sf = group
homomorphism; or f = chain complex morphism and sf = morphism of graded
modules. It can also be generalised to reasonable rings R (instead of Z). More
concretely, if R is a ring where a procedure to solve systems of linear equations
is known, then any matrix defining a morphism between two finite type free R-
modules induces a constructive morphism. Let us finally stress that if (f, sf ) is
a constructive morphism, then (sf |Im(f),Ker(f)) defines a generalized map in
Barakat’s sense (see [1]).

The interest of this notion is that it allows us to replace algorithms by closed
formula in most of the elementary properties in Homological Algebra. As an
example, in the statement of the Five Lemma:
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. . . // A1

α1

��

f1 // A2

α2

��

f2 // A3

α3

��

f3 // A4

α4

��

f4 // A5

α5

��

// . . .

. . . // B1

f ′

1 // B2

f ′

2 // B3

f ′

3 // B4

f ′

4 // B5
// . . .

if we require in addition that the two rows are constructively exact, and the α1, α2,
α4, α5 are constructive isomorphisms, then it is the same for α3, with an explicit
inverse given by: α−1

3 := f2α
−1
2 s′2(1 − α3s3α

−1
4 f ′

3) + s3α
−1
4 f ′

3 (explicit diagram
chasing).

The drawbacks of this notion is that we do not kown if, beyond the finitely
presented case, there exist enough constructive morphisms (they do not compose)
and, overall, that we consider it is not powerful enough to undertake actual con-
structive problems in classical Homological Algebra. For instance, in the textbook
by Hilton-Stammbach [3]:

• In page 23, the proof that free implies projective is not constructive, since
it uses preimages of general morphisms.
• In pages 31-32, the proof that over a principal ideal domain, injective is
equivalent to divisible, uses Zorn’s lemma.
• In pages 37-38, the existence of the injective envelope uses twice Zorn’s
lemma (once to ensure the existence of a maximal essential extension, and
a second time to prove this essential extension is injective).
• In pages 107 and 330, Whitehead problem is tackled with very complicated
mathematics, related to foundations.

Nevertheless, there is another alternative approach to constructive Homological
Algebra (and there constructive morphisms still play a role).

• A different approach:
– Instead of rendering constructive “classical” homological algebra . . .
– to refound with new definitions . . .
– and then to develop in parallel to the classical view (without deci-

phering it).
– Thus: results will be constructive by definition.

• An example: Sergeraert’s effective homology.
• A case study: homology of groups (joint work with Ana Romero).

Sergeraert’s effective homology theory has been introduced in [5], and materi-
ally realized in the Kenzo computer algebra system (see [2]). The application of
effective homology and Kenzo to the computation of homology of groups has been
documented in [4].

• Conclusions:
– Refounding allows obtaining many constructive results . . .
– but very likely it does not allow solving the “classical” problems in

constructive homological algebra, since . . .
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– these problems do not appear in the new setting
(for instance, injective modules seem to play no role in effective ho-
mology).

• Open Questions:
– To find new basic definitions
– allowing both tackling the problems of constructive homological al-

gebra and recovering essential algorithmic results.
– For instance: from basics, to infer the necessity of the Basic Pertu-

bation Lemma.
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A constructive analysis of Northcott’s “Finite Free Resolutions”

Thierry Coquand

1. Introduction

Northcott [3] presents in an elementary way some fundamental results on fi-
nite free resolutions. However, on can argue that some arguments are not yet
as elementary as they could be, since they require localization at arbitrary mini-
mal primes, or at arbitrary minimal primes. The goal of this talk was to present
some results in the first 6 chapters of Northcott’s book where one can make the
treatment even more elementary. We make use of several results contained in the
forthcoming book [2] of H. Lombardi and C. Quitté.

2. Euler characteristic and prime ideals

One of the first use of prime ideals in Northcott’s book is for justifying the
definition of the Euler characteristic. If we have two finite free resolutions of the
same module M

0→ Fn → · · · → F0 →M → 0 0→ Gm → · · · → G0 →M → 0

then Σ(−1)irk(Fi) = Σ(−1)jrk(Gj). This is proved in [3] using localisation at an
arbitrary prime ideal. One has to assume that the ring is not trivial.
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What is proved is elementary (in the logical sense of the term, this is a first-order
statement): for instance it says that if we have two resolutions

0→ R3 → R2 →M → 0 0→ R→M → 0

then 1 = 0 in R. It is thus quite surprising to have to go via the existence of prime
ideals to establish such a result.

There is a general method, developed in the reference [2] on several examples,
to eliminate such “generic” use of prime ideals. In this case, there is a direct
elementary proof which uses a variation of Schanuel’s Lemma (exercise 5.4 of [2]):
if we have two resolutions

0→ K → Fl−1 → · · · → F0 →M → 0 0→ L→ Gl−1 → · · · → G0 →M → 0

then the sums K ⊕Gl−1 ⊕Gl−3 ⊕ · · · ⊕ Fl−2 ⊕ Fl−4 ⊕ . . . and L⊕ Fl−1 ⊕ Fl−3 ⊕
· · ·⊕Gl−2⊕Gl−4⊕ . . . are isomorphic. We notice that this more elementary proof
eliminates also the hypothesis that the ring is not trivial.

Another proof that uses localisation at an arbitrary prime ideal is the one of
Theorem 18, Chapter 4, that a matrix M presents a projective module iff for all i,
the ideal ∆i(M) generated by the minors i× i ofM is generated by an idempotent
element. There is an elementary version of this proof in [2].

3. Regular sequence

One goal of Northcott is to eliminate Noetherian hypotheses. There are similar
motivations from a constructive point of view, since the Noetherian hypothesis is
a logically complex notion. (Several examples of Noetherian elimination are pre-
sented in [2].) A key example is given by the notion of regular sequence, since this
notion is presented usually using the Regular Element Theorem (a regular finitely
generated ideal contains a regular element) which is, according to Kaplansky “a
result that is among the most useful in the theory of commutative ring”. How to
avoid this result then?

Northcott presents a solution (based on an idea of Hochster) which is in the
spirit of Kronecker. The main idea is to replace an ideal 〈a0, . . . , an〉 by a polyno-
mial a0+ a1x+ · · ·+ anx

n or a0x0+ · · ·+ anxn. This idea plays a fundametal role
in Kronecker’s divisor theory [1]. The Regular Element Theorem is then replaced
by the following resuly, known as McCoy’s Lemma, which has a direct elementary
proof: if the ideal 〈a0, . . . , an〉 is regular then the element a0 + a1x+ · · ·+ anx

n is
regular. This holds without Noetherian hypothesis, and show that we have access
in general to a regular element in a regular ideal, provided we allow the intro-
duction of indeterminates. Northcott [3] shows how to develop a suitable theory,
which is both elementary and without Noetherian hypothesis, of regular sequence
based on this idea with an associate notion of grade of an ideal (with a version of
the usual Auslander-Buchsbaum Theorem, which has an elementary proof).
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4. Minimal prime

The proof of existence of minimal prime ideal requires Zorn’s Lemma. It is thus
very surprising that this is used to prove results having an elementary statement.
An example is provided by Vasconcellos’ Theorem.

Theorem: Let I be a finitely generated ideal 〈a1, . . . , an〉 which admits a finite
free resolution

0→ Fp → Fp−1 → · · · → F0 → I → 0

Each Fi is of the form Rni and we define CharR(I) to be n0−n1+n2− . . . . Then

• If CharR(I) = 0 then I = 0 in R
• If CharR(I) = 1 then I is regular
• If CharR(I) > 1 then 1 = 0 in R

This corresponds to Theorem 12 of Chapter 4 [3] and the first point is proved
there with localization at arbitrary minimal prime over the ideal (0 : I).

We can eliminate the use of minimal prime ideals and obtain the following
elementary proof. We remark that the statement is clear if p = 0. We prove then
the statement by induction on p and on np. We can assume np > 0 and np−1 > 0.
The map Fp → Fp−1 can be seen as a np × np−1 matrix and since this map is
injective the first column of this matrix defines a regular ideal 〈c1, . . . , cm〉 with
m = np−1.

The main remark is then that on each R[1/cj] the resolution can be simplified
replacing np and np−1 by np − 1 and np−1 − 1. In this way, the characteristic is
unchanged, and we get the result by induction.

The same induction principle can be used to prove that if we have a finite free
resolution of 〈a1, . . . , an〉 of Euler characteristic 1 then a1, . . . , an have a greatest
common divisor which is a regular element, which is proved in [3] using minimal
primes.
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Gel’fand-Kirillov dimension, Cohen-Macaulay property and Auslander
regularity of non-commutative G-algebras

Viktor Levandovskyy

Introduction

Considering important applications like systems and control theory, special
functions, D-modules and so on, one has to work with modules over non-commuta-
tive algebras. There, even such a basic invariant as a dimension of a module is not
easy to define. Indeed there are several essentially different definitions like general-
ized Krull dimension, Gel’fand-Kirillov dimension, flat and filter dimensions and so
on. However, analyzing most ubiquitous operator algebras, it is possible to derive a
fairly big class of them, sharing many properties with the polynomial commutative
rings. This class is called the class of Gröbner-ready (GR) algebras, the analogues
of polynomial rings in n variables are shortly called G-algebras. Over these al-
gebras Gel’fand-Kirillov dimension is algorithmically computable and hence can
be used in algebraic analysis and computer algebra. In this report we show, that
surprizingly, every G-algebra enjoys important Cohen-Macaulay (with respect to
Gel’fand-Kirillov dimension) and Auslander regular properties, which have strong
implications in applications. In what follows, we denote by K a field.

1. G-algebras

Definition 1. Let A be a quotient of the free associative algebra K〈x1, . . . , xn〉
by the two-sided ideal I, generated by the finite set {xjxi − cijxixj − dij} for all
1 ≤ i < j ≤ n, where cij ∈ K∗ and dij are polynomials in x1, . . . , xn. Without lost
of generality [6] we can assume that dij are given in terms of standard monomials
xa11 . . . xann . A is called a G–algebra [7, 6], if
• for all 1 ≤ i < j < k ≤ n the expression cikcjk · dijxk − xkdij + cjk ·xjdik − cij ·
dikxj + djkxi − cijcik · xidjk reduces to zero modulo I and
• there exists a monomial ordering ≺ on K[x1, . . . , xn], such that for each i < j,
such that dij 6= 0, lm(dij) ≺ xixj . Here, lm stands for the classical notion of
leading monomial of a polynomial from K[x1, . . . , xn], cf. [4].

We call an ordering on a G-algebra admissible, if it satisfies second condition
of the definition. A G-algebra A is Noetherian integral domain [7], hence there
exists its total two-sided ring of fractions Quot(A), which is a division ring (skew
field). A GR-algebra is a factor algebra of a G-algebra modulo a two-sided ideal.

Notable, the category of GR-algebras is nice in computations. In particular,
it is possible to compute Gröbner bases of one- and two-sided ideals and sub-
modules of a free module, hence homological computations (syzygy modules, free
resolutions, module homomorphisms etc.) are possible as well. There is a sys-
tem Singular:Plural [10, 6], which has a powerful implementation of many
important algorithms for objects over any GR-algebra.
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2. Cohen-Macaulay property and Auslander regularity

The notion of dimension function on an algebra is technical and can be found
in e. g. [9].

Definition 2. Let A be an associative K-algebra and M be a left A-module.

(1) The grade of M is defined to be j(M) = min{i | ExtiA(M,A) 6= 0}, or
j(M) =∞, if no such i exists or M = {0}.

(2) A satisfies the Auslander condition, if for every fin. gen. A -module

M , for all i ≥ 0 and for all submodules N ⊆ ExtiA(M,A) the inequality
j(N) ≥ i holds.

(3) A is called an Auslander-Gorenstein (AG) algebra, if it is left and
right Noetherian and the Auslander condition holds.

(4) A is called an Auslander regular (AR) algebra, if it is Auslander-
Gorenstein with gl. dim(A) <∞.

(5) A is called a Cohen-Macaulay (CM) algebra wrt dimension function d,
if for every fin. gen. nonzero A–module M , j(M) + d(M) = d(A) <∞.

3. Gel’fand-Kirillov dimension and its properties

Let R be an associative K-algebra with generators x1, . . . , xm. Assuming that
each xi has degree 1, we define an increasing degree filtration on R by:

Fk := {f ∈ R | deg f ≤ k} k ≥ 0.

Then we have F0 = K, F1 = K ⊕
⊕m

i=1 Kxi and so on. Here V =
⊕m

i=1 Kxi is
called a generating subspace for R.

For any finitely generated left R-module M , there exists a finite dimensional
subspace M0 ⊂ M (called a generating subspace for M), such that RM0 = M .
An ascending filtration {Fn, n ≥ 0} on R induces an ascending filtration on M ,
defined by {Hn := FnM0, n ≥ 0} .

Definition 3. Let {Fn, n ≥ 0} and {Hn, n ≥ 0} be filtrations on R and M as
before. The Gel’fand–Kirillov dimension of M is defined to be

GK. dim(M) = lim sup
n→∞

logn(dimHn).

In particular, GK. dim(R) = GK. dim(RR) = lim sup
n→∞

logn(dimFn).

Indeed, GK. dim(M) is independent of the choice of a generating subspace.
Note, that the Gel’fand-Kirillov dimension of a division ring does not need to

be 0, we give that fact below. By a convention GK. dimQ = 0.
Let deg xi = 1, consider a filtration V up to degree d. We have:

Vd = {f | deg f = d}, V d = {f | deg f ≤ d}.

Lemma 1. Let A be a K-algebra with PBW basis {xα | α ∈ Nn} such A is a
domain and there is a standard filtration. Then GK. dim(A) = n+GK. dim(K).
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Proof. dimK Vd =
(
d+n−1
n−1

)
, dimK V

d =
(
d+n
n

)
. Thus

(
d+n
n

)
= (d+n)...(d+1)

n! = dn

n!+

l.o.t, so we have GK. dim(A) = lim supd→∞ logd
(
d+n
n

)
= n. �

In particular, any G-algebra in n variables over a field K has dimension n +
GK. dimK.

Example 1. Let T = K〈x1, . . . , xn〉 be the free associative algebra. Then

dimK Vd = nd, dimK V
d =

nd+1 − 1

n− 1
.

Note, that nd+1−1
n−1 > nd. Since

logd n
d = d logd n =

d

logn d
→∞, d→∞,

it follows that GK. dim(T ) =∞.

Now, let us describe numerous properties of the Gel’fand-Kirillov dimension.
Subalgebras. Let R be a K-algebra. Then

(1) if S is a K-subalgebra of R or a homomorphic image, then:

GK. dimS ≤ GK. dimR.

(2) GK. dimR = sup{GK. dimS | S ⊂ R an affine K-subalgebra }.
(3) For an R-module N , one has GK. dimN = sup{GK. dim SM | S ⊂ R an

affine K-subalgebra and M is a finitely generated S-submodule of N}.

Lemma 2 (Elimination). Let S ⊂ R be a subalgebra and I ⊂ R a left ideal, such
that I ∩ S = 0. Then GK. dimS ≤ GK. dimR/I.

Lemma 3. Here we address the case of commutative algebra.

(i) Let R be a commutative affine K-algebra. Then (by Noether normaliza-
tion) ∃S = K[x1, . . . , xt] ⊆ R and R is finitely generated S-module. Then
GK. dimR = Kr. dimS = t.

(ii) If R is an integral domain, GK. dimR = tr. deg
K
Quot(R).

Lemma 4 (Localization). Let R be an algebra and S a multiplicatively closed set
of central regular elements of R. Then GK. dimS−1R = GK. dimR. In particular,
for a K-algebra R and f ∈ R[x]∗ one has GK. dimR[x]f = GK. dimR+ 1.

In general GK. dimS−1R ≥ GK. dimR and very little is known! L. Makar-
Limanov proved, that GK. dimQuot(A1) =∞, since one can embed the free asso-
ciative algebra in two variables into Quot(A1).

More facts, more commutative rings.

(1) Curiosity: GK. dim(R) ∈ {0, 1} ∪ [2,+∞).
(2) For any K-algebra R, GK. dimR[x] = GK. dimR+ 1.
(3) GK. dimK[x1, . . . , xn]p = n for p prime.
(4) GK. dimK[[x1, . . . , xn]] = GK. dimK{x1, . . . , xn} =∞.
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Exactness. Let R be an affine algebra with finite standard fin.-dim. filtration,
such that GrR (that is an associated graded algebra of R) is left Noetherian. Then
GK. dim is exact on short exact sequences of fin. gen. left R-modules. That is,

0→ L→M → N → 0 ⇔ GK. dimM = sup{GK. dimL,GK. dimN}

3.1. Algorithmic computation. There is an algorithm by Gomez-Torrecillaz
et al. [1], which computes Gel’fand-Kirillov dimension for finitely presented mod-
ules over G-algebras (over ground field K), hence over GR-algebras as well. Since
the computation of a Krull dimension over a commutative polynomial ring is al-
gorithmic, the algorithm can be formulated as follows.

GKdim(F );
Let A be a G-algebra in variables x1, . . . , xn.

◦ Input: Left generating set F = {f1, . . . , fm} ⊂ A
r

◦ Output: k ∈ N, k = GK. dim(Ar/A〈F 〉)−GK. dim(K).
• G =LeftGröbnerBasis(F ) = {g1, . . . , gt} ;
• L = {lm(gi) = xαies | 1 ≤ i ≤ t};
• return Kr. dim(K[x1, . . . , xn]

r/〈L〉);

This algorithm has been implemented in a Singular [5] library gkdim.lib [8]
as the function GKdim.

4. CM and AR properties for G-algebras

Theorem 1 (Björk, Ekström, 1989). Let R be a K-algebra.

(1) If R is AG resp. Auslander regular, then for any ring automorphism σ on
R and any σ-derivation δ, the skew polynomial ring R[x;σ, δ] is also AG
resp. Auslander regular.

(2) Suppose that filtration is Zariskian. If GrR is AG resp. Auslander regular,
then so is R.

Theorem 2 (V. Artamonov, Gomez-Torrecillaz and Lobillo [3]).
The algebra KQ[x

±1
1 , . . . , x±1

n , xn+1, . . . , xn+m] is Auslander-regular and Cohen-
Macaulay. Here, Q = (qij) ∈ Matn+m×n+m(K), such that qijqji = 1 and the
relations on the algebra are xjxi = qijxixj , ∀1 ≤ i, j ≤ n.

Let Λ be a left Noetherian K-subalgebra of a K-algebra R, let s ∈ Z+and let
qji ∈ Λ for 1 6 i < j 6 s.

Theorem 3 (Gomez-Torrecillaz and Lobillo, [3]). Let R be a K-algebra, satisfying
the following condition:
∃ x1, . . . , xs ∈ R, an admissible ordering �′ on Ns, and finite subsets Γji,Γk ⊆ Ns

for 1 6 i < j 6 s, 1 6 k 6 s with max�′ Γji ≺
′ ǫi+ǫj and max�′ Γk ≺

′ ǫk such that
{xα | α ∈ Ns} is a basis of R as a left Λ-module and xjxi = qjixixj+

∑
α∈Γji

cαx
α

and for all a ∈ Λ, xka = a(k)xk +
∑

α∈Γi
cαx

α.
Suppose, in addition, that

(1) The scalars qji ∈ K∗ and the endomorphisms σi : Λ → Λ are automor-
phisms.
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(2) Λ is generated as an algebra by elements z1, . . . , zt such that the standard
filtration Λn obtained by giving degree 1 to each zi satisfies that gr(Λ) =
⊕n>0Λn/Λn−1 is a finitely presented and Noetherian K-algebra.

(3) σi(Λ1) ⊆ Λ1, for i = 1, . . . , s.
(4) either gr(Λ) or Λ[y1;σ1] · · · [ys;σs] is an Auslander-regular and Cohen-

Macaulay algebra.

Then R is an Auslander-regular and Cohen-Macaulay algebra.

Corollary 1. Let A be a G-algebra in n variables. Then A is an Auslander-regular
and Cohen-Macaulay algebra.

5. Application of CM+AR in module theory

Let A be a Cohen-Macaulay K-algebra of finite Gel’fand-Kirillov dimension.
Moreover, let M be a finitely generated left A-module and N be a transposed
module toM . That is, N is a right A-module, presented by the transposed matrix
of the presentation matrix ofM , cf. [2]. We follow the dictionary of module proper-
ties of [2] and come with the following proposition. Suppose that HomA(N,A) = 0,
that is j(N) ≥ 1, what is equivalent to GK. dim(N) ≤ GK. dim(A) − 1.

Proposition 1. In the situation as above, the following characterizations hold:

(1) M contains a torsion submodule if and only if Ext1A(N,A) 6= 0 if and only
if j(N) = 1 if and only if GK. dim(N) = GK. dim(A) − 1.

(2) M is a torsion-free left A-module if and only if Ext1A(N,A) = 0 if and
only if j(N) ≥ 2 if and only if GK. dim(N) ≤ GK. dim(A)− 2.

(3) M is a reflexive left A-module if and only if Ext1A(N,A) = Ext2A(N,A) = 0
if and only if j(N) ≥ 3 if and only if GK. dim(N) ≤ GK. dim(A)− 3.

and so on.

Hence, the study of properties of finitely generated module over a Cohen-
Macaulay algebra with finite Gel’fand-Kirillov dimension in the case when

HomA(N,A) = 0

(which appears quite often) reduces to just one dimension computation instead of
explicit computation of numerous extension modules.

Some open problems include the study of Cohen-Macaulay properties of local-
ized algebras, like operator algebras with rational coefficients and of factor algebras
of Cohen-Macaulay algebras modulo a two-sided ideal. Since the global homolog-
ical dimension of a Cohen-Macaulay algebra needs to be finite, an algorithm for
finding or even bounding the global dimension or an algorithm, which finds out,
that the global dimension is infinite, is of big importance. Unfortunately, this
seems to be a very tough problem in general.
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