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Abstract— The purpose of this paper is to show that every
linear partial differential (PD) system defined by means of a
matrix with entries in the noncommutative polynomial rmg
D = A(01,...,0n) of PD operators in 01 = z2—,...,0, = az
with coefficients in a differential ring A, which satisfies certain
regularity conditions, is equivalent to a linear PD system defined
by an upper triangular matrix of PD operators formed by three
diagonal blocks: the first (resp., second) diagonal block defines a
dim(D)-dimensional (resp., dim(D) — 1-dimensional) linear PD
system and the third one defines a linear PD of dimension less or
equal to dim (D) — 2. In particular, if n = 2, then the equivalent
upper triangular matrix corresponds to the purity filtration
of the finitely presented left D-module ) associated with the
linear PD system. Moreover, repeating the same techniques with
the linear PD system of dimension less or equal to dim(D) — 2,
the purity filtration of ) can be obtained in the general case
(i.e., n > 2). Finally, this equivalent form of the linear PD
system can be used to obtain a Monge parametrization and for
closed-form integration of linear PD systems.

I. ALGEBRAIC ANALYSIS

In this section, we shortly recall a few results on the
algebraic analysis approach to linear systems theory ([5]).

Theorem 1 ([4], [9]): Let D be aring, R € D9*P a ¢ X p-
matrix with entries in D, M = D'¥P/(D'*9 R) the left
D-module finitely presented by R, {f;},=1,.., the standard
basis of D'*? (i.e., f; is defined by 1 at the 4™ entries and 0O
elsewhere), m : D'*? — M the canonical projection onto
M, y; = n(f;) for j =1,...,p, and F a left D-module.
Then, the abelian group isomorphism

X : homp (M, F)

¢ —

— kerg(R.)={n€F?|Rn=0}
(¢(y1) --- olyp)", 0

holds, where homp (M, F) is the abelian group of left D-
homomorphisms (i.e., left D-linear maps) from M to F.

Theorem 1 shows that there is a one-to-one correspon-
dence between the elements of homp (M, F) and the ele-
ments of the linear system (or behaviour) kerz(R.). Hence,
kerz(R.) can be studied by means of the left D-modules M
and F. In this paper, we shall study algebraic properties of
M and particularly its so-called purity filtration ([3]).

Definition 1 ([9]): Let D be a left noetherian domain
(namely, a ring without zero-divisors and for which every
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left ideal is finitely generated as a left D-module) and M a
finitely generated left D-module. Then, we have:

1) M is free if there exists » € N = {0, 1,...} such that
M = DX Then, r is called the rank of M.

2) M is projective if there exist r € N and a left D-
module N such that M @& N = D" where @& denotes
the direct sum of left D-modules.

3) M is reflexive if the canonical left D-homomorphism
e : M — homp(homp(M, D), D) defined by
e(m)(f) = f(m) for all f € homp(M, D) and all
m € M, is bijective, i.e., € is a left D-isomorphism.

4) M is torsion-free if the torsion left D-submodule of M,
namely, t(M) ={m € M | 3d € D\{0} : dm =0},
is trivial, i.e., if ¢(M) = 0. The elements of ¢(M)
are called the rorsion elements of M. We have the
following short exact sequence of left D-modules

0 — t(M) - M -2 M/t(M) — 0, (2)

i.e., i is injective, p is surjective and ker p = im q.
5) M is torsion if t(M) = M, i.e., if every element of
M is a torsion element of M.

If D is a left noetherian ring and M a finitely generated
left D-module, then M admits a finite free resolution

.R R R
3 DlXTg 2 Dl><’r‘1 1 D1><T‘0 ™ M 07

3)
where R; € D"*"i-1 and .R; : DX" — DIX7mi-1 jg
defined by (.R;)(\) = A R; for all A € D**"i ([9]).

If F is a left D-module, then (3) yields the complex

R4. R2
— =

i (R C)

where R;yq1 : F7" — F7i+1 is defined by (R;.)(n) = Rin
forallp € F™ and all i € N, i.e., imz(R;.) C kerr(R;11.)
for all © € N. The defect of exactness of the complex (4) at
F7 is the abelian group defined by:

exth (M, F) = kerz(R.) = homp(M, F),
extl, (M, F) 2 kerr(Riy1.)/imz(R;.), i > 1.

Similarly, if N is a finitely generated right D-module and
G is aright D-module, we can define the ext’, (N, G)’s ([9]).

Theorem 2 ([4]): Let D be a noetherian domain with a
finite global dimension gld(D) ([9]), M = D*?/(D**4 R)



and the Auslander transposed of M, namely, the right D-
module N = D9/(R DP) finitely presented by R.

1) The following left D-isomorphism holds:
t(M) = ext}(N, D). 5)

2) M is a torsion-free left D-module iff ext}, (N, D) = 0.

3) We have the following long exact sequence (6), where
€ is defined in 4 of Definition 1.

4) M is reflexive left D-module iff ext’s(N, D) = 0 for

i=1,2.

5) M is projective left D-module iff ext’, (N, D) = 0 for
i=1,...,gld(D).

Example 1: gld(A(01,...,0,)) = n, where A = k is

a field, k[z1,...,2,], k(x1,...,2,), k[z1,...,2,], where

k is a field of characteristic 0 (e.g., kK = Q, R, C), and

k{x1,...,zn}, where k =R or C ([2]).

II. CHARACTERISTIC VARIETY AND DIMENSIONS

In what follows, we consider the ring D = A(01,...,0,)
of PD operators with coefficients in the differential ring A
which is either a field k, k[z1,...,z,], k(z1,...,2,) or

klz1,...,z,], where k is a field of characteristic 0, or
k{x1,...,zn}, where k = R or C. An element P € D
can be written as P = Zla\:O,“.,r aq 0%, where a, € A
a = (a1,...,a,)T € N7, |a| = a1 + ... + o, and
0% = o7 ...0% and 0; 2 for ¢ = 1,...,n. The

domaln D admlts the order ﬁltratzon defined by:

VreN, D,=¢ > aa0"|a.€A

0<a|<r

The ring D is called a filtered ring and an element of D, is
said to have a degree less or equal to . We can easily check
that Dy = A and D, is a finitely generated A-module.

If d1,ds € D, then [dy,d3] = dydy — dady. Now, if
dy € D, and dy € Dy, then d; ds and ds d; belong to D, ¢
since D, Dy C D,,s and Dy D, C D, Then, we can
check that [dy,ds] € Dyys—1, i.€., [Dy, Dg] € Dy s—_1.

Let us now introduce the following A-module

D) = @ DT/DT—].;
reN

where D_; = 0. Let 7, : D,, — D,./D,._; be the canonical
projection. Then, gr(D) inherits a ring structure defined by

Wr(d1) + Ws(dg) £ ﬂ't(dl + dg) € Dt/thh
ﬂ-T(dl) 778<d2) £ 7TT+S(d1 d2> S DT‘+S/DT+8717

where ¢ = max(r, s) and for all d; € D, and all ds € Dx.
gr(D) is called the graded ring associated with the order
filtration of D. If we introduce x; = 71(0;) € D1/Dy for
i=1,...,n, then m1([0;,0;]) = 0 and m([0;,a]) = O for
all @ € A and all 4,5 = 1,...,n since [9;,0;] = 0 and
[0i,a] € Dy, which shows that gr(D) = A[x1,...,Xn] is
the commutative polynomial ring with coefficients in A.

Definition 2 ([2]): Let M be a finitely generated left D =
A(01, ..., 0p)-module.

1) A filtration of M 1is a sequence {M,}qen of A-

submodules of M satisfying the following conditions:

a) For all ¢, r E N, ¢ < r implies M, C M,.

b) M =,y M,

¢) Forall ¢, r € N we have D, M, C My,,.

The left D-module M is then called a filtered module
2) The graded gr(D)-module gr(M) is defined by:

a) gr(M) = @qu My/Mg—y (M_y = 0).

b) For every d € D, and every m € M,, we set
mr(d) oq(m) = Uqur(dm) € Mgyr/M.
where o, : My — My/M,
projection for all geN.

3) A filtration {M,},en is good if the gr(D)-module
gr(M) = @ ey My /Mq—1 is finitely generated.

Example 2: Let M be a finitely generated left D-module
defined by a family of generators {yi,...,y,}. Then, the
filtration M, = >°%_| D, y; is a good filtration of M since
we then have gr(M) = >°¥_ gr(D)y;, which proves that
gr(M) is a finitely generated left gr(D)-module.

qg+r—1,
_1 is the canonical

Definition 3: A proper prime ideal of a commutative ring
A is an ideal p C A which satisfies that ab € p implies
a € porb € p. The set of all the proper prime ideals of A
is denoted by spec(A) and is a topological space endowed
with the Zariski topology defined by the Zariski-closed sets
V(I)={p €spec(A) | I Cp}, where I is an ideal of A.

Proposition 1 ([2]): Let M be a finitely generated left
D = A0, ...,0n)-module and G = gr(M) the associated
graded gr(D) = A[x1, ..., xn]-module for a good filtration
of M. Then, the ideal of gr(D) = A[x1,. .., Xn| defined by

= y/ann(G D)|3neN: a"G =0}

does not depend on the good filtration of M. The character-
istic variety of M is then defined by:

£ faegr(

) = {p € spec(gr(D)) | vann(G) C p}.

Definition 4 ([2]): Let M be a finitely generated left D =

charp (M

A(01,...,0n)-module. Then, the dimension of M is the
supremum of the lengths of the chains
PoCpr Cp2C ... Chy

of distinct proper prime ideals in A[x1, ..., Xxn]/I(M).

We shall simply write dim(D) instead of dimp (D).

Example 3 ([2]): We have dim(k[zq,...,2,]) = n. If
A = Ek[zy,...,x,], k[z1,...,2,], where k is a field
of characteristic 0, or k{zi,...,z,}, where £k = R or
C, then dim(A(01,...,0,)) = 2n. If k is a field, then

dim(k(z1,...,20)(01,...,0n)) =n.

Definition 5 ([2], [3]): The grade of a non-zero finitely
generated left D-module M is defined by:

jp(M) = min {i > 0 | ext’, (M, D) # 0}.



0 — exth(N, D) — M —= homp(homp(M, D), D) — ext%,(N, D) — 0, (6)

Theorem 3 ([2], [3]): Let M be a non-zero finitely gen-
erated left D = A(d,, ..., 0,)-module. Then:

jp(M) = dim(D) — dimp (M). @)

Remark 1: A ring D satisfying (7) for all finitely gener-
ated left D-modules M and a dimension function dimp( - ) is
called a Cohen-Macaulay ring. Hence, the previous rings of
PD operators are Cohen-Macaulay. Moreover, they are also
Auslander regular rings, namely, noetherian rings with a fi-
nite global dimension which satisfy the Auslander condition,
namely, for every ¢ € N, every finitely generated left (resp.,
right) D-module M and every left (resp., right) D-module
N C ext (M, D), then jp(N) > i (121, [3].

Theorem 4 ([2], [3]): If M is a non-zero finitely gener-
ated left D = A(d4,...,0,)-module, then:

1) dimp(ext},(M, D)) < dim(D) — .

2) dimp (ext}? ™ (M, D)) = dim(D) — jp(M).

Theorem 5 ([2], [3]): Let M be a non-zero a finitely
generated left D = A(0, ..., 0,)-module.
1) ext},(exty, (M, D), D) = 0 for j < i.
2) If  exth(exth,(M,D),D) is non-zero,
dimp (ext’, (exty, (M, D), D)) = dim(D) — i.
3) dplextyy " (M. D)) = jp (M),

then

Definition 6 ([2], [3]): A finitely generated left D-
module M is said to be jp(M)-pure if jp(N) = jp(M)
for all non-zero left D-submodules N of M.

Theorem 6 ([2], [3]): If M is a non-zero finitely gener-
ated left D-module and ext’, (ext®, (M, D), D) # 0, then the
left D-module ext’, (ext’, (M, D), D) is i-pure.

Example 4: By Theorem 5, if M = D*?/(D'*4 R),
then the left D-module homp (homp (M, D), D) is O-pure.
Hence, if N = D?/(R DP), then (5) and (6) yield the in-
clusion M/t(M) C homp(homp (M, D), D), which shows
that the left D-module M /t(M) is either zero or O-pure.

Example 5: Let M = D'*?/(D'*P R) be the left D-
module finitely presented by a full row rank square matrix
R € DP*P\ GL,(D), i.e., M # 0. Then, M is a torsion
left D-module, i.e., M = t(M). Since N = D?/(R DP)
exth(M, D), then using (5), we get M = t(M)
exth(ext}, (M, D), D) # 0. According to Theorems 5 and 6,
dimp (M) = dimp(ext} (exth (M, D), D)) = dim(D) — 1
and M is a 1-pure left D-module. This result was conjectured
by Janet in 1921 and first proved by Johnson in 1978.
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III. GENERAL RESULTS

In what follows, we shall assume that D is a domain
which is an Auslander regular ring (see Remark 1). Let
M = DY*? /(D4 R) be a left D-module finitely presented

by R € D?*P. Since D is a left noetherian ring, we can
consider the beginning of a finite free resolution of M:

pvr M2, pxa B pbe T 00 (8)
Then, the defects of exactness of the following complex
pr & pipr g
are the right D-modules defined by:
{ ext®, (M, D) = homp (M, D) = kerp(R.),
exth (M, D) = kerp(Rz.)/imp(R.).

Let Ny = D"/(Ry D?) (resp., N = DP/(R D?)) be the
Auslander transpose right D-module of the left D-module
My = DY4/(DY " Ry) (resp., M = DY*P/(D*4 R)).
Since D is a right noetherian ring, we can consider the
beginning of a finite free resolution of Ny (resp., N):

0 Ny, &2 pr L pe Eopr & pl
0 « N & po foopr 2 pm
)]

Now, imp(R.) = RDP C kerp(R,.) = R' D?" implies
that the columns of the matrix R belong to R’ Dp/, and thus
there exists a matrix R’ € DP *P such that R = R’ R".
Using RQ =0and R=R' R", we get R (R" Q) =0, i.e.,
(R" Q) D™ C kerp(R'.) = Q' D™, and thus there exists
Q" € D™>™ guch that R” Q = Q' Q". If we denote by
N’ = D9/(R’' D”") the Auslander transpose right D-module
of left D-module M’ = D'*?' /(D% R'), then we get the
following commutative exact diagram of right D-modules:

0e— N & po B opr & pm
I TR Te"

0ee N & pi E pp & pm
(10)

Applying the contravariant left exact functor homp( -, D) to
the previous commutative exact diagram ([9]), we obtain the
following commutative diagram of left D-modules:

R’

Dixa & D1><p' _,> pixm
| L .r" l.Q" (11)
D1><q _R) D1><p _Q> Dlxm
Using (5), we obtain:
t(M') = extb(N’,D) ~kerp(.Q')/imp(.R’), (12)
t(M) = exth, (N, D) 2 kerp(.Q)/imp(.R).

If 7/ : DY — M’ = DY’ /(D'*4 R') is the canonical
projection onto M’, then the commutative diagram (11)
yields the following well-defined left D-homomorphism:

a:kerp(.Q")/imp(.R') kerp(.Q)/imp(.R),
(A — 7w(AR").

—

13)



Indeed, if 7/(\) = 7/()\’), then there exists u € D'*? such
that A — X = p R’ and, using R = R’ R, we obtain:

o (V) = 7V R") = 7((N + p ) B
=7(NR")+7n(uR) =7(NR")=a(x'(\)).

The classical third isomorphism theorem in module theory
(see, e.g., [9]) yields the following short exact sequence:

0— (R D”)/(RD?) - N 25 N — 0.

Since exth (M, D) = (R’ D?")/(R D), the previous short
exact sequence yields the following short exact sequence:

0 — exth (M, D) - N 25 N' — 0.

Applying the contravariant left exact functor homp( -, D)
to the previous short exact sequence, we obtain the long
exact sequence of left D-modules defined by (14) (see, e.g.,
[9]). Since D is an Auslander regular ring (see Remark 1),
ext% (exth, (M, D), D) = 0 and using (12), we obtain the
following exact sequence of left D-modules

0 — exth (N, D) -2 t(M) -2 extl)(exth (M, D), D),
(15)

which yields the following short exact sequence:

0 — exth(N', D) = t(M) — cokera — 0.  (16)

Now, since ext%(-7DT) = 0 for all ¢+ > 1 ([9]), the
following short exact sequence

0— N — D" — Ny — 0,
implies the following isomorphisms ([9]):

Vi>1, exth(N',D)=exti' (N2, D).  (17)

The long exact sequence (15) then yields the following one:

0 — ext? (N, D) 25 (M) L extl (extl, (M, D), D).

(18)

If we consider the beginning of a finite free resolution

of I/ = D1><m’/(D1><p/ Q/) (resp., L = Dle/(DlXp Q)),

then, repeating what we have just done for the commutative

exact diagram (10), the identity Q' Q" = R” Q yields the
following commutative exact diagram of left D-modules:

Dlxu' i/} D1><t’ i/) D1><p' ﬂ) Dlxm’
l T l .S” l ‘R" l -Q”
D1><u _T> D1><t _S) D1><p _Q> Dlxm.
19)

Then, (12) becomes:
exth(N', D) = (DY §') /(D' R),
exthL (N, D) = (D't S)/(D'*4 R).

Now, since D'*¢ R’ C D' §’ and D'*4 R C D'*t§,
there exist F’ € D9%!" and F € D?%t such that:
{ R =F'§

R=FS. 20

Proposition 2 (Lemma 3.1 of [5]): Let D be a left
noetherian ring, R € D?? and R’ € D7 *P two matrices
such that D'X9 R C D'X9 R/ i.e., satisfying R = R" R’ for
a certain matrix R” € D9%9 . Let R}, € D" *? be a matrix
such that kerp(.R') = D'*" R} and let us respectively
denote by 7 and 7’ the following canonical projections:

m: D4 R — P = (D7 R)/(D' 1 R),

s pixd ., pr — Dlxq'/(Dlxq R +D1><r/ R/g)
Then, we have the following left D-isomorphism :
x:P — P xt:P — P
(A) — w(AR'), w(AR) 7' (N).

Using Proposition 2 and (12), we obtain

X/ LI = Dlxt’/(D1><qF/+D1><u’ T’) N t(]wl)7

21

—

V() — w’(uS’z)z,
x:L=DY /D> F+D>T) — (M)
1) — =@,

(23)
where v : DYt — I/ (resp., v : DYt — L) is the
canonical projection onto L (resp., L').

Using (22) and S’ R” = S” S, « defined by (13) yields
the left D-homomorphism @ = y !oaox': L' — L:
a(y'(w) = (x"toa)(n'(uS") = x"H(w(uS"R"))
=x"'(m((uS8") 8)) = y(nS").
Using the identites R = R'R”, S'R” = S” S and (20),
weget FS=R=RR'=F S R'"=F'S"S, and thus
(F—-F'S")S =0,ie., D1 (F - F'S") C kerp(.S) =
DY T je., there exists X € D7 such that:

F=FS8"+XT.

(24)

(25)
Moreover, using (25) and 7" S” = T" T, we have:

(5)-()-(4 2)(2)

T'T
Therefore, if V € D(+s)x(a+5) ig the first matrix in the
right hand-side of the above equality, then we obtain the
following commutative exact diagram of left D-modules:

.(F/T T/T)T

!’
DlXt/ 2 LI

D1x(g+u’) —0
A% | .s” la
D1><(q+u) (FT o Th)T DLxt AN )’ — 0.

Then, coker@ = D't /(D' §” 4 D'*4 F 4 D1xuT)
(see [5]). (25) implies D'**' §” 4 D'Xa f 4 Dixup —
D> 8" 4+ DI*u T and thus:

cokera = DYt /(DY §" 4 DY), (26)

If L” = coker@ and 3 : L — L is the canonical pro-
jection onto L”, then, up to isomorphism, (16) corresponds
to the following short exact sequence:

01 205 o



0 — ext)(N',D)
&, extL (N, D)
2
LN ext3,(N',D) —

If v/ : D'** — L" is the canonical projection and
/
we [T X e paroxs
0 I, ’

then we have the following commutative exact diagram

.(FT TT)T
_—

D1><(q+u) Dixt AN L —50
Lw I 1B
D1><(t’+u) (87T 1T DLixt L L" -0
B B 27
i.e.,, v = 3o~ and the left D-homomorphism (3 is:
B:L — L"=cokera
W) 7). e

Proposition 3: Let D be a noetherian domain, R € D*P
and M = DYP/(D'¥9R) the left D-module finitely
presented R. Let the matrices R, € D"*4, R’ € DI*P,
Q/ c Dp/><m” Q € DpXm_§ ¢ DtXp’ (= Dt/><p”
R" € Dp’><p S" e Dt’xt T € Duxt T/ ¢ Du’xt’
F € Dt and F' € D%t be respectively defined by:
kerp(Ry.) = R' DV,
kerp(R'.) = Q' D™,
kerp(R.) = Q D™,

kerD(.Q) — D1><t S, R=R R”,

kerD(.Q’) _ D1><t’ S/, S” g =g R//7

R=FS§, kerp(.S) = D1*“ T,
R =F'§, kerp(.S") = DY 77,

kerp(.R) = D" Ry,

Then, we have the following results:
1) If we set N = D?/(RDP), N' = D?/(R' D*") and
Ny = D" /(Ry D?), then we have:

t(M) = (D'*'S)/(D'™R)
~ exth(N,D)
o~ L:D1Xt/(D1XqF+Dlqu),
M/t(M) = D'™?/(D''S),

ext?,(Na, D) extL (N', D)

(D1><t’ Sl)/(Dqu R/)

1R 1R

L' = Dlxt/(Dlxt' S// + D1><u T)
(29)
2) The exact diagram (30) holds.
3) We have the following short exact sequence
0— 1 12—, 31)

where the left D-homomorphisms @ and [ are re-
spectively defined by @(y'(u)) = ~(uS”) for all

— ext) (N, D)
—  exthH(N, D)

L = Dlxt'/(Dlxq F’ + D1><u' Tl)

—  ext} (exth (M, D), D)

—  exth(exth(M, D), D) (14)

p € DY and B((v))) = +"(v) for all v € D',
with the following canonical projections:
~ DXt T, ,Y/ . D1><t’ N ) ,Y// DXt
IV. PURITY FILTRATION
Using (15) and (16), we obtain
L" = cokera = im 3 C exth (exth (M, D), D),
which proves that the left D-module L” is 1-pure, and thus:
codimp (L") = 1.
If Ry has full row rank, namely, kerp(.R2) = 0, then we
have N 2 ext% (M, D), which then yields:
L' = ext% (N, D) = ext? (ext?, (M, D), D).  (32)

Thus, by 1 of Theorem 6, the left D-module L’ is 2-pure.
Using the left D-isomorphism ) defined by (23), (2) yields
the following short exact sequence:

0 — L% M 25 M/t(M) — 0.
Hence, using (31), we get the following chain of inclusions:
0C (ioxoa)(L') C (iox)(L) S M.
If D = A(01,...,0,), where A is either a field k or
klx1, ..., znl, k(z1,. .. 20), k[x1,...,z,] where k a field
of characteristic 0, or k{z1,...,2z,} and k = R or C, then
the filtration {M;},—¢,... 3 of the left D-module M defined
by Mo = M, My = (io x)(L), My = (ioxoa)(L)
and Ms = 0, is called a purity filtration ([3]) since the
successive quotients Ms/Mz = L', My;/My = L"” and
My/My = M/t(M) are respectively 2-pure, 1-pure and 0-
pure, i.e., by 1 of Theorem 6, are respectively of dimension
dim(D) — 2, dim(D) — 1 and dim(D), where, for instance
dim(k{d1,... On)) =n, dim(B,(k')) = n,
dim(A4, (k")) = 2n, dim (A(0y,...,0,)) = 2n,
and k (resp., k') is field (resp., a field of characteristic 0)
and A = I{Z[[:El, e ,LL’QH, R{J’Jl, e ,CCQ} or C{l‘h e ,,TQ}.
Another simple case is gld(D) < 2 such as, e.g., D =
A(01, 02), where A = k, k[z1,x2], k(x1,z2) or k[z1, z2]
and k a field of characteristic 0, or k{1, 22}, where k = R
or C (see Example 1). Then, (17) yields ext% (N’, D) =
ext?,(Na, D) = 0, and thus (14) shows that the left D-
homomorphism 3 : t(M) — exth(exth(M,D),D),
defined by (15), is surjective, i.e.,
L" = coker 8 = ext},(ext}, (M, D), D)
is 1-pure and codimp (L") = 1. Therefore, we get:
{ exth (exth (M, D), D) = D't /(D'*¥ §" 4 D'XuT),

ext?)(ext? (M, D), D) = DY /(DY*a4 ' 4 Dlxu' 7y,
(33)



0 — ext] (No, D) 2 ¢(M)
li
M
Ln
M/t(M)
!
0

V. A BLOCK-TRIANGULAR FORM OF LINEAR SYSTEMS
The next theorem will play crucial role in what follows.
Theorem 7 ([8]): Let M = D'*P/(D*9R) and N =

D5 /(D1*t S) be two finitely presented left D-modules

and Ry € D™ satisfying kerp(.R) = D**" Ry. Then, the
following short exact sequence holds

e 0—N-E L v, (34)
where the left D-module £ = D'*®+5) /(D1*(4+1) ) and
Q= ( ]O% _SA ) € D+ (vts) (35)
and A is an element of the abelian group
Q={AeD™ |IBe D" :RyA=DBS}
a:N — FE 6:FE — M
o) — ou(0 L)), o) — w(A(I, 0)T),

where w: DYP — M, § : D¢ — N, Dx(+s B
are canonical projections. More precisely, A € D?%% is such
as the following commutative exact diagram holds

.R

Dixa 2, plxp BN M —0
Lg Ly |
0— N = E — M —0,

where the left D-homomorphisms v and ¢ are defined by
W:D>XP — E

I, ¢: D>
fi — ol f; 0 , e

and {e;};—1,.. 4 is the standard basis of D**4.

— N

Let us apply Theorem 7 to the short exact sequence (31).
Using (27), we have v = 3 o ~, which yields the following
commutative exact diagram

0 — Dlxt’SII+D1><uT Y SV V_”) L”

— 0

Le Lyl
0—s I B Y )
(36)

where the left D-homomorphism ¢ is defined by:

V! Dlxt’ S//_|_D1><uT -
pS" +pe T — o ().

2, exth (ext}, (M, D), D) — coker 3 — 0.

(30)

If {€;}i=1,...+'+u is the standard basis of DX’ +u) then
b Dlx(t’+u) BN 5
i=1,...,t,
i=t+1,...,t' +u,
and Theorem 7 shows that A = (I} 07)T € D' +w)xt",
Theorem 8: We have the following left D-isomorphisms
t(M) o T, o Dlx(t+t’)/(D1x(t’+u+q+u’) U), (37)

where the matrix U € D' Tutatu)x(t+1") g defined by:

S —1I
T 0

U=1 , (38)
0o T

Proposition 4: Let E = D' (t+t) /(DIx (¥ +utatu’) 17)
the left D-module finitely presented by the matrix U defined
by (38) and ¢ : D'*(+t) — F the canonical projection
onto E. Then, we have the following left D-isomorphisms

x:L — t(M) ¢:L — E
V) — w@S), ) — ol 0),
(39)
¢ '"E — L
(40)

o(p) +—— 7(# ( ;f, ))

Corollary 1: If F is a left D-module, then we have

kerz(V.) 2 kerg(U.), where V = (FT TTT e,
S"T—v=0,
Fo§=0, o Tt=0, @)
T6=0, Flv=0,
T v =0,
and the following invertible transformations:
0:kerp(U) — kerg(V)
T
< > — 0=,
v
(42)
§Likerg(V.)) — kerg(U.)



Example 6: Let us consider the D = Q[0;, 02]-module
M = D¥*3/(D'*3 R) finitely presented by:

0 Or—01 09—04
R = 82 —81 —82 — 81 S D3><3.
o -0 —20,

The D-module M admits the finite free resolution
0— D -2, px3 B, pixs T, ar L,

where Rg (81 — 81
of the complex 0 «— D «—

82) Then the defects of exactness
- D3 £ D3 0 are:

ext®, (M, D) 2 kerp(R.) = Q D,
extl, (M, D) 2 kerp(Rs.)/(RD?) = (R D?)/(RD?),
ext%(M, D)~ D/(R; D3)
1 1 0
Q=] -1 |, RR=|1 -0
1 0 -0,
We have Q' =0, 5" =L, ' =R/, T' =0,

1 0 -1
S = . T=0,
01 1

[0 -0 00
-1 1 2 ’

Then, we obtain v; = 0, vo = ¢, 72 = f(z1 + 22) and
71 = f(x1+x2)+c, where f is an arbitrary smooth function
and c an arbitrary constant, and using (42), we obtain the
following general solution

61 T1 flz1+22) + ¢
(o)) - ()
of the first linear PD system defined in (43).
Using the isomorphisms x : L — ¢(M) defined by (23)

and ¢~ : E — L defined by (40), we obtain the following
short exact sequence of left D-modules:
0— B L2X00 M—>M/t( ) — 0. (44)

Since M/t(M) = D**?/kerp(.Q) =
get the commutative exact diagram

Dlxp/(Dlxt S), we

0— DXt§ — DU» "o NMIHM) —0
le L |
0o— L =5 M L MpuM) —o,

where ¢ : D' S — L is defined by ¢(Sje) = 7(g;),
where {g;};—1..+ is the standard basis of D'**. Using the
left D-homomorphism ¢ : L — E defined by (39), we get
the following commutative exact diagram

_ 0— DY™g — DY T M/t(M) —0

s"< 0 ag—al> . ; 0 861 le L I
-\ 1 1 ' - 2 9 : 0— L 10X, M L M/HM) —0

o1 -0 e [ I
Then, (29) and (33) yield: 0— B XLy 2 MuM) —0

t(M) = (D"?8)/(D™3 R) = L = D"?/(D™3F),  which induces 7 : D**!§ — E defined by 7 = ¢ o ¢, and
exth(exth (M, D), D) = L" = D'*2/(D*2 8"), thus the following left D-homomorphism:
ext? (ext} (M, D), D) = I = D2 /(D3 RY). 0.Dxt . R

Using Theorem 8, t(M) = E = D'*4/(D**5U), where: fio— p(fi(Ly 0), j=1,....t

Finally, applying Theorem 7 to the short exact sequence (44)
with 6, we obtain the following main theorem.

0 O—01 -1 0

-1 1 0 —1
U= 0 0 1 0 Theorem 9: We have the following left D-isomorphism
0 0 1 -0 M = Dlx(p+t+t’)/(D1X(t+t’+u+q+u’) P), (45)
0 0 0 —o where P € D+t tutatu)x(p+t+t) g defined by:
Using (41), the following equivalences hold: g I 0
-4t

305 — 0y 05 = 0 82Traﬂrvlo: ' 08T

82 92 - 81 92 = 07 -7 ";)TZ —v2 =0, P=|l0 T 0 (46)

8201_8192_0’ - N _5'7 0 o0 F

101 — 0102 =0, —02U2 =V, 0 0 T
—01v2 =0,

Proposition 5: Let O be the left D-module finitely

=720 presented by the matrix P defined by (46), namely,

02Ty — 0172 =0, O = Do+ttt /(pix(t+t'tutate’) py - apd o

& v =0, DY (p+t+t) O the canonical projection onto O. Then,
D1 vy =0 the left D-homomorphism defined by
32 Vg = 0. w: M — O

43) ) — I, 0)), “7)



is an isomorphism and its inverse ! is defined by

wl:0 — M
Ip
— T S

S"Ss

4
I(p) “%)

Corollary 2: If F is a left D-module, then we have

Sn—71=0,
S"T—v=0,
Rn=0 <& TT=0, 49)
Fv=0,
T v =0.
and the following invertible transformations:
X : kerg(P.) — kerg(R.)
¢
T — =G
v
X tikerg(R) — kerg(P)
¢ n
n — T | = Sn
v S"Sn
(50)

The linear system R 7 = 0 can be integrated in cascade:

1) We first integrate the linear system in v formed by
last two equations of (49). This linear system has
dimension less or equal to dim(D) — 2 (see 1 of
Theorem 4). If R, has full row rank, then, using (32),
this linear system has exactly dim(D) — 2.

2) We integrate the inhomogeneous linear system in 7
formed by the second and third equations of (49). Its
homogenous part has dimension dim(D) — 1.

3) We integrate the linear inhomogeneous linear system
Sn = 7 using the results developed in [4], [8]. In
particular, if F is an injective left D-module, the
linear system kerrs(S.) admits the parametrization
kerz(S.) = QF™. Hence, we only need to find a
particular solution 7, € FP of the inhomogeneous
linear system Sn = 7 to get the general solution
n=nmn.+ Q& forall £ € F™ of Ry =0.

Example 7: We continue Example 6. Corollary 2 yields
O2m2 — O1m2 + O2mz — 013 = 0,
O2m — O1me — Oamz — 01z =0,
Oim —0Oime —201m3 =0,
G—CG-m1=0,
G+ —12=0,
OaT9g — 0179 —v1 =0,

G+(G—1=0,

T1 = T2 — V2,

& —T1 4+ 7T — v =0, & Oa7m9 — 0112 =0,

v =0, vy =0,
vy — Oy =0, Oy ve =0,
—01v9 =0, Jovg =0,

G =G+ flr+x2) —c,

Ge=—C3 — f(z1 +x2),

N 1 = f(z1 +22) + ¢,

2 = f(z1+ 72),

vy =0,

V2 =€,

where (3 is an arbitrary function of C°°(R?), f an arbitrary
function of C*°(R) and c an arbitrary constant. Finally, using
(50), the general solution of R7 = 0 is defined by:

m (w1, 22) = f(r1+22) + ¢
n | = —C3(x1, 2) — f(z1 + 22)
N3 G3(z1,72)

Finally, if kerp(.R2) # 0, then the purity filtration of the
left D = A{0y,...,0,)-module M can similarly be obtained
by studying the left D-module L”. For more details, see [7].

The existence of the purity filtration of the left D-module
M is proved by means of spectral sequences ([3]). The
spectral sequences computing the purity filtration of dif-
ferential modules have recently been implemented in the
GAP4 package homalg by Barakat ([1]). In this paper
(see also [7]), we have shown how the purity filtration of
a left D = A{(d;,02)-module M can be characterized and
computed by generalizing the ideas developed in [4]. The
results are implemented in the package PURITYFILTRATION.
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