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Abstract: The purpose of this paper is to give four new applications of the Quillen-Suslin theorem to
mathematical systems theory. Using a constructive version of the Quillen-Suslin theorem, also known
as Serre’s conjecture, we show how to effectively compute flat outputs and injective parametrizations
of flat multidimensional linear systems. We prove that a flat multidimensional linear system is alge-
braically equivalent to the controllable 1-D dimensional linear systems obtained by setting all but one
functional operator to zero in the polynomial matrix defining the system. In particular, we show that a
flat ordinary differential time-delay linear system is algebraically equivalent to the corresponding ordi-
nary differential system without delay, i.e., the controllable ordinary differential linear system obtained
by setting all the delay amplitudes to zero. We also give a constructive proof of a generalization of
Serre’s conjecture known as Lin-Bose’s conjecture. Moreover, we show how to constructively compute
(weakly) left-/right-/doubly coprime factorizations of rational transfer matrices over a commutative
polynomial ring. The Quillen-Suslin theorem also plays a central part in the so-called decomposition
problem of linear functional systems studied in the literature of symbolic computation. In particular,
we show how the basis computation of certain free modules, coming from projectors of the endomor-
phism ring of the module associated with the system, allows us to obtain unimodular matrices which
transform the system matrix into an equivalent block-triangular or a block-diagonal form. Finally,
we demonstrate the package QuillenSuslin which, to our knowledge, contains the first implemen-
tation of the Quillen-Suslin theorem in a computer algebra system as well as the different algorithms
developed in the paper.

Key-words: Constructive versions of the Quillen-Suslin theorem, Lin-Bose’s conjecture, multidi-
mensional linear systems, flat systems, (weakly) doubly coprime factorizations of rational transfer
matrices, factorization and decomposition of linear functional systems, symbolic computation.
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Applications du théorème de Quillen-Suslin à la théorie des
systèmes multidimensionnels

Résumé : Le but de ce papier est de donner quatre nouvelles applications du théorème de Quillen-
Suslin à la théorie mathématique des systèmes. A l’aide d’une version constructive du théorème de
Quillen-Suslin, aussi connu sous le nom de conjecture de Serre, nous montrons comment calculer de
manière effective les sorties plates et les paramétrisations injectives des systèmes linéaires multidimen-
sionnels plats. Nous prouvons que tout système linéaire multidimensionnel plat est algébriquement
équivalent aux systèmes linéaires 1-D contrôlables obtenus par annulation de tous les opérateurs fonc-
tionnels sauf un dans la matrice polynômiale définissant le système. En particulier, nous montrons que
tout système linéaire différentiel à retard plat est algébriquement équivalent au système différentiel
sans retard, c’est-à-dire, au système linéaire contrôlable d’équations différentielles obtenu en annu-
lant les amplitudes des retards. Nous donnons aussi une preuve constructive d’une généralisation de
la conjecture de Serre appelée conjecture de Lin-Bose. De plus, nous montrons comment calculer
de manière effective des factorisations (faiblement) copremières à gauche et à droite de matrices de
transfert rationnelles sur une algèbre commutative de polynômes. Le théorème de Quillen-Suslin joue
aussi un rôle important dans l’étude du problème de décomposition des systèmes linéaires fonction-
nels étudié dans la littérature du calcul formel. En particulier, nous montrons comment le calcul
de bases de certains modules libres, provenant de projecteurs de l’anneau des endomorphismes du
module associé au système, nous permet de calculer des matrices unimodulaires qui transforment la
matrice du système en une matrice équivalente ayant une forme bloc-triangulaire ou bloc-diagonale.
Finalement, nous décrivons le logiciel QuillenSuslin qui, à notre connaissance, contient la première
implémentation du théorème de Quillen-Suslin dans un système de calcul formel, ainsi que les différents
algorithmes obtenus dans le papier.

Mots-clés : Versions constructives du théorème de Quillen-Suslin, conjecture de Lin-Bose, systèmes
linéaires multidimensionnels, systèmes plats, factorisations doublement (faiblement) copremières de
matrices de transfert rationnelles, factorisation et décomposition des systèmes linéaires fonctionnels,
calcul formel.



Applications of the Quillen-Suslin theorem to multidimensional systems theory 3

1 Introduction

In 1784, Monge studied the integration of certain underdetermined non-linear systems of ordinary
differential equations, namely, systems containing more unknown functions than differential indepen-
dent equations ([31]). He showed how the solutions of these systems could be parametrized by means
of a certain number of arbitrary functions of the independent variable. This problem was called the
Monge problem and it was studied by famous mathematicians such as Hadamard, Hilbert, Cartan
and Goursat. In particular, motivated by problems coming from linear elasticity theory, Hadamard
considered the case of linear ordinary differential equations and Goursat investigated underdetermined
systems of partial differential equations. We refer the reader to [31] for a historical account on the
Monge problem and for the main references.

Within the algebraic analysis approach ([2, 21, 30, 35]), the Monge problem was recently studied
for underdetermined systems of linear partial differential equations in [21, 35, 44, 45, 46] and for linear
functional systems in [5, 6] (e.g., differential time-delay systems, discrete systems). Depending on the
algebraic properties of a certain module M defined over a ring D of functional operators and intrinsi-
cally associated with the linear functional system, we can prove or disprove the existence of different
kinds of parametrizations of the system (i.e., minimal or injective parametrizations, non-minimal
parametrizations, chains of successive parametrizations). Constructive algorithms for checking these
algebraic properties (i.e., torsion, existence of torsion elements, torsion-free, reflexive, projective, sta-
bly free, free) and computing the different parametrizations were recently developed in [5, 44, 45, 46],
implemented in the package OreModules ([5, 6]) and illustrated on numerous examples coming from
mathematical physics and control theory ([5, 6]). Finally, we proved in [5, 44, 45, 46] how the Monge
problem gave answers for the search of potentials in mathematical physics and image representations
in control theory ([41, 42, 65, 66]).

The last results show that the Monge problem is constructively solved for certain classes of linear
functional systems up to a last but important point: we can check whether or not a linear functional
system admits injective parametrizations but we are generally not able to compute one even if some
heuristic methods were presented in [5, 44, 45]. Indeed, the existence of injective parametrizations for
a linear functional system was proved to be equivalent to the freeness of the corresponding module
M . In the case of a linear functional system with constant coefficients, the corresponding ring D of
functional operators is a commutative polynomial ring over a field k of constants. Using the famous
Quillen-Suslin theorem ([56, 58]), also known as Serre’s conjecture ([24, 25]), we then know that free
D-modules are projective ones. Using Gröbner or Janet bases ([5, 11, 44]), we can check whether or
not a module over a commutative polynomial ring is projective. See [3, 11, 20] and the references
therein for introductions to Janet and Gröbner bases. Hence, we can constructively prove the existence
of an injective parametrization for a linear functional system. However, we need to use a constructive
version of the Quillen-Suslin theorem ([15, 19, 23, 27, 29, 37, 61, 62]) to get injective parametrizations
of the corresponding system.

The main purpose of this paper is to recall a general algorithm for computing bases of a free
module over a commutative polynomial ring, give four new applications of the Quillen-Suslin theorem
to mathematical systems theory and demonstrate the implementation of the QuillenSuslin pack-
age ([13]) developed in the computer algebra system MAPLE. To our knowledge, the QuillenSuslin
package is the first package available which performs basis computation of free modules over a commu-
tative polynomial ring with rational and integer coefficients and is dedicated to different applications
coming from mathematical systems theory.

More precisely, the plan of the paper is the following one. In the second section, we recall how the
structural properties of linear functional systems can be constructively studied within the algebraic
analysis approach as well as different results on the Monge problem. A constructive version of the
Quillen-Suslin theorem, which is the main tool we use in the paper, is presented in the third section
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4 A. Fabiańska & A. Quadrat

and the implementation is illustrated on many examples in the Appendix of the paper. We also
describe some heuristic methods that highly simplify the computation of a basis of a free module over
polynomial ring in certain special cases. The constructive version of the Quillen-Suslin theorem and,
in particular the patching procedure, gives us the opportunity to make a new observation concerning
linear functional systems which admit injective parametrizations also called flat multidimensional
systems in mathematical systems theory. In the fourth section, we prove that a flat multidimensional
system is algebraically equivalent to a 1-D flat linear system obtained by setting all but one functional
operator to zero in the system matrix. This result gives an answer to a natural question on flat
multidimensional systems. In particular, we prove that every flat differential time-delay system is
algebraically equivalent to the differential system without delays, namely, the system obtained by
setting to zero all the time-delay amplitudes. In the fifth section, we consider a generalization of
Serre’s conjecture. We recall that Serre’s conjecture conjecture, also known as the Quillen-Suslin
theorem, can be expressed in the language of matrices as follows: every matrix R over a commutative
polynomial ring D = k[x1, . . . , xn] whose maximal minors generate D (unimodular matrix) can be
completed to a square invertible matrix over D (i.e., its determinant is a non-zero element of the
field k). The generalization, stated by Lin and Bose in [26] and first proved by Pommaret in [43]
by means of algebraic analysis, can be formulated as the possibility of completing a matrix R whose
maximal minors divided by their greatest common divisor d generate D to a square polynomial
matrix whose determinant equals d. Serre’s conjecture is then the special case where d = 1. Using the
Quillen-Suslin theorem, we give a constructive algorithm for computing such a completion. Using the
possibility of computing basis of a free module in our implementation QuillenSuslin, this algorithm
has been implemented in this package. In the sixth section, we study the existence of (weakly) left-
/right-coprime factorizations of rational transfer matrices using recent results developed in [50]. We
give algorithms for computing such factorizations using the constructive version of the Quillen-Suslin
theorem. These results constructively solve open questions in the literature of multidimensional linear
systems (see [63, 64] and the references therein). Finally, we show that the constructive Quillen-Suslin
theorem also plays an important role in the decomposition problem of linear functional systems studied
in the literature of symbolic computation. See [9] and the references therein for more details. The
main idea is to transform the system matrix into an equivalent block-triangular or a block-diagonal
form ([9, 10]).

The different algorithms presented in the paper have been implemented in the package Quillen-
Suslin based on the library Involutive ([3]) (an OreModules ([6]) version will be soon available).
The Appendix illustrates the main procedures of the QuillenSuslin package on different examples
taken from the literature ([19, 23, 38, 61]). The package QuillenSuslin also contains a completion
algorithm for unimodular matrices over Laurent polynomial rings described in [36, 38]. See also [1] for
a recent algorithm. In [38], Park explains the importance and the meaning of the completion problem
of unimodular matrices over Laurent polynomial rings to signal processing and gives an algorithm
for translating this problem to a polynomial case. Park’s results can also be used for computing flat
outputs of δ-flat multidimensional linear systems ([32, 33]). See [5] for another constructive algorithm
and [6] for illustrations on different explicit examples.

Notation. In what follows, we shall denote by k a field, D = k[x1, . . . , xn] a commutative polynomial
ring with coefficients in k, D1×p the D-module formed by the row vectors of length p with entries
in D and Dq×p the set of q × p-matrices with entries in D. F will always denote a D-module. We
denote by RT the transpose of the matrix R and by Ip the p× p identity matrix. Finally, the symbol
, means “by definition”.

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 5

2 A module-theoretic approach to systems theory

Let D = k[x1, . . . , xn] be a commutative polynomial ring over a field k and R ∈ Dq×p. We recall that
a matrix R is said to have full row rank if the first syzygy module of the D-module D1×q R formed by
the D-linear combinations of the rows of R, namely,

kerD(.R) , {λ ∈ D1×p | λR = 0},

is reduced to 0. In other words, λR = 0 implies λ = 0, i.e., the rows of R are D-linearly independent.

The following definitions of primeness are classical in systems theory.

Definition 1 ([34, 62, 66]). Let D = R[x1, . . . , xn] be a commutative polynomial ring, R ∈ Dq×p a
full row rank matrix, J the ideal generated by the q × q minors of R and V (J) the algebraic variety
defined by:

V (J) = {ξ ∈ Cn | P (ξ) = 0, ∀ P ∈ J}.

1. R is called minor left-prime if dimC V (J) ≤ n− 2, i.e., the greatest common divisor of the q× q
minors of R is 1.

2. R is called weakly zero left-prime if dimC V (J) ≤ 0, i.e., the q × q minors of R may only vanish
simultaneously in a finite number of points of Cn.

3. R is called zero left-prime if dimC V (J) = −1, i.e., the q × q minors of R do not vanish simulta-
neously in Cn.

The previous classification plays an important role in multidimensional systems theory. See [34,
62, 66] and the references therein for more details.

The purpose of this section is twofold. We first recall how we can generalize the previous clas-
sification for general multidimensional linear systems, i.e., systems which are not necessarily defined
by full row rank matrices. We also explain the duality existing between the behavioural approach to
multidimensional systems ([34, 41, 65, 66]) and the module-theoretic one ([44, 45, 46]). See also [65]
for a nice introduction.

In what follows, D will denote a commutative polynomial ring with coefficients in a field k. In
particular, we shall be interested in commutative polynomial rings of functional operators such as
partial differential operators, differential time-delay operators or shift operators. Let us consider a
matrix R ∈ Dq×p and a D-module F , namely:

∀ f1, f2 ∈ F , ∀ a1, a2 ∈ D : a1 f1 + a2 f2 ∈ F .

If we define the following D-morphism, namely, D-linear map,

.R : D1×q .R−→ D1×p,

λ = (λ1 . . . λq) 7−→ (.R)(λ) = λR,

where D1×p denotes the D-module of row vectors of length p with entries in D, then the cokernel of
the D-morphism .R is defined by:

M = D1×p/(D1×q R).

The D-module M is said to be presented by R or simply finitely presented ([5, 57]). Moreover, we can
also define the system or behaviour as follows:

kerF (R.) , {η ∈ Fp | Rη = 0}.

RR n° 6126



6 A. Fabiańska & A. Quadrat

As it was noticed by Malgrange in [30], the D-module M and the system kerF (R.) are closely related.
As this relation will play an important role in what follows, we shall explain it in details. In order to
do that, let us first introduce a few classical definitions of homological algebra. We refer the reader
to [57] for more details.

Definition 2. 1. A sequence (Mi, di : Mi −→ Mi−1)i∈Z of D-modules Mi and D-morphisms
di : Mi −→Mi−1 is a complex if we have:

∀ i ∈ Z, im di ⊆ ker di−1.

We denote the previous complex by:

. . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . . (1)

2. The defect of exactness of the complex (1) at Mi is defined by:

H(Mi) = ker di/im di+1.

3. The complex (1) is said to be exact at Mi if we have:

H(Mi) = 0 ⇐⇒ ker di = im di+1.

4. The complex (1) is exact if:
∀ i ∈ Z, ker di = im di+1.

5. The complex (1) said to be a split exact sequence if (1) is exact and if there exist D-morphisms
si : Mi−1 −→Mi satisfying the following conditions:

∀ i ∈ Z,

{
si+1 ◦ si = 0,
si ◦ di + di+1 ◦ si+1 = idMi .

6. A finite free resolution of a D-module M is an exact sequence of the form

0 −→ D1×pm
.Rm−−−→ . . .

.R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0. (2)

where pi ∈ Z+ = {0, 1, 2, . . .}, Ri ∈ Dpi×pi−1 , and the D-morphism .Ri is defined by:

.Ri : D1×pi −→ D1×pi−1

λ 7−→ (.Ri)(λ) = λRi.

The next classical result of homological algebra will play a crucial role in what follows.

Theorem 1 ([57]). Let F be a D-module, M a D-module and (2) a finite free resolution of M . Then,
the defects of exactness of the following complex

. . .
R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0, (3)

where the D-morphism Ri. : Fpi−1 −→ Fpi is defined by

∀ η ∈ Fpi−1 , (Ri.)(η) = Ri η,

only depend on M and F . Up to an isomorphism, the defects of exactness are denoted by:{
ext0D(M,F) ∼= kerF (R1.),
extiD(M,F) ∼= kerF (Ri+1.)/(Ri Fpi), i ≥ 1.

Finally, we have ext0D(M,F) = homD(M,F), where homD(M,F) denotes the D-module of D-
morphisms from M to F .

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 7

We refer the reader to Example 13 for explicit computations of extiD(N,D), i ≥ 0.

Coming back to the D-module M , we have the following beginning of a finite free resolution of M :

D1×q .R−→ D1×p π−→M −→ 0,
λ 7−→ λR

(4)

where π denotes the D-morphism which sends elements of D1×p to their residue classes in M . If
we “apply the left-exact contravariant functor” homD(·,F) to (4) (see [57] for more details), by
Theorem 1, we obtain the following exact sequence:

Fq R.←− Fp ←− homD(M,F)←− 0.
R η ←− [ η

This implies the following important isomorphism ([30]):

kerF (R.) = {η ∈ Fp | Rη = 0} ∼= homD(M,F). (5)

For more details, see [5, 30, 34, 46, 65] and the references therein. In particular, (5) gives an intrinsic
characterization of the F-solutions of the system kerF (R.). It only depends on two mathematical
objects:

1. The finitely presented D-module M which algebraically represents the linear functional system.

2. The D-module F which represents the “functional space” where we seek the solutions of the
system.

If D is now a ring of functional operators (e.g., differential operators, time-delay operators, dif-
ference operators), then the issue of understanding which F is suitable for a particular linear system
has long been studied in functional analysis and is still nowadays a very active subject of research.
It does not seem that constructive algebra and symbolic computation can propose new methods to
handle this functional analysis problem. However, they are very useful for classifying homD(M,F) by
means of the algebraic properties of the D-module M . Indeed, a large classification of the properties
of modules is developed in module theory and homological algebra. See [57] for more information.
Let us recall a few of them.

Definition 3 ([57]). Let D be a commutative polynomial ring with coefficients in a field k and M a
finitely presented D-module. Then, we have:

1. M is said to be free if it is isomorphic to D1×r for a non-negative integer r, i.e.:

M ∼= D1×r, r ∈ Z+ = {0, 1, 2 . . .}.

2. M is said to be stably free if there exist two non-negative integers r and s such that:

M ⊕D1×s ∼= D1×r.

3. M is said to be projective if there exist a D-module P and non-negative integer r such that:

M ⊕ P ∼= D1×r.

RR n° 6126



8 A. Fabiańska & A. Quadrat

4. M is said to be reflexive if the canonical map

εM : M −→ homD(homD(M,D), D),

defined by
∀ m ∈M, ∀ f ∈ homD(M,D) : εM (m)(f) = f(m),

is an isomorphism, where homD(M,D) denotes the D-module of D-morphisms from M to D.

5. M is said to be torsion-free if the submodule of M defined by

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0}

is reduced to the zero module. t(M) is called the torsion submodule of M and the elements of
t(M) are the torsion elements of M .

6. M is said to be torsion if t(M) = M , i.e., every element of M is a torsion element.

Let K = Q(D) = k(x1, . . . , xn) be the quotient field of D ([57]) and M a finitely presented D-
module. We call the rank of M over D, denoted by rankD(M), the dimension of the K-vector space
K ⊗D M obtained by extending the scalars of M from D to K, i.e.:

rankD(M) = dimK(K ⊗D M).

We can check that if M is a torsion D-module, we then have K ⊗DM = 0, a fact which implies that
rankD(M) = 0. See [57] for more details.

Let us recall a few results about the notions previously introduced in Definition 3.

Theorem 2 ([57]). Let D = k[x1, . . . , xn] be a commutative polynomial ring with coefficients in a
field k. We have the following results:

1. We have the implications among the previous concepts:

free =⇒ stably free =⇒ projective =⇒ reflexive =⇒ torsion-free.

2. If D = k[x1], then D is a principal ideal domain − namely, every ideal of D is principal, i.e.,
it can be generated by one element of D − and every finitely generated torsion-free D-module is
free.

3. (Serre theorem [11]) Every projective module over D is stably free.

4. (Quillen-Suslin theorem [56, 58]) Every projective module over D is free.

The famous Quillen-Suslin theorem will play an important role in what follows. We refer to [24, 25]
for the best introductions nowadays available on this subject.

The next theorem gives some characterizations of the definitions given in Definition 3.

Theorem 3 ([5, 35, 46]). Let D = k[x1, . . . , xn] be a commutative polynomial ring over a field k,
R ∈ Dq×p and the finitely presented D-modules:

M = D1×p/(D1×q R), N = D1×q/(D1×pRT ).

We then have the equivalences between the first two columns of Figure 1.

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 9

Combining the results of Theorem 3 and the Quillen-Suslin theorem (see 4 of Theorem 2), we then
obtain a way to check whether or not a finitely presented D-module M has some torsion elements or
is torsion-free, reflexive, projective, stably free or free. We point out that the explicit computation
of extiD(N,D) can always be done using Gröbner or Janet bases. See [5, 44, 45] for more details and
for the description of the corresponding algorithms. We also refer the reader to [4, 6] for the library
OreModules in which the different algorithms were implemented as well as to the large library of
examples of OreModules which illustrates them. Finally, see also [3, 11, 20] and the references
therein for an introduction to Gröbner and Janet bases.

Remark 1. The D-module
N = D1×q/(D1×pRT )

is called the transposed module of M = D1×p/(D1×q R) even if N depends on M only up to a projective
equivalence ([47]), namely, if M = D1×r/(D1×sR′) and N ′ = D1×s/(D1×r R′T ), then there exist two
projective D-modules P and P ′ such that N ⊕ P ∼= N ′ ⊕ P ′ ([57]). However, for every D-module
F , we have extiD(N ⊕ P,F) ∼= extiD(N,F) ⊕ extiD(P,F) and, for i ≥ 1, extiD(P,F) = 0 as P is a
projective D-module ([57]). Hence, we then get extiD(N,F) ∼= extiD(N ′,F), for i ≥ 1. Hence, the
results of Theorem 3 do not depend on the choice of a presentation of M , i.e., on R. In what follows,
we shall sometimes denote N by T (M).

In order to explain why the definitions given in Definition 3 extend the concepts of primeness
defined in Definition 1, we first need to introduce some more definitions.

Definition 4 ([2]). 1. If M is a non-zero finitely presented D-module, then the grade jD(M) of
M is defined by:

jD(M) = min {i ≥ 0 | extiD(M,D) 6= 0}.

2. If M is a non-zero finitely presented D-module, the dimension dimD(M) of M is defined by

dimD(M) = Kdim(D/
√

annD(M)),

where Kdim denotes the Krull dimension ([57]) and:

annD(M) = {a ∈ D | aM = 0},
√

annD(M) = {a ∈ D | ∃ l ∈ Z+ : alM = 0}.

We are now in position to state an important result.

Theorem 4 ([2, 35]). If M is a non-zero finitely presented D = k[x1, . . . , xn]-module, where k is a
field containing Q, we then have:

jD(M) + dimD(M) = n.

Let us suppose that R has full row rank and let us consider the finitely presented D-module
M = D1×p/(D1×q R). Using the notations of Definition 1 and the fact that

dimD(N) = dimCV (J),

where N = T (M) = D1×q/(D1×pRT ) is then a torsion D-module, i.e., it satisfies ext0D(M,D) =
homD(M,D) = 0, by Theorem 4, we then obtain:

jD(N) = n− dimCV (J) ≥ 1.

Hence, by Theorems 3 and 4, we obtain that R is minor left-prime (resp., zero left-prime) iff the
D-module M is torsion-free (resp., projective, i.e., free by the Quillen-Suslin theorem stated in 4 of
Theorem 2). See [46] for more details and the extension of these results to the case of non-commutative
rings of differential operators.

RR n° 6126



10 A. Fabiańska & A. Quadrat

Module M extiD(N,D) dimD(N) Primeness

With torsion t(M) ∼= ext1D(N,D) n− 1 ∅

Torsion-free ext1D(N,D) = 0 n− 2 Minor left-prime

Reflexive extiD(N,D) = 0, n− 3
i = 1, 2

. . . . . . . . . . . .

. . . extiD(N,D) = 0, 0 Weakly zero
1 ≤ i ≤ n− 1 left-prime

Projective extiD(N,D) = 0, -1 Zero left-prime
1 ≤ i ≤ n

Figure 1: Classification of some module properties

We finally obtain the table given in Figure 1 which sums up the different results previously obtained.
We note that the last two columns of this table only hold when the matrix R has full row rank.

To finish, we explain what the system interpretations of the definitions given in Definition 3 are.
In particular, these interpretations solve the Monge problem stated in the introduction of the paper.
In order to do that, we also need to introduce a few more definitions.

Definition 5 ([57]). 1. A D-module F is called injective if, for every D-module M , and, for all
i ≥ 1, we have extiD(M,F) = 0.

2. A D-module F is called cogenerator if, for every D-module M , we have:

homD(M,F) = 0 =⇒ M = 0.

Roughly speaking, an injective cogenerator is a space rich enough for seeking solutions of linear
systems of the form Ry = 0, where R ∈ Dq×p is any matrix and y ∈ Fp. In particular, using (5),
if F is a cogenerator D-module and M 6= 0, then homD(M,F) 6= 0, meaning that the corresponding
system kerF (R.) is not empty. Finally, if F is an injective cogenerator D-module, then we can prove
that any complex of the form (3) is exact at Fpi , i ≥ 1, if and only if the corresponding complex (2)
is exact. See [34, 41, 65] and the references therein for more details.

The following result proves that there always exists an injective cogenerator.

Theorem 5 ([57]). An injective cogenerator D-module F exists for every ring D.

Let us give important examples of injective cogenerator modules.
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 11

Example 1. If Ω is an open convex subset of Rn, then the space C∞(Ω) (resp., D′(Ω)) of smooth real
functions (resp., real distributions) on Ω is an injective cogenerator module over the ring R[∂1, . . . , ∂n]
of differential operators with coefficients in R, where we have denoted by ∂i = ∂/∂xi ([34, 30, 41]).

Example 2. Let k be a field, F = kZn
+ be the set of sequences with values in k and D = k[x1, . . . , xn]

be the ring of shift operators, namely,

∀ f ∈ F , i = 1, . . . , n, (xi f)(µ) = f(µ+ 1i),

where µ = (µ1, . . . , µn) ∈ Zn+ and µ+ 1i = (µ1, . . . , µi−1, µi + 1, µi+1, . . . , µn). Then, F is an injective
D-module ([34, 65]).

We have the following important corollary of Theorem 3 which solves the Monge problem in the
case of linear functional systems with constant coefficients. See [67] and the references therein and
the introduction of the paper.

Corollary 1 ([5, 44]). Let F be an injective cogenerator D = k[x1, . . . , xn]-module, R ∈ Dq×p and
M = D1×p/(D1×q R). Then, we have the following results:

1. There exists Q1 ∈ Dq1×q2 , where p = q1, such that we have the exact sequence

Fq R.←− Fq1 Q1.←−− Fq2 ,

i.e., kerF (R.) = Q1 Fq2 , iff the D-module M is torsion-free.

2. There exist Q1 ∈ Dq1×q2 and Q2 ∈ Dq2×q3 such that we have the exact sequence

Fq R.←− Fq1 Q1.←−− Fq2 Q2.←−− Fq3 ,

i.e., kerF (R.) = Q1 Fq2 and kerF (Q1.) = Q2 Fq3 , iff the D-module M is reflexive.

3. There exists a chain of n successive parametrizations, namely, for i = 1, . . . , n, there exist
Qi ∈ Dqi×qi+1 such that we have the following exact sequence

Fq R.←− Fq1 Q1.←−− . . . Qn−1.←−−−− Fqn
Qn.←−− Fqn+1 ,

i.e., kerF (R.) = Q1 Fq2 and kerF (Qi.) = Qi+1 Fqi+1 , i = 1, . . . , n − 1, iff the D-module M is
projective.

4. There exist Q ∈ Dp×m and T ∈ Dm×p such that T Q = Im and the sequence

Fq R.←− Fp Q.←− Fm ←− 0, (6)

is exact, i.e., kerF (R.) = QFm, and iff the D-module M is free.

We refer the reader to [5, 44, 45, 46, 53, 54] for the solutions of the Monge problem for different
classes of linear functional systems with variables coefficients such as partial differential, differential
time-delay or difference equations.

The matrices Qi defined in Corollary 1 are called parametrizations ([5, 44, 45, 46]). Indeed, from
1 of Corollary 1, if M is torsion-free, then there exists a matrix of operators Q1 ∈ Dq1×q2 which
satisfies kerF (R.) = Q1 Fq2 . This means that any solution η ∈ Fp satisfying Rη = 0 is of the form
η = Q1 ξ for a certain ξ ∈ Fq2 . In the behaviour approach ([42]), the parametrization is called an image
representation of kerF (R.) ([41, 65, 66]). We point out that the parametrizations Qi are obtained by
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12 A. Fabiańska & A. Quadrat

computing extiD(N,D) (see Theorem 3). Hence, checking whether or not a D-module is torsion-free,
reflexive or projective gives the corresponding successive parametrizations. We refer to [5, 44, 45, 46]
for more details, the extension of the previous results to non-commutative algebras of functional
operators and the implementation of the corresponding algorithms in the library OreModules.
Finally, the matrix Q defined in 4 of Corollary 1 is called an injective parametrization of kerF (R.) as
every F-solution of kerF (R.) has the form η = Qξ for a certain ξ ∈ Fm and we have

ξ = (T Q) ξ = T η,

i.e., ξ is uniquely defined by η ∈ kerF (R.). At this stage, it is important to point out that no general
algorithm has been developed to get injective parametrizations when the D-module M is free. It is
the main purpose of this paper to constructively study this question and to apply the computation of
injective parametrizations to some open questions appearing in mathematical systems theory.

Finally, we point out that, if M is a free D-module, then there always exist Q ∈ Dp×m and
T ∈ Dm×p such that, for every D-module F , we have the exact sequence (6). Indeed, let us recall two
standard arguments of homological algebra.

Proposition 1 ([57]). 1. Let us consider the following short exact sequence:

M ′ f−→M
g−→M ′′ −→ 0.

If M ′′ is a projective D-module, then the previous exact sequence splits (see 5 of Definition 2).

2. Let F be a D-module. The functor homD(·,F) transforms split exact sequences of D-modules
into split exact sequences of D-modules.

By 1 of Proposition 1, we obtain that D1×q .R−→ D1×p .Q−→ D1×m −→ 0 is a splitting exact sequence
and applying the functor homD(·,F) to it, by 2 of Proposition 1, we obtain the splitting exact sequence
(6). Hence, the assumption that F is an injective cogenerator D-module is only important for the
converse implication of 6 of Corollary 1.

Explicit examples of computation of parametrizations can be found in [5, 6, 44, 45, 46] as well
in the OreModules large library of examples ([4]). We refer the reader to these references and to
Section 4 for the computation of injective parametrizations. However, let us give a simple example in
order to illustrate the previous results.

Example 3. Let us consider the ring D = Q[∂1, ∂2, ∂3] of differential operators with rational coeffi-
cients (∂i = ∂/∂xi), the matrix R = (∂1 ∂2 ∂3) defining the so-called divergent operator in R3 and the
finitely presented D-module M = D1×3/(DR). Let us check whether or not the D-module M has
some torsion elements or is torsion-free, reflexive or projective, i.e., free by the Quillen-Suslin theorem.
In order to do that, we define the D-module N = D/(D1×3RT ). A finite free resolution of N can
easily be computed by means of Gröbner or Janet bases. We obtain the following exact sequence

0 −→ D
.P3−−→ D1×3 .P2−−→ D1×3 .RT

−−→ D
σ−→ N −→ 0,

where σ denotes the canonical projection onto N and:

P2 =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 , P3 = R.
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 13

We note that P2 corresponds to the so-called curl operator whereas RT is the gradient operator. Then,
the defects of exactness of the following complex

0←− D .PT
3←−− D1×3 .PT

2←−− D1×3 .R←− D ←− 0 (7)

are defined by: 
ext0D(N,D) ∼= kerD(.R),
ext1D(N,D) ∼= kerD(.PT2 )/(DR),
ext2D(N,D) ∼= kerD(.PT3 )/(D1×3 PT2 ),
ext3D(N,D) ∼= D/(D1×3 PT3 ).

Using the fact that R has full row rank, we obtain that ext0D(N,D) ∼= kerD(.R) = 0, which is equivalent
to say that N is a torsion D-module. Now computing the syzygy modules kerD(.PT2 ) and kerD(.PT3 )
by means of Gröbner or Janet bases, we obtain that

kerD(.PT2 ) = DR, kerD(.PT3 ) = D1×3 PT2 ,

which shows that ext1D(N,D) = ext2D(N,D) = 0. Finally, we can easily check that 1 does not belong
to the ideal I = D∂1 +D∂2 +D∂3 of D, and thus, we have:

ext3D(N,D) ∼= D/I 6= 0.

Using Theorem 3, we obtain that M is a reflexive but not a projective, i.e., not a free D-module.
This last fact can also be checked as R has full row rank and the dimension dimD(N) is 0 as the
corresponding system is defined by the gradient operator, namely,

∂1 y = 0,
∂2 y = 0,
∂3 y = 0,

whose solution is a constant, i.e., the solution of the system only depends on “a function of zero
independent variables”. Hence, by Theorem 4, we obtain that jD(N) = 3, meaning that the first
non-zero extiD(N,D) has index 3. By Theorem 3, we then get that M is a reflexive D-module but not
a projective one.

Finally, if we consider the D-module F = C∞(Ω), where Ω is an open convex subset of R3, using
Example 1, we obtain that F is an injective cogenerator D-module. Hence, if we apply the functor
homD(·,F) to the complex (7), we then obtain the following exact sequence:

F PT
3 .−−→ F3 PT

2 .−−→ F3 R.−→ F −→ 0.

We find again the classical results in mathematical physics that the smooth solutions on an open convex
subset of R3 of the divergence operator are parametrized by the curl operator and the solutions of the
curl operator are parametrized by the gradient operator.

The only point let open is to constructively compute injective parametrizations of linear functional
systems defining free modules over a commutative polynomial ring D. Indeed, checking the vanishing
of the extiD(N,D), we generally obtain a successive chain of n parametrizations but not an injective
one. In the case of linear systems of partial differential equations with polynomial or rational coef-
ficients, we have recently solved this problem in [53, 54, 55] using a constructive proof of a famous
result in non-commutative algebra due to Stafford. However, the same technique cannot be used if we
want an injective parametrization Q of kerF (R.) to have only constant coefficients. The main purpose
of this paper is to solve this problem using a constructive proof of the Quillen-Suslin theorem and to
show some applications of this result to mathematical systems theory.
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14 A. Fabiańska & A. Quadrat

3 The Quillen-Suslin theorem

Since Quillen and Suslin independently proved Serre’s conjecture stating that projective modules over
commutative polynomial rings with coefficients in a field are free, some algorithmic versions of the
proof have been proposed in the literature in order to constructively compute bases of free modules
([15, 19, 27, 29, 37, 59, 60, 61, 62]). We refer the interested reader to Lam’s nice books [24, 25]
concerning Serre’s conjecture.

3.1 Projective and stably free modules

In module theory, it is well-known that a finitely presented D = k[x1, . . . , xn]-module (k is a field)
M = D1×p/(D1×q R), where R ∈ Dq×p, admits a finite free resolution. This is a result is due to
Hilbert ([11]). Moreover, if k is a computable field, we can even construct a finite free resolution of M
using Gröbner or Janet basis ([3, 11, 20]).

A classical result due to Serre proves that every projective D-module is stably free (a stably
free module always being a projective D-module). See [11, 24, 25] for more details. In [53, 55],
a constructive proof of this result was given and the corresponding algorithm was implemented in
OreModules. Let us recall these useful results.

Proposition 2 ( [53, 55]). Let M be a D-module defined by the finite free resolution:

0 −→ D1×pm
.Rm−−−→ . . .

.R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0. (8)

1. If m ≥ 3 and there exists Sm ∈ Dpm−1×pm such that Rm Sm = Ipm , then we have the following
finite free resolution of M

0 −→ D1×pm−1
.Tm−1−−−−→ D1×(pm−2+pm) .Tm−2−−−−→ D1×pm−3

.Rm−3−−−−→ . . .
π−→M −→ 0, (9)

with the following notations:
Tm−1 = (Rm−1 Sm) ∈ Dpm−1×(pm−2+pm),

Tm−2 =
(
Rm−2

0

)
∈ D(pm−2+pm)×pm−3 .

2. If m = 2 and there exists S2 ∈ Dp1×p2 such that R2 S2 = Ip2 , then we have the following finite
free resolution of M

0 −→ D1×p1 .T1−−→ D1×(p0+p2) τ−→M −→ 0, (10)

with the notations T1 = (R1 S2) ∈ Dp1×(p0+p2) and:

τ = π ⊕ 0 : D1×(p0+p2) −→ M

λ = (λ1 λ2) 7−→ τ(λ) = π(λ1).

Remark 2. We note that Proposition 8 holds for every (commutative) ring D.

Let R ∈ Dq×p and let us suppose that the D-module M = D1×p/(D1×q R) is projective (using the
results summed up in Figure 1, we can constructively check this result). Using 1 of Proposition 1, we
obtain that the exact sequence (8) splits (see 5 of Definition 2), and thus, there exists Sm ∈ Dpm−1×pm

such that Rm Sm = Ipm . Repeating inductively the same method with the new finite free resolution
of M , we can assume that we have the finite free resolution of M :

0 −→ D1×p′3 .R′3−−→ D1×p′2 .R′2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0.
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 15

As M is a projective D-module, by 1 of Proposition 1, the previous exact sequence splits and thus,
there exists a matrix S′3 ∈ Dp′2×p

′
3 satisfying R′3 S

′
3 = Ip′3 . By 1 of Proposition 2, we then get the finite

free resolution of M :

0 −→ D1×p′2 .(R′2 S′3)−−−−−−−→ D1×(p1+p
′
3)

.(RT
1 0T )T

−−−−−−−−→ D1×p0 π−→M −→ 0.

Let us denote by T1 = (RT1 0T )T . Again, as M is a projective D-module, by 1 of Proposition 1,
the previous exact sequence splits and there exists S′2 ∈ D(p1+p

′
3)×p

′
2 such that (R′2 S′3)S

′
2 = Ip′2 .

Using 2 of Proposition 2, we obtain the following finite free presentation of the D-module M ′ =
D1×(p0+p

′
2)/(D1×(p1+p

′
3) (T1 S′2))

0 −→ D1×(p1+p
′
3)

.(T1 S′2)−−−−−−→ D1×(p0+p
′
2)

π′−→M ′ −→ 0,

where π′ denotes the standard projection on M ′ and τ : M ′ −→ M is defined by τ(m) = π(λ1), for
all λ = (λ1 λ2) ∈ D1×(p0+p2) satisfying m = π′(λ). Moreover, 2 of Proposition 1 says that τ is an
isomorphism, i.e., M ′ ∼= M , a fact that can be also directly checked. We then obtain the following
result.

Corollary 2. Let D = k[x1, . . . , xn] be a commutative polynomial ring over a field k and R ∈ Dq×p. If
the D-module M = D1×p/(D1×q R) is projective, then there exists a full row rank matrix R′ ∈ Dq′×p′

such that:
M ∼= D1×p′/(D1×q′ R′). (11)

We refer to Example 14 for an illustration of Corollary 2. See also [53, 54, 55].

We note that rankD(M) = rankD(M ′) = p′ − q′.

Finally, we have the following short exact sequence of the D-module M ′

0 −→ D1×q′ .R′−−→ D1×p′ π′−→M ′ −→ 0,

and using the fact that M ′ ∼= M and M is a projective D-module, by 1 of Proposition 1, we obtain
that the previous exact sequence splits and we then get ([5, 57])

M ′ ⊕D1×q′ ∼= D1×p′ ,

which, by 2 of Definition 3, shows that M ∼= M ′ is a stably free D-module.

Corollary 3. (Serre [11, 24, 25] ) Every projective D = k[x1, . . . , xn]-module M is stably free.

3.2 Stably free and free modules

Let M be a stably free module over D = k[x1, . . . , xn], where k is a field. Using Corollary 2, we can
always suppose that M has the form M = D1×p/(D1×q R), where R ∈ Dq×p admits a right-inverse
S ∈ Dp×q. We note that R has then full row rank (λR = 0 ⇒ λ = λRS = 0). Let us characterize
when M is a free D-module.

In order to do that, we first need to introduce a definition.

Definition 6. Let D be a ring. The general linear group GLp(D) is then defined by:

GLp(D) = {U ∈ Dp×p | ∃ V ∈ Dp×p : U V = V U = Ip}.

An element U ∈ GLp(D) is called a unimodular matrix.
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In the case where D = k[x1, . . . , xn], we note that U ∈ GLp(D) iff the determinant detU of U is
invertible in D, i.e., is a non-zero element of k. The following result holds for every (commutative)
ring D.

Lemma 1. Let R ∈ Dq×p be a matrix which admits a right-inverse over D. Then, the D-module
M = D1×p/(D1×q R) is free if and only if there exists U ∈ GLp(D) such that RU = (Iq 0).

Indeed, let us suppose that there exists U ∈ GLp(D) such that RU = (Iq 0) and let us denote
by J = (Iq 0) ∈ Dq×p. We easily check that D1×p/(D1×q J) = D1×(p−q). Moreover, using the facts
that RU = J and U ∈ GLp(D), we obtain the following commutative exact diagram

0 0
↓ ↓

0 −→ D1×q .R−→ D1×p π−→ M −→ 0
‖ ↓ .U

0 −→ D1×q .J−→ D1×p κ−→ D1×(p−q) −→ 0,
↓ ↓
0 0

which proves that M ∼= D1×(p−q), i.e., M is a free D-module of rank p− q.

Conversely, let us suppose that M ∼= D1×(p−q). Combining the isomorphism ψ : M −→ D1×(p−q)

and the short exact sequence

0 −→ D1×q .R−→ D1×p π−→M −→ 0,

we then obtain the following exact sequence:

0 −→ D1×q .R−→ D1×p ψ◦π−−→ D1×(p−q) −→ 0.

If we consider the matrix which corresponds to the D-morphism ψ ◦ π in the canonical bases of D1×p

and D1×(p−q), we then obtain a matrix Q ∈ Dp×(p−q) such that:

∀ λ ∈ D1×p : (ψ ◦ π)(λ) = λQ.

By 1 of Proposition 1, the previous exact sequence splits, i.e., we have

0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0,
.S←− .T←−

or, equivalently, there exists a matrix T ∈ D(p−q)×p such that the following Bézout identities hold
(see [5, 44, 50, 52, 57] for more details):(

R
T

)
(S Q) =

(
Iq 0
0 Ip−q

)
, (S Q)

(
R
T

)
= Ip.

In particular, we obtain that there exists a matrix U = (S Q) ∈ GLp(D) satisfying:

RU = (Iq 0).

Finally, the family {π(Ti)}1≤i≤p−q forms a basis of the free D-module M , where Ti denotes the ith

row of T ∈ D(p−q)×p.

We are now in position to state the famous Quillen-Suslin theorem ([24, 25, 57]).
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 17

Theorem 6 ([56, 58]). (Quillen-Suslin theorem) Let A be a principal ideal domain (e.g., a field k)
and D = A[x1, . . . , xn] a polynomial ring with coefficients in A. Moreover, let R ∈ Dq×p be a matrix
which admits a right-inverse S ∈ Dp×q, i.e., RS = Iq. Then, there exists a unimodular U ∈ GLp(D)
satisfying:

RU = (Iq 0). (12)

Using Lemma 1 and Theorem 6, we obtain the following important corollary.

Corollary 4 ([56, 58]). (Quillen-Suslin) Let A be a principal ideal domain (e.g., a field k) and
D = A[x1, . . . , xn]. Then, every stably free D-module is free.

Moreover, the problem of finding a basis of a free finitely generated D-module M can be reformu-
lated in terms of matrices as follows:

Problem 1. Let R ∈ Dq×p be a matrix which admits a right-inverse over D = k[x1, . . . , xn]. Find a
matrix U ∈ GLp(D) such that RU = (Iq 0).

The previous problem is equivalent to completing R to a square invertible matrix:

U−1 =
(
R
T

)
∈ Dp×p.

The Quillen-Suslin theorem states that Problem 1 has always a solution over a polynomial ring
D = A[x1, . . . , xn] with coefficients in a principal ring A and, in particular, in a field k. In what
follows, an algorithm which computes such a matrix U will be called a QS-algorithm.

Let us consider a matrix R ∈ Dq×p which admits a right-inverse over D and let us denote by Ri
the ith row of R. We note that the row R1 ∈ D1×p admits a right-inverse over D. Let us suppose
that we can find a matrix U1 ∈ GLq(D) satisfying R1 U = (1 0 . . . 0). Then, we have

RU1 =
(

1 0
? R2

)
,

where R2 ∈ D(q−1)×(p−1) and ? denotes a certain element of D(q−1)×1. Hence, we restrict our
considerations to the new matrix R2, which can easily be shown to admit a right-inverse over D,
and reduce Problem 1 to the following one:

Problem 2. Let R ∈ D1×p be a row vector which admits a right-inverse over D. Find a matrix
U ∈ GLp(D) such that RU = (1 0 . . . 0).

The purpose of the next paragraphs is to recall a QS-algorithm solving Problem 2 over a commuta-
tive polynomial ring D = k[x1, . . . , xn] over a computable field k (for instance, k = Q). This algorithm
was implemented in the package QuillenSuslin ([13]). See also the Appendix. We also point out
that a QS-algorithm has also been implemented in QuillenSuslin for the case D = Z[x1, . . . , xn].
Even though there are some differences in the constructive proofs of the Quillen-Suslin theorem de-
veloped in [15, 19, 24, 27, 37, 59, 60, 62], we note that our algorithm is based on the same main idea,
i.e., it proceeds by induction on the number of variables xi in D = k[x1, . . . , xn]. Each inductive step
of the general QS-algorithm reduces the problem to the case with one variable less. A more global
and interesting approach has recently been developed in [29, 61] which needs to be studied with care
in the future.

3.3 Solution of Problem 2 in some special cases

Although the tedious inductive method, which will be explained in the next section, cannot generally
be avoided, there are cases where simpler and faster heuristic methods can be used. We shall first
consider such cases.

RR n° 6126



18 A. Fabiańska & A. Quadrat

3.3.1 Matrices over a principal ideal domain D

We first consider the special case of matrices over a principal ideal domain D (e.g., D = k[x1], k a
field, Z). Let R ∈ Dq×p be a matrix which admits a right-inverse over D. Then, computing the Smith
normal form of R ([42]), we obtain two matrices F ∈ GLq(D) and G ∈ GLp(D) satisfying:

R = F (Iq 0)G.

If we denote by r = p − q, G = (GT1 GT2 )T , where G1 ∈ Dq×p, G2 ∈ Dr×p and G−1 = (H1 H2),
where H1 ∈ Dp×q, H2 ∈ Dp×r, then we get R = F G1, i.e., G1 = F−1R, and thus, we get(

F−1R
G2

)
(H1 H2) = Ip ⇒

(
F−1 0

0 Ir

) (
R
G2

)
(H1 H2) = Ip,

⇒
(

R
G2

)
(H1 H2)

(
F 0
0 Ir

)
= Ip ⇒

(
R
G2

)
(H1 F H2) = Ip,

which solves Problem 1 as we can take U = (H1 F H2) ∈ GLp(D) and T = G2.

3.3.2 (p− 1)× p matrices over an arbitrary commutative ring D

Let us consider the case of a matrix R ∈ D(p−1)×p which admits a right-inverse over a commutative
ring D. If we denote by mi the (p− 1)× (p− 1) minor of R obtained by removing the ith column of
R, then, using the fact R admits right-inverse, we get that the family {mi}1≤i≤p satisfies a Bézout
identity

∑p
i=1 nimi = 1 for certain ni ∈ D and i = 1, . . . , p. Let us denote by:

V =
(

R
(−1)p+1 n1 . . . (−1)2 p np

)
∈ Dp×p.

Expand the determinant of V along the last row, using the Laplace’s formula, we then get detV = 1.
Hence, if we denote by U ∈ Dp×p the inverse of the matrix V , we then obtain RU = (Ip−1 0), which
solves Problem 1.

3.3.3 1× p rows over an arbitrary commutative ring D

We now consider Problem 2, i.e., the case of a row vector f = (f1 . . . fp) ∈ D1×p which admits a
right-inverse over an arbitrary commutative ring D.

Remark 3 (Special form of the row). 1. We note that if one of the components of f is an invertible
element of D, we can then transform the row f into (1 0 . . . 0) by means of trivial elementary
operations. For instance, if f−1

1 ∈ D, then the matrix defined by

W =

(
f−1
1 0
0 Ip−1

)
satisfies detW = f−1

1 ∈ D and f W = (1 f2 . . . fp). Then, simple elementary operations
transform f W into the vector (1 0 . . . 0).

2. Another simple case is when two components of f generate D. Let us suppose that there exist
h1 and h2 ∈ D such that we have the Bézout identity f1h1 + f2h2 = 1 and let us define the
following matrix:

W =

 h1 −f2 0
h2 f1 0
0 0 Ip−2

 .

We easily check that detW = 1 and f W = (1 0 f3 . . . fp). Then, we can reduce f W to
(1 0 . . . 0) by means of elementary operations.
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3. If the ith component of f is 0 or the ideal generated by the elements f1, . . . , fi−1, fi+1, . . . , fp is
already D, then we can follow an idea analogous to the one developed in [53, 55]. Let us suppose
that i = 1, i.e., f1 is a redundant component in the sense that (f2, . . . , fn) = D. Then, there
exist h2, . . . , hp ∈ D satisfying the Bézout equation

∑p
i=2 fi hi = 1. Then, the matrix

W =


1

(1− f1)h2 1
...

. . .
(1− f1)hp 1

 .

satisfies f W = (1 f2 . . . fp) and detW = 1. We can now reduce f W to (1 0 . . . 0) by means
of elementary operations.

In particular, this strategy is always successful when the length p of the row f exceeds the stable
range of the ring D. We note that the stable range of D = R[x1, . . . , xn] is equal to n+ 1. We
refer the reader to [53, 55] for more details.

We note that all the conditions given in Remark 3 can be checked using Gröbner or Janet bases.

The matrix U can also be easily computed in cases where a right-inverse g of the row f has a
special form.

Remark 4 (Special form of the right-inverse). Let g ∈ Dp×1 be the right-inverse of the unimodular
row f ∈ D1×p, i.e., f g=1.

1. Let us suppose that one of the entries of a right-inverse g of f , say g1, is invertible in D. Then,
the following matrix

W =


g1
g2 1
...

. . .
gp 1


satisfies detW = g1 and f W = (1 f2 . . . fp). As g1 is an invertible element of D, then W is a
unimodular matrix and f W can easily be transformed into (1 0 . . . 0) by means of elementary
operations.

2. If two components g1, g2 of g generate the whole ring D, then there exist elements h1, h2 ∈ D
such that g1 h1 + g2 h2 = 1. Then, the matrix defined by

W =


g1 −h2

g2 h1

g3 1
...

. . .
gp 1


satisfies detW = 1 and f W = (1 ? f3 . . . fp), where ? denotes a certain element of D. We can
then reduce f W to (1 0 . . . 0) by means of elementary operations.

Finally, we also note that if f ∈ D1×p admits a right-inverse g over D for which any of the heuristic
methods explained in Remark 3 may be used for gT , then a unimodular matrix V having gT as a
first row can be easily computed. Then, the product f V T = (1 ? . . . ?) can be reduced to the first
standard basis vector by elementary column operations.
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For instance, let us illustrate 1 of Remark 4. In some of the illustrating examples, we shall also use
the notation D = k[z1, . . . , zn] as these examples come from the control theory and signal processing
literatures where zi is commonly used. The independent variables zi, i = 1, . . . , n, usually denote the
variables appearing in the discrete Laplace transform.

Example 4. Let us consider D = Q[z1, z2, z3] and the following row vector:

R = (z2
1 z

2
2 + 1 z2

1 z3 + 1 z1 z
2
2 z3).

We can easily check that R admits the following right-inverse S = (−z2
1 z3 1 z3

1)T . As the second
component of S is invertible over D, we can apply 1 of Remark 4 in order to find a unimodular matrix
U over D which satisfies RU = (1 0 0). Let us define the following elementary matrices:

U1 =

 0 1 0
1 0 0
0 0 1

 , U2 =

 1 0 0
−z2

1 z3 1 0
z3
1 0 1

 .

We then have R (U1 U2) = (1 z2
1 z

2
2 + 1 z1 z

2
2 z3). Finally, if we denote by

U3 =

 1 −z2
1 z

2
2 − 1 −z1 z2

2 z3
0 1 0
0 0 1

 ,

we then have RU = (1 0 0), where the unimodular U = U1 U2 U3 is defined by:

U =

 −z
2
1 z3 z4

1 z
2
2 z3 + z2

1 z3 + 1 z3
1 z

2
2 z

2
3

1 −z2
1 z

2
2 − 1 −z1 z2

2 z3

z3
1 −z3

1 (z2
1 z

2
2 + 1) −z4

1 z
2
2 z+1

 . (13)

3.4 A QS-algorithm for commutative polynomial rings

Over an arbitrary commutative ring A, not every row admitting a right-inverse can be completed to
a unimodular matrix over A. The module-theoretic interpretation of this result is that, over certain
rings, there exist stably free modules which are not free. For instance, using a classical topological
theorem on vector fields on the sphere S2(R), we can prove that the row vector R = (x1 x2 x3) with
entries in the commutative ring D = R[x1, x2, x3]/(x2

1 + x2
2 + x2

3 − 1), which admits the right-inverse
RT , cannot be completed to a unimodular matrix over D. For more details, see [25].

However, it is always possible over a polynomial ring with coefficients on a field k or a principal
ideal domain A. See Quillen-Suslin Theorem 6. We shortly describe a QS-algorithm which has recently
been implemented in a package called QuillenSuslin ([13]). See the Appendix for more details. In
what follows, we shall only consider a commutative polynomial ring D = k[x1, . . . , xn] over a field
k even if the extension of the algorithms exists when k is replaced by a principal ideal ring A. For
instance, the case of A = Z has also been implemented in QuillenSuslin. Let f ∈ D1×p be a row
vector which admits a right-inverse g over D. When no method explained in Section 3.3 can be applied
to f , we then need to consider a general algorithm. However, we point out that most of the examples
we know do not require the general algorithm as the previous heuristic methods are generally enough
to get the result.

The QS-algorithm proceeds by induction on the number n of independent variables xi of the ring
D = k[x1, . . . , xn]. Each inductive step, which simplifies the problem to the case of a polynomial ring
containing one variable less, consists of three main parts:

1. Finding a normalized component in the last variable of the polynomial ring.
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2. Computing finitely many local solutions of Problem 2 over certain local rings (local loop).

3. Patching/glueing the local solutions together in order to obtain a global one.

3.4.1 Normalization Step

The next lemma is essential for Horrocks’ theorem which is used in the local loop.

Lemma 2 ([57, 60]). Let us consider a ∈ k[y1, . . . , yn] and let us denote by m = deg(a) + 1, where
deg(a) denotes the total degree of a. Using the following invertible transformation{

xn = yn,

xi = yi − ym
n−i

n , 1 ≤ i ≤ n− 1,
⇔

{
yn = xn,

yi = xi + xm
n−i

n , 1 ≤ i ≤ n− 1,

we obtain a(y1, . . . , yn) = r b(x1, . . . , xn), where 0 6= r ∈ k and b is a monic polynomial in xn with
coefficients in the ring E = k[x1, . . . , xn−1], namely, the leading coefficient of b ∈ E[xn] is 1.

In the case where k is an infinite field, we can achieve the same result by using only a linear
transformation whose coefficients are appropriately chosen ([60, 62]). The normalization step can also
be generalized to the case D = A[x1, . . . , xn], where A is is a principal ideal domain. See [59] for more
details.

3.4.2 Local Loop

In the second step, we need to compute a finite number of local solutions of Problem 2 over a local
ring ring A, namely, a ring A which has only one maximal ideal, i.e., a proper idealM of A which is
not properly contained in any ideal of A other than A itself. In order to do that, we use the so-called
Horrocks’ theorem. Let us recall it.

Theorem 7 ([57, 60]). Let B be a local ring and f a row vector which admits a right-inverse over
B[y]. If one of the components fi of f is monic, then there exists a unimodular matrix U over B[y]
such that f is the first row of U or, equivalently, such that f U−1 = (1 0 . . . 0).

Horrocks’ theorem can easily be implemented using, for instance, the approaches developed in
[27, 57, 62]. In particular, the implementation in QuillenSuslin of this theorem follows [57]. If M
is a maximal ideal of D, we then denote by DM the local ring, which is a standard localization of D
with respect to the multiplicative closed subset S = D\M of D, namely, DM = {a/b | a ∈ D, b /∈M}
([57]).

We can now give the first main part of the general algorithm ([27, 62]).

Algorithm 1. � Input: Let D = k[x1, . . . , xn] and f ∈ D1×p a row vector which admits a
right-inverse over D and a monic component in the last variable xn.

� Output: A finite number of maximal ideals {Mi}i∈I of E = k[x1, . . . , xn−1] and unimodular
matrices {Hi}i∈I over the ring EMi [xn] which satisfy f Hi = (1 0 . . . 0), and such that the
ideal generated by the denominators of the matrices Hi, i ∈ I, generate the ring E.

1. Let M1 be an arbitrary maximal ideal of the ring E. Using Horrocks’ theorem, compute a
unimodular matrix H1 over EM1 [xn] which satisfies f H1 = (1 0 . . . 0).

2. Let d1 ∈ E be the denominator of H1 and J the ideal in E generated by d1. Set i = 1.

3. While J 6= E, do:
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(i) For i := i+ 1, compute a maximal ideal Mi of E such that J ⊂Mi.

(ii) Using Horrocks’ theorem, compute a matrix Hi over the ring EMi
[xn] such that detHi is

invertible in EMi [xn] and f Hi = (1 0 . . . 0).

(iii) Let di be the denominator of the matrix Hi and consider the ideal J = (d1, . . . , di).

4. Return {Mi}i∈I , {Hi}i∈I and {di}i∈I .

The local loop stops when all the denominators di generate E. As the ring E is noetherian ([57]),
the number of the local solutions, i.e., the cardinal of the set I, is finite.

3.4.3 Patching

To obtain a polynomial solution of Problem 1, we use the following lemma.

Lemma 3 ([27]). Let f ∈ D1×p be a row vector which admits a right-inverse over D = k[x1, . . . , xn]
and U a unimodular matrix over k[x1, . . . , xn−1]M[xn], where M is a certain maximal ideal of the
ring E = k[x1, . . . , xn−1], which satisfies f U = (1 0 . . . 0). Let us denote by d ∈ E the denominator
of U . Then, the matrix defined by

∆(xn, z) = U(x1, . . . , xn)U−1(x1, . . . , xn−1, xn + z) ∈ (EM[xn, z])p×p

is such that
∀ z ∈ D : f(x1, . . . , xn) ∆(xn, z) = f(x1, . . . , xn−1, xn + z), (14)

and its denominator is dα with 0 ≤ α ≤ p.

(14) is clear as the identity f(x1, . . . , xn)U(x1, . . . , xn) = (1 0 . . . 0) implies that we have
f(x1, . . . , xn + z)U(x1, . . . , xn + z) = (1 0 . . . 0) and then:

f(x1, . . . , xn + z) = f(x1, . . . , xn)U(x1, . . . , xn)U(x1, . . . , xn + z)−1.

Moreover, using the standard formula U−1 = (detU)−1 adj(U), where adj(U) denotes the adjugate
of U , we can also prove that the common denominator of ∆(xn, z) is dα, where 0 ≤ α ≤ p.

Let {Mi}i∈I , {Hi}i∈I and {di}i∈I be the output of Algorithm 1, where I is a finite set. Let us set
I = {1, . . . , l}. The ideal of E = k[x1, . . . , xn−1] defined by {di}i∈I generates E. Hence, there exists
ci ∈ E, i ∈ I, such that the Bézout identity holds:

l∑
i=1

ci d
p
i = 1.

Let us define the following matrices

∆i(xn, z) = Hi(x1, . . . , xn)H−1
i (x1, . . . , xn−1, xn + z), i = 1, . . . , l,

and, in order to simplify the notations, we denote by f̃(xn) the function f(x1, . . . , xn). Then, we have:

f̃(xn) ∆1(xn, (an − xn) c1 dp1) = f̃(xn + (an − xn) c1 dp1),

f̃(xn + (an − xn) c1 dp1) ∆2(xn + (an − xn) c1 dp1, (an − xn) c2 d
p
2) = f̃

(
xn + (an − xn)

(∑2
i=1 ci d

p
i

))
,

. . .

f̃
(
xn + (an − xn)

(∑l−1
i=1 ci d

p
i

))
∆l

(
xn + (an − xn)

(∑l−1
i=1 ci d

p
i

)
, (an − xn) cl dpl

)
= f̃(an).
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Finally, we can prove that we have ∆i(xn, d
p
i z) ∈ GLp(D), i = 1, . . . , l, ([27]) and:

U1 = ∆1(xn, (an − xn) c1 dp1) ∆2(xn + (an − xn) c1 dp1, (an − xn) c2 d
p
2)

. . . ∆l

(
xn + (an − xn)

(∑l−1
i=1 ci d

p
i

)
, (an − xn) cl dpl

)
∈ GLp(D).

The previous computations then show that f(x1, . . . , xn)U1 = f(x1, . . . , xn−1, an).

We can now state the main result.

Theorem 8 ([27, 57, 60, 62]). Let f ∈ D1×p be a row vector which admits a right-inverse over the
ring D = k[x1, . . . , xn]. Then, for every a ∈ k, there exists a matrix U ∈ GLp(D) such that:

f(x1, . . . , xn) U(x1, . . . , xn) = f(x1, . . . , xn−1, a).

We consider a row vector f(x1, . . . , xn) ∈ D1×p admitting a right-inverse g(x1, . . . , xn) ∈ Dp×1.
Applying inductively Theorem 8 to f(x1, . . . , xn) for the values a2, . . . , an ∈ k, we then obtain
U1, . . . , Un−1 ∈ GLp(D) such that

f(x1, . . . , xn)U1 = f(x1, . . . , xn−1, an),
f(x1, . . . , xn−i, an−i+1, . . . , an)Ui+1 = f(x1, . . . , xn−i−1, an−i, . . . , an), 1 ≤ i ≤ n− 2.

Hence, we get f(x1, . . . , xn) (U1 . . . Un−1) = f(x1, a2, . . . , an) and we have simplified Problem 2 to the
case of a row vector f(x1, a2, . . . , an) over a principal ideal domain k[x1] which admits a right-inverse
g(x1, a2, . . . , an) over k[x1]. Using the first result of Section 3.3, we can find a matrix Un ∈ GLp(D)
such that:

f(x1, a2, . . . , an)Un(x1) = (1 0 . . . 0)⇔ U−1
n (x1) =

(
f(x1, a2, . . . , an)

?

)
.

Hence, Problem 2 is then solved if we take U = U1 . . . Un ∈ GLp(D). We also note that it is generally
simpler to take the particular values a2 = . . . = an = 0.

Now, let us find a matrix U ′ satisfying f(x1, . . . , xn)U ′ = f(a1, . . . , an), where a1 ∈ k. Let us
define by U ′n(x1) = Un(x1)U−1

n (a1) ∈ GLp(D). Then, we have:

f(x1, a2, . . . , an)U ′n(x1) = (1 0 . . . 0)
(
f(a1, a2, . . . , an)

?

)
= f(a1, a2, . . . , an).

Hence, the matrix U ′ = U1 . . . Un−1 U
′
n ∈ GLp(D) satisfies:

f(x1, . . . , xn)U ′ = f(a1, . . . , an).

Let us illustrate the QS-algorithm on a simple example.

Example 5. Let us consider the commutative polynomial ring D = Q[x1, x2] and the row vector
R = (x1 x

2
2 + 1 3x2/2 + x1 − 1 2x1 x2) ∈ D1×3. We can check that S = (1 0 − x1/2)T is a

right-inverse of R, a fact implying that the D-module M = D1×3/(DR) is projective, and thus, free
by the Quillen-Suslin theorem. Let us compute a matrix U ∈ GL3(D) such that RU = (1 0 0). As the
first component of S is 1, we can easily find such a matrix U using the heuristic methods explained
in Section 3.3. However, let us illustrate the main algorithm previously described.

We first note that R contains the normalized component 3x2/2 + x1 − 1 over D = E[x2], where
E = Q[x1]. The second step consists in computing certain local solutions. Let us consider the maximal
idealM1 = (x1) of E. Using an effective version of Horrocks’ theorem, we obtain that

H1 =
1
d1

 4 −2 (3x1 + 2x2 − 2) 4x1 (3x1 − 2)
2x1 (3x1 − 2x2 − 2) 4 (x1 x

2
2 + 1) −4x1 (3x2

1 x2 − 2x1 x2 + 2)
0 0 9x3

1 − 12x2
1 + 4x1 + 4

 ,
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where d1 = 9x3
1− 12x2

1 +4x1 +4 /∈M1. We can check that detH1 = 4/d1, i.e., H1 ∈ GL3(EM1 [x2]),
and RH1 = (1 0 0), showing that H1 is a local solution.

The ideal J = (d1) is strictly contained in E. Therefore, we consider another maximal ideal M2

such that J ⊆ M2. For instance, we can take M2 = (9x3
1 − 12x2

1 + 4x1 + 4). Using an effective
version of Horrocks’ theorem, we obtain the matrix

H2 =
1
d2

 0 0 4x1 (3x1 − 2)
8x1 −8x1 x2 −4x1 (3x2

1 x2 − 2x1 x2 + 2)
−4 2 (3x1 + 2x2 − 2) 9x3

1 − 12x2
1 + 4x1 + 4

 ,

where d2 = 4x1 (3x1− 2) /∈M2. We then have detH2 = −1/(x1 (3x1− 2)), i.e., H2 ∈ GL3(EM2 [x2])
and RH2 = (1 0 0). We can check that the ideal (d1, d2) = E as we have the Bézout identity
c1 d1 + c2 d2 = 1, where c1 = 1/4 and c2 = −(3x1 − 2)/16.

The matrix ∆i(x2,−c1 d1 x2) is defined by:0B@ (9 x4
1/4− 3 x3

1 + x2
1) x2

2 + (3 x2
1/2− x1) x2 + 1

−(18 x4
1 − 24 x3

1 + 8 x2
1) x1 x3

2/8 + (27 x5
1 − 54 x4

1 + 36 x3
1 − 20 x2

1 + 8 x1) x1 x2
2/8− x1 x2

0

−x2 −2 x1 x2

x1 x2
2 + (−3 x2

1/2 + x1) x2 + 1 2 x2
1 x2

2 − x2
1 (3 x1 − 2) x2

0 1

1CA .

We can easily check that we have R(x1, x2) ∆i(x2,−c1 d1 x2) = R(x1, x2 − c1 d1 x2) as well as
∆1(x2,−c1 d1 x2) ∈ GL3(D). Moreover, the matrix ∆2(x2 − c1 d1 x2,−c2 d2 x2) is defined by: 1 0 0

0 (3x2
1/2− x1)x2 + 1 x2

1 (3x1 − 2)x2

(9x2
1 − 12x1 + 4)x1 x2/8 (−3x1 + 2)x2/4 (−3x2

1/2 + x1)x2 + 1

 .

We can easily check that we have R(x1, x2 − c1 d1 x2) ∆2(x2 − c1 d1 x2,−c2 d2 x2) = R(x1, 0) and
∆2(x2 − c1 d1 x2,−c2 d2 x2) ∈ GL3(D). Defining the matrix

U1 = ∆1(x2,−c1 d1 x2) ∆2(x2 − c1 d1 x2,−c2 d2 x2) ∈ GL3(D),

we then get R(x1, x2)U1(x1, x2) = R(x1, 0) = (1 3x1/2− 1 0).

Finally, if we denote by

U2 =

 1 −3x1/2 + 1 0
0 1 0
0 0 1

 ∈ GL3(D),

then, the matrix R(x1, 0) is then equivalent to (1 0 0), i.e., R(x1, 0)U2 = (1 0 0). Hence, if we define
the matrix U = U1 U2 ∈ GL3(D), i.e.,0B@ (3 x2

1/2− x1) x2 + 1 (−9 x3
1/4 + 3 x2

1 − x1 − 1) x2 − 3 x1/2 + 1 −2 x1 x2

(−3 x3
1/2 + x2

1) x2
2 − x1 x2 (9 x4

1/4− 3 x3
1 + x2

1 + x1) x2
2 + (3 x2

1/2− x1) x2 + 1 2 x2
1 x2

2

(9 x2
1 − 12 x1 + 4) x1 x2/8 (−27 x4

1/16 + 27 x3
1/8− 9 x2

1/4− x1/4 + 1/2) x2 (−3 x2
1/2 + x1) x2 + 1

1CA ,

we finally obtain RU = (1 0 0).

In the third point of Section 3.3, we saw that the case of a matrix R ∈ Dq×p admitting a right-
inverse over D can be solved by applying q times Theorem 8 on certain row vectors obtained during
the process having smaller and smaller lengths. Hence, we obtain the following corollary.
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Corollary 5 ([27, 57, 60, 62]). Let R ∈ Dq×p be a matrix which admits a right-inverse over D. Then,
for all a1, . . . , an ∈ k, there exists U ∈ GLp(D) such that:

R(x1, . . . , xn) U(x1, . . . , xn) = R(a1, . . . , an).

We note that as the matrix R(a1, . . . , an) has full row rank over a field k, there always exists a
right-inverse V ∈ kp×q such that R(a1, . . . , an)V = Iq. Hence, we obtain that R (U V ) = (Iq 0),
which also solves Problem 1. Another possibility is to first obtain a matrix W ∈ GLp(D) such that
R(x1, . . . , xn)W = R(x1, a2, . . . , an) and then compute a Smith form of R(x1, a2, . . . , an) as we did
for the row vector case.

Remark 5. In [38], it was shown how a certain transformation maps a matrix R with entries in
a Laurent polynomial ring D = k[x1, . . . , xn, x

−1
1 , . . . , x−1

n ], where k is a field, and which admits a
right-inverse over D to a matrix R with entries in D = k[x1, . . . , xn] and which admits a right-inverse
over D. Hence, we can use a QS-algorithm to solve Problems 2 and 1 over D. See [38] for more details.
See also Section 9.3 for explicit examples. Finally, a new algorithm has recently been developed in [1].

3.4.4 Computation of bases of free modules

If R ∈ Dq×p is a matrix which admits a right-inverse over D, then, in Section 3.2, we showed that a
basis of the freeD-moduleM = D1×p/(D1×q R) is defined by {π(Ti)}1≤i≤(p−q), where π : D1×p −→M

denotes the canonical projection on M and Ti is the ith row of the matrix T ∈ D(p−q)×p defined by:

U−1 =
(
R
T

)
∈ GLp(D).

Example 6. Let us consider again Example 5. If we consider di = ∂/∂xi instead of xi, namely,
D = Q[d1, d2], R = (d1 d

2
2 +1 3 d2/2+d1−1 2 d1 d2) ∈ D1×3, denote by x = (x1, x2, x3) and choose

F = C∞(R3), we then obtain that the linear system of PDEs

kerF (R.) = {y = (y1 y2 y3)T ∈ F3 | d1 d
2
2 y1(x)+y1(x)+

3
2
d2 y2(x)+d1 y2(x)−y2(x)+2 d1 d2 y3(x) = 0}

admits the parametrization (y1(x) y2(x) y3(x))T = Q (z1(x) z2(x))T , where Q is the matrix of differen-
tial operators formed by the last two columns of the matrix U defined in Example 5 and z = (z1 z2)T

is any arbitrary element of F2, i.e.:

y1 = (−9
4
d3
1 + 3 d2

1 − d1 − 1) d2 z1 −
3
2
d1 z1 + z1 − 2 d1 d2 z2,

y2 =
(

9
4
d4
1 − 3 d3

1 + d2
1 + d1

)
d2
2 z1 +

(
3
2
d2
1 − d1

)
d2 z1 + z1 + 2 d2

1 d
2
2 z2,

y3 =
(
−27

16
d4
1 +

27
8
d3
1 −

9
4
d2
1 −

1
4
d1 +

1
2

)
d2 z1 +

(
−3

2
d2
1 + d1

)
d2 z2 + z2.

Finally, if we denote by T ∈ D2×3 the matrix formed by the last two rows of the matrix U−1, namely, d1 d2 1 0

1
4

(3 d2
1 − 2 d1) d2

2 +
1
8

(−9 d3
1 + 12 d2

1 − 4 d1) d2
1
4

(3 d1 − 2) d2
1
2

(3 d2
1 − 2 d1) d2

 ,

we then have T Q = I2, i.e., the parametrization Q of kerF (R.) is injective.
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26 A. Fabiańska & A. Quadrat

Now, if M = D1×p/(D1×q R) is a projective D which is defined by a non full row rank matrix
R ∈ Dq′×p′ , then, using Proposition 2, we first compute a full row rank matrix R′ ∈ Dq′×p′ satisfying

M ∼= M ′ = D1×p′/(D1×p′ R′),

and we then apply the previous QS-algorithm to R′ ∈ Dq′×p′ to obtain U ∈ GLp′(D) such that
R′ U = (Iq′ 0). Let S′ ∈ Dp′×q′ , Q′ ∈ Dp′×(p′−q′), T ′ ∈ D(p′−q′)×p′ be the matrices defined by:

U = (S′ Q′), U−1 =
(
R′

T ′

)
.

Then, we have the following split exact sequence:

0 −→ D1×q′ .R′−−→ D1×p′ .Q′

−−→ D1×(p′−q′) −→ 0.
.S′←−− .T ′←−−

(15)

We now need to precisely describe the isomorphism between M and M ′ in order to get a basis
of M from one of M ′. In order to do that, we take the same notations as the ones used at the end
of Section 3.1, namely, R1 = R, T1 = (RT1 0T )T , R′ = (T1 S′2), p0 = p, p1 = q, q′ = p1 + p′3,
p′ = p0 + p′2. We first easily check that we have the following commutative exact diagram

D1×p1 .R1−−→ D1×p0 π−→ M −→ 0
↑ .X ↑ .Ip0 ↑ idM

D1×(p1+p
′
3)

.T1−−→ D1×p0 π−→ M −→ 0,

where X = (ITq 0T )T . Moreover, we also have the commutative exact diagram

D1×(p1+p
′
3)

.T1−−→ D1×p0 π−→ M −→ 0
↑ .Z ↑ .Y ↑ σ

D1×(p1+p
′
3)

.R′−−→ D1×(p0+p
′
2)

π′−→ M ′ −→ 0,

where Y = (ITp0 0T )T , Z = (ITp1 0T )T and the isomorphism σ is defined by:

∀ m′ = π′(λ), λ = (λ1 λ2) ∈ D1×(p0+p
′
2), σ(m′) = π(λ1).

Combining the two commutative exact diagrams, we then obtain the following one:

D1×p1 .R1−−→ D1×p0 π−→ M −→ 0
↑ .(Z X) ↑ .Y ↑ σ

D1×(p1+p
′
3)

.R′−−→ D1×(p0+p
′
2)

π′−→ M ′ −→ 0.

Hence, if we denote by {fi}1≤i≤(p′−q′) the standard basis of D1×(p′−q′), using (15), we then obtain
that {σ(π′(fi T ′)) = π(fi (T ′ Y ))}1≤i≤(p′−q′) is a basis of M , i.e., a basis of M is defined by taking
the residue classes of the rows of (T ′ Y ) ∈ D(p′−q′)×p0 .

We can check that the D-morphism σ−1 : M −→M is defined by:

∀ m = π(λ), λ ∈ D1×p0 , σ−1(m) = π′(λY T ).

Then, using (15), we then obtain the following split exact sequence

D1×q .R−→ D1×p .(Y T Q′)−−−−−→ D1×(p′−q′) −→ 0,
.S←− .(T ′ Y )←−−−−
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where S ∈ Dp×q is a generalized inverse of R, i.e., S satisfies RS R = R ([44]). If we denote by
T ′ = (T ′1 T ′2), where T ′1 ∈ D(p′−q′)×p and T ′2 ∈ D(p′−q′)×p2 and Q′ = ((Q′1)

T (Q′2)
T )T , where

Q′1 ∈ Dp×(p′−q′) and Q′2 ∈ Dp2×(p′−q′), we then get

Y T Q′ = Q′1, T ′ Y = T ′1,

i.e., we need to select the first p columns of T ′ and the first p rows of Q′.

Remark 6. If the free D-module M = D1×p/(D1×q R) is defined by the finite free resolution (8),
where R1 = R, p0 = p and p1 = q, we point out that we only apply once the QS-algorithm to the
matrix R′ in order to obtain a basis of M contrary to the algorithm developed in [27] where the QS-
algorithm is applied m times. Hence, our algorithm is generally more efficient than the one developed
in [27].

If F is a D-module, then applying the functor homD(·,F) to the previous split exact sequence, by
2 of Proposition 1, we then obtain the following split exact sequence:

Fq R.←− Fp Q′
1.←−− F (p′−q′) ←− 0.

S.−→ T ′1.−−→

The system kerF (R.) admits the injective parametrization Q′1, namely:

kerF (R.) = Q′1 F (p′−q′), T ′1Q
′
1 = Ip′−q′ .

Remark 7. Let us consider R ∈ Dq×p and let us suppose that the D-modules imD(.R), kerD(.R)
and coimD(.R) , D1×q/ kerD(.R) are free. We now show how to use the previous results to compute
a basis of these free D-modules:

1. A basis of imD(.R) = D1×q R can be obtained as follows: we first compute the first syzygy
D-module of imD(.R) and we obtain a matrix R2 ∈ Dr×q satisfying kerD(.R) = D1×r R2. Let
us denote by M2 = D1×q/(D1×r R2) ∼= D1×q R. Using the method previously described, we can
compute a basis of the free D-module M2. We get Q2 ∈ Dq×l and T2 ∈ Dl×q such that we have
the exact split sequence

D1×r .R2−−→ D1×q .Q2−−→ D1×l −→ 0,
.S2←−− .T2←−−

where S2 ∈ Dq×r denotes a generalized inverse of R2. A basis of D1×q R is then given by the
D-linearly independent rows of the matrix T2R ∈ Dl×p and we have D1×q R = D1×l (T2R).

2. Using the same notations as before, we have kerD(.R) = D1×r R2 and a basis of the free D-
module kerD(.R) can then be obtained by computing a basis of D1×r R2 as it was shown in the
previous point.

3. Using again the same notations as in the first point, we get

coimD(.R) = D1×q/ kerD(.R) = D1×q/(D1×r R2),

and a basis of coimD(.R) can be computed using the general method previously described in
this section.

To finish, all the algorithms presented in this section were implemented in the package Quillen-
Suslin ([13]). See the Appendix for more details and examples.
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4 Flat multidimensional linear systems

4.1 Computation of flat outputs of flat multidimensional systems

Our first motivation to study and implement constructive versions of the Quillen-Suslin theorem was
the computation of flat outputs and injective parametrizations of flat multidimensional linear systems
and, particularly, differential time-delay systems. Let us first recall the main ideas of flat systems and
their applications in control theory.

A non-linear ordinary differential control system defined by ẋ = f(x, u) is said to be flat if there
exist some outputs y of the form y = h(x, u, u̇, . . . , u(r)) such that we have:{

x = φ(y, ẏ, . . . , y(s)),

u = ϕ(y, ẏ, . . . , y(s)).

The outputs y is then called flat outputs of the control system ẋ = f(x, u). See [16, 17] and the
references therein for more details and references. We can prove that the trajectories of a flat system
are in a one-to-one correspondence with those of a controllable linear ordinary differential system
having an arbitrary state dimension but the same number of inputs, i.e., with those of a Brunovský
canoncial system ([17]). We say that a flat non-linear system is Lie-Bäcklund equivalent to a control-
lable linear ordinary differential system ([17]). Controllable linear systems form the simplest class of
systems studied in control theory and a large literature is developed for the analysis and the synthesis
of this class of control systems. This result, as well as the fact that many classes of non-linear control
systems commonly used in the literature were proved to be flat, has popularized this class of systems
in the control theory community. The motion planning problem was shown to be easily tractable for
flat systems and it was illustrated on several examples in the literature ([16, 17]). Finally, the fact
that the trajectories of a flat non-linear systems are in a one-to-one correspondence with the ones of a
linear controllable system can be used to construct feedback laws which stabilize a flat non-linear sys-
tem around a given trajectory (tracking problem) ([16, 17]). See also [48] for applications to optimal
control.

Unfortunately, no general algorithm is known for checking whether or not a non-linear control sys-
tem is flat and for the computation of flat outputs despite many effort of the mathematical and control
theory communities. We refer the reader to [67] for a historical account of the main developments of
the underlying mathematical problem, the Monge problem, which was studied by Hadamard, Hilbert,
Cartan and Goursat.

We illustrate these definitions on the model of a vertical take-off and landing aircraft considered
in [17], namely, 

ẍ(t) = u1(t) sin θ(t)− ε u2(t) cos θ(t),
z̈(t) = u1(t) cos θ(t) + ε u2(t) sin θ(t)− 1,

θ̈(t) = u2(t),
(16)

where ε is a small parameter. It is proved in [17] that the smooth solutions of (16) can be parametrized
by means of the following non-linear differential operator

(
y1
y2

)
7−→



x = y1 − ε
ÿ1√

(ÿ1)2 + (ÿ2 + 1)2
,

z = y2 − ε
ÿ2 + 1√

(ÿ1)2 + (ÿ2 + 1)2
,

θ = arctan
(

ÿ1
ÿ2 + 1

)
,

(17)
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where y1 and y2 are two arbitrary smooth functions satisfying the following condition:

∀ t ∈ R+, (ÿ1(t))2 + (ÿ2(t) + 1)2 6= 0.

Moreover, the arbitrary functions y1 and y2 can be expressed in terms of the system variables as
follows: {

y1 = x+ ε sin θ,
y2 = z + ε cos θ.

(18)

Hence, (y1, y2) is a flat output of the non-linear system (16) and its knowledge gives a way to generate
the trajectories of (16). Finally, the flat ordinary differential system (16) is Lie-Bäcklund equivalent
to the Brunovský linear system defined by {

y
(4)
1 = v1,

y
(4)
2 = v2,

(19)

under the invertible transformation (η1 = u1 − ε θ̇2 and η2 = η̇1):
y1 = x+ ε sin θ,
y2 = z + ε cos θ,

v1 = η̇2 sin θ + 2 η2 θ̇ cos θ + η1 u2 cos θ − η1 θ̇2 sin θ,

v2 = η̇2 cos θ − 2 η2 θ̇ sin θ − η1 u2 sin θ − η1 θ̇2 cos θ.

The study of flat linear ordinary differential time-delay systems has recently been initiated in
[18, 32]. As for non-linear ordinary differential systems, this class of systems shares some interesting
mathematical properties which can be used to do motion planning and tracking as shown in [32] and the
references therein on explicit examples. However, the theory of flat linear ordinary differential time-
delay systems is still in its infancy and some concepts developed for non-linear ordinary differential
systems seem to have no counterparts for this second class of systems. In particular, for flat linear
differential time-delay systems, we can wonder which kind of linear systems could play a similar role as
the one played by the linear controllable systems (or Brunovský systems) for flat non-linear systems.
To answer this question, we first need to understand which kind of equivalence plays a similar role for
differential time-delay linear systems as the one played by the Lie-Bäcklund equivalence for non-linear
differential systems. To our knowledge, these important questions have not be tackled in the literature
till now. This section aims at constructively answer these two questions.

As the differential time-delay systems is a particular class of multidimensional systems, we can
define the concept of a flat multidimensional linear system in terms of the existence of an injective
parametrization of the trajectories of the system ([5, 44, 65]).

Definition 7. Let D = k[x1, . . . , xn], R ∈ Dq×p and F a D-module. Then, the system kerF (R.) is
called flat if there exist Q ∈ Dp×m and T ∈ Dm×p satisfying:

kerF (R.) = QFm, T Q = Im.

In terms of the module-theoretic/behaviour approach recently developed for multidimensional
linear systems ([5, 41, 34, 65, 66]), it means that the module M intrinsically associated with the
multidimensional linear system is free over the commutative polynomial ring D of functional operators
([5, 16, 17, 32, 44]).

Proposition 3 ([5]). Let D = k[x1, . . . , xn], R ∈ Dq×p, M = D1×p/(D1×q R) and F be an injective
cogenerator D-module. Then, kerF (R.) is a flat system iff the D-module M is free. Moreover, the
bases of the D-module M are then in a one-to-one correspondence with flat outputs of kerF (R.).
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Remark 8. Using the end of the Section 2, we obtain that the condition that M is a free D-module
is a sufficient condition for kerF (R.) to be a flat system.

Using Proposition 3 and the Quillen-Suslin theorem (see 4 of Theorem 2), we then get the following
important corollary.

Corollary 6. Let D = k[x1, . . . , xn], R ∈ Dq×p, M = D1×p/(D1×q R) and F be an injective cogen-
erator D-module. Then, kerF (R.) is a flat system iff the D-module M is projective.

When R has a full row rank, then, using Theorem 3, a constructive test for flatness of multidi-
mensional linear systems with constant coefficients consists in checking if the q × q minors of R do
not simultaneously vanish on complex common zeros ([24, 62]). This last result can algorithmically
be checked by computing a Gröbner or Janet basis of the ideal I of D generated by the q × q minors
of R and check whether or not 1 ∈ I. We can also check whether or not R admits a right-inverse over
D ([4, 5, 44]).

In the general case, using Theorem 3, the projectiveness of M can constructively be obtained
by verifying the vanishing of extiD(N,D), for i = 1, . . . , n, where N is the transposed D-module
N = D1×q/(D1×pRT ). Other possibilities are to compute the so-called global dimension of M ([57])
by means of Proposition 2 and Corollary 2 as it was shown in [53], check whether or not R admits a
generalized inverse S over D, i.e., check for the existence of a matrix S ∈ Dp×q satisfying RS R = R
([44]) or check some straightforward conditions on the so-called Fitting ideals of M as it is explained
in [11].

However, we point out that, till now, there has been no easy way for obtaining the flat outputs
of the system, i.e., the bases of the free D-module M . Hence, we are led to use constructive versions
of the Quillen-Suslin theorem developed in the symbolic algebra community ([19, 27, 29, 37]) for
computing a basis of the free D-module M . It was our first main purpose for developing the package
QuillenSuslin ([13]). See the Appendix for more details and examples.

Example 7. Let us consider the following differential time-delay linear system ([32]):{
ẏ1(t)− y1(t− h) + 2 y1(t) + 2 y2(t)− 2u(t− h) = 0,
ẏ1(t) + ẏ2(t)− u̇(t− h)− u(t) = 0.

(20)

Let us denote by D = Q
[
d
dt , δ

]
the commutative ring of differential time-delay operators with rational

coefficients, where (d/dt) y(t) = ẏ(t) and (δ y)(t) = y(t−h), h ∈ R+. Let us also denote the matrix of
functional operators defining (20) by:

R =

 d

dt
− δ + 2 2 −2 δ

d

dt

d

dt
− d

dt
δ − 1

 ∈ D2×3.

Using the algorithms developed in [5, 44] and implemented in the package OreModules ([4]), we
obtain that R admits a right-inverse over D defined by

S =
1
2


0 0

d

dt
δ + 2 −2 δ

d

dt
−2

 ,

a fact proving that M = D1×3/(D1×2R) is a projective, and thus, a free D-module by the Quillen-
Suslin theorem (see 4 of Theorem 2).
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Using a constructive version of the Quillen-Suslin theorem (see also the heuristic methods developed
in [5, 44]), we obtain the following split exact sequence of D-modules

0 −→ D1×2 .R−→ D1×3 .Q−→ D −→ 0,
.S←− .T←−

(21)

where T = (1 0 0) and Q =
1
2


2

− d2

dt2
δ +

d

dt
δ2 − d

dt
+ δ − 2

d

dt
δ − d2

dt2

 .

Using the split exact sequence (21), we can check that we have

M = D1×3/(D1×2R) ∼= (D1×3Q) = D,

i.e., we find again that M is a free D-module of rank 1.

Now, if F is a D-module (e.g., F = C∞(R)), by applying the functor homD(·,F) to the split exact
sequence (21), we then obtain the following split exact sequence of D-modules (see 2 of Proposition 1):

0←− F2 R.←− F3 Q.←− F ←− 0.
S.−→ T.−→

Hence, for any D-module F , we get that the system kerF (R.) defined by (20) is parametrized by the
following injective parametrization:

∀ x1 ∈ F ,


y1(t) = x1(t),

y2(t) =
1
2

(−ẍ1(t− h) + ẋ1(t− 2h)− ẋ1(t) + x1(t− h)− 2x1(t)),

u(t) =
1
2

(ẋ1(t− h)− ẍ1(t)).

(22)

We refer the reader to [53, 55] for a constructive algorithm for the computation of bases, and thus,
of flat outputs of a class of linear systems defined by partial differential equations with polynomial or
rational coefficients. See [54, 53] for an implementation of this algorithm in the package Stafford
of the library OreModules.

Finally, we say that the D = k[x1, . . . , xn]-module M = D1×p/(D1×q R) is π-free, where π ∈ D, if
the Dπ-module Dπ ⊗D M is free, where Dπ denotes the localization

Dπ = {a/b | a ∈ D, b = πi, i ∈ Z+}

of the ring D with respect to the multiplicatively closed subset Sπ = {1, π, π2, . . .} of D ([57]).
By extension, we can define the concept of a π-flat system. See [5, 32, 33] for more details. Given a
finitely presented D = k[x1, . . . , xn]-module M = D1×p/(D1×q R), constructive algorithms computing
the corresponding polynomials π and basis of the free Dπ-module Dπ ⊗D M were given in [5] and
implemented in the OreModules package ([4, 6]). However, we can also use Remark 5 to compute
the corresponding basis in the case where π = xi. We can also follow the simple idea developed in
Section 9.4.3.
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32 A. Fabiańska & A. Quadrat

4.2 Equivalences of flat multidimensional systems

Using a QS-algorithm, the purpose of this section is to prove that a flat multidimensional linear system
with constant coefficients is algebraically equivalent to a linear controllable 1-D system obtained by
setting all but one functional operator to 0 in the system matrix. In particular, the algebraic equiv-
alence we use is the natural equivalence developed in module theory, namely, two multidimensional
linear systems are said to be algebraically equivalent if their canonical associated modules are isomor-
phic over the underlying commutative polynomial ring of functional operators D. This equivalence is
nothing else than the natural substitute to the Lie-Bäcklund equivalence for multidimensional linear
systems. In the case of ordinary differential linear systems, we already know that Lie-Bäcklund trans-
formations correspond to isomorphisms of the underlying modules (see e.g. [17] and the references
therein). Finally, we prove that a flat differential time-delay linear system is algebraically equivalent
to the controllable ordinary differential system without delays, namely, the system obtained by setting
all the delay amplitudes to 0. This last system plays a similar role as the one played by the Brunovský
canoncial form in the non-linear case.

We have the following corollary of Theorem 8.

Corollary 7. Let D = k[x1, . . . , xn], R ∈ Dq×p be a full row rank and F an injective cogener-
ator D-module. The flat multidimensional system kerF (R(x1, . . . , xn).) is then D-isomorphic to a
controllable 1-D linear system obtained by setting any functional operator to 0. For instance, the
system kerF (R(x1, . . . , xn).) is D-isomorphic to the system kerF (R(x1, 0, . . . , 0).) and the F-solutions
of kerF (R(x1, . . . , xn).) are in a one-to-one correspondence with the ones of kerF (R(x1, 0, . . . , 0).).

Proof. Using Proposition 3, we obtain that M = D1×p/(D1×q R) is a free D-module. Using the fact
that R has full row rank, by Theorem 8, there exists a matrix U ∈ GLp(D) such that RU = R, where
R = R(x1, 0, . . . , 0). Therefore, we have the following commutative exact diagram

0 0 0
↓ ↓ ↓

0 −→ D1×q .R−→ D1×p π−→ M −→ 0
‖ ↓ .U ↓ f

0 −→ D1×q .R−→ D1×p κ−→ M ′ −→ 0,
↓ ↓ ↓
0 0 0

where κ : D1×p −→M denotes the canonical projection ontoM and theD-isomorphism f : M −→M ′

is defined by:
∀ m = π(λ), λ ∈ D1×p, f(m) = κ(λU).

Applying the functor homD(·,F) to the previous commutative exact diagram and using the fact
that horizontal exact sequences split because M ∼= M ′ is a free D-module, we then obtain the following
commutative exact diagram:

0 0 0
↑ ↑ ↑

0←− Fq R.←− Fp π?

←− kerF (R.) ←− 0
‖ ↑ U. ↑ f?

0←− Fq R.←− Fp κ?

←− kerF (R.) ←− 0.
↑ ↑ ↑
0 0 0

The D-isomorphism f? : kerF (R.) −→ kerF (R.) defined by:

∀ η ∈ kerF (R.), f?(η) = U η.
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Hence, f? induces a one-to-one correspondence between the trajectories of kerF (R.) and those of
kerF (R.) and (f?)−1 is defined by:

∀ ζ ∈ kerF (R.), (f?)−1(ζ) = U−1 ζ.

Using Corollary 2 and the end of the Section 3.4, we can always reduce the case of a non full row
rank matrix R to the case of a full row rank matrix R′ and then apply Corollary 7 to R′.

Despite the fact that Corollary 7 is a straightforward consequence of the Quillen-Suslin theorem,
its applications to flat multidimensional systems seem to be ignored. In particular, it shows that the
Lie-Bäcklund equivalence in the non-linear case needs to be replaced by the isomorphism equivalence
in the multidimensional case. Moreover, the right substitute of the Brunovský linear system in the
non-linear case becomes the controllable 1-D linear linear system with constant coefficients obtained
by setting all but one functional operator to 0.

Let us illustrate Corollary 7 on two examples.

Example 8. Let us consider again the differential time-delay linear system defined by (20). In
Example 7, we proved that the corresponding D-module M is free. It is well-known that F = C∞(R)
is not an injective D-module but, by Remark 8, the system kerF (R.) is flat as the D-module M is
free. Hence, according to Corollary 7, the flat system (20) is algebraically equivalent to the following
controllable ordinary differential linear system{

ż1(t) + 2 z1(t) + 2 z2(t) = 0,
ż1(t) + ż2(t)− v(t) = 0,

(23)

i.e., the system obtained by setting δ to 0 in the matrix R. Using the constructive QS-algorithm
to R, after a few computations, we obtain an invertible transformation which bijectively maps the
trajectories of (20) to the ones of (23) is defined by:

y1(t) = z1(t),

y2(t) =
1
2

(ż1(t− 2h) + z1(t− h)) + z2(t) + v(t− h),

u(t) =
1
2
ż1(t− h) + v(t).

⇔


z1(t) = y1(t),

z2(t) = −1
2
y1(t− h) + y2(t)− u(t− h),

v(t) = −1
2
ẏ1(t− h) + u(t).

(24)
Applying again Corollary 7 to (23), we get that the ordinary differential system (23) is equivalent

to the purely algebraic system {
2x1(t) + 2x2(t) = 0,
−w(t) = 0,

(25)

i.e., the system obtained by setting to δ and d/dt to 0 in R. Applying a QS-algorithm to R,we obtain
that a transformation which bijectively maps the trajectories of (23) to the ones of (25) is defined by:

z1(t) = x1(t),

z2(t) = x2(t)−
1
2
ẋ1(t),

v(t) = w(t)− 1
2
ẍ1(t) + ẋ1(t) + ẋ2(t),

⇔


x1(t) = z1(t),

x2(t) = z2(t) +
1
2
ż1(t),

w(t) = v(t) + ż1(t) + ż2(t).

(26)

Combining (24) and (26), we finally obtain a one-to-one correspondence between the solutions of (20)
and (25).
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We note that the solutions of (20) (resp., (23)) are parametrized by means of (24) (resp., (26)),
where z1, z2 and v (resp., x1, x2 and w) are not arbitrary functions as they must satisfy (23) (resp.,
(25)). However, solving the algebraic system (25), we obtain that x2 = −x1 and w = 0. Substituting
these values in (26) and the result into (24), we find that an injective parametrization of (20) is defined
by (22).

Finally, we can check that an injective parametrization of (23) is obtained by setting δ = 0 in the
matrix of operators defining (22), i.e.:

∀ψ ∈ F ,


z1(t) = ψ(t),

z2(t) = −1
2

(ψ̈(t) + 2ψ(t)),

v(t) = −1
2
ψ̈(t).

Similarly, if we set δ and d/dt to 0 in the matrix of operators defining (22), we obtain the following
injective parametrization of (25):

∀ϕ ∈ F ,


x1(t) = ϕ(t),
x2(t) = −ϕ(t),
w(t) = 0.

These results can be obtained by applying the functor (D/(D δ))⊗D · (resp., (D/
(
D δ +D d

dt

)
)⊗D ·)

to the split exact sequence (21) to get the corresponding split exact sequence of D/(D δ)-modules
(resp., D/

(
D δ +D d

dt

)
-modules) ([57]).

We consider another time-delay system appearing in the literature of control theory.

Example 9. Let us consider the differential time-delay system of neutral type studied in [28], where
a denotes a real constant: {

ẋ1(t) + x1(t)− u(t) = 0,
ẋ2(t)− ẋ2(t− h)− x1(t) + a x2(t) = 0.

(27)

We consider the ring D = Q(a)
[
d
dt , δ

]
, the system matrix of (27) defined by

R =


d

dt
+ 1 0 −1

−1
d

dt
− d

dt
δ + a 0

 ∈ D2×3,

and the D-module M = D1×3/(D1×2R). R admits a right-inverse defined by

S =


0 −1

0 0

−1 − d

dt
− 1

 ∈ D2×3,

a fact which proves that M is a projective, and thus, a free D-module by the Quillen-Suslin theorem.
Even if the D-module F = C∞(R) is injective, by Remark 8, the fact that D-module M is free is a
sufficient condition for kerF (R.) to be a flat system. By Corollary 7, (27) is equivalent to the following
ordinary differential system {

ż1(t) + z1(t)− v(t) = 0,
ż2(t) + a z2(t)− z1(t) = 0,

(28)
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i.e., the system obtained by setting δ to 0 in the matrix R, under the corresponding invertible trans-
formations:

x1(t) = z1(t)− ż2(t− h),
x2(t) = z2(t),

u(t) = v(t)− z̈2(t− h)− ż2(t− h),
⇔


z1(t) = x1(t) + ẋ2(t− h),
z2(t) = x2(t),

v(t) = u(t) + ẍ2(t− h) + ẋ2(t− h).

Hence, the smooth solutions of the differential time-delay system (27) are in one-to-one correspondence
with the ones of the ordinary differential system (28).

Using Corollary 5, we can also set the different functional operators appearing in the system matrix
of a flat multidimensional linear system to any particular value belonging to k. Applying this result to
the class of flat differential time-delay linear systems, we show that a flat differential time-delay linear
system is equivalent to the controllable ordinary differential linear system obtained by setting all the
time-delay amplitudes to 0, i.e., to the corresponding ordinary differential system without delays.

Corollary 8. Let D = k
[
d
dt , δ1, . . . , δn−1

]
be the ring of differential incommensurable time-delay

operators, namely, the amplitudes hi ∈ R+ of the time-delay operator

(δi y)(t) = y(t− hi), i = 1, . . . , n− 1,

are such that the Q-vector space generated by the positive real numbers h1, . . . , hn−1 is n-dimensional.
Let us consider R ∈ Dq×p which admits a right-inverse over D and F an injective cogenerator D-
module. Then, the time-invariant flat differential time-delay linear system kerF (R

(
d
dt , δ1, . . . , δn−1

)
.)

is D-isomorphic to the controllable ordinary differential linear system kerF (R
(
d
dt , 0, . . . , 0

)
.) obtained

by setting the amplitudes of all the delays to 0, i.e., it is equivalent to the linear system without
delays. In particular, the F-solutions of the system kerF (R

(
d
dt , δ1, . . . , δn−1

)
.) is in a one-to-one

correspondence with the ones of kerF (R
(
d
dt , 0, . . . , 0

)
.).

Let us illustrate Corollary 8 on two examples.

Example 10. Let us consider again the flat differential time-delay linear system defined by (20).
Applying Corollary 8 on (20), we obtain that (20) is equivalent to the ordinary differential linear
system obtained by substituting h = 0 into (20), i.e., by setting δ = 1 in the matrix R defined in
Example 7, namely: {

ż1(t) + z1(t) + 2 z2(t)− 2 v(t) = 0,
ż1(t) + ż2(t)− v̇(t)− v(t) = 0.

(29)

Using a QS-algorithm, we then obtain that the following transformation
z1(t) = y1(t),

z2(t) =
1
2

(ẏ1(t)− ẏ1(t− h) + y1(t)− y1(t− h)) + y2(t) + u(t)− u(t− h),

v(t) =
1
2

(ẏ1(t)− ẏ1(t− h)) + u(t),

(30)

whose inverse is defined by
y1(t) = z1(t),

y2(t) = −1
2

(ż1(t− h)− ż1(t− 2h) + z1(t− h)− z1(t)) + z2(t) + v(t− h)− v(t),

u(t) =
1
2

(ż1(t− h)− ż1(t)) + v(t),
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bijectively maps the trajectories of (20) to the ones of (29). An injective parametrization of (29) can
then be obtained by taking h = 0 in (22), i.e.:

∀ψ ∈ F ,


z1(t) = ψ(t),

z2(t) = −1
2

(ψ̈(t) + ψ(t)),

v(t) =
1
2

(−ψ̈(t) + ψ̇(t)).

Example 11. We consider again the differential time-delay system of neutral type defined by (27).
As we have already proved that (27) is a flat system, by Corollary 8, we know that (27) is equivalent
to the ordinary differential linear system{

ż1(t) + z1(t)− v(t) = 0,
−z1(t) + a z2(t) = 0,

(31)

obtained by setting h = 0 in (27) . Using a QS-algorithm, we then obtain that the invertible trans-
formation defined by 

x1(t) = z1(t) + ż2(t)− ż2(t− h),
x2(t) = z2(t),
u(t) = v(t) + z̈2(t)− z̈2(t− h) + ż2(t)− ż2(t− h),

⇔


z1(t) = x1(t)− ẋ2(t) + ẋ2(t− h),
z2(t) = x2(t),
v(t) = u(t)− ẍ2(t) + ẍ2(t− h)− ẋ2(t) + ẋ2(t− h),

bijectively maps the trajectories of (27) to the ones of (31).

In the previous examples, we note that the invertible transformations can easily be computed
by hand but it is generally not the case for more complicated examples. Hence, we need to use an
implementation of constructive versions of the Quillen-Suslin theorem for computing the invertible
transformations and the injective parametrizations of flat multidimensional linear systems. Such an
implementation has recently been done in the package QuillenSuslin ([13]) which, with the library
OreModules ([4]), allows us to effectively handle these difficult computations.

As for the flat non-linear ordinary differential systems, using the fact that there is a one-to-one
correspondence between the trajectories of the flat differential time-delay systems with those of the
ordinary differential system without delays, we can use stabilizing controllers of the latter in order to
stabilize the former. This approach echoes the Smith predictor method. We illustrate this idea on an
explicit example. More general ones can be handled in a similar way or will be studied in a future
publication.

Example 12. The differential time-delay linear system defined by

ẋ(t) + x(t− h) = u(t) (32)

is flat as we have the following injective parametrization of (32):{
x(t) = y(t),
u(t) = ẏ(t) + y(t− h).
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We easily check that (32) is algebraically equivalent to the controllable ordinary differential system
obtained by setting h = 0 in (32), namely,

ż(t) + z(t) = v(t) (33)

under the following invertible transformation:{
x(t) = z(t),
u(t) = v(t)− (z(t)− z(t− h)),

⇔

{
z(t) = x(t),
v(t) = u(t) + (x(t)− x(t− h)).

(34)

The transfer functions of (32) and (33) are then defined by:

p1 =
1

(s+ e−h s)
, p2 =

1
(s+ 1)

.

Let us show how to use the invertible transformation (34) in order to parametrize all the stabilizing
controllers of p1 by means of the ones of p2. Let us consider the algebra A = RH∞ of proper and stable
real rational transfer functions and the Hardy algebra B = H∞(C+) of bounded analytic functions
in the right half-plane C+ ([7, 50, 52, 51, 60]). We recall that A is a R-subalgebra of B. As p2 ∈ A,
Zames’ parametrization of all stabilizing controllers of p2 has the form ([51, 60]):

∀ q ∈ A, c2(q) =
q

1 + q p2
.

Now, using the Laplace transform of (34) ([7]), we get{
ẑ = x̂,

v̂ = û+ (1− e−h s) x̂,

where ẑ denotes the Laplace transform of z and similarly for x, u and v. Using the fact that v̂ = c2(q) ẑ,
we obtain the following stabilizing controllers of p1:

∀ q ∈ A, û = −(1− e−h s − c2(q)) x̂.

Let us check that the controller c1(q) = −(1− e−h s − c2(q)) internally stabilizes p1:

1
1− p1 c1(q)

=
s+ e−h s

s+ 1− c2(q)
=

(s+ e−h s)
(s+ 1)

1(
1− c2(q)

(s+ 1)

) ,
p1

1− p1 c1(q)
=

1
s+ 1− c2(q)

=
1

(s+ 1)
1(

1− c2(q)
(s+ 1)

) ,
c1(q)

1− p1 c1(q)
= − (s+ e−h s)

(s+ 1)
1(

1− c2(q)
(s+ 1)

) (1− e−h s − c2(q)),

= − (s+ e−h s)
(s+ 1)

 1− e−h s(
1− c2(q)

(s+ 1)

) − c2(q)(
1− c2(q)

(s+ 1)

)
.

Then, using the fact that for all q ∈ A, we have

1

1− c2(q)
(s+ 1)

,
c2(q)

1− c2(q)
(s+ 1)

∈ A,
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as c2(q) internally stabilizes p2 and (s+ e−h s)/(s+ 1), 1− e−h s ∈ B, we obtain

∀ q ∈ A, 1
(1− p1 c1(q))

,
p1

(1− p1 c1(q))
,

c1(q)
(1− p1 c1(q))

∈ B,

which shows that c1(q) internally stabilizes p1 for all q ∈ A. For more details, see [7, 50, 52, 51, 60].
Following [51], we can then find the general Q-parametrization of all stabilizing controllers of p1.

Taking q = 0, the internal stabilizing controller c1(0) = −(1− e−h s) of p1, i.e.,

u(t) = −x(t) + x(t− h), (35)

L2(R+) − L2(R+)-stabilizes (32). See [7] for more details. We note that a similar result holds if we
consider the Wiener algebra Â ([7, 51, 60]) instead of B = H∞(C+). Hence, the controller defined by
(35) also L∞(R+)− L∞(R+)-stabilizes (32).

Finally, using some results of [51] and the fact that c1(0) ∈ B, we obtain that p admits the following
coprime factorization p = n/d

n =
p1(0)

(1− p1 c1(0))
=

1
(s+ 1)

∈ B,

d =
1

(1− p1 c1(0))
=

(s+ e−h s)
(s+ 1)

∈ B,

as we can easily check that the following Bézout identity holds:

(s+ e−h s)
(s+ 1)

− (e−h s − 1)
1

(s+ 1)
= 1.

In particular, the stable controller c1(0) = −(1− e−h s) strongly stabilizes p1 ([51, 60]).

5 Pommaret’s theorem of Lin-Bose’s conjecture

The purpose of this section is to show how to use a QS-algorithm to constructively solve Pommaret’s
theorem of Lin-Bose’s conjecture ([43]). Let us first recall this conjecture recently developed in the
multidimensional systems theory which generalizes Serre’s conjecture ([26]). Let us state a new prob-
lem.

Problem 3. Let D = k[x1, . . . , xn] be a commutative polynomial ring with coefficients in a field k,
R ∈ Dq×p a full row rank matrix and M = D1×p/(D1×q R) the D-module finitely presented by R.
We suppose that M/t(M) is a free D-module.

Does it exist a full row rank matrix R′ ∈ Dq×p satisfying M/t(M) = D1×p/(D1×q R′)? If so,
compute such a matrix R′.

If we can solve Problem 3, we then have

t(M) = (D1×q R′)/(D1×q R),

and using the fact that D1×q R ⊆ D1×q′ R′, there exists R′′ ∈ Dq×q such that:

R = R′′R′. (36)
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Let us denote by r = p!/((p − q)! q!). The fact that M/t(M) is a projective D-module implies that
there is no common zero in the q × q minors {m′i}1≤i≤r of R′, i.e., there exists a family {pi}1≤i≤r of
elements of D satisfying the following Bézout identity:

r∑
i=1

pim
′
i = 1. (37)

Now, using the fact that we have mi = (det R′′)m′i, for i = 1, . . . , r, where the mi denote the
q × q-minors of R, we obtain that the following inclusion of ideals of D:

r∑
i=1

Dmi ⊆ (D (det R′′))

(
r∑
i=1

Dm′i

)
= D (det R′′).

Multiplying (37) by det R′′, we obtain

det R′′ =
r∑
i=1

pi (det R′′)m′i =
r∑
i=1

pimi,

which shows that D (det R′′) ⊆
∑r
i=1Dmi and

∑r
i=1Dmi = D (det R′′). Hence, the greatest com-

mon divisor of the q × q minors {mi}1≤i≤r is then equal to det R′′.

Hence, solving Problem 3 gives us a way to factorize R under the form R = R′′R′, where R′ ∈ Dq×p

admits a right-inverse over D and detR′′ is the greatest common divisor of the q × q minors of R.
The question of the possibility to achieve this factorization was first asked by Lin and Bose in [26]
and solved by Pommaret in [43]. See also [63]. It was proved in [43] that this factorization problem
is equivalent to Problem 3. The purpose of this paragraph is to give a general constructive algorithm
which solves Problem 3, and thus, performs the corresponding factorization. The algorithm has
recently been implemented in the package QuillenSuslin. See the Appendix.

Based on the Quillen-Suslin theorem, we first prove that a matrix R′ satisfying Problem 3 always
exists. We then show how to effectively compute it.

The fact that R has full row rank implies that we have the following exact sequence:

0 −→ D1×q .R−→ D1×p π−→M −→ 0. (38)

Let N = D1×q/(D1×pRT ) be the transposed D-module of M (see Remark 1), according to Theorem 3,
there exists Q ∈ Dq′×p such that M/t(M) = D1×p/(D1×q′ Q). In particular, using the fact that
(D1×q R) ⊆ (D1×q′ Q), there then exists a matrix P ∈ Dq×q′ satisfying R = P Q. We refer the reader
to [4] for the implementation of the corresponding algorithms in the library OreModules as well as
the large library of examples which demonstrates these results.

Then, we have the following commutative exact diagram:

0
↓

0 t(M)
↓ ↓ i

0 −→ D1×q .R−→ D1×p π−→ M −→ 0
↓ .P ‖ ↓ ρ

D1×q′ .Q−→ D1×p π′−→ M/t(M) −→ 0.
↓ ↓
0 0
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As, by hypothesis, the D-module M/t(M) is projective, using 1 of Proposition 1, we obtain that the
following exact sequence

0 −→ D1×q′ Q −→ D1×p π′−→M/t(M) −→ 0 (39)

splits and we obtain
D1×p ∼= M/t(M)⊕ (D1×q′ Q),

which shows that D1×q′ Q is a projective D-module. By the Quillen-Suslin theorem, we obtain that
D1×q′ Q is then a free D-module.

Let us compute the rank of the free D-module D1×q′ Q. Applying the exact functor K⊗D · to the
short exact sequence (39), where K = Q(D) denotes the quotient field of D ([57]), we obtain that:

rankD(D1×q′ Q) = p− rankD((M/t(M)).

See [57] for more details (Euler characteristic). Similarly with the two short exact sequences (38) and

0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0,

and, using the fact that K ⊗D t(M) = 0 because t(M) is a torsion D-module ([57]), we then get:

rankD(M/t(M)) = rankD(M) = p− q.

Therefore, we obtain rankD(D1×q′ Q) = p− (p− q) = q, which shows that D1×q′ Q is a free D-module
of rank q, i.e., D1×q′ Q ∼= D1×q. Computing a basis of this free D-module, we obtain a full row rank
matrix R′ ∈ Dq×p satisfying

D1×q′ Q = D1×q R′, (40)

which implies that M/t(M) = D1×p/(D1×q R′) and we have the following finite free short resolution
of M/t(M):

0 −→ D1×q .R′−→ D1×p π′−→M/t(M) −→ 0. (41)

We note that if Q has full row rank, we then can take R′ = Q and q′ = q.

In order to compute the matrix R′ ∈ Dq×p which satisfies (40), we need to compute a basis of
the free D-module D1×q′ Q. Hence, we can use the first point of Remark 7 to compute a basis of the
D-module D1×q′ Q.

Algorithm 2. � Input: A commutative polynomial ring D = k[x1, . . . , xn] over a computable
field k, a full row rank matrixR ∈ Dq×p and the finitely presentedD-moduleM = D1×p/(D1×q R)
such that M/t(M) is a free D-module.

� Output: A full row rank matrix R′ ∈ Dq×p such that:

M/t(M) = D1×p/(D1×q R′).

1. Transpose the matrix R and define the finitely presented D-module:

N = D1×q/(D1×pRT ).

2. Compute the D-module ext1D(N,D). We obtain a matrix Q ∈ Dq′×p such that:

M/t(M) = D1×p/(D1×q′ Q).
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3. Compute the first syzygy module kerD(.Q) of D1×q′ Q.

4. If kerD(.Q) = 0, then Q has full row rank and exit the algorithm with R′ = Q. Else, denote by
Q2 ∈ Dq′2×q

′
a matrix satisfying kerD(.Q) = D1×q′2 Q2.

5. Compute a basis of the free D-module:

L = D1×q′/(D1×q′2 Q2).

In particular, we obtain a full row rank matrix B ∈ Dq×q′ such that L = π2(D1×q B), where
π2 : D1×q′ −→ L denotes the canonical projection on L.

6. Return the full row rank matrix R′ = BQ ∈ Dq×p.

Remark 9. The computation of a basis of L gives two matrices P2 ∈ Dq′×q and B ∈ Dq×q′ such that
we have the following split exact sequence

0
↑

D1×q′2 .Q2−→ D1×q′ π2−→ L −→ 0
‖ ↑ φ

D1×q′ .P2−−→ D1×q −→ 0,
.B←− ↑

0

where φ : D1×q −→ L denotes the corresponding isomorphism. We can now check that the matrix
R′ = BQ has full row rank. Let λ ∈ D1×q be such that λR′ = 0. Then, we get (λB)Q = 0, i.e.,
λB ∈ kerD(.Q) = D1×q′2 Q2, and thus, there exists µ ∈ D1×q′2 such that λB = µQ2. Using the
identity B P2 = Iq, we then obtain:

λ = (λB)P2 = µ (Q2 P2) = 0.

We illustrate Algorithm 2 on a simple example.

Example 13. Let us consider the differential time-delay model of a flexible rod with a force applied
on one end developed in [32]: {

ẏ1(t)− ẏ2(t− 1)− u(t) = 0,
2 ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.

(42)

Let us define the ring D = Q
[
d
dt , δ

]
of differential time-delay operators with rational coefficients. The

system matrix of (42) is defined by:

R =


d

dt
− d

dt
δ −1

2
d

dt
δ − d

dt
δ2 − d

dt
0

 ∈ D2×3.

LetM = D1×3/(D1×2R) be theD-module associated with (42) andD-moduleN = D1×2/(D1×3RT ).
Then, N admits the following finite free resolution

0←− N σ←− D1×2 .RT

←−− D1×3 .RT
2←−− D ←− 0,
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where RT2 =
(
−δ2 − 1 − 2 δ d

dt δ
2 − d

dt

)
. The defects of exactness of the complex

0 −→ D1×2 .R−→ D1×3 .R2−−→ D −→ 0

are then defined by: 
ext0D(N,D) = kerD(.R) = 0,
ext1D(N,D) = kerD(.R2)/(D1×2R),
ext2D(N,D) = D/(D1×3R2).

Computing the first syzygy module kerD(.R2) of D1×2R, we obtain kerD(.R2) = D1×3Q, where the
matrix Q is defined by:

Q =


−2 δ δ2 + 1 0

− d

dt

d

dt
δ 1

d

dt
δ − d

dt
δ

 ∈ D3×3. (43)

We get t(M) ∼= (D1×3Q)/(D1×2R) and reducing the rows of Q with respect to D1×2R, we obtain
that the only non-trivial torsion element of M is defined by m = −2 δ y1 + (δ2 + 1) y2,

d

dt
m = 0,

where y1, y2 and y3 denote the residue classes of the standard basis of D1×3 in M .

Following Algorithm 2, we compute the first syzygy module kerD(.Q) and obtain kerD(.Q) = DQ2,
where:

Q2 =
(
d

dt
− δ 1

)
∈ D1×3. (44)

We now have to compute a basis of the free D-module L = D1×3/(DQ2). Using a constructive version
of the Quillen-Suslin theorem, we obtain the split exact sequence

0 −→ D
.Q2−−→ D1×2 .P2−−→ D −→ 0
.S2←−− .B←−

with the following notations:

S2 = (0 0 1)T , P2 =


−1 0
0 1
d

dt
δ

 , B =
(
−1 0 0
0 1 0

)
.

Computing R′ = BQ, we obtain that the following full row rank matrix

R′ =

 2 δ −δ2 − 1 0

− d

dt

d

dt
δ 1

 ∈ D2×3

satisfies D1×3Q = D1×2R′. Finally, we have the factorization R = R′′R′, where the R′′ is defined by

R′′ =

 0 −1

d

dt
0

 ,
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and satisfies det R′′ = d/dt, where d/dt is the greatest common divisor of the 2× 2 minors of R and
is the functional operator which annihilates the torsion element m.

Using the fact that M/t(M) is a free D-module of rank p− q, i.e., there exists an isomorphism

ψ : M/t(M) −→ D1×(p−q),

and the exact sequence (41), we then obtain the following exact sequence

0 −→ D1×q .R′−→ D1×p .P−→ D1×(p−q) −→ 0, (45)

where P ∈ Dp×(p−q) is the matrix defining the morphism π′ ◦ ψ in the standard bases of D1×p and
D1×(p−q). As the exact sequence (45) ends with a free D-module, by 1 of Proposition 1, it splits, i.e.,
there exist S ∈ Dp×q and T ∈ D(p−q)×p such that we have the following Bézout identities:(

R′

T

)
(S P ) =

(
Iq 0
0 Ip−q

)
= Ip, (46)

(S P )
(
R′

T

)
= Ip. (47)

Now, we have (
R
T

)
=
(
R′′R′

T

)
=
(
R′′ 0
0 Ip−q

) (
R′

T

)
and using (46), we obtain that det((R′T TT )T ) = 1 and:

det
(
R
T

)
= det

(
R′′ 0
0 Ip−q

)
det
(
R′

T

)
= detR′′.

Finally, using the fact that we have proved that detR′′ is the greatest common divisor of the q × q
minors of the matrix R, we then have solved the following problem.

Problem 4. Let R ∈ Dq×p be a full row rank matrix such that the ideal
∑r
i=1Dmi of D generated

by the q × q minors {mi}1≤i≤r of the matrix R satisfies

r∑
i=1

Dmi = Dd,

where d denotes the greatest common divisor of the q × q minors of the matrix R.

Find a matrix T ∈ D(p−q)×p such that we have:

det
(
R
T

)
= d.

To our knowledge, such a problem was first stated by Bose and Lin in [26]. Let us give a constructive
algorithm solving Problem 4.

Algorithm 3. � Input: A commutative polynomial ring D = k[x1, . . . , xn] over a computable
field k, a full row rank matrix R ∈ Dq×p such that the ideal of D generated by the q× q minors
{mi}1≤i≤r of R satisfies

∑r
i=1Dmi = Dd, where d denotes the greatest common divisor of the

q × q minors of R.
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� Output: A matrix T ∈ D(p−q)×p such that det
(
R
T

)
= d.

1. Transpose the matrix R and define the finitely presented D-module:

N = D1×q/(D1×pRT ).

2. Compute the D-module ext1D(N,D). We obtain a matrix Q ∈ Dq′×p such that:

M/t(M) = D1×p/(D1×q′ Q).

3. Compute a basis of the free D-module M/t(M) = D1×p/(D1×q′ Q). We obtain a full row rank
matrix T ∈ D(p−q)×p such that M/t(M) = π′(D1×(p−q) T ), where π′ : D1×p −→ M/t(M)
denotes the canonical projection on M/t(M).

4. Return the matrix U = (RT TT )T which satisfies det U = d.

We illustrate Algorithm 3 on an example.

Example 14. We consider again the model of a flexible rod defined in (42). In Example 13, we have
proved that M/t(M) = D1×3/(D1×3Q), where the matrix Q is defined by (43). Let us compute a
basis of the free D-module M/t(M). The D-module M/t(M) admits the following free resolution

0 −→ D
.Q2−−→ D1×3 .Q−→ D1×3 π′−→M/t(M) −→ 0,

where Q2 is defined by (44). Using the fact that Q2 admits the right-inverse S2 defined by (13), we
obtain the following minimal free resolution of M/t(M)

0 −→ D1×3 .Q−→ D1×4 π′⊕0−−−→M/t(M) −→ 0,

where the full row rank matrix Q is defined by Q = (QT ST2 )T .

Applying a constructive version of the Quillen-Suslin theorem to Q, we then find that a basis of
M/t(M) is given by (π′ ⊕ 0)(T ), where T denotes the matrix:

T =
(

1
1
2
δ 0 0

)
.

If we denote by T the matrix defined by the first three entries of T , we then obtain a square matrix
U = (RT TT )T satisfying det U = d/dt.

The explicit computation of the D-module ext1D(N,D) gives a matrix R−1 ∈ Dp×m which satisfies
kerD(.R−1) = D1×q′ Q, i.e., such that we have the following exact sequence:

D1×q′ .Q−→ D1×p .R−1−−−→ D1×m.

A direct way to solve Problem 4 exists when the matrix R−1 admits a left-inverse S−1 ∈ Dm×p.
Then, we have M/t(M) ∼= D1×pR−1 = D1×m and using the fact that rankD(M/t(M)) = p − q, we
get m = p− q. The fact that D1×q′ Q is a free D-module of rank q implies that there exists a full row
rank matrix R′ ∈ Dq×p satisfying D1×q′ Q = D1×q R′. Combining this result with the previous exact
sequence, we obtain the split exact sequence

0 −→ D1×q .R′−−→ D1×p .R−1−−−→ D1×(p−q) −→ 0,

which shows that P = R−1 and T = S−1 solve Problem 4.

Let us illustrate this last remark on an example.
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Example 15. Let us consider again the model of a flexible rod defined in (42) and let us compute
T ∈ D1×3 such that the determinant of the matrix (RT TT )T equals d/dt. In Example 13, we proved
that we have the exact sequence

D1×3 .Q−→ D1×3 .R2−−→ D,

where R2 =
(
−δ2 − 1 − 2 δ d

dt δ
2 − d

dt

)T
. R2 admits a left-inverse T defined by

T =
(

1 − 1
2
δ 0

)
,

which proves that M/t(M) is a free D-module of rank 1 as we have the isomorphisms:

M/t(M) = D1×3/(D1×3Q) ∼= (D1×3R2) ∼= D.

We finally obtain that the matrix defined by

U =
(
R
T

)
=


d

dt
− d

dt
δ −1

2
d

dt
δ − d

dt
δ2 − d

dt
0

1 − 1
2 δ 0


satisfies detU = d/dt, which solves Problem 4.

To finish, let us show how to handle an example given in [64] by means of Algorithms 2 and 3.

Example 16. Let us consider the commutative polynomial ring D = Q[z1, z2, z3] and the following
matrix defined in [64]:

R =

(
z1 z

2
2 z3 0 −z2

1 z
2
2 − 1

z2
1 z

2
3 + z3 −z3 −z3

1 z3 − z1

)
∈ D2×3.

Let us define theD-modulesM = D1×3/(D1×2R) andN = D1×2/(D1×3RT ). Computing ext1D(N,D),
we then get 

t(M) = (D1×4Q)/(D1×2R),
M/t(M) = D1×3/(D1×4Q),
M/t(M) ∼= (D1×3 P ),

with the notations:

Q =


−z2

2 z3 z2
2 z3 z1 z

2
2 − z1 z3

−z3 − z2
1 z

2
3 z3 z1 + z3

1 z3

−z2
1 z3 − 1 z2

1 z
2
2 + 1 0

0 z1 z
2
2 z3 −z2

1 z3 − 1

 , P =

 z2
1 z

2
2 + 1

z2
1 z3 + 1
z1 z

2
2 z3

 . (48)

Reducing the rows of Q with respect to the rows of R, we obtain that the only torsion element of
M is defined by {

m = −(z2
1 z3 + 1) y1 + (z2

1 z
2
2 + 1) y2,

z3m = 0,

where y1, y2 and y3 denote the residue classes of the standard basis of D1×3 in M . We refer the reader
to [4] for more details concerning the explicit computations.
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We can easily check that P admits the left-inverse T = (−z2
1 z3 1 z3

1), a fact showing that
M/t(M) is a free D-module of rank 2. Then, the matrix U = (RT TT )T defined by

U =

 z1 z
2
2 z3 0 −z2

1 z
2
2 − 1

z2
1 z

2
3 + z3 −z3 −z3

1 z3 − z1
−z2

1 z3 1 z3
1


satisfies det U = z3, which solves Problem 4.

Let us solve Problem 3. From the previous result, we know that kerD(.P ) = D1×4Q is a free
D-module of rank 2. In order to be able to apply a constructive version of the Quillen-Suslin theorem,
we first need to compute the first syzygy module of D1×4Q. We obtain that kerD(.Q) = D1×2Q2,
where the matrix Q2 ∈ D2×4 is defined by:

Q2 =

(
z2
1 z3 + 1 z3 − z2

2 −z2
3 0

0 1 −z3 z1

)
.

Hence, we have D1×4Q ∼= L = D1×4/(D1×2Q2). Applying a constructive version of the Quillen-Suslin
theorem to Q2, we then obtain L = π2(D1×2B), where the full row rank matrix B is defined by

B =

(
z4
1 0 −z2

1 z3 + 1 0
0 z3

1 z3 (z2
2 − z3) 0 1

)
,

and π2 : D1×2 −→ L denotes the canonical projection onto L. Hence, we get that the full row rank
matrix defined by

R′ = BQ =

(
R′11 R′12 R′13
R′21 R′21 R′23

)
∈ D2×3,

where 

R′11 = −z4
1 z

2
2 z3 + z4

1 z
2
3 − 1,

R′12 = z2
1 z

2
2 − z2

1 z3 + 1,
R′13 = z5

1 (z2
2 − z3),

R′21 = −z3
1 z

2
3 (z2

2 − z3) (z2
1 z3 + 1),

R′21 = −z3
1 z

3
3 + z3

1 z
2
2 + z1 z

2
2 z3,

R′23 = −z4
1 z

2
3 − z6

1 z
2
3 + z4

1 z
2
2 z3 + z6

1 z
2
2 z

2
3 − z2

1 z3 − 1,

satisfies D1×4Q = D1×2R′ and the two independent rows of R′ define a basis of D1×4Q. Finally, we
obtain that R = R′′R′, where the matrix R′′ is defined by

R′′ =

(
−z1 z2

2 z3 − z3
1 z

2
2 z

2
3 + z3

1 z
3
3 z2

1 z
2
2 − z2

1 z3 + 1
−z2

1 z
2
3 − z3 z1

)

and det R′′ = z3, which solves Problem 3.

We note that we can use the fact that P has a full column rank in order to also solve Problem 3.
Indeed, we can use a constructive version of the Quillen-Suslin theorem to compute a basis of kerD(.P ).
Indeed, if we transpose the column vector P , we then obtain the row vector defined in Example 4.
Hence, if we take the last two rows of UT , where U is the unimodular matrix defined in (13), we
obtain that the full row rank R′2 defined by

R′2 =

(
1 + z4

1 z
2
2 z3 + z2

1 z3 −z2
1 z

2
2 − 1 −z3

1 (z2
1 z

2
2 + 1)

z3
1 z

2
3 z

2
2 −z1 z2

2 z3 −z4
1 z

2
2 z3 + 1

)
, (49)
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satisfies D1×4Q = D1×2R′2 and we obtain the factorization R = R′′2 R
′
2, where:

R′′2 =

(
z1 z

2
2 z3 −z2

1 z
2
2 − 1

z3 −z1

)
, det R′′2 = z3.

6 Computation of (weakly) doubly coprime factorizations of
rational transfer matrices

We now turn to another application of the constructive proofs of the Quillen-Suslin theorem in mul-
tidimensional systems theory, namely, the problem of finding (weakly) left-/right-/doubly coprime
factorizations of rational transfer matrices over the commutative polynomial ring k[x1, . . . , xn] with
coefficients in a field k. The general problem of the existence of (weakly) left-/right-/doubly coprime
factorizations for general linear systems was recently studied and solved in [50, 52].

Let us recall a few definitions.

Definition 8 ([50]). Let D be a commutative integral domain, its quotient field

K = {n/d | 0 6= d, n ∈ D},

and P ∈ Kq×r a transfer matrix.

1. A fractional representation of P is a representation of P of the form

P = DP N
−1
P = ÑP D̃

−1
P ,

where 
R = (DP −NP ) ∈ Dq×(q+r),

R̃ =

(
ÑP

D̃P

)
∈ D(q+r)×r,

(50)

i.e., the entries of the matrices R and R̃ belong to the ring D.

2. A fractional representation P = D−1
P NP of P is called a weakly left-coprime factorization of P

if we have:
∀ λ ∈ K1×q : λR ∈ D1×(q+r) ⇒ λ ∈ D1×q.

3. A fractional representation P = ÑP D̃
−1
P is called a weakly right-coprime factorization of P if

we have:
∀ λ ∈ Kr : R̃ λ ∈ D(q+r)×1 ⇒ λ ∈ Dr×1.

4. A fractional representation P = D−1
P NP = ÑP D̃

−1
P is called a weakly doubly coprime factor-

ization of P if P = D−1
P NP is a weakly left-coprime factorization of P and P = ÑP D̃

−1
P is a

weakly right-coprime factorization of P .

5. A fractional representation P = D−1
P NP of P is called a left-coprime factorization of P if

the matrix R admits a right-inverse over D, i.e., if there exists S = (XT Y T )T ∈ D(q+r)×q

satisfying:
RS = DP X −NP Y = Iq.
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6. A fractional representation P = ÑP D̃
−1
P of P is called a right-coprime factorization of P if the

matrix R̃ admits a left-inverse over D, namely, if there exists a matrix S̃ = (−Ỹ X̃) ∈ Dr×(q+r)

satisfying:
S̃ R̃ = −Ỹ ÑP + X̃ D̃P = Ir.

7. A fractional representation P = D−1
P NP = ÑP D̃

−1
P is called a doubly coprime factorization

of P if P = D−1
P NP is a left-coprime factorization of P and P = ÑP D̃

−1
P is a right-coprime

factorization of P .

In the case of a polynomial ring D = k[x1, . . . , xn], a weakly coprime factorization of a rational
transfer matrix is also called a minor left-coprime factorization.

The next definition will play an important role in what follows.

Definition 9 ([50]). Let the matrix R ∈ Dq×p have a full row rank. We call D-closure D1×q R of the
D-submodule D1×q R of D1×p the D-module defined by:

D1×q R = {λ ∈ D1×p | ∃ 0 6= d ∈ D : d λ ∈ D1×q R}.

We have the following characterizations of the closure of a D-submodule of D1×p.

Proposition 4 ([50]). Let R ∈ Dq×p be a full row rank matrix and the finitely presented D-module
M = D1×p/(D1×q R). We then have:

1. D1×q R = (K1×q R) ∩ D1×p, where K denotes the quotient field of D.

2. The following equalities hold:{
t(M) = ((K1×q R) ∩ D1×p)/(D1×q R),
M/t(M) = D1×p/((K1×q R) ∩ D1×p).

The next theorem gives necessary and sufficient conditions for the existence of a (weakly) left-
/right-/doubly coprime factorization of a transfer matrix.

Theorem 9 ([50]). Let P ∈ Kq×r and P = D−1
P NP = ÑP D̃

−1
P be a fractional representation of P ,

where the matrices R and R̃ are defined by (50). Then, we have:

1. P admits a weakly left-coprime factorization iff the D-module D1×q R is free of rank q.

2. P admits a weakly right-coprime factorization iff the D-module D1×r R̃T is free of rank r.

3. P admits a left-coprime factorization iff D1×q R is a free D-module of rank q and the D-module
D1×(q+r)/(D1×q R) is stably free of rank r.

4. P admits a right-coprime factorization iff D1×r R̃T is a free D-module of rank r and the D-
module D1×(q+r)/(D1×r R̃T ) is stably free of rank q.

5. P admits a left-coprime factorization iff D1×(q+r)/(D1×r R̃T ) is a free D-module of rank q.

6. P admits a right-coprime factorization iff D1×(q+r)/(D1×q R) is a free D-module of rank r.
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Testing the freeness of modules is a very difficult issue in algebra. Hence, using Theorem 9, we
deduce that it is generally difficult to check whether or not a transfer matrix P ∈ Kq×r admits a
(weakly) left-/right-/doubly coprime factorization and if so, to compute them. See [50, 52] for results
for D = H∞(C+) or the ring of structural stable multidimensional systems.

However, if we consider the commutative polynomial ring D = k[x1, . . . , xn] over a field k and
K = k(x1, . . . , xn) its quotient field, then we can use constructive versions of the Quillen-Suslin the-
orem in order to effectively compute (weakly) left-/right-/doubly coprime factorizations of a rational
transfer matrix. We first note that using Proposition 4 and a computation of an extension module,
we can explicitly compute the closure D1×q R and then test whether the necessary and sufficient con-
ditions given in Theorem 9 are fulfilled. The next algorithm gives a constructive way to compute the
corresponding factorizations.

Algorithm 4. � Input: A commutative polynomial ring D = k[x1, . . . , xn] over a computable
field k, a fractional representation P = D−1

P NP of a transfer matrix P ∈ Kq×r which admits a
weakly left-coprime factorization over D.

� Output: A weakly left-coprime factorization of P .

1. Define the matrix R = (DP −NP ) ∈ Dq×(q+r) and the following D-module:

M = D1×(q+r)/(D1×q R).

2. Transpose the matrix R and define the finitely presented D-module:

N = D1×q/(D1×(q+r)RT ).

3. Compute the D-module ext1D(N,D). We obtain a matrix Q ∈ Dq′×(q+r) such that:

M/t(M) = D1×(q+r)/(D1×q′ Q).

4. Compute a basis of the free D-module D1×q R = D1×q′ Q. We obtain a full row rank matrix
R′ ∈ Dq×(q+r) such that D1×q′ Q = D1×q R′.

5. Write R′ = (D′P − N ′
P ), where D′P ∈ Dq×q and N ′

P ∈ Dq×r. If detD′P 6= 0, then P admits
the weakly left-coprime factorization P = (D′P )−1N ′

P .

Up to a transposition, weakly right-coprime factorizations can similarly be obtained.

Let us illustrate Algorithm 4 on an example.

Example 17. Let us consider the commutative polynomial ring D = Q[z1, z2, z3], K = Q(z1, z2, z3)
the quotient field of D and the following rational transfer matrix:

P =


z2
1 z

2
2 + 1

z1 z2
2 z3

z2
1 z3 + 1
z1 z2

2 z3

 ∈ K2×1. (51)

Let us check whether or not P admits a weakly left-coprime factorization and if so, let us compute one.
We consider the fractional representation P = D−1

P NP of P obtained by cleaning the denominators
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of P , i.e., DP and NP ∈ D2×1 are defined by:
DP =

(
z1 z

2
2 z3 0
0 z1 z

2
2 z3

)
∈ D2×2,

NP =

(
z2
1 z

2
2 + 1

z2
1 z3 + 1

)
∈ D2×1.

We denote by R = (DP −NP ) ∈ D2×3 and define the finitely presented D-modules:

M = D1×3/(D1×2R), N = D1×2/(D1×3RT ).

Computing ext1D(N,D), we then obtain{
t(M) = (D1×4Q)/(D1×2R),
M/t(M) = D1×3/(D1×4Q),

where the matrix Q is defined by (48) in Example 16. Using the results obtained in Example 16, we
get that the full row rank matrix R′2 ∈ D2×3 defined by (49) satisfies D1×4Q = D1×2R′2. Therefore,
if we denote by 

D′P =

(
1 + z4

1 z
2
2 z3 + z2

1 z3 −z2
1 z

2
2 − 1

z3
1 z

2
3 z

2
2 −z1 z2

2 z3

)
,

N ′
P =

(
z3
1 (z2

1 z
2
2 + 1)

z4
1 z

2
2 z3 − 1

)
,

(52)

P = (D′P )−1N ′
P is then a weakly left-coprime factorization of P .

Finally, by construction, the D-module

M/t(M) = D1×3/(D1×4Q) = D1×3/(D1×2R′2)

is torsion-free, and thus, by Theorem 3, we have ext1D(N ′, D) = 0 where N ′ = D1×2/(D1×3 (R′2)
T ).

Moreover, we can easily check that ext2D(N ′, D) = 0 and ext3D(N ′, D) = 0, which shows that M/t(M)
is a projective, and thus, a free D-module by the Quillen-Suslin theorem. Hence, by 3 of Theorem 9,
we obtain that P = (D′P )−1N ′

P is a left-coprime factorization of P . We find that the matrix R′2
admits the following right-inverse over D: 1 0

z2
1 z3 −z3

1

0 1

 .

Therefore, we have the Bézout identity D′P X −N ′
P Y = I2, where:

X =

(
1 0

z2
1 z3 −z3

1

)
, Y = (0 1).

The next algorithm gives us a way to compute left-coprime factorizations of a transfer matrix. Up
to a transposition, right-coprime factorizations can similarly be obtained.

Algorithm 5. � Input: A commutative polynomial ring D = k[x1, . . . , xn] over a computable
field k, a fractional representation P = ÑP D̃

−1
P of a rational transfer matrix P ∈ Kq×r which

admits a left-coprime factorization over D.
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� Output: A left-coprime factorization of P .

1. Define the matrix R̃ = (ÑT
P D̃T

P )T ∈ D(q+r)×r and define the D-module:

M̃ = D1×(q+r)/(D1×r R̃T ).

2. Define the finitely presented D-module:

Ñ = D1×r/(D1×(q+r) R̃).

3. Compute ext1D(Ñ ,D). We obtain a matrix Q̃T ∈ Dr′×(q+r) such that:

M̃/t(M̃) = D1×(q+r)/(D1×r′ Q̃T ).

4. Compute a basis of the free D-module M̃/t(M̃). We obtain a full column rank matrix

L̃T = (D′P −N ′
P )T ∈ D(q+r)×q,

where D′P ∈ Dq×q and N ′
P ∈ Dq×r, such that we have the following split exact sequence:

0←− D1×q .eLT

←−− D1×(q+r) . eQT

←−− D1×r′ .

5. Transpose the matrix L̃T to obtain L̃ = (D′P − N ′
P ) ∈ Dq×(q+r). If detD′P 6= 0, then

P = (D′P )−1N ′
P is a left-coprime factorization of P .

Let us illustrate Algorithm 5 on an example.

Example 18. We consider again Example 17 and the rational transfer matrix P defined by (51). We
have the fractional representation P = ÑP D̃

−1
P of P , where:

ÑP =

(
z2
1 z

2
2 + 1

z2
1 z3 + 1

)
∈ D2×2,

D̃P = z2
1 z

2
2 z3 ∈ D.

Let us define the matrix R̃ = (ÑT
P D̃T

P )T and the D-modules:

M̃ = D1×(q+r)/(D1×r R̃T ), Ñ = D1×r/(D1×(q+r) R̃).

The row vector R̃T is exactly the one defined in Example 4. Hence, using the results obtained in
Example 4, we obtain that the unimodular matrix U defined by (13) satisfies R̃T U = (1 0 0). Hence,
selecting the last two columns of U and transposing the corresponding matrix, we then find again the
matrix R′2 defined by (49). Hence, using Example 17, we obtain that P = (D′P )−1N ′

P is a left-coprime
factorization of P , where the matrices D′P and N ′

P are defined by (52).

7 Decomposition of multidimensional linear systems

It was recently shown in [9] that the computation of bases of free modules plays a central role in the
decomposition problem of multidimensional linear systems. We shall recall this problem as well as the
main important results obtained in [9]. Let us first recall a few definitions and notations.
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We shall denote by endD(M) the non-commutative ring of D-endomorphisms of the D-module M ,
i.e., the ring formed by the D-morphisms (namely, the D-linear maps) from M to M . Moreover, we
recall that if f is a D-morphism from a D-module M to a D-module N , then coimf is the D-module
defined by coim f = M/ ker f , where ker f = {m ∈M | f(m) = 0} is the kernel of f .

Let M be a finitely presented D-module, i.e., M is of the form M = D1×p/(D1×q R), where
R ∈ Dq×p, and let us denote by π : D1×p −→ M the canonical projection. We can easily prove that
a D-endomorphism f of M is defined by f(m) = π(λP ), where P ∈ Dp×p is a matrix such that there
exists Q ∈ Dq×q satisfying RP = QR, and λ is any element of D1×p satisfying m = π(λ). See [9]
for more details and for constructive algorithms which compute the pairs of matrices (P,Q) satisfying
RP = QR. These algorithms have been implemented in the package Morphisms ([10]) of the library
OreModules ([4]).

We have following results.

Theorem 10. ([9]) Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) defined by P ∈ Dp×p

and Q ∈ Dq×q, i.e., RP = QR. If the D-modules

kerD(.P ), coimD(.P ), kerD(.Q), coimD(.Q),

are free of rank m, p−m, l, q − l, then there exist matrices U1 ∈ Dm×p, U2 ∈ D(p−m)×p, V1 ∈ Dl×q

and V2 ∈ D(q−l)×q such that

U = (UT1 UT2 )T ∈ GLp(D), V = (V T1 V T2 )T ∈ GLq(D),

and

R = V RU−1 =
(
V1RW1 0
V2RW1 V2RW2

)
∈ Dq×p,

where U−1 = (W1 W2), W1 ∈ Dp×m and W2 ∈ Dp×(p−m).

In particular, the full row rank matrix U1 (resp., U2, V1, V2) defines a basis of the free D-module
kerD(.P ) (resp., coimD(.P ), kerD(.Q), coimD(.Q)), i.e., we have:

kerD(.P ) = D1×m U1,
coimD(.P ) = D1×(p−m) U2,
kerD(.Q) = D1×l V1,
coimD(.Q) = D1×(q−l) V2.

An important point in Theorem 10 is the computation of bases of the free D-modules kerD(.P ),
coimD(.P ), kerD(.Q) and coimD(.Q), which can be solved by means of constructive versions of the
Quillen-Suslin theorem and their implementations in computer algebra systems. In order to do that,
we use the package QuillenSuslin described in the Appendix.

Let us illustrate Theorem 10 by means of an explicit example.

Example 19. Let us consider the system of partial differential equations defined by

σ ∂t ~A+
1
µ
~∇∧ ~∇ ~A− σ ~∇V = 0, (53)

where σ and µ are two constants. The previous system corresponds to the equations satisfied by the
electromagnetic quadri-potential ( ~A, V ) when it is assumed that the term ∂t ~D can be neglected in
the Maxwell equations. See [8] for more details. It seems that Maxwell was led to introduce the term
∂t ~D in his famous equations for purely mathematical reasons. See [8] for more details.
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Let us consider the ring D = Q[∂t, ∂1, ∂2, ∂3] of differential operators in ∂t = ∂/∂t and ∂i = ∂/∂xi
with rational coefficients, the system matrix of (53) defined by

R =



σ ∂t −
1
µ

(∂2
2 + ∂2

3)
1
µ
∂1 ∂2

1
µ
∂1 ∂3 −σ ∂1

1
µ
∂1 ∂2 σ ∂t −

1
µ

(∂2
1 + ∂2

3)
1
µ
∂2 ∂3 −σ ∂2

1
µ
∂1 ∂3

1
µ
∂2 ∂3 σ ∂t −

1
µ

(∂2
1 + ∂2

2) −σ ∂3


and the finitely presented D-module M = D1×4/(D1×3R).

The matrices P and Q defined by

P =


0 0 0 0
0 σ µ∂t 0 −σ µ∂2

0 0 σ µ∂t −σ µ∂3

0 ∂t ∂2 ∂t ∂3 −(∂2
2 + ∂2

3)

 ∈ D4×4,

Q =

 0 0 0
−∂1 ∂2 σ µ∂t − ∂2

2 −∂2 ∂3

−∂1 ∂3 −∂2 ∂3 σ µ∂t − ∂2
3

 ∈ D3×3,

satisfy the relation RP = QR, and thus, define a D-endomorphism f of M . Moreover, we can check
that kerD(.P ), coimD(.P ), kerD(.Q) and coimD(.Q) are free D-modules of rank 2, 2, 1 and 2. Hence,
computing bases of these free D-modules by means of a constructive version of the Quillen-Suslin
theorem, we obtain:

U1 =
(

1 0 0 0
0 ∂2 ∂3 −σ µ

)
,

U2 =
1
σ µ

(
0 1 0 0
0 0 1 0

)
,


V1 =

(
1 0 0

)
,

V2 =
(

0 1 0
0 0 1

)
.

Defining U = (UT1 UT2 )T ∈ GL4(D) and V = (V T1 V T2 )T ∈ GL3(D), we get that R = V RU−1 is
the block-triangular matrix defined by:

R =



σ ∂t −
1
µ

(∂2
2 + ∂2

3)
1
µ
∂1 0 0

1
µ
∂1 ∂2

1
µ
∂2 σ (σ µ∂t − (∂2

1 + ∂2
2 + ∂2

3)) 0

1
µ
∂1 ∂3

1
µ
∂3 0 σ (σ µ∂t − (∂2

1 + ∂2
2 + ∂2

3))


.

Now, we recall that a projector f ∈ endD(M) is a D-endomorphism f of M satisfying f2 = f .
We can now state another important result of [9] on the decomposition of D-modules for which the
Quillen-Suslin theorem plays a central role.

Theorem 11. ([9]) Let R ∈ Dq×p, M = D1×p/(D1×q R) and f ∈ endD(M) be a projector defined by
two idempotents P ∈ Dp×p and Q ∈ Dq×q, namely, they satisfy RP = QR, P 2 = P and Q2 = Q.
Then, there exist four matrices U1 ∈ Dm×p, U2 ∈ D(p−m)×p, V1 ∈ Dl×q and V2 ∈ D(q−l)×q such that

U = (UT1 UT2 )T ∈ GLp(D), V = (V T1 V T2 )T ∈ GLq(D),
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and

R = V RU−1 =
(
V1RW1 0

0 V2RW2

)
∈ Dq×p,

where U−1 = (W1 W2), W1 ∈ Dp×m and W2 ∈ Dp×(p−m).

In particular, the full row rank matrix U1 (resp., U2, V1, V2) defines a basis of the free D-module
kerD(.P ), (resp., imD(.P ) = kerD(.(Ip−P )), kerD(.Q), imD(.Q) = kerD(.(Iq−Q))) of rank respectively
m, p−m, l, q − l. In other words, we have:

kerD(.P ) = D1×m U1,
imD(.P ) = D1×(p−m) U2,
kerD(.Q) = D1×l V1,
imD(.Q) = D1×(q−l) V2.

Let us illustrate Theorem 11 by means of an example coming from control theory.

Example 20. Let us consider the differential time-delay system describing the movement of a vibrat-
ing string with an interior mass studied in [33], namely,

φ1(t) + ψ1(t)− φ2(t)− ψ2(t) = 0,

φ̇1(t) + ψ̇1(t) + η1 φ1(t)− η1 ψ1(t)− η2 φ2(t) + η2 ψ2(t) = 0,
φ1(t− 2h1) + ψ1(t)− u(t− h1) = 0,
φ2(t) + ψ2(t− 2h2)− v(t− h2) = 0,

(54)

where h1 and h2 ∈ R+ are such that Qh1 + Qh2 is a two-dimensional Q-vector space (i.e., there
exists no relation of the form mh1 + nh2 = 0, where m,n ∈ Z), η1 and η2 are two non-zero constant
parameters of the system.

Let us consider the ring of differential time-delay operators D = Q(η1, η2)
[
d
dt , σ1, σ2

]
, where

(dy/dt)(t) = ẏ(t) and (σi y)(t) = y(t − hi), for i = 1, 2. The condition on h1 and h2 implies that
the two time-delay operators σ1 and σ2 are incommensurable, i.e., define two independent variables.
Hence, D is a commutative polynomial ring. Let us denote by R the system matrix of (54), namely,

R =


1 1 −1 −1 0 0

d

dt
+ η1

d

dt
− η1 −η2 η2 0 0

σ2
1 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2

 ∈ D4×6,

and the finitely presented D-module M = D1×6/(D1×4R).

Computing projectors of endD(M), we obtain a projector f defined by the following two idempotent
matrices:

P =


1 0 0 0 0 0
−σ2

1 0 0 0 σ1 0
0 0 0 −σ2

2 0 σ2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Q =


1 0 −1 1

0 1 − d

dt
+ η1 η2

0 0 0 0
0 0 0 0

 .

Moreover, we can check that kerD(.P ), imD(.P ), kerD(.P ) and imD(.P ) are free D-modules of rank
2, 4, 2 and 2. Computing bases by means of a constructive version of the QuillenSuslin theorem, we
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then get: 

kerD(.P ) = D1×2 U1, U1 =
(
σ2

1 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2

)
,

imD(.P ) = D1×4 U2, U2 =


1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

kerD(.Q) = D1×2 V1, V1 =
(

0 0 1 0
0 0 0 1

)
,

imD(.Q) = D1×2 V2, V2 =

 1 0 −1 1

0 −1
d

dt
− η1 −η2

 .

Forming the matrices U = (UT1 UT2 )T ∈ GL6(D) and V = (V T1 V T2 )T ∈ GL4(D), we obtain that R
is then equivalent to the block-diagonal matrix R = V RU−1:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1− σ2

1 σ2
2 − 1 σ1 −σ2

0 0 σ2
1

(
d

dt
− η1

)
−
(
d

dt
+ η1

)
−η2 (σ2

2 + 1) −σ1

(
d

dt
+ η1

)
η2 σ2

 .

Now, considering the second diagonal block, namely,

S =

 1− σ2
1 σ2

2 − 1 σ1 −σ2

σ2
1

(
d

dt
− η1

)
−
(
d

dt
+ η1

)
−η2 (σ2

2 + 1) −σ1

(
d

dt
+ η1

)
η2 σ2

 ,

and the D-module L = D1×4/(D1×2 S). Using an algorithm developed in [9], we obtain that a
projector g ∈ endD(L) is defined by the two idempotent matrices:

P ′ =


1 0 0 0
a 0 b 0
0 0 1 0
0 0 0 1

 , Q′ =
1
2

 σ2
2 + 1

1
η2

(σ2
2 − 1)

−η2 (σ2
2 + 1) −σ2

2 + 1

 ,

with the notations: 
a =

1
2 η2

(
σ2

1

(
d

dt
− (η1 + η2)

)
− d

dt
+ (η2 − η1)

)
,

b = − σ1

2 η2

(
d

dt
− (η1 + η2)

)
.

We can check that the D-modules kerD(.P ′), imD(.P ′) = kerD(.(I4−P ′)), kerD(.Q′) and imD(.Q′) =
kerD(.(I2 − Q′)) are free and, using a constructive version of the Quillen-Suslin theorem, we obtain
that kerD(.P ′) = DU ′1, imD(.P ′) = D1×3 U ′2, kerD(.Q′) = DV ′1 and imD(.Q′) = DV ′2 , where:

U ′1 =
(
σ2

1

(
d

dt
− η1 − η2

)
−
(
d

dt
+ η1 − η2

)
− 2 η2 − σ1

(
d

dt
− η1 − η2

)
0
)
,

U ′2 =

 1 0 0 0
−σ1 0 1 0

σ2
1 σ2 (d− η1 − η2)− σ2 (d+ η1 − η2) 0 −σ1 σ2 (d− η1 − η2) −2 η2

 ,

V ′1 = (η2 1), V ′2 = (η2 (σ2
2 + 1) σ2

2 − 1).
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Defining U ′ = (U ′T1 U ′T2 )T ∈ GL4(D) and V ′ = (V ′T1 V ′T2 )T ∈ GL2(D), we get:

S = V ′ S U ′−1 =

 1 0 0 0

0
d

dt
+ η1 + η2 σ1

(
d

dt
+ η2 − η1

)
σ2

 .

If we denote by diag(A,B) the diagonal matrix formed by A and B and define the new matrices
U ′′ = diag(I2, U ′) ∈ GL6(D) and V ′′ = diag(I2, V ′) ∈ GL4(D), then we get:

R = (V ′′ V )R (U ′′ U)−1 = diag(I2, S).

The last result proves that the system defined by (54) with 6 unknowns and 4 equations is in fact
equivalent to the following simple equation:

ż1(t) + (η1 + η2) z1(t) + ż2(t− h1) + (η2 − η1) z2(t− h1)− z3(t− h2) = 0. (55)

Using the results summed up in Figure 1, the D-module defined by

M ′ = D1×3/

(
D

(
d

dt
+ η1 + η2 σ1

(
d

dt
+ η2 − η1

)
σ2

))
∼= M,

is reflexive but not projective, i.e., not free, as we have

J = annD(ext3D(T (M ′), D)) =
(
σ1, σ2,

d

dt
+ η1 + η2

)
,

and dimCV (J) = 0. As we have σ1, σ2 ∈ J , we obtain that the Q(η1, η2)
[
d
dt , σ1, σ2, σ

−1
1

]
-module

Q(η1, η2)
[
d
dt , σ1, σ2, σ

−1
1

]
⊗DM ′ is free, i.e., (55) is σ1-free ([6, 32]). Computing an injective parametriza-

tion of (55), we obtain 
z1 = σ1 σ2 y1 + σ1

(
d

dt
+ η2 − η1

)
y2,

z2 = −σ2 y1 −
(
d

dt
+ η1 + η2

)
y2,

z3 = −2 η1 y1,

(56)

and a basis of Q(η1, η2)
[
d
dt , σ1, σ2, σ

−1
1

]
-module Q(η1, η2)

[
d
dt , σ1, σ2, σ

−1
1

]
⊗D M ′ is then defined by:

y1 = − 1
2 η1

σ−1
1 z3, y2 = − 1

2 η1
(σ−1

1 z1 + z2).

Using (56) and the transformation (φ1, ψ1, φ2, ψ2, u, v)T = (U ′′ U)−1 (z1, z2, z3)T , we get an injective
parametrization of (54) if we also use the advance operator σ−1

1 .

Finally, the Q(η1, η2)
[
d
dt , σ1, σ2, σ

−1
2

]
-module Q(η1, η2)

[
d
dt , σ1, σ2, σ

−1
2

]
⊗D M ′ is free and, from

(55), we obtain that

z3(t) = ż1(t+ h2) + (η1 + η2) z1(t+ h2) + ż2(t− h1 + h2) + (η2 − η1) z2(t− h1 + h2),

showing that the Q(η1, η2)
[
d
dt , σ1, σ2, σ

−1
2

]
-module Q(η1, η2)

[
d
dt , σ1, σ2, σ

−1
2

]
⊗DM ′ admits the basis

{z1, z2}. Using the transformation defined by (U ′′ U)−1, we get an injective parametrization of (54)
if we also use the advance operator σ−1

2 .

Generalizations of Theorems 10 and 11 hold for some classes of non-commutative polynomial rings
of functional operators. See [9] for more details. However, we need to be able to compute bases of free
modules over the corresponding rings. A general algorithm has recently been developed in [53, 55] for
the ring of differential operators with polynomial or rational coefficients (the so-called Weyl algebras).
See [54] for an implementation of this algorithm and a library of examples which illustrates it.
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8 Conclusion

In this paper, we have shown new applications of constructive versions of the Quillen-Suslin theorem
to mathematical systems theory. In particular, we explained that the construction of bases of a free
module over a commutative polynomial ring D gives us a way to obtain flat outputs of the correspond-
ing flat multidimensional linear system as well as injective parametrizations of all of its solutions over
a D-module F . We have also shown that a flat multidimensional system was algebraically equivalent
to the 1-D controllable linear systems obtained by setting all but one functional operator to particular
values in the system matrix. This last result gives an answer to a natural question arising in the
study of flat multidimensional linear systems and particularly in the study of differential time-delay
systems. Moreover, we gave constructive algorithms for two well-known problems stated by Lin and
Bose in the literature of multidimensional systems. These problems are generalizations of Serre’s con-
jecture. We also show that the computation of (weakly) left-/right-coprime factorizations of rational
transfer matrices can constructively be solved by means of the Quillen-Suslin theorem. The need for
the computation of bases of free D-modules recently appeared as an important issue in the study of
the decomposition problems of multidimensional linear systems. Finally, we have demonstrated the
different algorithms by means of the recent implementation of the Quillen-Suslin theorem in the pack-
age QuillenSuslin. To our knowledge, this is the first implementation of the Quillen-Suslin theorem
in a computer algebra system which is nowadays freely available and dedicated to applications of the
Quillen-Suslin theorem and, in particular, to mathematical systems theory and control theory.

New applications of the Quillen-Suslin theorem and of the package QuillenSuslin will be studied
in the future (e.g., algebraic geometry, signal processing). Moreover, an interesting but difficult prob-
lem is to constructively recognize when a finitely presented D = A[x]-module M = D1×p/(D1×q R),
where R ∈ Dq×p and A is a commutative ring, is extended, namely, when there exists S ∈ Aq

′×p′

such that M ∼= D ⊗A P , where P = A1×p/(A1×q S). See [57] for more details. It is well-known that
the Quillen-Suslin theorem is a particular case of this problem when M is a projective D-module
([24, 25, 56, 57]). If we can effectively solve this problem for particular classes of D-modules, then, for
every D-module F , we obtain kerF (R.) ∼= kerF (S.), which shows that the integration of the system
kerF (R.) is algebraically equivalent to the integration of the system kerF (S.) which contains one func-
tional operator less. Such a result may simplify the explicit integration of these classes of functional
systems. Finally, another interesting problem is the computation of a minimal set of generators of a
finitely presented D = A[x]-module M = D1×p/(D1×q R), where R ∈ Dq×p. The results recently ob-
tained in [9, 10] were able to explicitly answer these last two questions on particular examples coming
from mathematical physics and control theory. However, the general case seems to be far from being
solved.

Finally, more heuristic methods need to be developed and implemented in QuillenSuslin in
order to avoid as much as we can the use of the general algorithm for solving Problem 2. Different
QS-algorithms need also to be implemented in QuillenQuillen and particularly the one recently
developed in [29, 61].

9 Appendix: QuillenSuslin, a package for computing bases
of free modules over commutative polynomial rings

9.1 Description of the package QuillenSuslin

The package QuillenSuslin is an implementation of a constructive version of the Quillen-Suslin The-
orem. The main idea of the algorithm was inspired by the article of Logar and Sturmfels [27].
Nevertheless, many important changes were introduced. We have roughly described the implemented
algorithm in Section 3.4.
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The general algorithm proceeds by induction on the number n of independent variables xi in
the polynomial ring D = k[x1, . . . , xn] and each inductive step, that reduces the problem by one
independent variable, consists of the following three main parts:

1. Finding a normalized component in a polynomial vector by means of a change of coordinates
(NormalizationStep).

2. Computing a finite number of local solutions (local loop) using Horrocks’ theorem (Horrocks).

3. Patching local solutions of Problem 2 together to get a global one (Patch).

This general method is generally quite involved. The package consists of procedures completing
a unimodular polynomial row which admits a right-inverse to a square invertible matrix over a given
commutative polynomial ring with coefficients in Q or Z. The implementation was improved by many
heuristic methods which are used as soon as it is possible. It allows us to avoid the inductive step and
leads to simpler outputs (smaller coefficients and lower degrees).

QuillenSuslin uses the library Involutive ([3]) for computing Janet bases over commutative
polynomial rings.

> with(Involutive):

> with(QuillenSuslin);

[BasisOfCokernelModule, Cofactors, CompleteMatrix , DenomOf , Heuristic, Horrocks,
InjectiveParametrization, InvertibleIn, IsInS , IsMonic, IsParkNormalized , IsRegular ,
IsUnimod , LC , LCFactorization, LM , Laurent2Pol , LaurentNormalization, LinBose1 ,
LinBose2 , LowestDegree, MaxMinors, MaximalFF , MaximalQQ , MaximalZZ ,
NormalizationStep, OneLocalSol , OneStepEY , OneStepQS , ParkAlgorithm,
ParkMatrixNormalization, Patch, QSAlgorithm, ReduceBasisDegree, ReduceDeg ,
RightInverse, RightInverseFast , SHeuristic, SetLastVariableA, SuslinLemma,
WLCFactorization,WRCFactorization]

9.1.1 The main functions of the package QuillenSuslin

QSAlgorithm Compute a unimodular matrix U which transforms a row vector admit-
ting a right-inverse into a matrix of the form (I 0)

CompleteMatrix Complete a matrix admitting a right-inverse to a unimodular matrix
HEURISTIC Test whether or not a heuristic method can be applied for the given row

vector
BasisOfCokernelModule Compute a basis of a free module finitely presented by the given matrix

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 59

9.1.2 Important functions of the package QuillenSuslin

Horrocks Implementation of Horrock’s theorem which computes a solution of Prob-
lem 1 over a given local ring

IsMonic Test whether or not a polynomial row vector has a monic component
IsRegular Test whether or not a polynomial row vector forms a regular sequence
IsUnimod Test whether or not a matrix admits a right-inverse
MaximalFF Find a maximal ideal over a given one in a polynomial ring with coeffi-

cient in a finite field
MaximalQQ Find a maximal ideal over a given one in a polynomial ring with rational

coefficients
MaximalZZ Find a maximal ideal over a given one in a polynomial ring with integer

coefficients
NormalisationStep Compute an invertible transformation and a change of variables such

that the last component of the transformed row becomes monic in the
last new variable

OneLocalSol Compute a matrix which is unimodular over some localization of the
polynomial ring and transforms the given matrix to (I 0)

OneStepEY OneStepQS One inductive step of the general algorithm: return a unimodular matrix
which transforms the given matrix into a matrix where the last variable
equals 0

Patch Patching procedure: patch local solutions together
SuslinLemma Implementation of Suslin’s Lemma which computes a polynomial h in

the ideal generated by polynomials p and q such that deg(h) = deg(p)−1
and its leading coefficient is a coefficient of the polynomial q

9.1.3 Low level functions of the package QuillenSuslin

Cofactors Compute cofactors of a (p− 1)× p-matrix
DenomOf Compute the common denominator of entries of a rational

matrix
LM Return the leading monomial of a polynomial with respect

to the given variable
LC Return the leading coefficient of a polynomial with respect

to the given variable
MaxMinors Return the maximal minors of a given matrix
ReduceDeg Reduce degrees of the components of a polynomial row vec-

tor with respect to given variable
RightInverse, RightInverseFast Compute a right-inverse of a row vector
ReduceBasisDegree Reduce degrees of the elements of basis of a free module

over a commutative polynomial ring
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9.1.4 Functions of QuillenSuslin for mathematical systems theory

InjectiveParametrization Compute an injective parametrization of a flat multidimensional
linear system

LCFactorization Compute a left-coprime factorization of a rational transfer matrix
when it exists

LinBose1 Compute a solution of Problem 3 when it exists
LinBose2 Compute a solution of Problem 4 when it exists
RCFactorization Compute a right-coprime factorization of a rational transfer matrix

when it exists
SetLastVariableA Compute a unimodular matrix which transforms the given matrix

into a matrix where the last variable is set to a given constant A
WLCFactorization Compute a weakly left-coprime factorization of a rational transfer

matrix when it exists
WRCFactorization Compute a weakly right-coprime factorization of a rational transfer

matrix when it exists

9.1.5 Functions of QuillenSuslin for Laurent polynomial rings

IsParkNormalized Test whether or not a Laurent polynomial is normalized, i.e., whether
or not all its coefficients are Laurent monomials

Laurent2Pol Compute a transformation which maps a row vector over a Laurent poly-
nomial ring into a row vector over a polynomial ring

LaurentNormalization Return a change of variables which normalizes a Laurent polynomial
LowestDegree Return the lowest degree of a Laurent polynomial with respect to the

given variable
ParkAlgorithm Return a unimodular matrix over the Laurent polynomial ring which

transforms the given matrix into a matrix of the form (I 0)

9.1.6 Functions of QuillenSuslin for localizations

InvertibleIn Find an element in the intersection of an ideal and a multiplicative closed subset
of the polynomial ring

IsInS Test whether or not a polynomial belogns to a given multiplicative subset of the
polynomial ring

SHeuristic Test whether or not a heuristic method can be used over a localization of the
polynomial ring

To our knowledge, the QuillenSuslin package is the only package dedicated to the implemen-
tation of the Quillen-Suslin theorem (see [12] for a partial one) and its applications to mathematical
physics, control theory and signal processing. An OreModules version of QuillenSuslin will soon
be available on the OreModules web site [4] which will extend [12]. Applications of the Quillen-
Suslin theorem to algebraic geometry will be studied in the future.

9.2 Classical examples

We first want to illustrate the QuillenSuslin package on some classical examples appearing in the
literature and, in particular, in [61, 19, 23, 38].
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9.2.1 Example taken from [19]

We consider the row vector R over the polynomial ring D = Z[x] given in [19].

In the QuillenSuslins package, all the computations are performed for a commutative polynomial
ring with rational coefficients if the last parameter is set to true and with integer coefficients if the
last parameter is set to false.

We first declare the independent variables x of the polynomial ring by setting

> var:=[x];

var := [x]
and then the row vector R:

> R:=[13, x^2-1, 2*x-5];

R := [13, x2 − 1, 2x− 5]

Let us check whether or not R admits a right-inverse over the ring D.

> RightInverse(R, var, false);

[55− 36x+ 6x2, −6, 144− 36x]

Applying the QSAlgorithm procedure to the row vector R, we then obtain:

> U:=QSAlgorithm(R, var, false);

U := [55− 36x+ 6x2 , 6481− 8532x+ 4175x2 − 900x3 + 72x4 ,

−(55− 36x+ 6x2) (2x− 5)][−6 , −707 + 468x− 72x2 , −30 + 12x]
[144− 36x , −72 (x− 4) (59− 39x+ 6x2) , 721− 468x+ 72x2]

The matrix U is unimodular over D and RU = (1 0 0) as we have:

> Determinant(U);

1

> simplify(Matrix(R).U); [
1 0 0

]
We note that the QSAlgorithm procedure uses a heuristic method as the first two components of the
right-inverse of R generate the ring D. Hence, the general algorithm can be avoided in this example:

> Heuristic(R, var, false);

[55− 36x+ 6x2 , 6481− 8532x+ 4175x2 − 900x3 + 72x4 ,

−(55− 36x+ 6x2) (2x− 5)]
[−6 , −707 + 468x− 72x2 , −30 + 12x]
[144− 36x , −72 (x− 4) (59− 39x+ 6x2) , 721− 468x+ 72x2]

We can check that R is the first row of the inverse U−1 of U :

> U_inv:=CompleteMatrix(R,var, false);

U inv :=

 13 x2 − 1 2x− 5
6 55− 36x+ 6x2 0

−144 + 36x 1188x− 360x2 + 36x3 − 1296 1


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62 A. Fabiańska & A. Quadrat

The residue classes of the last two rows of the matrix U−1 define a basis of the finitely presented
D-module M = D1×3/(DR).

> BasisOfCokernelModule(R, var, false);[
6 55− 36x+ 6x2 0

−144 + 36x 1188x− 360x2 + 36x3 − 1296 1

]
We can reduce the degree of the components of the rows defining the basis:

> BasisOfCokernelModule(R, var, false, reduced);[
0 24− 6x 1

72 83 −24 + 12x

]
The injective parametrization of the system defined by R is then defined by:

> InjectiveParametrization(Matrix(R), var, false); 6481− 8532x+ 4175x2 − 900x3 + 72x4 −(55− 36x+ 6x2) (2x− 5)
−707 + 468x− 72x2 −30 + 12x

−72 (x− 4) (59− 39x+ 6x2) 721− 468x+ 72x2


9.2.2 Example taken from [23]

We consider the vector vector R with entries in the ring D = Q[x, y] defined by:

> var:=[x,y];

var := [x, y]

> R := [x^2*y+1, x+y-2, 2*x*y];

R := [x2 y + 1, x+ y − 2, 2x y]

We can check that ideal generated by the entries of R generates D as we have:

> IsUnimod(R, var);

true

Therefore, the row vector R admits a right-inverse over D and then defines a projective D-module
M = D1×2/(DR), i.e., free by the Quillen-Suslin theorem.

As the first and the last components of R generate the ring D, we know that we can use a heuristic
method for computing a basis of the D-module M . This last result can be checked as follows once
we note that we are working over the field Q and then need to set the last parameter to true in the
procedures:

> U:=Heuristic(R, var, true);

U :=

 1 2− y − x −2x y
0 1 0

−x
2

x (x+ y − 2)
2

x2 y + 1


We can check that the entries of the inverse Uinv of the matrix U belong to D, i.e., U ∈ GL3(D), and
its first row is R:

> U_inv:=CompleteMatrix(R, var, true);
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U inv :=

 x2 y + 1 x+ y − 2 2x y
0 1 0
x

2
0 1


The residue classes of the last two rows of Uinv in M form a basis of M . This result can directly be
obtained as follows:

> BasisOfCokernelModule(Matrix(R), var, true);[
0 1 0
x

2
0 1

]
The injective parametrization of the system defined by R is given by the last two columns of U , a fact
that can directly be obtained by:

> InjectiveParametrization(Matrix(R), var, true); 2− y − x −2x y
1 0

x (x+ y − 2)
2

x2 y + 1


9.2.3 Example taken from [61]

We consider the row vector R with entries in the polynomial ring D = Q[x, y] ([61]):

> var:=[x,y]:

> R:=[x-4*y+2,x*y+x,x+4*y^2-2*y+1];

R := [x− 4 y + 2, x y + x, x+ 4 y2 − 2 y + 1]

We can check that ideal generated by the entries of R defines D as we have:

> IsUnimod(R, var, true);

true

Hence, R admits a right-inverse over D defined by:

> RightInverse(R, var, true);

[y, −1, 1]

Hence, the D-module M = D1×3/(DR) is projective, i.e., free by the Quillen-Suslin theorem. Let us
compute a basis of M . We can first try to check if a basis can be obtained by means of a heuristic
method implemented in QuillenSuslin:

> U:=Heuristic(R, var, true);

U :=

 y −2 y + 4 y2 − x y + 1 −y (x+ 4 y2 − 2 y + 1)
−1 x− 4 y + 2 x+ 4 y2 − 2 y + 1
1 −x+ 4 y − 2 −x− 4 y2 + 2 y


We then can check that U solved Problem 2 as we have:

> Determinant(U);

1

> simplify(Matrix(R).U);
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[
1 0 0

]
As the command QSAlgorithm first tries the heuristic methods which have been implemented before
using the general algorithm, its output is the same as the one obtain by the command Heuristic:

> QSAlgorithm(R, var, true); y −2 y + 4 y2 − x y + 1 −y (x+ 4 y2 − 2 y + 1)
−1 x− 4 y + 2 x+ 4 y2 − 2 y + 1
1 −x+ 4 y − 2 −x− 4 y2 + 2 y


We can check that the first row of the inverse Uinv of U is exactly the row vector R:

> U_inv:=CompleteMatrix(R, var, true);

U inv :=

 x− 4 y + 2 x y + x x+ 4 y2 − 2 y + 1
1 y 0
0 1 1


The residue classes of the last two rows of Uinv in M form a basis of M . This result can directly be
obtained by doing:

> BasisOfCokernelModule(Matrix(R), var, true);[
1 y 0
0 1 1

]
Finally, the injective parametrization of the system defined by R is given by the last two columns of
the matrix U , namely:

> InjectiveParametrization(Matrix(R), var, false); −2 y + 4 y2 − x y + 1 −y (x+ 4 y2 − 2 y + 1)
x− 4 y + 2 x+ 4 y2 − 2 y + 1
−x+ 4 y − 2 −x− 4 y2 + 2 y


9.2.4 Example taken from [38]

We now consider the row vector R over a polynomial ring D = Z[x, y, z] defined in [38]. Let us first
introduce the independent variables x, y and z:

> var:=[x,y,z];

var := [x, y, z]

We then define the 4 components of the row vector R:

> f1:=1-x*y-2*z-4*x*z-x^2*z-2*x*y*z+2*x^2*y^2*z-2*x*z^2
> -2*x*z^2-2*x^2*z^2+2*x*z^2+2*x^2*y*z^2:
> f2:=2+4*x+x^2+2*x*y-2*x^2*y^2+2*x*z+2*x^2*z-2*x^2*y*z:
> f3:=1+2*x+x*y-x^2*y^2+x*z+x^2*z-x^2*y*z:
> f4:=2+x+y-x*y^2+z-x*y*z:

The row vector R is then defined by:

> R:= [f1, f2, f3, f4];

R := [1− x y − 2 z − 4x z − x2 z − 2x y z + 2x2 y2 z − 2x z2 − 2x2 z2 + 2x2 y z2,

2 + 4x+ x2 + 2x y − 2x2 y2 + 2x z + 2x2 z − 2x2 y z,

1 + 2x+ x y − x2 y2 + x z + x2 z − x2 y z, 2 + x+ y − x y2 + z − x y z]
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Let us test whether or not the ideal generated by the entries of R defines D:

> IsUnimod(R, var, false);

true

Hence, the row vector R admits a right-inverse over D and the D-module M = D1×4/(DR) is
projective, i.e., free by the Quillen-Suslin theorem. Let us compute a basis of the D-module M . We
can first check that the second and the third components of R generate the whole ring D, so a heuristic
method can be used in this example. This result can directly be checked by doing:

> U:=Heuristic(R, var, false);

U :=
[0 , 1 , 0 , 0]
[4 + 3 z + 4 y − 2x y2 − x y z + 2x z + z2 + 3 y z − 2x y2 z − x y z2 + x z2 + 2 y2 − x y3,

(−4− 3 z − 4 y + 2x y2 + x y z − 2x z − z2 − 3 y z + 2x y2 z + x y z2 − x z2 − 2 y2 + x y3)
(1− x y − 2 z − 4x z − x2 z − 2x y z + 2x2 y2 z − 2x z2 − 2x2 z2 + 2x2 y z2),
− 1− 2x− x y + x2 y2 − x z − x2 z + x2 y z ,−(−4− 3 z − 4 y + 2x y2 + x y z − 2x z
− z2 − 3 y z + 2x y2 z + x y z2 − x z2 − 2 y2 + x y3)(−2− x− y + x y2 − z + x y z)]
[%1 ,
−%1 (1− x y − 2 z − 4x z − x2 z − 2x y z + 2x2 y2 z − 2x z2 − 2x2 z2 + 2x2 y z2) ,
2 + 4x+ x2 + 2x y − 2x2 y2 + 2x z + 2x2 z − 2x2 y z ,

%1 (−2− x− y + x y2 − z + x y z)]
[0 , 0 , 0 , 1]
%1 := −7− 6 z − 8 y − 2x− 5x z + 4x y2 + 2x y z − 2 z2 − 6 y z − 2x z2 + 4x y2 z

+ 2x y z2 − 4 y2 − x y + 2x y3

We can check that the matrix U is a solution of Problem 2 as we have:

> Determinant(U);

−1

> simplify(Matrix(R).U); [
1 0 0 0

]
As the general procedure QSAlgorithm first tries to use heuristic methods described in Section 3.3
before applying the general algorithm, it returns the same output as the one obtaind with Heuristic.
We also know that the first row of the inverse of U is R, a fact that can be checked using the procedure
CompleteMatrix:

> B:=CompleteMatrix(R, var, false);

B :=
[1− x y − 2 z − 4x z − x2 z − 2x y z + 2x2 y2 z − 2x z2 − 2x2 z2 + 2x2 y z2 ,

2 + 4x+ x2 + 2x y − 2x2 y2 + 2x z + 2x2 z − 2x2 y z ,

1 + 2x+ x y − x2 y2 + x z + x2 z − x2 y z , 2 + x+ y − y2 x+ z − x y z]
[1 , 0 , 0 , 0]
[0 , 7 + 6 z + 8 y + 2x+ 5x z − 4 y2 x− 2x y z + 2 z2 + 6 y z + 2x z2 − 4 y2 x z

− 2x y z2 + 4 y2 + x y − 2x y3, 4 + 3 z + 4 y + 2x z − 2 y2 x− x y z + z2 + 3 y z
+ x z2 − 2 y2 x z − x y z2 + 2 y2 − x y3, 0]
[0 , 0 , 0 , 1]
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A basis of the D-module M can be obtained by:

> BasisOfCokernelModule(Matrix(R), var, false);

[1 , 0 , 0 , 0]
[0 , 7 + 6 z + 8 y + 2x+ 5x z − 4 y2 x− 2x y z + 2 z2 + 6 y z + 2x z2 − 4 y2 x z

− 2x y z2 + 4 y2 + x y − 2x y3, 4 + 3 z + 4 y + 2x z − 2 y2 x− x y z + z2 + 3 y z
+ x z2 − 2 y2 x z − x y z2 + 2 y2 − x y3, 0]
[0 , 0 , 0 , 1]

We can try to reduce the degree of the generators of the basis previously computed using the option
reduce:

> BasisOfCokernelModule(Matrix(R), var, false, reduce);

[1 , 0 , 0 , 0]
[0 , 7 + 6 z + 8 y + 2x+ 5x z − 4 y2 x− 2x y z + 2 z2 + 6 y z + 2x z2 − 4 y2 x z

− 2x y z2 + 4 y2 + x y − 2x y3, 4 + 3 z + 4 y + 2x z − 2 y2 x− x y z + z2 + 3 y z
+ x z2 − 2 y2 x z − x y z2 + 2 y2 − x y3, 0]
[0 , 0 , 0 , 1]

In this case, we cannot reduce the degree of the generators of the previous basis of M .

9.2.5 Example given by A. van den Essen

The following example was given to us by A. van den Essen (Radboud University Nijmegen). We
are grateful to him for letting us using it for illustrating the package QuillenSuslin. We consider
the polynomial ring D = Q[t, x, y, z]

> var:=[t,x,y,z];

var := [t, x, y, z]

and we consider the row vector R defined by:

> R:=[2*t*x*z+t*y^2+1, 2*t*x*y+t^2, t*x^2];

R := [2 t x z + t y2 + 1, 2 t x y + t2, t x2]

We check that the ideal of D generated by the entries of R defines the whole ring D:

> IsUnimod(R, var, true);

true

Hence, the row vector R admits a right-inverse over D, and thus, the finitely presented D-module
M = D1×3/(DR) is projective, i.e., free by the Quillen-Suslin theorem. Let us solve Problem 2
and compute a basis of the D-module M . In order to do that, we can first check that none of the
heuristic methods described in Section 3.3 and implemented in QuillenSuslin can be used to solve
the problem:

> infolevel[QSAlgorithm]:=3;

infolevelQSAlgorithm := 3

> U:=QSAlgorithm(R,var, true);

QuillenSuslin/RowQS: RowQS [2*t*x*z+t*y^2+1, 2*t*x*y+t^2, t*x^2], [t, x, y, z]
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QuillenSuslin/RowQS: Compute RightInverse

A right-inverse of the row vector R is defined by:

QuillenSuslin/RowQS: RightInverse
[2*t^2*y^2*x*z-2*t*x*z+t^2*y^4-t*y^2+1, 8*x^3*z^2*y^3+8*x^2*z*y^5-4*x^2*z^2*t*y^2
-4*t*y^4*x*z+4*x^2*z^2+2*y^7*x-t*y^6+2*y^2*x*z, -16*y^4*x^2*z^2-16*y^6*x*z-8*y*x*z^2
-4*y^8-4*y^3*z]

QuillenSuslin/RowQS: RowQS Test heuristic methods. For more information set
infolevel[Heuristic]:=3

QuillenSuslin/RowQS: Not easy - no heuristic methods work

We obtain that none of the heuristic methods implemented in QuillenSuslin can be applied to R.
Hence, we need to use the general algorithm presented in Section 3.4. The first step of this algorithm
is to compute a transformation which maps R to a row vector with a monic component in the last
variable z. We obtain that the permutation of variables t 7→ z, x 7→ t, y 7→ x, z 7→ y normalizes R:

normalization over QQ

QuillenSuslin/RowQS: The row after normalization
[2*z_*t_*y_+z_*x_^2+1, 2*z_*t_*x_+z_^2, z_*t_^2]

Let us call the new row vector R. We can now test whether or not any of heuristic methods can be
applied to R:

QuillenSuslin/RowQS: Test heuristic methods for the normalized row
[2*z_*t_*y_+z_*x_^2+1, 2*z_*t_*x_+z_^2, z_*t_^2]

QuillenSuslin/RowQS: No heuristic methods work for the
normalized row

No heuristic method can be applied to R. We can then check if it is possible to reduce the degree of
the components of R using its monic component z2 + 2 z t x:

QuillenSuslin/RowQS: No reduction - the rows is already reduced
[2*z_*t_*y_+z_*x_^2+1, 2*z_*t_*x_+z_^2, z_*t_^2]

No simplification can be done. Now, we enter the general algorithm:

QuillenSuslin/RowQS: OneStep - Enter the inductive procedure and reduce one variable:

QuillenSuslin/RowQS: OneStep - Compute local solutions and patch them together!

QuillenSuslin/RowQS: OneStep - For more information set infolevel[OneStepMore]:=3

After one inductive step, we obtain a matrix U ∈ GL3(D) such that

R(t, x, y, z)U = R(t, x, y, 0) = (1 0 0),

which directly solves Problem 2:

QuillenSuslin/RowQS: After one step: [1, 0, 0]

QuillenSuslin/RowQS: Now repeat the computation for fm [1, 0, 0]

QuillenSuslin/RowQS: RowQS [1, 0, 0], [t_, x_, y_]
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QuillenSuslin/RowQS: Compute RightInverse

QuillenSuslin/RowQS: RightInverse [1, 0, 0]

QuillenSuslin/RowQS: RowQS Test heuristic methods. For more information set
infolevel[Heuristic]:=3

Hence, we obtain that the solution of Problem 2 is given by matrix U defined by:

U :=
[
1− t y2 + 4x2 z2 t2 − 2 t x z + t2 y4 + 4 t2 y2 x z + 2 y7 x t2 + 8x3 z2 y3 t2 + 8x2 z y5 t2,

4 y6 t2 x2 + 8x3 z t2 y4 − 2 t x y − t2 + 4 y z x2 t2 ,

2 z t2 x3 + t2 y2 x2 − t x2 + 4 t2 x4 z y3 + 2 y5 t2 x3]
[−8 z3 t x3 − t y6 − 6 t y4 x z − 12x2 z2 t y2 − 16 z3 x4 t y3 − 24 y5 z2 x3 t− 12 y7 x2 z t− 2 t y9 x,

1 + t y2 − 4 t y8 x2 − 16 t x4 z2 y4 − 16 t x3 z y6 + 2 t x z − 4 t y3 z x2 − 8x3 z2 y t ,

−4 z2 x4 t− 2 y7 x3 t− 8 z2 x5 t y3 − 8 z x4 y5 t− 4 t y2 z x3 − y4 x2 t]
[
32 t x3 z3 y4 + 48 t z2 x2 y6 + 16x2 z3 t y + 24 t y8 z x+ 16 t y3 z2 x+ 4 y5 z t+ 4 t y10,

−4 t y6 + 16x2 z2 t y2 + 32 y5 z2 x3 t+ 32 y7 x2 z t− 4 t y z + 8 t y9 x ,

1 + 4 t y8 x2 + 16 t x4 z2 y4 + 16 t x3 z y6 + 4 t y3 z x2 + 8x3 z2 y t]

> infolevel[QSAlgorithm]:=0;

infolevelQSAlgorithm := 0

We can show that the matrix U is a unimodular matrix satisfying RU = (1 0 0):

> LinearAlgebra[Determinant](U);

1

> simplify(Matrix(R).U); [
1 0 0

]
Hence, the first row of the inverse of U is the row R, a fact which can directly be checked using the
command CompleteMatrix:

> B:=LinearAlgebra[MatrixInverse](U);

B :=
[2 t x z + t y2 + 1 , 2 t x y + t2 , t x2]
[6 t y4 x z + t y6 + 2 t y9 x+ 24 y5 z2 x3 t+ 12 y7 x2 z t+ 16 z3 x4 t y3 + 12x2 z2 t y2

+ 8 z3 t x3, 1 + 16 t x4 z2 y4 + 16 t x3 z y6 + 8x3 z2 y t+ 4 t y3 z x2 + 4 t2 y2 x z

+ t2 y4 − 2 t x z + 4 t y8 x2 + 4x2 z2 t2 + 2 y7 x t2 + 8x3 z2 y3 t2 + 8x2 z y5 t2 − t y2,

8 z2 x5 t y3 + 4 t y2 z x3 + 4 z2 x4 t+ 2 y7 x3 t+ 8 z x4 y5 t+ y4 x2 t]
[−4 t y10 − 16x2 z3 t y − 32 t x3 z3 y4 − 48 t z2 x2 y6 − 24 t y8 z x− 16 t y3 z2 x

− 4 y5 z t,−16 t2 y4 z2 x2 − 16 y6 z t2 x+ 4 t y6 − 4 y3 z t2 − 8 y x z2 t2 + 4 t y z
− 8 t y9 x− 4 t2 y8 − 32 y5 z2 x3 t− 32 y7 x2 z t− 16x2 z2 t y2,

1− 16 t x4 z2 y4 − 16 t x3 z y6 − 8x3 z2 y t− 4 t y3 z x2 − 4 t y8 x2]

The residue classes of the last two rows of the matrix B in M form a basis of the D-module M .
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> BasisOfCokernelModule(Matrix(R), var, true);

normalization over QQ

[6 t y4 x z + t y6 + 2 t y9 x+ 24 y5 z2 x3 t+ 12 y7 x2 z t+ 16 z3 x4 t y3 + 12x2 z2 t y2

+ 8 z3 t x3, 1 + 16 t x4 z2 y4 + 16 t x3 z y6 + 8x3 z2 y t+ 4 t y3 z x2 + 4 t2 y2 x z

+ t2 y4 − 2 t x z + 4 t y8 x2 + 4x2 z2 t2 + 2 y7 x t2 + 8x3 z2 y3 t2 + 8x2 z y5 t2 − t y2,

8 z2 x5 t y3 + 4 t y2 z x3 + 4 z2 x4 t+ 2 y7 x3 t+ 8 z x4 y5 t+ y4 x2 t]
[−4 t y10 − 16x2 z3 t y − 32 t x3 z3 y4 − 48 t z2 x2 y6 − 24 t y8 z x− 16 t y3 z2 x

− 4 y5 z t,−16 t2 y4 z2 x2 − 16 y6 z t2 x+ 4 t y6 − 4 y3 z t2 − 8 y x z2 t2 + 4 t y z
− 8 t y9 x− 4 t2 y8 − 32 y5 z2 x3 t− 32 y7 x2 z t− 16x2 z2 t y2,

1− 16 t x4 z2 y4 − 16 t x3 z y6 − 8x3 z2 y t− 4 t y3 z x2 − 4 t y8 x2]

We can try to reduce the degree of the basis elements using the option reduce:

> BasisOfCokernelModule(Matrix(R), var,true, reduce);

normalization over QQ

[−8x3 z2 y3 − 8x2 z y5 − 2 y7 x− y4 − 4 y2 x z − 4x2 z2 ,

−2 t y5 x− 4 t y3 z x2 − t y2 − 2 t x z + 1 , 0]
[16 y4 x2 z2 + 16 y6 x z + 4 y8 + 4 y3 z + 8 y x z2 , 4 t y6 + 8 t y4 x z + 4 t y z , 1]

Let us now detail the local step of the algorithm, i.e., compute and patch the local solutions to get
the unimodular matrix U :

> var;

[t, x, y, z]
> R;

[2 t x z + t y2 + 1, 2 t x y + t2, t x2]
> IsMonic(R, var[-1]);

false
> IsMonic(R, var, p);

true, [[2 t x y + t2, t], 2, 1]

None of the components of R is monic in the last variable z. But, the second component is already
monic in the first variable t. Hence, by a simple change of variables, i.e., a permutation of variables,
we obtain a normalized component in the last variable.

> var:=[x,y,z,t];

var := [x, y, z, t]

> varc:=var[1..-2];

varc := [x, y, z]

> IsMonic(R, var[-1]);

true

Let us take an arbitrary maximal idealM1 of Q[x, y, z]:

> Id:=[var[1]];

Id := [x]
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> Max[1]:=MaximalQQ(Id, varc);

Max1 := [z, y, x]

We compute a local solution of Problem 2 over the localization Q[x, y, z]M1 [t] of the polynomial ring
D = Q[x, y, z, t], where M1 is the maximal ideal defined by Max[1]:

> H[1]:=Horrocks(R, Max[1], var, true);

H1 :=[
−1− x2 + 4x2 y z + 2x y3 + 2 t x z + t y2

%1
,

− t (−4x3 y + 8 y2 z x3 + 4 y4 x2 − 2x y − t x2 + 4x2 y t z + 2x y3 t− t)
%1 (1 + x2)

,

− (−x2 + 4x2 y z + 2 t x z + 2x y3 + t y2) t
%1

]
[
− (2x z + y2)2

%1
, (−1− 2x2 + 4x2 y z + 2x y3 − x4 − 2 t x3 z + 8x3 z2 y t+ 8 t y3 z x2

− 2 t x z − t y2 x2 + 2 t y5 x− t y2)/(%1 (1 + x2)),
(2 t x z + t y2 + 1) (2x z + y2)

%1

]
[
2x z + y2

%1
, −−2x3 y − t x2 + 4x2 y t z + 2x y3 t− t

(1 + x2) %1
, −2 t x z + t y2 + 1

%1

]
%1 := −1− x2 + 4x2 y z + 2x y3

Let us denote by d1 the denominator of H1. As d1 is not invertible in the polynomial ring D, we
compute a new local solution in the localization of D with respect to a maximal idealM2 containing
d1:

> d[1]:=DenomOf(H[1]);

d1 := (−1− x2 + 4x2 y z + 2x y3) (1 + x2)

We find a maximal idealM2 of Q[x, y, z] containing d1 as follows:

> Max[2]:=MaximalQQ([d[1]], varc);

Max2 := [z, y, x z, x y, 1 + x2]

We can then compute a local solution of Problem 2 over the localization Q[x, y, z]M2 [t] of D with
respect to the maximal idealM2 of Q[x, y, z], where M2 is defined by Max[2]:

> H[2]:=Horrocks(R, Max[2], var, true);

H2 :=

 1 0 −t
0 1 0

−2x z + y2

x2
−2x y + t

x2

2 t x z + t y2 + 1
x2


The denominator of H2 is then:

> d[2]:=DenomOf(H[2]);

d2 := x2

The ideal defined by the denominators d1 and d2 generates Q[x, y, z] as we have:

> IsUnimod([d[1],d[2]], varc, true);
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true

We can now patch the local solutions H1 and H2 together as follows:

> V:=Patch(var[-1], varc, [H[1], H[2]], true);

V :=
[
1− t y2 + 4x2 z2 t2 − 2 t x z + t2 y4 + 4 t2 y2 x z + 2 y7 x t2 + 8x3 z2 y3 t2 + 8x2 z y5 t2,

4 y6 t2 x2 + 8x3 z t2 y4 − 2 t x y − t2 + 4 y z x2 t2 ,

2 z t2 x3 + t2 y2 x2 − t x2 + 4 t2 x4 z y3 + 2 y5 t2 x3]
[−8 z3 t x3 − t y6 − 6 t y4 x z − 12x2 z2 t y2 − 16 z3 x4 t y3 − 24 y5 z2 x3 t− 12 y7 x2 z t− 2 t y9 x,

1 + t y2 − 4 t y8 x2 − 16 t x4 z2 y4 − 16 t x3 z y6 + 2 t x z − 4 t y3 z x2 − 8x3 z2 y t ,

−4 z2 x4 t− 2 y7 x3 t− 8 z2 x5 t y3 − 8 z x4 y5 t− 4 t y2 z x3 − y4 x2 t]
[
32 t x3 z3 y4 + 48 t z2 x2 y6 + 16x2 z3 t y + 24 t y8 z x+ 16 t y3 z2 x+ 4 y5 z t+ 4 t y10,

−4 t y6 + 16x2 z2 t y2 + 32 y5 z2 x3 t+ 32 y7 x2 z t− 4 t y z + 8 t y9 x ,

1 + 4 t y8 x2 + 16 t x4 z2 y4 + 16 t x3 z y6 + 4 t y3 z x2 + 8x3 z2 y t]

The matrix V ∈ D3×3 satisfies that R(x, y, z, t)V = R(x, y, z, 0):

> simplify(Matrix(R).V); [
1 0 0

]
Moreover, we can check that V is a unimodular matrix, i.e., V ∈ GL3(D), as:

> LinearAlgebra[MatrixInverse](V);

[2 t x z + t y2 + 1 , 2 t x y + t2 , t x2]
[8 z3 t x3 + t y6 + 12 y7 x2 z t+ 24 y5 z2 x3 t+ 16 z3 x4 t y3 + 6 t y4 x z + 12x2 z2 t y2

+ 2 t y9 x, 1− 2 t x z − t y2 + 4 y3 z t x2 + 16 t x4 z2 y4 + 16 t x3 z y6 + 8x3 z2 t y

+ t2 y4 + 2 y7 x t2 + 4x2 z2 t2 + 8x3 z2 y3 t2 + 8x2 z y5 t2 + 4 t2 y2 x z + 4 t y8 x2,

8x5 z2 t y3 + 4 z x3 y2 t+ y4 x2 t+ 8x4 z y5 t+ 2 y7 x3 t+ 4x4 z2 t]
[−16x2 z3 y t− 4 y5 z t− 4 t y10 − 32 t z3 x3 y4 − 48 t z2 x2 y6 − 24 t y8 z x

− 16 t y3 z2 x, 4 t y z − 4 y3 z t2 − 8 y x z2 t2 − 4 t2 y8 + 4 t y6 − 32 y7 x2 z t

− 32 y5 z2 x3 t− 16 t2 y4 z2 x2 − 16 y6 z t2 x− 16x2 z2 t y2 − 8 t y9 x,

1− 4 y3 z t x2 − 16 t x4 z2 y4 − 16 t x3 z y6 − 8x3 z2 t y − 4 t y8 x2]

We can check again that R(x, y, z, 0) = (1 0 0) as we have:

> R[0]:=subs(var[-1]=0, R);

R0 := [1, 0, 0]

As R0 already has the form (1 0 0), we finally get that the unimodular matrix V over the polynomial
ring D satisfies RV = (1 0 0).

Finally, the last two colums of the matrix V define an injective parametrization of the system
defined by R:

> InjectiveParametrization(Matrix(R), var, true);
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[4 y6 t2 x2 + 8x3 z t2 y4 − 2 t x y − t2 + 4 y z x2 t2 ,

2 z t2 x3 + t2 y2 x2 − t x2 + 4 t2 x4 z y3 + 2 y5 t2 x3]
[1 + t y2 − 4 t y8 x2 − 16 t x4 z2 y4 − 16 t x3 z y6 + 2 t x z − 4 t y3 z x2 − 8x3 z2 y t ,

−4 z2 x4 t− 2 y7 x3 t− 8 z2 x5 t y3 − 8 z x4 y5 t− 4 t y2 z x3 − y4 x2 t]
[−4 t y6 + 16x2 z2 t y2 + 32 y5 z2 x3 t+ 32 y7 x2 z t− 4 t y z + 8 t y9 x ,

1 + 4 t y8 x2 + 16 t x4 z2 y4 + 16 t x3 z y6 + 4 t y3 z x2 + 8x3 z2 y t]

9.2.6 Example over Z[z1, z2]

To finish, let us consider a non trivial example over the ring D = Z[z1, z2].

> var:=[z[1],z[2]];

var := [z1 , z2 ]

We consider the row vector R defined by:

> R:=[z[1]^2, 3*z[2]+1,z[1]+z[1]*z[2]+z[2]^2];

R := [z1 2, 3 z2 + 1, z1 + z1 z2 + z2 2]

The row vector R admits a right-inverse over D as we have:

> S:=RightInverse(R, var, false);

S := [36, −9 z1 + 18 z1 2 + 18 z1 z2 − 3 z2 + 1, −54 z1 + 9]

We check that we have RS = 1:

> simplify(Matrix(R).Matrix(<S>)); [
1
]

Hence, we obtain that the D-module M = D1×3/(DR) is projective, i.e., free by the Quillen-Suslin
theorem. Let us compute a unimodular matrix U satisfying Problem 2 and a basis of the D-module
M . We can first try to use the heuristic methods implemented in QuillenSuslin (we recall that we
need to set the parameter to false as the coefficients of D belong to Z and not Q):

> Heuristic(R, var, false);

false

None of the heuristic methods implemented in QuillenSuslin is successful for this example. Hence,
we have use a general algorithm to solve Problem 2. We detail all the intermediate computations:

> infolevel[OneStepMore]:=3;
> infolevel[QSAlgorithm]:=3;

infolevelOneStepMore := 3

infolevelQSAlgorithm := 3

> U:=QSAlgorithm(R, var, false);

QuillenSuslin/RowQS: RowQS [z[1]^2, 3*z[2]+1, z[1]+z[1]*z[2]+z[2]^2], [z[1], z[2]]

QuillenSuslin/RowQS: Compute RightInverse

QuillenSuslin/RowQS: RightInverse [36,-9*z[1]+18*z[1]^2+18*z[1]*z[2]-3*z[2]+1,
-54*z[1]+9]
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QuillenSuslin/RowQS: RowQS Test heuristic methods. For more information set
infolevel[Heuristic]:=3

QuillenSuslin/RowQS: Not easy - no heuristic method works

QuillenSuslin/RowQS: The row after normalization
[z[1]^2, 3*z[2]+1, z[1]+z[1]*z[2]+z[2]^2]

QuillenSuslin/RowQS: Test heuristic methods for the normalized row
[z[1]^2, 3*z[2]+1, z[1]+z[1]*z[2]+z[2]^2]

QuillenSuslin/RowQS: No heuristic method works for the normalized row

QuillenSuslin/RowQS: No reduction - The row is already reduced
[z[1]^2, 3*z[2]+1,z[1]+z[1]*z[2]+z[2]^2]

QuillenSuslin/RowQS: OneStep - Enter the inductive procedure and reduce one variable:

QuillenSuslin/RowQS: OneStep - Compute local solutions and patch them together!

QuillenSuslin/RowQS: OneStep - For more information set infolevel[OneStepMore]:=3

QuillenSuslin/OneStepMore: OneStepMore [z[1]^2, 3*z[2]+1,z[1]+z[1]*z[2]+z[2]^2]
[z[1], z[2]] false

QuillenSuslin/OneStepMore: MAX, r, det [2, z[1]] [6*z[1]+1] 3/(6*z[1]+1)

QuillenSuslin/OneStepMore: MAX, r, det [z[1]+1, 5] [6*z[1]+1, z[1]^2] 1/z[1]^2

QuillenSuslin/RowQS: After one step: [z[1]^2, 1, z[1]]

QuillenSuslin/RowQS: Now repeat the computation for fm [z[1]^2, 1, z[1]]

QuillenSuslin/RowQS: RowQS [z[1]^2, 1, z[1]], [z[1]]

QuillenSuslin/RowQS: Compute RightInverse

QuillenSuslin/RowQS: RightInverse [0, 1, 0]

QuillenSuslin/RowQS: RowQS Test heuristic methods. For more
information set infolevel[Heuristic]:=3

U :=
[−108 z2 , 1 + 108 z2 z1 2 , 72 z1 z2 − 1296 z2 2 z1 2]
[−54 z2 z1 2 + 27 z1 z2 − 54 z2 2 z1 − 3 z2 + 1 + 9 z2 2 ,

(54 z2 z1 2 − 27 z1 z2 + 54 z2 2 z1 + 3 z2 − 1− 9 z2 2) z1 2 ,

36 z2 z1 3 − z1 z2 − z1 + 324 z2 2 z1 3 − 648 z2 2 z1 4 − 648 z1 3 z2 3 − z2 2 + 108 z2 3 z1 2]
[27 z2 (6 z1 − 1) , −27 z2 (6 z1 − 1) z1 2 , 1− 108 z2 z1 2 + 1944 z2 2 z1 3 − 324 z2 2 z1 2 + 3 z2 ]

> infolevel[OneStepMore]:=0;
> infolevel[QSAlgorithm]:=0;

infolevelOneStepMore := 0

infolevelQSAlgorithm := 0

The matrix U solves Problem 2 as RU = (1 0 0)

> simplify(Matrix(R).U); [
1 0 0

]
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and U−1 ∈ D3×3, i.e., U ∈ GL3(D) as we have:

> U_inv:=LinearAlgebra[MatrixInverse](U);

U inv :=
[z1 2 , 3 z2 + 1 , z1 + z1 z2 + z2 2]
[1 , 108 z2 + 324 z2 2 − 1944 z2 2 z1 ,
324 z2 2 z1 + 36 z1 z2 + 108 z2 3 − 648 z2 2 z1 2 − 648 z2 3 z1 ]
[0 , −162 z1 z2 + 27 z2 , −54 z2 z1 2 + 27 z1 z2 − 54 z2 2 z1 − 3 z2 + 1 + 9 z2 2]

In particular, we check that the first row of the inverse of the matrix U is R. The residue classes of
the last two rows of Uinv in M form a basis of the D-module M .

Let us detail the different steps of the general algorithm on this example and compute the matrix
U step by step:

> var;

[z1 , z2 ]

> R;

[z1 2, 3 z2 + 1, z1 + z1 z2 + z2 2]

> IsMonic(R, var,p);

true, [[z1 2, z1 ], 1, 1], [[z1 + z1 z2 + z2 2, z2 ], 3, 2]

The third component of R is already monic in the last variable z2, so we can enter the local loop. Let
us take an arbitrary maximal ideal M1 of Z[z1]:

> varc:=var[1..-2];

varc := [z1 ]

> Max:=[2,z1];

Max := [2, z1 ]

> Max[1]:=MaximalZZ(Max, varc);

Max1 := [z1 , 2]

We obtain M1 = (z1, 2). We now compute a local solution over the localization Z[z1]M1 [z2] of the
polynomial ring D, where M1 denotes the maximal ideal Max[1]:

> H[1]:=Horrocks(R, Max1, var, false);

H1 :=


1 0 0

(3 z2 + 3 z1 − 1) z1 2

6 z1 + 1
3 (z1 + z1 z2 + z2 2)

6 z1 + 1
−3 z2 + 3 z1 − 1

6 z1 + 1

− 9 z1 2

6 z1 + 1
−3 (3 z2 + 1)

6 z1 + 1
9

6 z1 + 1


We denote by d1 the denominator of H1. As d1 = 6 z1 + 1 /∈ M1 is not invertible in D, we need to
compute a new local solution over a localization of the ring D with respect to a maximal idealM2 of
Z[z1] containing d1:

> d[1]:=DenomOf(H[1]);

d1 := 6 z1 + 1
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> Max[2]:=MaximalZZ([d[1]], varc);

Max2 := [z1 + 1, 5]

We then get the maximal ideal M2 = (z1 + 1, 5) of Z[z1]. Let us compute a local solution in a
localization Z[z1]M2 [z2], where M2 is the maximal ideal Max[2]:

> H[2]:=Horrocks(R, Max[2], var, false);

H2 :=


1

z1 2
−3 z2 + 1

z1 2
−z1 + z1 z2 + z2 2

z1 2

0 1 0
0 0 1


The denominator d2 of H2 is then:

> d[2]:=DenomOf(H[2]);

d2 := z1 2

We check that d2 = z2
1 /∈M2 and the ideal defined by the d1 and d2 generates Z[z1] as we have:

> IsUnimod([d[1],d[2]], var, false);

true

We can now patch the local solutions H1 and H2 together to get a global solution U1:

> U[1]:=Patch(var[-1], varc, [H[1], H[2]], false);

U1 :=
[1 , −108 z2 , −36 z2 z1 (1 + 36 z1 z2 )]
[0 , −54 z2 z1 2 + 27 z1 z2 − 54 z2 2 z1 − 3 z2 + 1 + 9 z2 2 ,

−z2 (6 z1 − 1) (108 z2 2 z1 2 + 3 z1 2 + 108 z2 z1 3 + 3 z1 z2 − 4 z1 − z2 − 36 z2 z1 2)]
[0 , 27 z2 (6 z1 − 1) , 1944 z2 2 z1 3 + 54 z2 z1 2 − 324 z2 2 z1 2 − 27 z1 z2 + 3 z2 + 1]

The matrix U1 is unimodular, i.e., U1 ∈ GL3(D), as we have:

> LinearAlgebra[Determinant](U[1]);

1

Moreover, the matrix U1 satisfies that R(z1, z2)U1 = R(z1, 0):

> simplify(Matrix(R).U[1]); [
z1 2 1 z1

]
which can be compared with:

> R[0]:=subs(z[2]=0, R);

R0 := [z1 2, 1, z1 ]

Now, we need to reduce R0 to (1 0 0) by means of elementary column operations:

> U[2]:=Heuristic(R[0], var, false);

U2 :=

 0 1 0
1 −z1 2 −z1
0 0 1


Finaly, we obtain that the matrix V = U1 U2 defined by
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> V:=simplify(U[1].U[2]);

V :=
[−108 z2 , 1 + 108 z2 z1 2 , 72 z1 z2 − 1296 z2 2 z1 2]
[−54 z2 z1 2 + 27 z1 z2 − 54 z2 2 z1 − 3 z2 + 1 + 9 z2 2 ,

(54 z2 z1 2 − 27 z1 z2 + 54 z2 2 z1 + 3 z2 − 1− 9 z2 2) z1 2 ,

36 z2 z1 3 − z1 z2 − z1 + 324 z2 2 z1 3 − 648 z2 2 z1 4 − 648 z1 3 z2 3 − z2 2 + 108 z2 3 z1 2]
[27 z2 (6 z1 − 1) , −27 z2 (6 z1 − 1) z1 2 , 1− 108 z2 z1 2 + 1944 z2 2 z1 3 − 324 z2 2 z1 2 + 3 z2 ]

satisfies RV = (1 0 0)

> simplify(Matrix(R).V); [
1 0 0

]
and V is unimodular over D, i.e., V ∈ GL3(D), as we have:

> LinearAlgebra[Determinant](V);

−1

Hence, the matrix V is a solution of Problem 2.

To finish, let us denote byD′ = Q[z1, z2] and compute a basis of theD′-moduleM ′ = D′1×3/(D′R):

> BasisOfCokernelModule(Matrix(R), var, true); −
1
2

z1 z2 +
1
4

z1 +
1
12

z2 −
1
2

z1 2 − 1
36

1 0

3 z1
2
− 1

4
0 1


We can try to reduce the degrees of the basis elements:

> BasisOfCokernelModule(Matrix(R), var,true, reduce); 0 1 −1
9

+
z2
3

+
z1
3

3 z1
2
− 1

4
0 1


The residue classes of the rows of the previous matrix in M ′ define a basis of the free D′-module M ′.

9.3 Laurent polynomial rings & Park’s Algorithm

As it was described in [38], the problem of completing a matrix R which admits a right-inverse over
the Laurent polynomial ring D = k[x1, . . . , xn, x

−1
1 , . . . , x−1

n ] (k is a field) to a square unimodular
matrix over D can be transformed into Problem 1 by means of a certain transformation what we shall
call Park’s transformation in what follows. Then, we can use a QS algorithm for the corresponding
polynomial matrix and use the inverse transformation to get a solution over the Laurent polynomial
ring D. We refer the reader to [38] for more details. The corresponding algorithms have been
implemented in QuillenSuslin as we are going to demonstrate it now.
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9.3.1 Example taken from [39]

Let us consider the Laurent Polynomial ring D = Q[z, z−1] and the following row vector R:

> var:=[z];

var := [z]

> R:=[1/z+1+z, 2/z^2+1,1-z];

R := [
1
z

+ 1 + z,
2
z2

+ 1, 1− z]

The row vector R is unimodular over D if the polynomial row vector R obtained by means of Park’s
transformation admits a right-inverse over Q[Z]. Let us compute Park’s transformation for R:

> nvar:=[Z];

nvar := [Z]

> R_bar, T, su, isu:=Laurent2Pol(R, var, nvar);

R bar , T, su, isu :=

[1 + Z + Z2, −2Z − Z2, −2Z − Z2],


z −z

3 + z2 − 2 z + 2
z2

−z

0
1
z

0

0 0 1

 ,
[z = Z], [Z = z]

> IsUnimod(R_bar, nvar);

true

Hence, the row vector R = (1+Z+Z2 − 2Z−Z2 − 2Z−Z2) admits a right-inverse over D = Q[Z],
and thus, we obtain that R admits a right-inverse over D. Hence, the D-module M = D1×3/(DR)
is a projective D-module. It is constructively proved in [36, 38] that every projective module over a
Laurent polynomial ring is free. Therefore, the D-module M is free. In order to compute a basis of
M , following [38], we first compute a basis of the free D-module N = D

1×3
/(DR) and then use Park’s

transformation to get one of the free D-module M . In other words, we first compute U ∈ GL3(D)
satisfying RU = (1 0 0) and then obtain a matrix U ∈ GL3(D) satisfying RU = (1 0 0). We can
directly obtain U by calling the procedure ParkAlgorithm as follows:

> U:=ParkAlgorithm(Matrix(R), var);

U :=


2 (z − 2)

3 z2
−2 + z2

z2
−z

2 + 8
3 z

2 + z

3 z
1 + z + z2

z

(2 + z)2

3
0 0 1


We can check that RU = (1 0 0) as we have

> simplify(Matrix(R).U); [
1 0 0

]
and U ∈ GL3(D) as detU = 1
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> LinearAlgebra[Determinant](U);

1

Finally, a basis of the free D-module M is given by the residue classes of the two last rows of the
inverse U−1 of U defined by:

> LinearAlgebra[MatrixInverse](U);
1 + z + z2

z

2 + z2

z2
1− z

−2 + z

3 z
2 (z − 2)

3 z2
−2 + z

3
0 0 1



9.3.2 Example taken from [36]

Let us consider D = Q[z, z−1] and the matrix R with entries in D defined by:

> var:=[z];

var := [z]

> R:=Matrix([[3/z-2-2*z+2*z^2, 3/z-2*z,2*z],
> [6/z+25-23*z-16*z^2+20*z^3, 6/z+29-4*z-20*z^2, 2+4*z+20*z^2]]);

R :=


3
z
− 2− 2 z + 2 z2 3

z
− 2 z 2 z

6
z

+ 25− 23 z − 16 z2 + 20 z3 6
z

+ 29− 4 z − 20 z2 2 + 4 z + 20 z2


We can check that the D-module M = D1×3/(D1×2R) is projective, and thus, free by the constructive
result obtained by Park in [36, 38]. Let us compute a unimodular U over D such that RU = (I2 0):

> U:=ParkAlgorithm(Matrix(R), var);

U :=

2666664
−6− 29 z + 4 z2 + 20 z3

z
−−3 + 2 z2

z
−2 (−3 + z2)

z

6 + 25 z − 23 z2 − 16 z3 + 20 z4

z
−3− 2 z − 2 z2 + 2 z3

z
−2 (3− 2 z − z2 + z3)

z

0 0 −1

3777775
We check that we have RU = (I2 0):

> simplify(Matrix(R).U); [
1 0 0
0 1 0

]
Finally, we check that U is a unimodular matrix, i.e., U ∈ GL3(D):

> LinearAlgebra[Determinant](U);

1
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9.4 Equivalences of flat multidimensional linear systems

9.4.1 Examples 7, 8 and 10

We consider the differential time-delay linear system defined by (20) ([32]). The matrix R associated
with (20) is defined by

> R:=Matrix([[d-delta+2, 2,-2*delta],[d,d,-d*delta-1]]);

R :=
[
d− δ + 2 2 −2 δ

d d −d δ − 1

]
where d denotes the time-derivative operator and δ the time-delay operator. Hence, we need to consider
the commutative polynomial ring D = Q[d, δ] and the D-module defined by M = D1×3/(D1×2R).

> var:=[d, delta];

var := [d, δ]

Let us check whether or not the matrix R admits a right-inverse over D:

> IsUnimod(R, var);

true

As the matrix R admits a right-inverse over D, we then obtain that the D-module M is projective,
i.e., free by the Quillen-Suslin theorem. Let us solve Problem 1:

> U:=QSAlgorithm(R, var);

U :=


0 0 −2

d δ

2
+

1
2
−δ d2 δ + d− d δ2 − δ + 2

d

2
−1 d2 − d δ


We can check that U gives a solution of Problem 1 as we have RU = (I2 0)

> simplify(R.U); [
1 0 0
0 1 0

]
and U is a unimodular matrix over D, i.e., U ∈ GL3(D):

> LinearAlgebra[MatrixInverse](U);
d− δ + 2 2 −2 δ

d d −d δ − 1

−1/2 0 0


The residue class of the last row of the matrix U−1 in M defines a basis of M . Moreover, the system
defined by R admits the following injective parametrization

> Q:=InjectiveParametrization(R, var, true);

Q :=

 −2
d2 δ + d− d δ2 − δ + 2

d2 − d δ



RR n° 6126
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i.e., for every D-module F (e.g., C∞(R)), every F-solution of the system kerF (R.) has the form

> simplify(Matrix(Q).Matrix([[xi]])); −2 ξ
−(−d2 δ − d+ d δ2 + δ − 2) ξ

−d (−d+ δ) ξ


for a certain ξ ∈ F . As the system kerF (R.) is flat, by Corollary 8, we know that kerF (R(d, δ).)
is algebraically equivalent to the controllable ordinary differential system without time-delay, i.e., to
kerF (R(d, 1).). We can compute an invertible transformation which maps F-solutions of kerF (R(d, 1).)
to F-solutions kerF (R(d, δ).):

> U[1]:=SetLastVariableA(R, var, 1, true);

U1 :=


1 0 0

1
2
d δ2 − 1

2
d δ +

1
2
δ − 1

2
1 δ − 1

d (δ − 1)
2

0 1


We can check that R(d, δ)U1 = R(d, 1):

> R[1]:=simplify(R.U[1]);

R1 :=
[
d+ 1 2 −2
d d −1− d

]
The inverse transformation, i.e., the transformation sending F-solutions of kerF (R(d, δ).) to F-
solutions of kerF (R(d, 1).), is then defined by the matrix U−1

1 :

> LinearAlgebra[MatrixInverse](U[1]);
1 0 0

−1
2
d δ − 1

2
δ +

1
2

+
1
2
d 1 −δ + 1

−d (δ − 1)
2

0 1


As the E = Q[d]-module N = E1×3/(E1×2R1) is also free, we can find U2 ∈ GL3(E) such that
R1 U2 = (I2 0). For instance, we get:

> U[2]:=QSAlgorithm(R[1], var);

U2 :=


0 0 −2

1
2

+
d

2
−1 d2 + 1

d

2
−1 d2 − d


Similarly, we can prove that the system kerF (R(d, δ).) is algebraically equivalent to the system
kerF (R(d, 0).), namely,

> R[0]:=subs(delta=0, R);

R0 :=
[
d+ 2 2 0
d d −1

]
by means of the following invertible transformation:
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> V[1]:=SetLastVariableA(R, var, 0, true);

V1 :=


1 0 0

1
2
d δ2 +

1
2
δ 1 δ

d δ

2
0 1


The inverse transformation, i.e., the transformation sending F-solutions of kerF (R(d, δ).) to F-
solutions of kerF (R(d, 0).), is defined by the matrix V −1

1 :

> LinearAlgebra[MatrixInverse](V[1]);
1 0 0

−δ
2

1 −δ

−d δ
2

0 1


As the E = Q[d]-module P = E1×3/(E1×2R0) is also free, we can find V2 ∈ GL3(E) such that
R0 V2 = (I2 0). In particular, we have:

> V[2]:=QSAlgorithm(R[0], var);

V2 :=


0 0 −2
1
2

0 d+ 2

d

2
−1 d2


9.4.2 Examples 9 and 11

We consider the differential time-delay linear system (27) studied in [28]. The matrix R of functional
operators associated with (27) has the form

> R:=Matrix([[d+1, 0, -1],[-1, d-d*delta+a, 0]]);

R :=
[
d+ 1 0 −1
−1 d− d δ + a 0

]
where a denotes a real constant, d the time-derivative operator and δ the time-delay operator. Let us
consider the D = Q(a)[d, δ]-module M = D1×3/(D1×2R).

> var:=[d, delta];

var := [d, δ]

Let us check that R admits a right-inverse over D:

> IsUnimod(R, var);

true

Hence, the D-module M = D1×3/(D1×2R) is projective, i.e., free by the Quillen-Suslin theorem. Let
us compute U ∈ GL3(D) such that RU = (I2 0):

> U:=MatrixQS(R, var);

U :=

 0 −1 d− d δ + a
0 0 1
−1 −d− 1 (d+ 1) (d− d δ + a)


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We can check that detU = 1 and RU = (I2 0) as we have:

> simplify(R.U); [
1 0 0
0 1 0

]
The system defined by R admits the following injective parametrization

> Q:=InjectiveParametrization(R, var, true);

Q :=

 d− d δ + a
1

(d+ 1) (d− d δ + a)


i.e., for every D-module F (e.g., C∞(R)), every F-solution of the system kerF (R.) has the form

> simplify(Matrix(Q).Matrix([[xi]])); (d− d δ + a) ξ
ξ

(d+ 1) (d− d δ + a) ξ


for a certain ξ ∈ F . As the system kerF (R.) is flat, by Corollary 8, we know that the system
kerF (R(d, δ).) is algebraically equivalent to the controllable ordinary differential system without time-
delay, i.e., to kerF (R(d, 1).). Let us compute an invertible transformation which sends F-solutions of
kerF (R(d, δ).) to F-solutions of kerF (R(d, 1).):

> U[1]:=SetLastVariableA(R, var, 1, true);

U1 :=

 1 −d (δ − 1) 0
0 1 0
0 −δ d2 + d2 − d δ + d 1


> R[1]:=simplify(R.U[1]);

R1 :=
[
d+ 1 0 −1
−1 a 0

]
The invertible transformation, i.e., the transformation sending F-solutions of kerF (R(d, δ).) to F-
solutions of kerF (R(d, 1).), is defined by the matrix U−1

1 :

> LinearAlgebra[MatrixInverse](U[1]); 1 d (δ − 1) 0
0 1 0
0 δ d2 − d2 + d δ − d 1


The E = Q(a)[d]-module P = E1×3/(E1×2R1) is also free. Hence, there exists U2 ∈ GL3(E) such
that R1 U2 = (I2 0), which can be computed by:

> U[2]:=QSAlgorithm(R[1], var);

U2 :=


0 0 a

0
1
a

1

−1 0 (d+ 1) a


Similarly, by Corollary 7, for every D-module F , the system kerF (R(d, δ).) is algebraically equivalent
to the system kerF (R(d, 0).), where R(d, 0) is defined by:
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> R[0]:=subs(delta=0, R);

R0 :=
[
d+ 1 0 −1
−1 d+ a 0

]
The invertible transformation which maps F-solutions of the system kerF (R(d, 0).) to F-solutions of
kerF (R(d, δ).) is defined by:

> V[1]:=SetLastVariableA(R, var, 0, true);

V1 :=

 1 −d δ 0
0 1 0
0 −δ d2 − d δ 1


The inverse transformation which sends F-solutions of kerF (R(d, δ).) to F-solutions of the system
kerF (R(d, 0).) is then defined by V −1

1 :

> LinearAlgebra[MatrixInverse](V[1]); 1 d δ 0
0 1 0
0 δ d2 + d δ 1


Finally, as the E = Q(a)[d]-module P = E1×3/(E1×2R0) is also free, there exists V2 ∈ GL3(E) such
that R0 V2 = (I2 0), where V2 can be chosen as follows:

> V[2]:=QSAlgorithm(R[0],var, true);

V2 :=

 0 −1 d+ a
0 0 1
−1 −d− 1 (d+ 1) (d+ a)


9.4.3 Example of a δ-flat differential time-delay system taken from [22]

We now consider the stirred tank model described on pages 450-451 of [22]. Let us first consider
the commutative polynomial ring D = Q(θ, c0, c1, c2, V0)[d, δ], where d denotes the time-derivative
operator and δ the time-delay operator.

> var:=[d, delta];

var := [d, δ]

The system is defined by the following matrix R of functional operators:

> R := Matrix([[d+1/(2*theta),0,-1,-1],[0,d+1/theta,-(c1-c0)*delta/V0,
> -(c2-c1)*delta/V0]]);

R :=

 d+
1
2 θ

0 −1 −1

0 d+
1
θ
− (c1 − c0 ) δ

V0
− (c2 − c1 ) δ

V0


Let us check whether or not the D-module M = D1×4/(D1×2R) is free:

> IsUnimod(R, var);

false

As the full row rank matrix R does not admit a right-inverse over D, the D-module M is then not
free. We can prove that we have ext1D(N,D) = 0 but ext2D(N,D) 6= 0, where N = D1×2/(D1×4RT )
and annD(ext2D(N,D)) = (θ d+1, δ). See the library of OreModules examples ([4]) for more details.
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Hence, using Figure 1, we obtain that M is a torsion-free but not a projective D-module. In particular,
M is not a free D-module, and thus, for every injective cogenerator D-module F , the corresponding
system kerF (R.) is not flat.

However, the fact that δ ∈ annD(ext2D(N,D)) proves that the Dδ-module Dδ ⊗DM is free, where
Dδ = {a/b | a ∈ D, b = δi, i ∈ Z+} is the localization of the ring with respect to the multiplicative
closed subset S = {1, δ, δ2, . . .} of D ([5, 49]). In a system-theoretic language, it means that, for
every Dδ-module F (e.g., F = C∞(R)), the system kerF (R.) is flat when we also use the time-
advance operator δ−1. In this case, the first system is said to be δ-flat ([5, 32]). Many examples of
time-delay systems were proved to be δ-flat (e.g., transport equations, wave equations). For more
details and examples, see [4, 5, 6, 32, 33] and the references therein.

Let us compute a basis of the free Dδ-module Dδ⊗DM by declaring δ to be an invertible element,
i.e., by considering the principal ideal domain A = Q(θ, c0, c1, c2, V0, δ)[d]:

> var2:=[d];

var2 := [d]

We can check that the A-module P = A1×4/(A1×2R) is projective, i.e. free by 4 of Theorem 2:

> IsUnimod(R, var2);

true

Let us compute a basis:

> U:=QSAlgorithm(R, var2, true);

U :=
[0 , 0 , 1 , 0]
[0 , 0 , 0 , 1][
− −c2 + c1
−c2 + 2 c1 − c0

, − V0
δ (−c2 + 2 c1 − c0 )

,
(2 d θ + 1) (−c2 + c1 )
2 θ (−c2 + 2 c1 − c0 )

,
V0 (d θ + 1)

δ (−c2 + 2 c1 − c0 ) θ

]
[
− c1 − c0
−c2 + 2 c1 − c0

,
V0

δ (−c2 + 2 c1 − c0 )
,

(c1 − c0 ) (2 d θ + 1)
2 (−c2 + 2 c1 − c0 ) θ

, − V0 (d θ + 1)
δ (−c2 + 2 c1 − c0 ) θ

]
Let us compute the determinant of the matrix U :

> LinearAlgebra[Determinant](U);

− V0
δ (−c2 + 2 c1 − c0 )

Hence, if c0 + c2 − 2 c1 6= 0, which will be assumed in what follows, then the determinant detU of U
is invertible over A. See [4] for the other cases. Therefore, if we also use the advance operator δ−1,
an injective parametrization of the system is then defined by:

> Q:=InjectiveParametrization(R, var2,true);

Q :=



1 0
0 1

(2 d θ + 1) (−c2 + c1 )
2 θ (−c2 + 2 c1 − c0 )

V0 (d θ + 1)
δ (−c2 + 2 c1 − c0 ) θ

(c1 − c0 ) (2 d θ + 1)
2 (−c2 + 2 c1 − c0 ) θ

− V0 (d θ + 1)
δ (−c2 + 2 c1 − c0 ) θ


Hence, we get that every F-solution η of the system kerF (R.) defined by R, where F is a Dδ-module
(e.g., F = C∞(R)), is of the form η = Qξ for a certain ξ ∈ F2. Finally, a δ-flat output of the system
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kerF (R.) is defined by ξ = T η, where T denotes the last row of the unimodular matrix U . Another
δ-flat output of kerF (R.) is then

> BasisOfCokernelModule(R, var2, true);[
1 0 0 0
0 1 0 0

]
i.e., is defined by {η1, η2} with the notation η = (η1, . . . , η4).

9.5 Pommaret’s theorem of the Lin-Bose conjecture

9.5.1 Examples 13, 14 and 15

Let us consider the differential time-delay model of a flexible rod with a forced applied on one end
defined in Example 13 ([32]). The system matrix R with entries in the polynomial ring D = Q[d, δ],
where d denotes the time-derivative operator and δ the time-delay operator, is defined by

> var:=[d, delta];

var := [d, δ]

> R:=Matrix([[d,-d*delta,-1],[2*delta*d,-d*delta^2-d,0]]);

R :=
[

d −d δ −1
2 d δ −d δ2 − d 0

]
Let us check whether or not the D-module M = D1×3/(D1×2R) is projective, i.e., free by the Quillen-
Suslin theorem:

> IsUnimod(R, var);

false

We obtain that R does not admit a right-inverse over D and the D-module M is not free. In particular,
there does not exist a matrix U ∈ GL3(D) such that RU = (I2 0) or, equivalently, R cannot be
completed to a unimodular matrix over D. Let us compute the set of all maximal minors of R:

> m:=MaxMinors(R);

m := [d2 δ2 − d2, 2 d δ, −d δ2 − d]

The ideal I of D defined by the maximal minors is generated by

> Involutive[InvolutiveBasis](m, var);

[d]

i.e., I = (d), and thus, d is a greatest common divisor of the maximal minors of R. In particular,
using Figure 1, we obtain that the torsion D-submodule t(M) of M is not reduced to 0. Using
OreModules ([4, 6]), let us compute ext1D(N,D), where N = D1×2/(D1×3RT ). We first need to
define the commutative polynomial ring D = Q[d, δ] in OreModules in the following way:

> Alg:=OreModules[DefineOreAlgebra](diff=[d,t],dual_shift=[delta,s],
> polynom=[t,s]):

We then obtain

> Ext:=OreModules[Exti](Involution(convert(R,array),Alg),Alg,1);
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Ext :=

 d 0 0
0 1 0
0 0 1

 ,
 −2 δ 1 + δ2 0
−d d δ 1
d δ −d δ

 ,
 1 + δ2

2 δ
−d δ2 + d


i.e., if we denote by

> Q:=Ext[2];

Q :=

 −2 δ 1 + δ2 0
−d d δ 1
d δ −d δ


then, we have ext1D(N,D) = (D1×3Q)/(D1×2R), which is not reduced to 0 as the first matrix of Ext
shows that the residue class of the first row of Q in ext1D(N,D) defines the element

z = −2 δ y1 + (1 + δ2) y2

which satisfies d z = 0. As the residue classes of the second and third rows of Q in ext1D(N,D) are
reduced to 0, we deduce that t(M) is only generated by z.

We also know that R can be factorized by Q, i.e., there exists P ∈ D2×3 satisfying R = P Q. The
matrix P can be computed as follows:

> P:=OreModules[Factorize](R,Q,Alg);

P :=
[

0 −1 0
0 −δ 1

]
We note that P is not a square matrix. Let us compute kerD(.Q):

> Q[2]:=OreModules[SyzygyModule](Q,Alg);

Q2 :=
[
d −δ 1

]
Hence, we obtain that Q has not full row rank, i.e., the D-module D1×3Q is not free. However, the
D-module M/t(M) is projective, i.e., free by the Quillen-Suslin theorem as Q admits a generalized
inverse X over D defined by

> X:=OreModules[GeneralizedInverse](Q,Alg);

X :=


δ

2
0 0

1 0 0

−d δ
2

1 0


i.e., we have QX Q = Q. Another way to prove this result is to check that Q2 trivially admits a
right-inverse over D, a fact that shows that L = D1×3/(DQ2) ∼= D1×3Q is a projective, and thus,
a free D-module by the Quillen-Suslin theorem. Hence, following Algorithm 2, we can constructively
solved Problem 3. We first solve Problem 1 for the full row rank matrix Q2:

> U:=QSAlgorithm(convert(Q[2],Matrix),var,true);

U :=

 0 0 1
0 1 0
1 δ −d


We can check that U is a unimodular matrix over D as we have:

> U_inv:=linalg[inverse](U);
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U inv :=

 d −δ 1
0 1 0
1 0 0


If we denote by B the matrix formed by the last two rows of U−1, namely,

> B:=linalg[submatrix](U_inv,2..3,1..3);

B :=
[

0 1 0
1 0 0

]
we know that a matrix R′ ∈ D2×3 solving Problem 3 is then defined by R′ = BQ

> Rp:=simplify(evalm(B&*Q));

Rp :=
[
−d d δ 1
−2 δ 1 + δ2 0

]
where R′ was denoted by Rp. Hence, we have D1×3Q = D1×2R′ and R = R′′R′, where R′′ ∈ D2×2

is defined by

> Rpp:=OreModules[Factorize](R,Rp,Alg);

Rpp :=
[
−1 0

0 −d

]
where R′′ was denoted by Rpp, and R′′ satisfies detR′′ = d:

> linalg[det](Rpp);

d

We can check again that M/t(M) = D1×3/(D1×2R′) is a projective, i.e., a free D-module as the ideal
of D defined by the set of maximal minors of R′, namely,

> maxminors:=MaxMinors(convert(Rp,Matrix),var);

maxminors := [d δ2 − d, 2 δ, −1− δ2]

generates D:

> Involutive[InvolutiveBasis](maxminors,var);

[1]

Equivalently, we can check that the matrix R′ admits a right-inverse of D defined by:

> OreModules[RightInverse](Rp,Alg);
0

δ

2
0 1

1 −d δ
2


Of course, a solution of Problem 3 can directly be obtained by calling the QuillenSuslin procedure
LinBose1 as follows:

> F:=LinBose1(R, var);

F := [
[
−1 0

0 −d

]
,

[
−d d δ 1
−2 δ δ2 + 1 0

]
]
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The second matrix of the previous output corresponds to the matrix R′ solving Problem 3, whereas
the first one corresponds to the matrix R′′ satisfying R = R′′R′ and detR′′ = d, where d denotes
the greatest common divisor of the maximal minors of R (which is, by the way, the time-derivative
operator d in this particular case!).

Let us now solve Problem 4. We first need to solve Problem 1 for the full row rank matrix R′

using the procedure QSAlgorithm:

> V:=QSAlgorithm(convert(Rp,Matrix),var,true);

V :=


0

δ

2
−1− δ2

0 1 −2 δ

1 −d δ
2

d δ2 − d


We can check that V ∈ GL3(D) as we have

> V_inv:=LinearAlgebra[MatrixInverse](V);

V inv :=

 −d d δ 1
−2 δ 1 + δ2 0

−1
δ

2
0


and we can check that the matrix formed by the first two rows of Vinv is exactly R′, i.e., R′ V = (I2 0).
Let us denote by T the matrix formed by the last row of Vinv

> T:=LinearAlgebra[SubMatrix](V_inv,3..3,1..3);

T :=
[
−1

δ

2
0
]

and let us denote by W = (RT TT )T ∈ D3×3, namely:

> W:=Matrix([[R],[T]]);

W :=

 d −d δ −1
2 d δ −d δ2 − d 0

−1
δ

2
0


We can finally check that W is a solution of Problem 4 as its determinant is exactly d:

> LinearAlgebra[Determinant](W);

d

We can directly obtain a solution of Problem 4 by using the procedure LinBose2:

> C:=LinBose2(R, var);

C :=

 d −d δ −1
2 d δ −d δ2 − d 0

−1
δ

2
0


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9.5.2 Example 16

Let us consider the commutative polynomial ring D = Q[z1, z2, z3] and the polynomial matrix defined
in Example 16, namely:

> var:=[z[1],z[2],z[3]];

var := [z1 , z2 , z3 ]

> R:=Matrix([[z[1]*z[2]^2*z[3],0, -z[1]^2*z[2]^2-1],
> [z[1]^2*z[3]^2+z[3],-z[3],-z[1]^3*z[3]-z[1]]]);

R :=
[

z1 z2 2 z3 0 −z1 2 z2 2 − 1
z1 2 z3 2 + z3 −z3 −z1 3 z3 − z1

]
The set of the maximal minors of the full row rank matrix R is defined by:

> m:=MaxMinors(R);

m := [−z1 z2 2 z3 2, z1 2 z3 2 + z3 , (−z1 2 z2 2 − 1) z3 ]

Let us compute a Janet basis of the ideal of D formed by the maximal minors of R:

> Involutive[InvolutiveBasis](m, var);

[z3 ]

As the ideal defined by the maximal minors of R is equal to the principal ideal of D generated by z3,
we then deduce that z3 is a greatest common divisor of the maximal minors. Hence, the D-module
M = D1×3/(D1×2R) is not projective, and thus, not free and there exists no matrix U ∈ GL3(D)
satisfying RU = (I2 0).

However, if we divide the maximal minors of R by z3 then the ideal generated by these new
elements, i.e., (−z1 z2

2 z3, z
2
1 z3 + 1,−z2

1 z
2
2 − 1), exactly generates D, a fact which is equivalent to the

fact that M/t(M) is a projective D-module, i.e., free by the Quillen-Suslin theorem. Hence, we can
solve Problems 3 and 4:

> F:=LinBose1(R, var);

F := [
[

z1 3 z2 4 z3 −z1 2 z2 2 − z1 4 z3 z2 2 − 1
z1 4 z3 2 z2 2 − z3 + z1 2 z2 2 z3 −2 z1 3 z3 − z1 5 z3 2 − z1

]
,[

−z1 2 z3 − 1 z1 2 z2 2 + z1 4 z3 z2 2 + 1 −z1 3 − z1 5 z3
−z1 z2 2 z3 z1 3 z2 4 z3 −z1 4 z3 z2 2 + 1

]
]

If we denote by R′′ the first matrix appearing in the previous output and by R′ the second one, we
can check that we then have the factorization R = R′′R′

> simplify(F[1].F[2]);[
z1 z2 2 z3 0 −z1 2 z2 2 − 1

z1 2 z3 2 + z3 −z3 −z1 3 z3 − z1

]
and the determinant of R′′ is −z3 i.e., z3 up to a unit of D (we recall that a greatest common divisor
is always defined up to a unit of the ring D):

> LinearAlgebra[Determinant](F[1]);

−z3

Hence, we get that M/t(M) = D1×3/(D1×2R′). Let us complete the matrix R to a square matrix
over D whose determinant is z3:
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> C:=LinBose2(R, var);

C :=

 z1 z2 2 z3 0 −z1 2 z2 2 − 1
z1 2 z3 2 + z3 −z3 −z1 3 z3 − z1
−1 z1 2 z2 2 −z1 3


> LinearAlgebra[Determinant](C);

z3

9.6 (Weakly) coprime factorizations of rational transfer matrices

Let us consider the commutative polynomial ring D = Q[z1, z2, z3]:

> var:=[z[1],z[2],z[3]];

var := [z1 , z2 , z3 ]

We consider the rational transfer matrix defined in Example 17, namely:

> P:=Matrix(<(z[1]^2*z[2]^2+1)/(z[1]*z[2]^2*z[3]),
> (z[1]^2*z[3]+1)/(z[1]*z[2]^2*z[3]) >);

P :=


z1 2 z2 2 + 1
z1 z2 2 z3
z1 2 z3 + 1
z1 z2 2 z3


Cleaning the denominators of P , we obtain the fractional representation P = D−1

P NP of P , where
the matrices DP ∈ D2×2 and NP ∈ D2×1 are defined by:

> D_P:=LinearAlgebra[ScalarMatrix](DenomOf(P),2,2);

D P :=
[

z1 z2 2 z3 0
0 z1 z2 2 z3

]
> N_P:=simplify(D_P.P);

N P :=
[

z1 2 z2 2 + 1
z1 2 z3 + 1

]
Let us define the matrix Q = (DP −NP ) ∈ D2×3, namely:

> Q:=Matrix([D_P, -N_P]);

Q :=
[

z1 z2 2 z3 0 −z1 2 z2 2 − 1
0 z1 z2 2 z3 −z1 2 z3 − 1

]
The set of the maximal minors of Q is defined by:

> m1:=MaxMinors(Q);

m1 := [z1 2 z2 4 z3 2, z1 z2 2 z3 (−z1 2 z3 − 1), −(−z1 2 z2 2 − 1) z1 z2 2 z3 ]

The greatest common divisor of the maximal minors of Q is:

> d:={gcd(m1[1],m1[2]),gcd(m1[1],m1[3]),gcd(m1[2],m1[3])};
d := {z1 z2 2 z3}

Hence, P = D−1
P NP is not a weakly left-coprime factorization of P . Let us check whether or not the

rational transfer matrix P admits a weakly left-coprime factorization and, if so, compute one:
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> WLCF:=WLCFactorization(P,var);

WLCF := [
[
−z1 2 z3 − 1 z1 2 z2 2 + z1 4 z3 z2 2 + 1
−z1 z2 2 z3 z1 3 z2 4 z3

]
,

[
z1 5 z3 + z1 3

z1 4 z3 z2 2 − 1

]
]

We obtain that P admits the weakly left-coprime factorization defined by P = (D′P )−1N ′
P , where

D′P ∈ D2×2 is the first matrix given in the previous output and N ′
P ∈ D2×1 is the second one. In

particular, we can check that (D′P )−1N ′
P is equal to P :

> LinearAlgebra[MatrixInverse](WLCF[1]).WLCF[2]);
z1 2 z2 2 + 1
z1 z2 2 z3
z1 2 z3 + 1
z1 z2 2 z3


Moreover, if we define the matrix R = (D′P −N ′

P ) ∈ D2×3, namely,

> R:=Matrix([WLCF[1],-WLCF[2]]);

R :=
[
−z1 2 z3 − 1 z1 2 z2 2 + z1 4 z3 z2 2 + 1 −z1 5 z3 − z1 3

−z1 z2 2 z3 z1 3 z2 4 z3 −z1 4 z3 z2 2 + 1

]
then, the set of the maximal minors of R is defined by

> m2:=MaxMinors(R);

m2 := [z1 z2 2 z3 , −z1 2 z3 − 1, z1 2 z2 2 + 1]

and the greatest common divisor of the maximal minors of R is then equal to 1 as

> {gcd(m2[1],m2[2]),gcd(m2[1],m2[3]),gcd(m2[2],m2[3])};
{1}

and thus, P = (D′P )−1N ′
P is a weakly left-coprime factorization of P . Let us check whether or not

the transfer matrix P admits a left-coprime factorization:

> LCF:=LCFactorization(P,var);

LCF := [
[

z1 2 z3 − 1 −z1 4 z3 z2 2 + z1 2 z2 2 + 1
−z1 z2 2 z3 z1 3 z2 4 z3

]
,

[
z1 3 (z1 2 z3 − 1)
−z1 4 z3 z2 2 − 1

]
]

P = (D′P )−1N ′
P is a left-coprime factorization of P and R = (D′P − N ′

P ) admits the following
right-inverse over D:

> Involutive[PolRightInverse](R,var); z1 2 z2 2 z1 3

1 0
0 1


A weakly right-coprime factorization of P can be obtained in a similar way:

> WRC:=WRCFactorization(P, var);

WRC := [
[

z1 2 z2 2 + 1
z1 2 z3 + 1

]
,
[

z1 z2 2 z3
]
]

Hence, if we denote by D̃P ∈ D2×1 the first matrix of the previous output and ÑP ∈ D the second
one, then we can check that we have P = ÑP D̃

−1
P :
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> simplify(WRC[1].MatrixInverse(WRC[2]));
z1 2 z2 2 + 1
z1 z2 2 z3
z1 2 z3 + 1
z1 z2 2 z3


Moreover, if we denote by R̃ = (ÑT

P D̃T
P )T , namely,

> Rtilde:=Matrix([[WRC[1][1,1]],[WRC[1][2,1]],[WRC[2][1,1]]]);
z1 2z2 2 + 1

z1 2z3 + 1

z1 z2 2z3


the maximal minors of R̃ are then defined by

> m3:=MaxMinors(Rtilde);

[z1 2z2 2 + 1, z1 2z3 + 1, z1 z2 2z3 ]

and their greatest common divisor is:

> {gcd(m3[1],m3[2]),gcd(m3[1],m3[3]),gcd(m3[2],m3[3])};
{1}

Therefore, P = ÑP D̃
−1
P is a weakly right-coprime factorization of P . Let us check whether or not P

admits a right-coprime factorization:

> RC:=RCFactorization(P, var);

RC := [
[

z1 2 z2 2 + 1
z1 2 z3 + 1

]
,
[

z1 z2 2 z3
]
]

Hence, P admits a right-coprime factorization of P . We can finally check that last point as follows:

> Matrix(<op(RC)>);
> IsUnimod(%, var);
> Involutive[PolLeftInverse](%%, var); z1 2 z2 2 + 1

z1 2 z3 + 1
z1 z2 2 z3


true[

1 −z1 2 z2 2 z1 3
]

9.7 Decomposition of multidimensional linear systems

We refer the reader to [9, 10] for numerous examples of decomposition of classical systems of partial
differential equations and of differential time-delay equations appearing in mathematical physics and
control theory and for a description of the package Morphisms ([9, 10]) as well as a library of examples.
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Suslin) pour le calcul formel”, Math. Nachr., 149 (1990), 231-253.

[16] M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Flatness and defect of nonlinear systems: intro-
ductory theory and examples”, Int. J. Control, 61 (1995), 1327-1361.
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[59] L. N. Vaserštein, A. A. Suslin, “Serre’s Problem on projective modules over polynomial rings and
algebraic K-theory”, Math. USSR Izviestija, 10 (1976), no. 5, 937-1001.

[60] M. Vidyasagar, Control System Synthesis. A Factorization Approach, MIT Press, 1985.

[61] I. Yengui, “Suslin’s lemma for elimination”, preprint 2006, private communication.

[62] D. C. Youla, P. F. Pickel, “The Quillen-Suslin theorem and the structure of n-dimensional ele-
mentary polynomial matrices”, Trans. Circuits and Systems, 31 (1984), 513-517.

[63] M. Wang, D. Feng, “On Lin-Bose problem”, Linear Algebra and its Applications, 390 (2004),
279-285.

[64] M. Wang, C. P. Kwong, “On multivariate polynomial matrix factorizations problems”, Math.
Control Signals Systems, 17 (2005), 297-311.

[65] J. Wood, “Modules and behaviours in nD systems theory”, Multidimensional Systems and Signal
Processing, 11 (2000), 11-48.

[66] E. Zerz, Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Infor-
mation Sciences 256, Springer, (2000).

[67] P. Zervos, Le problème de Monge, Mémorial des sciences mathématiques, fasicule LIII, Gauthier-
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