Purity filtration of 2-dimensional linear systems

Alban Quadrat INRIA Sophia Antipolis, 2004, Route des Lucioles BP 93, 06902 Sophia Antipolis cedex, France. Alban.Quadrat@sophia.inria.fr

Abstract—The purpose of this paper is to show that every linear partial differential (PD) system defined by means of a matrix with entries in the noncommutative polynomial ring $D = A\langle \partial_1, \dots, \partial_n \rangle$ of PD operators in $\partial_1 = \frac{\partial}{\partial x_1}, \dots, \partial_n = \frac{\partial}{\partial x_n}$ with coefficients in a differential ring A, which satisfies certain regularity conditions, is equivalent to a linear PD system defined by an upper triangular matrix of PD operators formed by three diagonal blocks: the first (resp., second) diagonal block defines a $\dim(D)$ -dimensional (resp., $\dim(D) - 1$ -dimensional) linear PD system and the third one defines a linear PD of dimension less or equal to $\dim(D) - 2$. In particular, if n = 2, then the equivalent upper triangular matrix corresponds to the purity filtration of the finitely presented left D-module M associated with the linear PD system. Moreover, repeating the same techniques with the linear PD system of dimension less or equal to $\dim(D) - 2$, the purity filtration of M can be obtained in the general case (i.e., $n \ge 2$). Finally, this equivalent form of the linear PD system can be used to obtain a Monge parametrization and for closed-form integration of linear PD systems.

I. ALGEBRAIC ANALYSIS

In this section, we shortly recall a few results on the algebraic analysis approach to linear systems theory ([5]).

Theorem 1 ([4], [9]): Let D be a ring, $R \in D^{q \times p}$ a $q \times p$ matrix with entries in D, $M = D^{1 \times p}/(D^{1 \times q} R)$ the left D-module finitely presented by R, $\{f_j\}_{j=1,\dots,p}$ the standard basis of $D^{1 \times p}$ (i.e., f_j is defined by 1 at the jth entries and 0 elsewhere), $\pi : D^{1 \times p} \longrightarrow M$ the canonical projection onto $M, y_j = \pi(f_j)$ for $j = 1, \dots, p$, and \mathcal{F} a left D-module. Then, the abelian group isomorphism

$$\chi : \hom_D(M, \mathcal{F}) \longrightarrow \ker_{\mathcal{F}}(R.) = \{\eta \in \mathcal{F}^p \mid R \eta = 0\}$$

$$\phi \longmapsto (\phi(y_1) \dots \phi(y_p))^T,$$

(1)

holds, where $\hom_D(M, \mathcal{F})$ is the abelian group of left *D*-homomorphisms (i.e., left *D*-linear maps) from *M* to \mathcal{F} .

Theorem 1 shows that there is a one-to-one correspondence between the elements of $\hom_D(M, \mathcal{F})$ and the elements of the linear system (or behaviour) $\ker_{\mathcal{F}}(R.)$. Hence, $\ker_{\mathcal{F}}(R.)$ can be studied by means of the left *D*-modules *M* and \mathcal{F} . In this paper, we shall study algebraic properties of *M* and particularly its so-called *purity filtration* ([3]).

Definition 1 ([9]): Let D be a left noetherian domain (namely, a ring without zero-divisors and for which every

left ideal is finitely generated as a left D-module) and M a finitely generated left D-module. Then, we have:

- 1) *M* is *free* if there exists $r \in \mathbb{N} = \{0, 1, ...\}$ such that $M \cong D^{1 \times r}$. Then, *r* is called the *rank* of *M*.
- M is projective if there exist r ∈ N and a left D-module N such that M⊕N ≅ D^{1×r}, where ⊕ denotes the direct sum of left D-modules.
- M is reflexive if the canonical left D-homomorphism
 ε : M → hom_D(hom_D(M, D), D) defined by
 ε(m)(f) = f(m) for all f ∈ hom_D(M, D) and all m ∈ M, is bijective, i.e., ε is a left D-isomorphism.
- 4) M is torsion-free if the torsion left D-submodule of M, namely, t(M) = {m ∈ M | ∃ d ∈ D \{0} : dm = 0}, is trivial, i.e., if t(M) = 0. The elements of t(M) are called the torsion elements of M. We have the following short exact sequence of left D-modules

$$0 \longrightarrow t(M) \xrightarrow{i} M \xrightarrow{\rho} M/t(M) \longrightarrow 0, \quad (2)$$

i.e., *i* is injective, ρ is surjective and ker $\rho = \operatorname{im} i$.

5) M is torsion if t(M) = M, i.e., if every element of M is a torsion element of M.

If D is a left noetherian ring and M a finitely generated left D-module, then M admits a *finite free resolution*

$$\dots \xrightarrow{.R_3} D^{1 \times r_2} \xrightarrow{.R_2} D^{1 \times r_1} \xrightarrow{.R_1} D^{1 \times r_0} \xrightarrow{\pi} M \longrightarrow 0,$$
(3)

where $R_i \in D^{r_i \times r_{i-1}}$ and $R_i : D^{1 \times r_i} \longrightarrow D^{1 \times r_{i-1}}$ is defined by $(R_i)(\lambda) = \lambda R_i$ for all $\lambda \in D^{1 \times r_i}$ ([9]).

If \mathcal{F} is a left *D*-module, then (3) yields the *complex*

$$\dots \stackrel{R_4.}{\longleftarrow} \mathcal{F}^{r_3} \stackrel{R_3.}{\longleftarrow} \mathcal{F}^{r_2} \stackrel{R_2.}{\longleftarrow} \mathcal{F}^{r_1} \stackrel{R_{1.}}{\longleftarrow} \mathcal{F}^{r_0} \longleftarrow 0, \quad (4)$$

where $R_{i+1}: \mathcal{F}^{r_i} \longrightarrow \mathcal{F}^{r_{i+1}}$ is defined by $(R_i.)(\eta) = R_i \eta$ for all $\eta \in \mathcal{F}^{r_i}$ and all $i \in \mathbb{N}$, i.e., $\operatorname{im}_{\mathcal{F}}(R_i.) \subseteq \ker_{\mathcal{F}}(R_{i+1}.)$ for all $i \in \mathbb{N}$. The *defect of exactness* of the complex (4) at \mathcal{F}^{r_i} is the abelian group defined by:

$$\begin{cases} \operatorname{ext}_{D}^{0}(M,\mathcal{F}) \cong \ker_{\mathcal{F}}(R_{\cdot}) \cong \hom_{D}(M,\mathcal{F}), \\ \operatorname{ext}_{D}^{i}(M,\mathcal{F}) \cong \ker_{\mathcal{F}}(R_{i+1})/\operatorname{im}_{\mathcal{F}}(R_{i}), \ i \ge 1. \end{cases}$$

Similarly, if N is a finitely generated right D-module and \mathcal{G} is a right D-module, we can define the $\operatorname{ext}_D^i(N, \mathcal{G})$'s ([9]).

Theorem 2 ([4]): Let D be a noetherian domain with a finite global dimension gld(D) ([9]), $M = D^{1 \times p}/(D^{1 \times q} R)$

This paper is dedicated to Prof. Ulrich Oberst on the occasion of his 70th birthday. His work on mathematical systems theory has alway been a source of inspiration for us and, we are sure, for the next generations.

and the Auslander transposed of M, namely, the right D-module $N = D^q/(R D^p)$ finitely presented by R.

1) The following left *D*-isomorphism holds:

$$t(M) \cong \operatorname{ext}_{D}^{1}(N, D).$$
(5)

- 2) *M* is a torsion-free left *D*-module iff $ext_D^1(N, D) = 0$.
- 3) We have the following long exact sequence (6), where ε is defined in 4 of Definition 1.
- M is reflexive left D-module iff extⁱ_D(N, D) = 0 for i = 1, 2.
- 5) *M* is projective left *D*-module iff $\operatorname{ext}_D^i(N, D) = 0$ for $i = 1, \dots, \operatorname{gld}(D)$.

Example 1: $gld(A\langle\partial_1, \ldots, \partial_n\rangle) = n$, where A = k is a field, $k[x_1, \ldots, x_n]$, $k(x_1, \ldots, x_n)$, $k[x_1, \ldots, x_n]$, where k is a field of characteristic 0 (e.g., $k = \mathbb{Q}$, \mathbb{R} , \mathbb{C}), and $k\{x_1, \ldots, x_n\}$, where $k = \mathbb{R}$ or \mathbb{C} ([2]).

II. CHARACTERISTIC VARIETY AND DIMENSIONS

In what follows, we consider the ring $D = A\langle \partial_1, \ldots, \partial_n \rangle$ of PD operators with coefficients in the differential ring Awhich is either a field k, $k[x_1, \ldots, x_n]$, $k(x_1, \ldots, x_n)$ or $k[x_1, \ldots, x_n]$, where k is a field of characteristic 0, or $k\{x_1, \ldots, x_n\}$, where $k = \mathbb{R}$ or \mathbb{C} . An element $P \in D$ can be written as $P = \sum_{|\alpha|=0,\ldots,r} a_\alpha \partial^\alpha$, where $a_\alpha \in A$ $\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \ldots + \alpha_n$ and $\partial^\alpha = \partial_1^{\alpha_1} \ldots \partial_n^{\alpha_n}$ and $\partial_i = \frac{\partial}{\partial x_i}$ for $i = 1, \ldots, n$. The domain D admits the *order filtration* defined by:

$$\forall r \in \mathbb{N}, \quad D_r = \left\{ \sum_{0 \le |\alpha| \le r} a_{\alpha} \, \partial^{\alpha} \mid a_{\alpha} \in A \right\}.$$

The ring D is called a *filtered ring* and an element of D_r is said to have a *degree* less or equal to r. We can easily check that $D_0 = A$ and D_r is a finitely generated A-module.

If $d_1, d_2 \in D$, then $[d_1, d_2] = d_1 d_2 - d_2 d_1$. Now, if $d_1 \in D_r$ and $d_2 \in D_s$, then $d_1 d_2$ and $d_2 d_1$ belong to D_{r+s} since $D_r D_s \subseteq D_{r+s}$ and $D_s D_r \subseteq D_{r+s}$. Then, we can check that $[d_1, d_2] \in D_{r+s-1}$, i.e., $[D_r, D_s] \subseteq D_{r+s-1}$.

Let us now introduce the following A-module

$$\operatorname{gr}(D) = \bigoplus_{r \in \mathbb{N}} D_r / D_{r-1},$$

where $D_{-1} = 0$. Let $\pi_r : D_r \longrightarrow D_r/D_{r-1}$ be the canonical projection. Then, gr(D) inherits a ring structure defined by

$$\begin{cases} \pi_r(d_1) + \pi_s(d_2) \triangleq \pi_t(d_1 + d_2) \in D_t/D_{t-1}, \\ \pi_r(d_1) \pi_s(d_2) \triangleq \pi_{r+s}(d_1 d_2) \in D_{r+s}/D_{r+s-1}, \end{cases}$$

where $t = \max(r, s)$ and for all $d_1 \in D_r$ and all $d_2 \in D_s$. gr(D) is called the graded ring associated with the order filtration of D. If we introduce $\chi_i = \pi_1(\partial_i) \in D_1/D_0$ for i = 1, ..., n, then $\pi_1([\partial_i, \partial_j]) = 0$ and $\pi_1([\partial_i, a]) = 0$ for all $a \in A$ and all i, j = 1, ..., n since $[\partial_i, \partial_j] = 0$ and $[\partial_i, a] \in D_0$, which shows that $\operatorname{gr}(D) = A[\chi_1, ..., \chi_n]$ is the commutative polynomial ring with coefficients in A. Definition 2 ([2]): Let M be a finitely generated left $D = A\langle \partial_1, \ldots, \partial_n \rangle$ -module.

- 1) A filtration of M is a sequence $\{M_q\}_{q\in\mathbb{N}}$ of A-submodules of M satisfying the following conditions:
 - a) For all $q, r \in \mathbb{N}, q < r$ implies $M_q \subseteq M_r$.
 - b) $M = \bigcup_{q \in \mathbb{N}} M_q$.
 - c) For all $q, r \in \mathbb{N}$, we have $D_r M_q \subseteq M_{q+r}$.

The left *D*-module *M* is then called a *filtered module* 2) The *graded* gr(D)-module gr(M) is defined by:

- a) $\operatorname{gr}(M) = \bigoplus_{q \in \mathbb{N}} M_q / M_{q-1} \ (M_{-1} = 0).$
- b) For every $d \in D_r$ and every $m \in M_q$, we set $\pi_r(d) \sigma_q(m) \triangleq \sigma_{q+r}(dm) \in M_{q+r}/M_{q+r-1}$, where $\sigma_q : M_q \longrightarrow M_q/M_{q-1}$ is the canonical projection for all $q \in \mathbb{N}$.
- 3) A filtration $\{M_q\}_{q \in \mathbb{N}}$ is good if the $\operatorname{gr}(D)$ -module $\operatorname{gr}(M) = \bigoplus_{q \in \mathbb{N}} M_q / M_{q-1}$ is finitely generated.

Example 2: Let M be a finitely generated left D-module defined by a family of generators $\{y_1, \ldots, y_p\}$. Then, the filtration $M_q = \sum_{i=1}^p D_q y_i$ is a good filtration of M since we then have $\operatorname{gr}(M) = \sum_{i=1}^p \operatorname{gr}(D) y_i$, which proves that $\operatorname{gr}(M)$ is a finitely generated left $\operatorname{gr}(D)$ -module.

Definition 3: A proper prime ideal of a commutative ring A is an ideal $\mathfrak{p} \subsetneq A$ which satisfies that $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. The set of all the proper prime ideals of A is denoted by $\operatorname{spec}(A)$ and is a topological space endowed with the Zariski topology defined by the Zariski-closed sets $V(I) = \{\mathfrak{p} \in \operatorname{spec}(A) \mid I \subseteq \mathfrak{p}\}$, where I is an ideal of A.

Proposition 1 ([2]): Let M be a finitely generated left $D = A\langle \partial_1, \ldots, \partial_n \rangle$ -module and $G = \operatorname{gr}(M)$ the associated graded $\operatorname{gr}(D) = A[\chi_1, \ldots, \chi_n]$ -module for a good filtration of M. Then, the ideal of $\operatorname{gr}(D) = A[\chi_1, \ldots, \chi_n]$ defined by

$$I(M) = \sqrt{\operatorname{ann}(G)} \triangleq \{a \in \operatorname{gr}(D) \mid \exists \ n \in \mathbb{N} : a^n \ G = 0\}.$$

does not depend on the good filtration of M. The characteristic variety of M is then defined by:

$$\operatorname{char}_D(M) = \{ \mathfrak{p} \in \operatorname{spec}(\operatorname{gr}(D)) \mid \sqrt{\operatorname{ann}(G)} \subseteq \mathfrak{p} \}.$$

Definition 4 ([2]): Let M be a finitely generated left $D = A\langle \partial_1, \ldots, \partial_n \rangle$ -module. Then, the *dimension* of M is the supremum of the lengths of the chains

$$\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \ldots \subset \mathfrak{p}_d$$

of distinct proper prime ideals in $A[\chi_1, \ldots, \chi_n]/I(M)$.

We shall simply write $\dim(D)$ instead of $\dim_D(D)$.

Example 3 ([2]): We have $\dim(k[x_1, \ldots, x_n]) = n$. If $A = k[x_1, \ldots, x_n]$, $k[[x_1, \ldots, x_n]]$, where k is a field of characteristic 0, or $k\{x_1, \ldots, x_n\}$, where $k = \mathbb{R}$ or \mathbb{C} , then $\dim(A\langle\partial_1, \ldots, \partial_n\rangle) = 2n$. If k is a field, then $\dim(k(x_1, \ldots, x_n)\langle\partial_1, \ldots, \partial_n\rangle) = n$.

Definition 5 ([2], [3]): The grade of a non-zero finitely generated left D-module M is defined by:

$$j_D(M) = \min \{ i \ge 0 \mid \text{ext}_D^i(M, D) \ne 0 \}.$$

$$0 \longrightarrow \operatorname{ext}_{D}^{1}(N, D) \longrightarrow M \xrightarrow{\varepsilon} \operatorname{hom}_{D}(\operatorname{hom}_{D}(M, D), D) \longrightarrow \operatorname{ext}_{D}^{2}(N, D) \longrightarrow 0, \tag{6}$$

Theorem 3 ([2], [3]): Let M be a non-zero finitely generated left $D = A \langle \partial_1, \dots, \partial_n \rangle$ -module. Then:

$$j_D(M) = \dim(D) - \dim_D(M). \tag{7}$$

Remark 1: A ring D satisfying (7) for all finitely generated left D-modules M and a dimension function $\dim_D(\cdot)$ is called a Cohen-Macaulay ring. Hence, the previous rings of PD operators are Cohen-Macaulay. Moreover, they are also Auslander regular rings, namely, noetherian rings with a finite global dimension which satisfy the Auslander condition, namely, for every $i \in \mathbb{N}$, every finitely generated left (resp., right) D-module M and every left (resp., right) D-module $N \subseteq \text{ext}_{D}^{i}(M, D)$, then $j_{D}(N) \ge i$ ([2], [3]).

Theorem 4 ([2], [3]): If M is a non-zero finitely generated left $D = A \langle \partial_1, \dots, \partial_n \rangle$ -module, then:

- 1) $\dim_D(\operatorname{ext}_D^i(M, D)) \le \dim(D) i.$ 2) $\dim_D(\operatorname{ext}_D^{j_D(M)}(M, D)) = \dim(D) j_D(M).$

Theorem 5 ([2], [3]): Let M be a non-zero a finitely generated left $D = A \langle \partial_1, \ldots, \partial_n \rangle$ -module.

- 1) $\operatorname{ext}_D^j(\operatorname{ext}_D^i(M, D), D) = 0$ for j < i.
- 2) If $\operatorname{ext}_D^{j}(\operatorname{ext}_D^{j}(M,D),D)$ is non-zero, $\dim_D(\operatorname{ext}_D^{j}(\operatorname{ext}_D^{j}(M,D),D)) = \dim(D) i.$ 3) $j_D(\operatorname{ext}_D^{j_D(M)}(M,D)) = j_D(M).$ then

Definition 6 ([2], [3]): A finitely generated left Dmodule M is said to be $j_D(M)$ -pure if $j_D(N) = j_D(M)$ for all non-zero left D-submodules N of M.

Theorem 6 ([2], [3]): If M is a non-zero finitely generated left D-module and $\operatorname{ext}_{D}^{i}(\operatorname{ext}_{D}^{i}(M,D),D) \neq 0$, then the left D-module $\operatorname{ext}_D^i(\operatorname{ext}_D^i(M,D),D)$ is *i*-pure.

Example 4: By Theorem 5, if $M = D^{1 \times p} / (D^{1 \times q} R)$, then the left *D*-module $\hom_D(\hom_D(M, D), D)$ is 0-pure. Hence, if $N = D^q/(R D^p)$, then (5) and (6) yield the inclusion $M/t(M) \subseteq \hom_D(\hom_D(M, D), D)$, which shows that the left D-module M/t(M) is either zero or 0-pure.

Example 5: Let $M = D^{1 \times p} / (D^{1 \times p} R)$ be the left Dmodule finitely presented by a full row rank square matrix $R \in D^{p \times p} \setminus \operatorname{GL}_{p}(D)$, i.e., $M \neq 0$. Then, M is a torsion left D-module, i.e., M = t(M). Since $N = D^p/(R D^p) \cong$ $\operatorname{ext}^1_D(M,D)$, then using (5), we get $M = t(M) \cong$ $\operatorname{ext}_D^1(\operatorname{ext}_D^1(M,D),D) \neq 0$. According to Theorems 5 and 6, $\dim_D(\overline{M}) = \dim_D(\operatorname{ext}_D^1(\operatorname{ext}_D^1(M, D), D)) = \dim(D) - 1$ and M is a 1-pure left D-module. This result was conjectured by Janet in 1921 and first proved by Johnson in 1978.

III. GENERAL RESULTS

In what follows, we shall assume that D is a domain which is an Auslander regular ring (see Remark 1). Let $M = D^{1 \times p} / (D^{1 \times q} R)$ be a left *D*-module finitely presented by $R \in D^{q \times p}$. Since D is a left noetherian ring, we can consider the beginning of a finite free resolution of M:

$$D^{1 \times r} \xrightarrow{.R_2} D^{1 \times q} \xrightarrow{.R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0.$$
 (8)

Then, the defects of exactness of the following complex

$$D^r \xleftarrow{R_2}{ D^q} \stackrel{R_{\cdot}}{\longleftarrow} D^p \xleftarrow{ 0}$$

are the right *D*-modules defined by:

$$\operatorname{ext}_{D}^{0}(M, D) = \operatorname{hom}_{D}(M, D) \cong \operatorname{ker}_{D}(R.),$$
$$\operatorname{ext}_{D}^{1}(M, D) \cong \operatorname{ker}_{D}(R_{2}.)/\operatorname{im}_{D}(R.).$$

Let $N_2 = D^r/(R_2 D^q)$ (resp., $N = D^p/(R D^q)$) be the Auslander transpose right D-module of the left D-module $M_2 = D^{1 \times q} / (D^{1 \times r} R_2)$ (resp., $M = D^{1 \times p} / (D^{1 \times q} R)$). Since D is a right noetherian ring, we can consider the beginning of a finite free resolution of N_2 (resp., N):

$$0 \longleftarrow N_2 \xleftarrow{\kappa_2} D^r \xleftarrow{R_2} D^q \xleftarrow{R'} D^{p'} \xleftarrow{Q'} D^{m'}$$
$$0 \longleftarrow N \xleftarrow{\kappa} D^q \xleftarrow{R} D^p \xleftarrow{Q} D^m.$$
(9)

Now, $\operatorname{im}_D(R.) = R D^p \subseteq \ker_D(R_2.) = R' D^{p'}$ implies that the columns of the matrix R belong to $R' D^{p'}$, and thus there exists a matrix $R'' \in D^{p' \times p}$ such that R = R' R''. Using RQ = 0 and R = R'R'', we get R'(R''Q) = 0, i.e., $(R''Q)D^m \subseteq \ker_D(R'.) = Q'D^{m'}$, and thus there exists $Q'' \in D^{m' \times m}$ such that R'' Q = Q' Q''. If we denote by $N' = D^q / (R' D^{p'})$ the Auslander transpose right D-module of left *D*-module $M' = D^{1 \times p'} / (D^{1 \times q} R')$, then we get the following commutative exact diagram of right D-modules:

$$0 \longleftarrow N' \xleftarrow{\kappa'} D^{q} \xleftarrow{R'} D^{p'} \xleftarrow{Q'} D^{m'},$$
$$\parallel \qquad \uparrow R''. \qquad \uparrow Q''.$$
$$0 \longleftarrow N \xleftarrow{\kappa} D^{q} \xleftarrow{R.} D^{p} \xleftarrow{Q.} D^{m}.$$
(10)

Applying the contravariant left exact functor $\hom_D(\cdot, D)$ to the previous commutative exact diagram ([9]), we obtain the following commutative diagram of left *D*-modules:

Using (5), we obtain:

$$\begin{cases} t(M') \cong \operatorname{ext}_D^1(N', D) \cong \operatorname{ker}_D(.Q')/\operatorname{im}_D(.R'), \\ t(M) \cong \operatorname{ext}_D^1(N, D) \cong \operatorname{ker}_D(.Q)/\operatorname{im}_D(.R). \end{cases}$$
(12)

If $\pi': D^{1 \times p'} \longrightarrow M' = D^{1 \times p'}/(D^{1 \times q} R')$ is the canonical projection onto M', then the commutative diagram (11) yields the following well-defined left D-homomorphism:

$$\alpha : \ker_D(.Q')/\operatorname{im}_D(.R') \longrightarrow \ker_D(.Q)/\operatorname{im}_D(.R), \pi'(\lambda) \longmapsto \pi(\lambda R'').$$
(13)

Indeed, if $\pi'(\lambda) = \pi'(\lambda')$, then there exists $\mu \in D^{1 \times q}$ such that $\lambda - \lambda' = \mu R'$ and, using R = R' R'', we obtain:

$$\begin{aligned} \alpha(\pi'(\lambda)) &= \pi(\lambda \, R'') = \pi((\lambda' + \mu \, R') \, R'') \\ &= \pi(\lambda' \, R'') + \pi(\mu \, R) = \pi(\lambda' \, R'') = \alpha(\pi'(\lambda')). \end{aligned}$$

The classical third isomorphism theorem in module theory (see, e.g., [9]) yields the following short exact sequence:

$$0 \longrightarrow (R' D^{p'})/(R D^p) \stackrel{i}{\longrightarrow} N \stackrel{\rho}{\longrightarrow} N' \longrightarrow 0.$$

Since $\operatorname{ext}_D^1(M, D) \cong (R' D^{p'})/(R D^p)$, the previous short exact sequence yields the following short exact sequence:

$$0 \longrightarrow \operatorname{ext}_D^1(M, D) \xrightarrow{i'} N \xrightarrow{\rho} N' \longrightarrow 0.$$

Applying the contravariant left exact functor $\hom_D(\cdot, D)$ to the previous short exact sequence, we obtain the long exact sequence of left *D*-modules defined by (14) (see, e.g., [9]). Since *D* is an Auslander regular ring (see Remark 1), $\operatorname{ext}_D^0(\operatorname{ext}_D^1(M, D), D) = 0$ and using (12), we obtain the following exact sequence of left *D*-modules

$$0 \longrightarrow \operatorname{ext}_{D}^{1}(N', D) \xrightarrow{\alpha} t(M) \xrightarrow{\beta} \operatorname{ext}_{D}^{1}(\operatorname{ext}_{D}^{1}(M, D), D),$$
(15)

which yields the following short exact sequence:

$$0 \longrightarrow \operatorname{ext}_{D}^{1}(N', D) \xrightarrow{\alpha} t(M) \longrightarrow \operatorname{coker} \alpha \longrightarrow 0.$$
 (16)

Now, since $\operatorname{ext}_D^i(\cdot, D^r) = 0$ for all $i \ge 1$ ([9]), the following short exact sequence

$$0 \longrightarrow N' \longrightarrow D^r \longrightarrow N_2 \longrightarrow 0,$$

implies the following isomorphisms ([9]):

$$\forall i \ge 1, \quad \operatorname{ext}_D^i(N', D) \cong \operatorname{ext}_D^{i+1}(N_2, D).$$
(17)

The long exact sequence (15) then yields the following one:

$$0 \longrightarrow \operatorname{ext}_{D}^{2}(N_{2}, D) \xrightarrow{\alpha'} t(M) \xrightarrow{\beta} \operatorname{ext}_{D}^{1}(\operatorname{ext}_{D}^{1}(M, D), D).$$
(18)

If we consider the beginning of a finite free resolution of $L' = D^{1 \times m'}/(D^{1 \times p'}Q')$ (resp., $L = D^{1 \times m}/(D^{1 \times p}Q)$), then, repeating what we have just done for the commutative exact diagram (10), the identity Q'Q'' = R''Q yields the following commutative exact diagram of left *D*-modules:

Then, (12) becomes:

$$\begin{array}{l} \exp_D^1(N',D) \cong (D^{1\times t'}S')/(D^{1\times q}R'), \\ \exp_D^1(N,D) \cong (D^{1\times t}S)/(D^{1\times q}R). \end{array}$$

Now, since $D^{1 \times q} R' \subseteq D^{1 \times t'} S'$ and $D^{1 \times q} R \subseteq D^{1 \times t} S$, there exist $F' \in D^{q \times t'}$ and $F \in D^{q \times t}$ such that:

$$\begin{cases} R' = F' S', \\ R = F S. \end{cases}$$
(20)

Proposition 2 (Lemma 3.1 of [5]): Let D be a left noetherian ring, $R \in D^{q \times p}$ and $R' \in D^{q' \times p}$ two matrices such that $D^{1 \times q} R \subseteq D^{1 \times q'} R'$, i.e., satisfying R = R'' R' for a certain matrix $R'' \in D^{q \times q'}$. Let $R'_2 \in D^{r' \times q'}$ be a matrix such that $\ker_D(R') = D^{1 \times r'} R'_2$ and let us respectively denote by π and π' the following canonical projections:

$$\begin{aligned} \pi: D^{1\times q'} \: R' &\longrightarrow P = (D^{1\times q'} \: R')/(D^{1\times q} \: R), \\ \pi': D^{1\times q'} &\longrightarrow P' = D^{1\times q'}/(D^{1\times q} \: R'' + D^{1\times r'} \: R'_2). \end{aligned}$$

Then, we have the following left *D*-isomorphism χ :

Using Proposition 2 and (12), we obtain

$$\chi' : L' = D^{1 \times t'} / (D^{1 \times q} F' + D^{1 \times u'} T') \longrightarrow t(M'),$$

$$\gamma'(\mu) \longmapsto \pi'(\mu S'),$$

$$\chi : L = D^{1 \times t} / (D^{1 \times q} F + D^{1 \times u} T) \longrightarrow t(M)$$

$$\gamma(\nu) \longmapsto \pi(\nu S),$$
(22)
(23)

where $\gamma': D^{1 \times t'} \longrightarrow L'$ (resp., $\gamma: D^{1 \times t} \longrightarrow L$) is the canonical projection onto L (resp., L').

Using (22) and S' R'' = S'' S, α defined by (13) yields the left *D*-homomorphism $\overline{\alpha} = \chi^{-1} \circ \alpha \circ \chi' : L' \longrightarrow L$:

$$\overline{\alpha}(\gamma'(\mu)) = (\chi^{-1} \circ \alpha)(\pi'(\mu S')) = \chi^{-1}(\pi(\mu S' R''))$$

= $\chi^{-1}(\pi((\mu S'') S)) = \gamma(\mu S'').$ (24)

Using the identities R = R' R'', S' R'' = S'' S and (20), we get F S = R = R' R'' = F' S' R'' = F' S'' S, and thus (F - F' S'') S = 0, i.e., $D^{1 \times q} (F - F' S'') \subseteq \ker_D(.S) = D^{1 \times u} T$, i.e., there exists $X \in D^{q \times u}$ such that:

$$F = F' S'' + X T. (25)$$

Moreover, using (25) and T' S'' = T'' T, we have:

$$\begin{pmatrix} F'\\T' \end{pmatrix} S'' = \begin{pmatrix} F - XT\\T''T \end{pmatrix} = \begin{pmatrix} I_q & -X\\0 & T'' \end{pmatrix} \begin{pmatrix} F\\T' \end{pmatrix}.$$

Therefore, if $V \in D^{(q+s')\times(q+s)}$ is the first matrix in the right hand-side of the above equality, then we obtain the following commutative exact diagram of left *D*-modules:

$$D^{1\times(q+u')} \xrightarrow{\cdot (F'^T \quad T'^T)^T} D^{1\times t'} \xrightarrow{\gamma'} L' \longrightarrow 0$$

$$\downarrow .V \qquad \qquad \qquad \downarrow .S'' \qquad \qquad \downarrow \overline{\alpha}$$

$$D^{1\times(q+u)} \xrightarrow{\cdot (F^T \quad T^T)^T} D^{1\times t} \xrightarrow{\gamma} L \longrightarrow 0$$

Then, coker $\overline{\alpha} \cong D^{1 \times t} / (D^{1 \times t'} S'' + D^{1 \times q} F + D^{1 \times u} T)$ (see [5]). (25) implies $D^{1 \times t'} S'' + D^{1 \times q} F + D^{1 \times u} T = D^{1 \times r'} S'' + D^{1 \times u} T$, and thus:

$$\operatorname{coker} \overline{\alpha} = D^{1 \times t} / (D^{1 \times t'} S'' + D^{1 \times u} T).$$
 (26)

If $L'' = \operatorname{coker} \overline{\alpha}$ and $\overline{\beta} : L \longrightarrow L''$ is the canonical projection onto L'', then, up to isomorphism, (16) corresponds to the following short exact sequence:

$$0 \longrightarrow L' \xrightarrow{\overline{\alpha}} L \xrightarrow{\overline{\beta}} L'' \longrightarrow 0.$$

 γ

If $\gamma'': D^{1 \times t} \longrightarrow L''$ is the canonical projection and

$$W = \begin{pmatrix} F' & X \\ 0 & I_u \end{pmatrix} \in D^{(q+u) \times (t'+u)},$$

then we have the following commutative exact diagram

i.e., $\gamma'' = \overline{\beta} \circ \gamma$ and the left *D*-homomorphism $\overline{\beta}$ is:

$$\overline{\beta}: L \longrightarrow L'' = \operatorname{coker} \overline{\alpha}
\gamma(\nu) \longmapsto \gamma''(\nu).$$
(28)

Proposition 3: Let D be a noetherian domain, $R \in D^{q \times p}$ and $M = D^{1 \times p}/(D^{1 \times q} R)$ the left D-module finitely presented R. Let the matrices $R'_2 \in D^{r \times q}$, $R' \in D^{q \times p'}$, $Q' \in D^{p' \times m'}$, $Q \in D^{p \times m}$, $S \in D^{t \times p}$, $S' \in D^{t' \times p'}$, $R'' \in D^{p' \times p}$, $S'' \in D^{t' \times t}$, $T \in D^{u \times t}$, $T' \in D^{u' \times t'}$, $F \in D^{q \times t}$ and $F' \in D^{q \times t'}$ be respectively defined by:

$$\ker_{D}(.R) = D^{1 \times r} R_{2}, \begin{cases} \ker_{D}(R_{2}.) = R' D^{p'}, \\ \ker_{D}(R'.) = Q' D^{m'}, \\ \ker_{D}(R.) = Q D^{m}, \end{cases}$$
$$\begin{cases} \ker_{D}(.Q) = D^{1 \times t} S, \\ \ker_{D}(.Q') = D^{1 \times t'} S', \end{cases} \begin{cases} R = R' R'', \\ S'' S = S' R'', \\ S'' S = S' R'', \end{cases}$$
$$\begin{cases} R = F S, \\ R' = F' S, \\ R' = F' S', \end{cases} \begin{cases} \ker_{D}(.S) = D^{1 \times u} T, \\ \ker_{D}(.S') = D^{1 \times u'} T'. \end{cases}$$

Then, we have the following results:

1) If we set $N = D^q/(R D^p)$, $N' = D^q/(R' D^{p'})$ and $N_2 = D^r/(R_2 D^q)$, then we have:

$$t(M) = (D^{1 \times t} S)/(D^{1 \times q} R)$$

$$\cong \operatorname{ext}_{D}^{1}(N, D)$$

$$\cong L = D^{1 \times t}/(D^{1 \times q} F + D^{1 \times u} T),$$

$$M/t(M) = D^{1 \times p}/(D^{1 \times t} S),$$

$$\operatorname{ext}_{D}^{2}(N_{2}, D) \cong \operatorname{ext}_{D}^{1}(N', D)$$

$$\cong (D^{1 \times t'} S')/(D^{1 \times q} R')$$

$$\cong L' = D^{1 \times t'}/(D^{1 \times q} F' + D^{1 \times u'} T').$$

$$L'' = D^{1 \times t}/(D^{1 \times t'} S'' + D^{1 \times u} T).$$
(29)

- 2) The exact diagram (30) holds.
- 3) We have the following short exact sequence

$$0 \longrightarrow L' \xrightarrow{\overline{\alpha}} L \xrightarrow{\overline{\beta}} L'' \longrightarrow 0, \qquad (31)$$

where the left *D*-homomorphisms $\overline{\alpha}$ and $\overline{\beta}$ are respectively defined by $\overline{\alpha}(\gamma'(\mu)) = \gamma(\mu S'')$ for all

 $\mu \in D^{1 \times t'}$, and $\overline{\beta}(\gamma(\nu))) = \gamma''(\nu)$ for all $\nu \in D^{1 \times t}$, with the following canonical projections:

$$: D^{1 \times t} \longrightarrow L, \ \gamma' : D^{1 \times t'} \longrightarrow L', \ \gamma'' : D^{1 \times t} \longrightarrow L''.$$

IV. Purity filtration

Using (15) and (16), we obtain

$$L'' = \operatorname{coker} \overline{\alpha} \cong \operatorname{im} \beta \subseteq \operatorname{ext}^{1}_{D}(\operatorname{ext}^{1}_{D}(M, D), D),$$

which proves that the left *D*-module L'' is 1-pure, and thus:

$$\operatorname{codim}_D(L'') = 1.$$

If R_2 has full row rank, namely, $\ker_D(R_2) = 0$, then we have $N_2 \cong \operatorname{ext}^2_D(M, D)$, which then yields:

$$L' \cong \operatorname{ext}_D^2(N_2, D) \cong \operatorname{ext}_D^2(\operatorname{ext}_D^2(M, D), D).$$
(32)

Thus, by 1 of Theorem 6, the left *D*-module L' is 2-pure. Using the left *D*-isomorphism χ defined by (23), (2) yields the following short exact sequence:

$$0 \longrightarrow L \xrightarrow{i \circ \chi} M \xrightarrow{\rho} M/t(M) \longrightarrow 0.$$

Hence, using (31), we get the following chain of inclusions:

$$0 \subseteq (i \circ \chi \circ \overline{\alpha})(L') \subseteq (i \circ \chi)(L) \subseteq M.$$

If $D = A\langle\partial_1, \ldots, \partial_n\rangle$, where A is either a field k or $k[x_1, \ldots, x_n]$, $k(x_1, \ldots, x_n)$, $k[x_1, \ldots, x_n]$ where k a field of characteristic 0, or $k\{x_1, \ldots, x_n\}$ and $k = \mathbb{R}$ or \mathbb{C} , then the filtration $\{M_i\}_{i=0,\ldots,3}$ of the left D-module M defined by $M_0 = M$, $M_1 = (i \circ \chi)(L)$, $M_2 = (i \circ \chi \circ \overline{\alpha})(L')$ and $M_3 = 0$, is called a *purity filtration* ([3]) since the successive quotients $M_2/M_3 \cong L'$, $M_1/M_2 \cong L''$ and $M_0/M_1 \cong M/t(M)$ are respectively 2-pure, 1-pure and 0-pure, i.e., by 1 of Theorem 6, are respectively of dimension $\dim(D) - 2$, $\dim(D) - 1$ and $\dim(D)$, where, for instance

$$\dim(k\langle\partial_1,\ldots,\partial_n\rangle) = n, \quad \dim(B_n(k')) = n, \\ \dim(A_n(k')) = 2n, \qquad \dim(A\langle\partial_1,\ldots,\partial_n\rangle) = 2n,$$

and k (resp., k') is field (resp., a field of characteristic 0) and $A = k[\![x_1, \ldots, x_2]\!]$, $\mathbb{R}\{x_1, \ldots, x_2\}$ or $\mathbb{C}\{x_1, \ldots, x_2\}$.

Another simple case is $gld(D) \leq 2$ such as, e.g., $D = A\langle \partial_1, \partial_2 \rangle$, where A = k, $k[x_1, x_2]$, $k(x_1, x_2)$ or $k[x_1, x_2]$ and k a field of characteristic 0, or $k\{x_1, x_2\}$, where $k = \mathbb{R}$ or \mathbb{C} (see Example 1). Then, (17) yields $\operatorname{ext}_D^2(N', D) \cong \operatorname{ext}_D^3(N_2, D) = 0$, and thus (14) shows that the left D-homomorphism $\beta : t(M) \longrightarrow \operatorname{ext}_D^1(\operatorname{ext}_D^1(M, D), D)$, defined by (15), is surjective, i.e.,

$$L'' \cong \operatorname{coker} \beta = \operatorname{ext}_D^1(\operatorname{ext}_D^1(M, D), D)$$

is 1-pure and $\operatorname{codim}_D(L'') = 1$. Therefore, we get:

$$\begin{cases} \operatorname{ext}_{D}^{1}(\operatorname{ext}_{D}^{1}(M,D),D) \cong D^{1\times t}/(D^{1\times t'}S''+D^{1\times u}T), \\ \operatorname{ext}_{D}^{2}(\operatorname{ext}_{D}^{2}(M,D),D) \cong D^{1\times t'}/(D^{1\times q}F'+D^{1\times u'}T'). \end{cases}$$
(33)

V. A BLOCK-TRIANGULAR FORM OF LINEAR SYSTEMS

The next theorem will play crucial role in what follows.

Theorem 7 ([8]): Let $M = D^{1 \times p}/(D^{1 \times q} R)$ and $N = D^{1 \times s}/(D^{1 \times t} S)$ be two finitely presented left *D*-modules and $R_2 \in D^{r \times q}$ satisfying $\ker_D(.R) = D^{1 \times r} R_2$. Then, the following short exact sequence holds

$$e: 0 \longrightarrow N \xrightarrow{\alpha} E \xrightarrow{\beta} M \longrightarrow 0,$$
 (34)

where the left D-module $E = D^{1 \times (p+s)} / (D^{1 \times (q+t)} Q)$ and

$$Q = \begin{pmatrix} R & -A \\ 0 & S \end{pmatrix} \in D^{(q+t) \times (p+s)},$$
(35)

and A is an element of the abelian group

$$\Omega = \{ A \in D^{q \times s} \mid \exists B \in D^{r \times t} : R_2 A = B S \}$$

$$\alpha : N \longrightarrow E \qquad \beta : E \longrightarrow M$$

$$\delta(\mu) \longmapsto \varrho(\mu (0 \quad I_s)), \quad \varrho(\lambda) \longmapsto \pi(\lambda (I_p \quad 0)^T),$$

where $\pi: D^{1\times p} \longrightarrow M$, $\delta: D^{1\times s} \longrightarrow N$, $D^{1\times (p+s)} \longrightarrow E$ are canonical projections. More precisely, $A \in D^{q\times s}$ is such as the following commutative exact diagram holds

where the left D-homomorphisms ψ and ϕ are defined by

$$\begin{split} \psi : D^{1 \times p} & \longrightarrow & E \\ f_j & \longmapsto & \varrho \left(f_j \left(\begin{array}{c} I_p \\ 0 \end{array} \right) \right), \quad \phi : D^{1 \times q} & \longrightarrow & N \\ e_i & \longmapsto & \delta(A_{i \bullet}) \end{split}$$

and $\{e_i\}_{i=1,\ldots,q}$ is the standard basis of $D^{1\times q}$.

Let us apply Theorem 7 to the short exact sequence (31). Using (27), we have $\gamma'' = \overline{\beta} \circ \gamma$, which yields the following commutative exact diagram

where the left *D*-homomorphism φ is defined by:

$$\varphi: D^{1 \times t'} S'' + D^{1 \times u} T \longrightarrow L' \mu_1 S'' + \mu_2 T \longmapsto \gamma'(\mu_1).$$

If $\{e_i\}_{i=1,...,t'+u}$ is the standard basis of $D^{1\times(t'+u)}$, then $\phi: D^{1\times(t'+u)} \longrightarrow L'$

$$e_i \longmapsto \begin{cases} \gamma'(e_i), & i = 1, \dots, t', \\ 0, & i = t' + 1, \dots, t' + u, \end{cases}$$

and Theorem 7 shows that $A = (I_{t'}^T \quad 0^T)^T \in D^{(t'+u) \times t'}$.

Theorem 8: We have the following left D-isomorphisms

$$t(M) \cong L \cong D^{1 \times (t+t')} / (D^{1 \times (t'+u+q+u')} U),$$
 (37)

where the matrix $U \in D^{(t'+u+q+u')\times(t+t')}$ is defined by:

$$U = \begin{pmatrix} S'' & -I_{t'} \\ T & 0 \\ 0 & F' \\ 0 & T' \end{pmatrix}.$$
 (38)

Proposition 4: Let $E = D^{1 \times (t+t')}/(D^{1 \times (t'+u+q+u')}U)$ the left *D*-module finitely presented by the matrix *U* defined by (38) and $\varrho : D^{1 \times (t+t')} \longrightarrow E$ the canonical projection onto *E*. Then, we have the following left *D*-isomorphisms

Corollary 1: If \mathcal{F} is a left *D*-module, then we have $\ker_{\mathcal{F}}(V.) \cong \ker_{\mathcal{F}}(U.)$, where $V = (F^T \quad T^T)^T$, i.e.,

$$\begin{cases} F \theta = 0, \\ T \theta = 0, \end{cases} \Leftrightarrow \begin{cases} S'' \tau - \upsilon = 0, \\ T \tau = 0, \\ F' \upsilon = 0, \\ T' \upsilon = 0, \end{cases}$$
(41)

and the following invertible transformations:

$$\delta : \ker_{\mathcal{F}}(U.) \longrightarrow \ker_{\mathcal{F}}(V.)$$

$$\begin{pmatrix} \tau \\ \upsilon \end{pmatrix} \longmapsto \theta = \tau,$$

$$\delta^{-1} : \ker_{\mathcal{F}}(V.) \longrightarrow \ker_{\mathcal{F}}(U.)$$

$$\theta \longmapsto \begin{pmatrix} \tau \\ \upsilon \end{pmatrix} = \begin{pmatrix} \theta \\ S'' \theta \end{pmatrix},$$
(42)

Example 6: Let us consider the $D = \mathbb{Q}[\partial_1, \partial_2]$ -module $M = D^{1\times 3}/(D^{1\times 3}R)$ finitely presented by:

$$R = \begin{pmatrix} 0 & \partial_2 - \partial_1 & \partial_2 - \partial_1 \\ \partial_2 & -\partial_1 & -\partial_2 - \partial_1 \\ \partial_1 & -\partial_1 & -2 \partial_1 \end{pmatrix} \in D^{3 \times 3}.$$

The D-module M admits the finite free resolution

$$0 \longrightarrow D \xrightarrow{.R_2} D^{1 \times 3} \xrightarrow{.R} D^{1 \times 3} \xrightarrow{\pi} M \longrightarrow 0,$$

where $R_2 = (\partial_1 \quad -\partial_1 \quad \partial_2)$. Then, the defects of exactness of the complex $0 \leftarrow D \leftarrow D^3 \leftarrow D^3 \leftarrow 0$ are:

$$\begin{cases} \operatorname{ext}_D^0(M, D) \cong \ker_D(R.) = Q D, \\ \operatorname{ext}_D^1(M, D) \cong \ker_D(R_2.)/(R D^3) = (R' D^2)/(R D^3), \\ \operatorname{ext}_D^2(M, D) \cong D/(R_2 D^3), \end{cases}$$

$$Q = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad R' = \begin{pmatrix} 1 & 0 \\ 1 & -\partial_2 \\ 0 & -\partial_1 \end{pmatrix}$$
$$Q' = 0, \quad S' = I_2, \quad F' = R', \quad T' = 0.$$

We have Q' = 0, $S' = I_2$, F' = R', T' = 0,

$$S = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}, \quad T = 0,$$
$$R'' = \begin{pmatrix} 0 & \partial_2 - \partial_1 & \partial_2 - \partial_1 \\ -1 & 1 & 2 \end{pmatrix},$$
$$S'' = \begin{pmatrix} 0 & \partial_2 - \partial_1 \\ -1 & 1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & \partial_2 - \partial_1 \\ \partial_2 & -\partial_1 \\ \partial_1 & -\partial_1 \end{pmatrix}$$

Then, (29) and (33) yield:

$$\begin{cases} t(M) \cong (D^{1\times 2} S)/(D^{1\times 3} R) \cong L = D^{1\times 2}/(D^{1\times 3} F), \\ \exp^{1}_{D}(\operatorname{ext}^{1}_{D}(M, D), D) \cong L'' = D^{1\times 2}/(D^{1\times 2} S''), \\ \exp^{2}_{D}(\operatorname{ext}^{2}_{D}(M, D), D) \cong L' = D^{1\times 2}/(D^{1\times 3} R'). \end{cases}$$

Using Theorem 8, $t(M) \cong E = D^{1 \times 4}/(D^{1 \times 5}U)$, where:

$$U = \begin{pmatrix} 0 & \partial_2 - \partial_1 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -\partial_2 \\ 0 & 0 & 0 & -\partial_1 \end{pmatrix}.$$

Using (41), the following equivalences hold:

$$\begin{cases} \partial_{2} \theta_{2} - \partial_{1} \theta_{2} = 0, \\ \partial_{2} \theta_{1} - \partial_{1} \theta_{2} = 0, \\ \partial_{1} \theta_{1} - \partial_{1} \theta_{2} = 0, \end{cases} \Leftrightarrow \begin{cases} \partial_{2} \tau_{2} - \partial_{1} \tau_{2} - v_{1} = 0, \\ -\tau_{1} + \tau_{2} - v_{2} = 0, \\ v_{1} = 0, \\ v_{1} - \partial_{2} v_{2} = 0, \\ -\partial_{1} v_{2} = 0, \\ \partial_{2} \tau_{2} - \partial_{1} \tau_{2} = 0, \\ v_{1} = 0, \\ \partial_{1} v_{2} = 0, \\ \partial_{2} v_{2} = 0. \end{cases}$$

Then, we obtain $v_1 = 0$, $v_2 = c$, $\tau_2 = f(x_1 + x_2)$ and $\tau_1 = f(x_1 + x_2) + c$, where f is an arbitrary smooth function and c an arbitrary constant, and using (42), we obtain the following general solution

$$\left(\begin{array}{c} \theta_1\\ \theta_2\end{array}\right) = \left(\begin{array}{c} \tau_1\\ \tau_2\end{array}\right) = \left(\begin{array}{c} f(x_1+x_2)+c\\ f(x_1+x_2)\end{array}\right)$$

of the first linear PD system defined in (43).

Using the isomorphisms $\chi: L \longrightarrow t(M)$ defined by (23) and $\phi^{-1}: E \longrightarrow L$ defined by (40), we obtain the following short exact sequence of left *D*-modules:

$$0 \longrightarrow E \xrightarrow{i \circ \chi \circ \phi^{-1}} M \xrightarrow{\rho} M/t(M) \longrightarrow 0.$$
 (44)

Since $M/t(M) = D^{1 \times p} / \ker_D(.Q) = D^{1 \times p} / (D^{1 \times t} S)$, we get the commutative exact diagram

where $\varphi: D^{1 \times t} S \longrightarrow L$ is defined by $\varphi(S_{j \bullet}) = \gamma(g_j)$, where $\{g_j\}_{j=1,\dots,t}$ is the standard basis of $D^{1 \times t}$. Using the left *D*-homomorphism $\phi: L \longrightarrow E$ defined by (39), we get the following commutative exact diagram

which induces $\tau: D^{1 \times t} S \longrightarrow E$ defined by $\tau = \phi \circ \varphi$, and thus the following left *D*-homomorphism:

$$\begin{array}{rcl} \theta: D^{1\times t} & \longrightarrow & E\\ f_j & \longmapsto & \rho(f_j \left(I_t & 0 \right)), \quad j=1,\ldots,t. \end{array}$$

Finally, applying Theorem 7 to the short exact sequence (44) with θ , we obtain the following main theorem.

Theorem 9: We have the following left D-isomorphism

$$M \cong D^{1 \times (p+t+t')} / (D^{1 \times (t+t'+u+q+u')} P), \qquad (45)$$

where $P \in D^{(t+t'+u+q+u')\times(p+t+t')}$ is defined by:

$$P = \begin{pmatrix} S & -I_t & 0\\ 0 & S'' & -I_{t'}\\ 0 & T & 0\\ 0 & 0 & F'\\ 0 & 0 & T' \end{pmatrix}.$$
 (46)

Proposition 5: Let O be the left D-module finitely presented by the matrix P defined by (46), namely, $O = D^{1 \times (p+t+t')}/(D^{1 \times (t+t'+u+q+u')}P)$, and $\vartheta : D^{1 \times (p+t+t')} \longrightarrow O$ the canonical projection onto O. Then, the left D-homomorphism defined by

$$\begin{aligned} \varpi &: M & \longrightarrow & O \\ \pi(\lambda) & \longmapsto & \vartheta(\lambda \left(I_p \quad 0 \right)), \end{aligned}$$
 (47)

is an isomorphism and its inverse ϖ^{-1} is defined by

$$\begin{aligned} \varpi^{-1} : O &\longrightarrow M \\ \vartheta(\mu) &\longmapsto \pi \left(\mu \begin{pmatrix} I_p \\ S \\ S''S \end{pmatrix} \right). \end{aligned} (48)$$

Corollary 2: If \mathcal{F} is a left D-module, then we have

$$R \eta = 0 \quad \Leftrightarrow \quad \begin{cases} S \eta - \tau = 0, \\ S'' \tau - \upsilon = 0, \\ T \tau = 0, \\ F' \upsilon = 0, \\ T' \upsilon = 0. \end{cases}$$
(49)

and the following invertible transformations:

$$\chi : \ker_{\mathcal{F}}(P.) \longrightarrow \ker_{\mathcal{F}}(R.)$$

$$\begin{pmatrix} \zeta \\ \tau \\ \upsilon \end{pmatrix} \longmapsto \eta = \zeta,$$

$$\chi^{-1} : \ker_{\mathcal{F}}(R.) \longrightarrow \ker_{\mathcal{F}}(P.)$$

$$\eta \longmapsto \begin{pmatrix} \zeta \\ \tau \\ \upsilon \end{pmatrix} = \begin{pmatrix} \eta \\ S\eta \\ S''S\eta \end{pmatrix}.$$
(50)

The linear system $R\eta = 0$ can be integrated in cascade:

- 1) We first integrate the linear system in v formed by last two equations of (49). This linear system has dimension less or equal to dim(D) - 2 (see 1 of Theorem 4). If R_2 has full row rank, then, using (32), this linear system has exactly dim(D) - 2.
- 2) We integrate the inhomogeneous linear system in τ formed by the second and third equations of (49). Its homogenous part has dimension dim(D) 1.
- We integrate the linear inhomogeneous linear system S η = τ using the results developed in [4], [8]. In particular, if *F* is an injective left *D*-module, the linear system ker_{*F*}(*S*.) admits the parametrization ker_{*F*}(*S*.) = *QF^m*. Hence, we only need to find a particular solution η_{*} ∈ *F^p* of the inhomogeneous linear system S η = τ to get the general solution η_{*} + *Q*ξ for all ξ ∈ *F^m* of *R* η = 0.

Example 7: We continue Example 6. Corollary 2 yields

$$\begin{cases} \partial_2 \eta_2 - \partial_1 \eta_2 + \partial_2 \eta_3 - \partial_1 \eta_3 = 0, \\ \partial_2 \eta_1 - \partial_1 \eta_2 - \partial_2 \eta_3 - \partial_1 \eta_3 = 0, \\ \partial_1 \eta_1 - \partial_1 \eta_2 - 2 \partial_1 \eta_3 = 0, \end{cases}$$

$$\Leftrightarrow \begin{cases} \zeta_1 - \zeta_3 - \tau_1 = 0, \\ \zeta_2 + \zeta_3 - \tau_2 = 0, \\ \partial_2 \tau_2 - \partial_1 \tau_2 - v_1 = 0, \\ -\tau_1 + \tau_2 - v_2 = 0, \\ v_1 = 0, \\ v_1 - \partial_2 v_2 = 0, \\ -\partial_1 v_2 = 0, \end{cases} \begin{cases} \zeta_1 = \zeta_3 + f(x_1 + x_2) - c, \\ \zeta_2 = -\zeta_3 - f(x_1 + x_2), \\ \tau_1 = f(x_1 + x_2) + c, \\ \tau_2 = f(x_1 + x_2), \\ v_1 = 0, \\ v_1 = 0, \\ v_2 = c, \end{cases}$$

where ζ_3 is an arbitrary function of $C^{\infty}(\mathbb{R}^2)$, f an arbitrary function of $C^{\infty}(\mathbb{R})$ and c an arbitrary constant. Finally, using (50), the general solution of $R\eta = 0$ is defined by:

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = \begin{pmatrix} \zeta_3(x_1, x_2) - f(x_1 + x_2) + c \\ -\zeta_3(x_1, x_2) - f(x_1 + x_2) \\ \zeta_3(x_1, x_2) \end{pmatrix}.$$

Finally, if ker_D(R_2) $\neq 0$, then the purity filtration of the left $D = A \langle \partial_1, \dots, \partial_n \rangle$ -module M can similarly be obtained by studying the left D-module L''. For more details, see [7].

The existence of the purity filtration of the left *D*-module M is proved by means of *spectral sequences* ([3]). The spectral sequences computing the purity filtration of differential modules have recently been implemented in the GAP4 package homalg by Barakat ([1]). In this paper (see also [7]), we have shown how the purity filtration of a left $D = A\langle\partial_1, \partial_2\rangle$ -module M can be characterized and computed by generalizing the ideas developed in [4]. The results are implemented in the package PURITYFILTRATION.

REFERENCES

- M. Barakat, "Spectral filtrations via generalized morphisms", http: //arxiv.org/abs/0904.0240, 30/04/09, submitted.
- [2] J. E. Björk, Rings of Differential Operators. North Holland, 1979.
- [3] J. E. Björk, Analytic D-modules and Applications. Kluwer, 1993.
- [4] F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras". *Appl. Algebra Engrg. Comm. Comput.*, **16**, 319–376, (2005).
- [5] T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems". *Linear Algebra Appl.*, 428 (2008), 324-381.
- [6] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings. American Mathematical Society, 2001.
- [7] A. Quadrat, An introduction to constructive algebraic analysis and its applications. Lectures at the CIRM, 1, n°2, 2010, 279–469.
- [8] A. Quadrat, D. Robertz, "Baer's extension problem for multidimensional linear systems". *Proceedings of MTNS 2008*, Virginia (USA), (28/07-01/08/08).
- J. J. Rotman, An Introduction to Homological Algebra. Springer, 2nd edition (2009).