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Abstract Within the lattice approach to analysis and synthesis problems, we show how standard
results on robust stabilization can be obtained in a unified way and generalized when interpreted
as a particular case of the so-called homological perturbation lemma. This lemma plays a
significant role in algebraic topology, homological algebra, computer algebra, etc. Our results
show that it is also central to robust control theory for (infinite-dimensional) linear systems.
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1. THE FRACTIONAL REPRESENTATION
APPROACH

In what follows, we consider the so-called fractional rep-
resentation approach developed in the 80’s by Vidyasagar,
Desoer, Callier, Francis, etc (see Curtain et al. (1991);
Desoer et al. (1980); Vidyasagar (1985) and the references
therein). In this approach, the set of stable plants (in
a sense to be defined afterwards) is considered to be an
integral domain A, i.e., a commutative ring with no non-
zero zero divisors. Examples of integral domains A usually
encountered in the literature are:

• The Hardy algebra H∞(C+) formed by all holomor-
phic functions in the open right half-plane

C+ := {s ∈ C | <(s) > 0}
which are bounded with respect to the sup norm, i.e.:

‖ h ‖∞:= sup
s∈C+

|h(s)|.

Let ĥ denote the Laplace transform of h and
H2(C+) := {ĥ | h ∈ L2(R+)}. If ĥ ∈ H∞(C+) then
the input-output system ŷ = ĥ û is H2(C+)−H2(C+)
stable (i.e., û ∈ H2(C+) yields ŷ ∈ H2(C+)), or
equivalently y = h?u is the L2(R+)−L2(R+) stable,
where ? denotes the standard convolution product.
• RH∞ := H∞(C+) ∩ R(s) the algebra of proper and

stable rational transfer functions.
• The Wiener algebra defined by:

Â := {f̂ +
+∞∑
i=0

ai e
−his | f ∈ L1(R+), (ai) ∈ l1(N),

0 = h0 < h1 < h2 < . . .}.

If ĥ ∈ Â, then the input-output system y = h ? u is
L∞(R+)− L∞(R+) stable (BIBO stability).

? The author would like to thank Julio Rubio (University of Rioja,
Spain) and Francis Sergeraert (University of Grenoble, France) for
introducing him to the field of the homological perturbation lemma
and for motivating discussions which led to this paper.

For more examples, see Curtain et al. (1991); Desoer et al.
(1980); Quadrat (2006a); Vidyasagar (1985).

In what follows, K := Q(A) =
{
n
d | 0 6= d, n ∈ A

}
denotes

the quotient field of A. Within the fractional representation
approach, a transfer matrix is defined by P ∈ Kq×r.
Definition 1. (Desoer et al. (1980); Vidyasagar (1985)).
Let A be an integral domain of SISO stable transfer func-
tions, K := Q(A) and P ∈ Kq×r. Then, P is internally
stabilizable if there exists C ∈ Kr×q such that all entries
of the following transfer matrix

H(P, C) :=
(
Iq −P
−C Ir

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)

=

(
Iq + P (Ir − C P )−1 C P (Ir − C P )−1

(Ir − C P )−1 C (Ir − C P )−1

) (1)

belong to A, i.e., H(P, C) ∈ A(q+r)×(q+r). Then, C is a
stabilizing controller of P and we note C ∈ Stab(P ).

With the notations of the following figure

u1 +
+

e1
C

e2 u2++y2

y1

P

we have: (
e1

e2

)
= H(P, C)

(
u1

u2

)
.

The transfer matrix H(P,C) connects the inputs u1 and
u2 (references and perturbations) to e1 and e2. If we
have H(P,C) ∈ A(q+r)×(q+r), then all transfer matrices



between two signals appearing in the above figure are
stable. For more details, see, e.g., Desoer et al. (1980);
Vidyasagar (1985). Since the context is clear, we shall
only say “stabilizable” for “internally stabilizable”.

Let us introduce standard transfer matrices:

• Output sensitivity transfer matrix So := (Iq−P C)−1.
• Input sensitivity transfer matrix Si := (Ir − C P )−1.
• U := C (Iq − P C)−1 = (Ir − C P )−1 C.
• Complementary input sensitivity transfer matrix
Ti := U P .

• Complementary output sensitivity transfer matrix
To := P U .

Note that we have the relation So P = P Si.

Let us introduce a few more definitions.
Definition 2. (Desoer et al. (1980)). Let P ∈ Kq×r.

(1) A fractional representation of P is defined by

P = D−1N = Ñ D̃−1,

where R := (D − N) ∈ Aq×(q+r), detD 6= 0,
R̃ = (ÑT D̃T )T ∈ A(q+r)×r and det D̃ 6= 0.

(2) A fractional representation P = D−1N is a left
coprime factorization if there exist X ∈ Aq×q and
Y ∈ Ar×q such that DX −N Y = Iq.

(3) A fractional representation P = Ñ D̃−1 is a right
coprime factorization if there exist X̃ ∈ Ar×r and
Ỹ ∈ Ar×q such that −Ỹ Ñ + X̃ D̃ = Ir.

(4) A fractional representation of P = D−1N = Ñ D̃−1

is a doubly coprime factorization if P = D−1N is a
left coprime factorization and P = Ñ D̃−1 is a right
coprime factorization.

Remark 1. Any transfer matrix P ∈ Kq×r admits frac-
tional representations (take, e.g., D = d Iq, D̃ = d Ir,
where d is the product of the denominators of all the
entries of P and N := dP and Ñ = P d). But not all
transfer matrices P ∈ Kq×r admit a left/right/doubly co-
prime factorization. For instance, see Quadrat (2006a,b).

2. THE LATTICE APPROACH

As we showed in Quadrat (2006a,b), the fractional rep-
resentation approach to analysis and synthesis problems
can be studied using the concept of the lattice of a finite-
dimensional K-vector space. Before stating this definition
again, let us introduce a few standard definitions.
Definition 3. (Rotman (2009)). Let A be an integral do-
main, K := Q(A) and M a finitely generated A-module.

(1) The rank of M is the dimension of the K-vector space
obtained by extending the coefficients of M from A
to K, i.e., rankA(M) := dimK(K ⊗A M), where ⊗A
denotes the tensor product of A-modules.

(2) If M and N are two A-modules, then homA(M,N)
denotes the set of all the A-homomorphisms from M
to N , i.e., f ∈ homA(M,N) satisfies

f(a1m1 + a2m2) = a1 f(m1) + a2 f(m2)
for all a1, a2 ∈ A and for all m1, m2 ∈M .

(3) M is free if M admits a basis or equivalently if
M is isomorphic to direct sum of copies of A, i.e.,

M ∼= Ar, where ∼= stands for an isomorphism, i.e., a
homomorphism which is both injective and surjective.

(4) M is projective if there exist an A-module P and
r ∈ N such that M ⊕ P ∼= Ar, where ⊕ denotes the
direct sum of A-modules.

Definition 4. (Bourbaki (1989)). Let V be a finite-dimen-
sional K-vector space. Then, an A-submodule M of V is a
lattice of V if there exist two free A-submodules L1 and L2

of V such that L1 ⊆M ⊆ L2 and rankA(L1) = dimK(V ).

We have the following examples (Quadrat (2006a)).
Example 1. If P ∈ Kq×r, then we have:

• L := (Iq − P )Aq+r is a lattice of Kq.
• M := A1×(q+r)

(
PT ITr

)T is a lattice of K1×r.
Definition 5. (Bourbaki (1989)). Let V be a finite-dimen-
sional K-vector space and M a lattice of V . Then, A : M
is the A-submodule of homK(V,K) ∼= V ? formed by the
K-linear maps f : V −→ K which satisfy f(M) ⊆ A.

One can show that A : M is a lattice of homK(V,K) ∼= V ?.

We have the following examples (Quadrat (2006a)).
Example 2. With the notations of Example 1, we have:

• A : L = {λ ∈ A1×q | λP ∈ A1×r} is a lattice of K1×q.
• A :M = {µ ∈ Ar | P µ ∈ Aq} is a lattice of Kr.

The next theorems give necessary and sufficient stabiliza-
tion conditions (Quadrat (2006a)).
Theorem 1. With the notations of Example 1, the follow-
ing assertions are equivalent:

(1) P ∈ Kq×r is stabilizable.
(2) There exists L = (STo UT )T , where So ∈ Aq×q and

U ∈ Ar×q, such that:

(a) LP =
(
So P
U P

)
∈ A(q+r)×r.

(b) (Iq − P )L = So − P U = Iq.
Then, we have C := U S−1

o ∈ Stab(P ) and:
So = (Iq − P C)−1, U = C (Iq − P C)−1.

(3) L is a projective lattice of Kq, i.e., the lattice L of Kq

is a finitely generated projective A-module of rank q.
Theorem 2. With the notations of Example 1, the follow-
ing assertions are equivalent:

(1) P ∈ Kq×r is stabilizable.
(2) There exists L̃ = (−U Si), where U ∈ Ar×q and

Si ∈ Ar×r, such that:
(a) P L̃ = (−P U P Si) ∈ Aq×(q+r).

(b) L̃

(
P
Ir

)
= −U P + Si = Ir.

Then, we have C := S−1
i U ∈ Stab(P ) and:

Si = (Ir − C P )−1, U = (Ir − C P )−1 C.

(3) M is a projective lattice of K1×r.

We have the following result (Quadrat (2006a)).
Corollary 3. (1) If P = D−1N is a left coprime factor-

ization, DX −N Y = Iq, X ∈ Aq×q, Y ∈ Ar×q, then
L = D−1Aq ∼= Aq is free and Theorem 1 holds with:

So = XD, U = Y D.

Hence, P is stabilized by the controller C := Y X−1.



(2) If P = Ñ D̃−1 is a right coprime factorization,
−Ỹ Ñ + X̃ D̃ = Ir, X̃ ∈ Ar×r, Ỹ ∈ Ar×q, then
M = A1×r D̃−1 ∼= A1×r is free and Theorem 2 holds
with:

Ũ = D̃ Ỹ , Si = D̃ X̃.

Hence, P is stabilized by the controller C := X̃−1 Ỹ .

Let us introduce a few definitions of homological algebra.
Definition 6. (Rotman (2009)). Let M = (Mi)i∈Z be a
sequence of A-modules and d = (di)i∈Z a sequence of A-
homomorphisms, where di ∈ homA(Mi,Mi−1) for i ∈ Z.

(1) The sequence (M,d) is called a complex if di◦di+1 = 0
for all i ∈ Z, i.e., if im di+1 ⊆ ker di for all i ∈ Z. The
complex (M,d) is simply denoted by:

. . . di+2 // Mi+1
di+1 // Mi

di // Mi−1
di−1 // . . .

(2) A complex (M,d) is an exact sequence at Mi if
ker di = im di+1,

and is an exact sequence if it is exact at all the Mi’s.
(3) A short exact sequence is an exact sequence of the

form 0 //M2
d2 //M1

d1 //M0
// 0 , i.e., d2

is injective, d1 is surjective and ker d1 = im d2.
(4) A split exact sequence is an exact sequence which is

such that there exist hi ∈ homA(Mi+1,Mi) satisfying:
∀ i ∈ Z, di+1 ◦ hi+1 + hi ◦ di = idMi .

A split exact sequence is also called a contractible
complex and h = (hi)i∈Z is a contraction (homotopy).

Remark 4. The indices of the di’s and hj ’s are usually
dropped. The condition to be a complex (resp., con-
tractible complex) becomes d2 = 0 (resp., d◦h+h◦d = id).

The next result is standard in homological algebra.
Lemma 5. (Rotman (2009)). A short exact sequence splits
iff one of the following equivalent conditions is satisfied:

(1) There exists h1 ∈ homA(M0,M1) such that:
d1 ◦ h1 = idM0 .

(2) There exists h2 ∈ homA(M1,M2) such that:
h2 ◦ d2 = idM2 .

(3) There exist two homomorphisms h1 ∈ homA(M0,M1)
and h2 ∈ homA(M1,M2) such that:

h1 ◦ d1 + d2 ◦ h2 = idM1 .

(4) M1
∼= M0 ⊕M2.

Example 3. We have the following short exact sequence

0 // A :M d2 // Aq+r
d1 // L // 0, (2)

where:
d1 : Aq+r −→ L d2 : A :M −→ Aq+r

λ 7−→ (Iq − P )λ, µ 7−→
(
P
Ir

)
µ.

For a proof and more details, see Quadrat (2006a).

According to Theorem 1, P is stabilizable iff there exists
h1 ∈ homA(L, Aq+r) defined by h1(ν) = Lν for all ν ∈ L
which satisfies d1 ◦ h1 = idL. By 1 of Lemma 5, the short
exact sequence (2) splits, i.e., we have L⊕(A :M) ∼= Aq+r.

Similarly, using Theorem 2, P is stabilizable iff there exists
h2 ∈ homA(Aq+r, A : M) defined by h2(ξ) = L̃ ξ for

all ξ ∈ Aq+r which satisfies h2 ◦ d2 = idA:M. By 2 of
Lemma 5, the short exact sequence (2) splits, i.e., we have
L ⊕ (A :M) ∼= Aq+r and L is a projective A-module.

A standard result of homological asserts that a short exact
sequence ending with a projective A-module splits (see,
e.g., Rotman (2009)). An application of this result to the
short exact sequence (2) yields 3 of Theorems 1 and 2.

Hence, if P is stabilizable and C ∈ Stab(P ), then defining
the matrices So := (Iq − P C)−1, U := C (Iq − P C)−1 =
(Ir − C P )−1 C and Si := (Ir − C P )−1, we obtain the
following split short exact sequence:

0 // A :M

(
P
Ir

)
//
Aq+r

(Iq −P ) //
(−U Si)
oo L //(

So

U

)oo 0.

The homological perturbation lemma is a technique of al-
gebraic topology, homological algebra, algebraic geometry,
computer algebra, etc. For more details, see Brown (1967);
Gugenheim (1972); Crainic (2004); Sergeraert (1994).

Before stating the main result, let us introduce a definition.
Definition 7. (Crainic (2004)). Let (M,d) be a complex.
We call perturbation δ of (M,d) a sequence δ = (δi)∈Z,
where δi ∈ homA(Mi,Mi−1) for all i ∈ Z, which is such
that (M,d+ δ) is a complex, i.e., for all i ∈ Z, we have
(di+δi)◦ (di+1 +δi+1) = di ◦δi+1 +δi ◦di+1 +δi ◦δi+1 = 0,
a condition which can be simply rewritten as follows:

(d+ δ)2 = d ◦ δ + δ ◦ d+ δ2 = 0.

Let us suppose that id + δ ◦ h is invertible. Then, so is
id + h ◦ δ since (id + h ◦ δ)−1 = id− h ◦ (id + δ ◦ h)−1 ◦ δ:

(id + h ◦ δ) ◦ (id− h ◦ (id + δ ◦ h)−1 ◦ δ)
= id + h ◦ (id− (id + δ ◦ h)−1 − δ ◦ h ◦ (1 + δ ◦ h)−1) ◦ δ
= id + h ◦ (id− (id + δ ◦ h) ◦ (1 + δ ◦ h)−1) ◦ δ = id,

(id− h ◦ (id + δ ◦ h)−1 ◦ δ) ◦ (id + h ◦ δ)
= id + h ◦ (id− (id + δ ◦ h)−1 − (id + δ ◦ h)−1 ◦ δ ◦ h) ◦ δ
= id + h ◦ (id− (id + δ ◦ h)−1 ◦ (id + δ ◦ h)) ◦ δ = id.

We shall only use a consequence of the homological per-
turbation lemma, i.e., the following contractible case.
Theorem 6. (Crainic (2004)). Let (M,d) be a contractible
complex with contraction h and δ a perturbation of d such
that id + δ ◦ h is invertible. Then, (M,d + δ) is still a
contractible complex with the following contraction:

H := h ◦ (id + δ ◦ h)−1 = (id + h ◦ δ)−1 ◦ h. (3)

3. APPLICATIONS OF THE HOMOLOGICAL
PERTURBATION LEMMA

The goal of this paper is to show that standard results
on robust stabilization (see, e.g., Curtain et al. (1991);
Vidyasagar (1985); Zhou et al. (1995)) can be found again
as a particular application of Theorem 6 and generalized.

Let us consider the following A-homomorphisms

0 // A :M δ2 // Aq+r
δ1 // L // 0,

where δ1 ∈ homA(Aq+r,L) and δ2 ∈ homA(A :M, Aq+r).
Using the following isomorphisms (see Quadrat (2006a)),



{
homA(Aq+r,L) ∼= L1×(q+r) = (Iq − P )A(q+r)×(q+r),

homA(A :M, Aq+r) ∼=Mq+r = A(q+r)×(q+r) (PT ITr )T ,

we obtain δ1(λ) = (∆1 − ∆2)λ for all λ ∈ Aq+r and
δ2(µ) = (∆T

3 ∆T
4 )T µ for all µ ∈ A :M, where:

(∆1 −∆2) = (Iq − P )V,(
∆3

∆4

)
= W

(
P
Ir

)
,

(4)

V =
(
V11 V12

V21 V22

)
, W =

(
W11 W12

W21 W22

)
,{

V11 ∈ Aq×q, V12 ∈ Aq×r, V21 ∈ Ar×q, V22 ∈ Ar×r,
W11 ∈ Aq×q, W12 ∈ Aq×r, W21 ∈ Ar×q, W22 ∈ Ar×r.

(5)

Let us note:

Π1 :=
(
So
U

)
(Iq − P ), Π2 :=

(
P
Ir

)
(−U Si). (6)

Using Theorems 1 and 2, we can easily check that

Π2
1 = Π1 ∈ A(q+r)×(q+r), Π2

2 = Π2 ∈ A(q+r)×(q+r),

i.e., Π1 and Π2 are two idempotents. These idempotents
play an important role in robust control.

A perturbation of (2) is then the complex defined by

0 // A :M d2+δ2 // Aq+r
d1+δ1 // L // 0,

(7)
i.e., where δ1 and δ2 are such that

(d1 + δ1) ◦ (d2 + δ2) = d1 ◦ δ2 + δ1 ◦ d2 + δ1 ◦ δ2 = 0,
i.e., in terms of matrices, such that:

T := (Iq + ∆1 − P −∆2)
(
P + ∆3

Ir + ∆4

)
= (Iq + ∆1) (P + ∆3)− (P + ∆2) (Ir + ∆4) = 0.

Indeed, we must have T µ = 0 for all µ ∈ A :M. Using the
notations of Remark 1, we get T d = 0, d 6= 0, i.e., T = 0.

If det(Iq + ∆1) 6= 0 and det(Ir + ∆4) 6= 0, then we get

P ′ := (Iq + ∆1)−1 (P + ∆2) = (P + ∆3) (Ir + ∆4)−1, (8)
where the ∆i’s are defined by (4), i.e.

P ′ = (Iq + V11 − P V21)−1 (P (Ir + V22)− V12)
= ((Iq +W11)P +W12) (Ir +W22 +W21 P )−1,

(9)

where the matrices Vij ’s and Wkl’s are defined by (5).
Definition 8. The general linear group of degree r is de-
fined by the group of the invertible matrices of Ar×r, i.e.
GLr(A) := {X ∈ Ar×r | ∃ Y ∈ Ar×r : X Y = Y X = Ir},
where Ir is the identity matrix. In particular, we have
GL1(A) = U(A), where U(A) denotes the group of in-
vertible elements of A.

According to Theorem 6, if id + δ1 ◦h1 and id + δ2 ◦h2 are
both invertible, then (7) is again contractible, i.e., a split
short exact sequence with a new contraction H defined by
(3). Let us state the two above conditions. We have

(id + δ1 ◦ h1)(ν) = (Iq + ∆1 So −∆2 U) ν,

(id + δ2 ◦ h2)(ξ) =
(
Iq −∆3 U ∆3 Si
−∆4 U Ir + ∆4 Si

)
ξ,

for all ν ∈ L and ξ ∈ Aq+r. The last matrix belonging to
A(q+r)×(q+r), using (4) and (6), id+δ2 ◦h2 is invertible iff:(

Iq −∆3 U ∆3 Si
−∆4 U Ir + ∆4 Si

)
= Iq+r +

(
∆3

∆4

)
(−U Si)

= Iq+r +W Π2 ∈ GLq+r(A).
(10)

If X ∈ Ks×t and Y ∈ Kt×s, then it is well-known that:
det(Is +X Y ) = det(It + Y X). (11)

We note that Is +X Y ∈ GLs(A) is equivalent to:
det(It + Y X) = det(Is +X Y ) ∈ U(A).

Hence, using (11), (10) is then also equivalent to:
det(Ir−U ∆3 +Si ∆4) = det(Iq+r+W Π2) ∈ U(A). (12)

Let us now study the invertibility of id + δ1 ◦ h1. Since
every element ν of L is of the form ν = (Iq − P )λ for a
certain λ ∈ Aq+r, (4) and (6) then yield
(id + δ1 ◦ h1)(ν) = (Iq + ∆1 So −∆2 U) ν

=
(
Iq + (∆1 −∆2)

(
So
U

))
(Iq − P )λ

= (Iq − P )λ+ (Iq − P )V Π1 λ

= (Iq − P ) (Iq+r + V Π1)λ,
i.e., we obtain the following identity:

(id + δ1 ◦ h1) (Iq − P )
= (Iq + ∆1 So −∆2 U) (Iq − P )
= (Iq − P ) (Iq+r + V Π1).

(13)

Using (13) and the following identity

(Iq+r + V Π1)
(
P
Ir

)
=
(
Iq+r + V

(
So
U

)
(Iq − P )

) (
P
Ir

)
=
(
P
Ir

)
,

we obtain the following commutative exact diagram:

0 // A :M
Ir

��

(
P
Ir

)
// Aq+r

Iq+r+V Π1

��

(Iq −P ) // L
id+δ1 ◦h1

��

// 0

0 // A :M

(
P
Ir

)
// Aq+r

(Iq −P ) // L // 0.
Since idA:M is an isomorphism, the standard snake lemma
(see, e.g., Rotman (2009)) then yields

kerL(id + δ1 ◦ h1) ∼= kerA(Iq+r + V Π1),
cokerL(id + δ1 ◦ h1) ∼= cokerA(Iq+r + V Π1),

and thus we obtain that id + δ1 ◦ h1 is invertible iff:
Iq+r + V Π1 ∈ GLq+r(A). (14)

Using (4) and (11), (14) is then equivalent to:
det(Iq + ∆1 So−∆2 U) = det(Iq+r + Π1 V ) ∈ U(A). (15)

Then, the identity (13) yields
(Iq −P ) (Iq+r+V Π1)−1 = (Iq+∆1 So−∆2 U)−1 (Iq −P )

(16)
which finally shows that (id + δ1 ◦ h1)−1 is defined by:

(id + δ1 ◦ h1)−1((Iq − P )λ)
= (Iq + ∆1 So −∆2 U)−1 ((Iq − P )λ),
= (Iq − P ) (Iq+r + V Π1)−1 λ.



If the perturbation ∆i’s are defined by (4) and satisfy (10)
and (14), then Theorem 6 shows that

0 // A :M
d2+δ2 //

Aq+r
d1+δ1 //

H2

oo L //
H1

oo 0,

is a split short exact sequence with contractions{
H1 := h1 ◦ (id + δ1 ◦ h1)−1 = (id + h1 ◦ δ1)−1 ◦ h1,

H2 := h2 ◦ (id + δ2 ◦ h2)−1 = (id + h2 ◦ δ2)−1 ◦ h2,

i.e., where, for all ν ∈ L and for all ξ ∈ Aq+r, we have:

(h1 ◦ (id + δ1 ◦ h1)−1)(ν)

=
(
So
U

)
(Iq + ∆1 So −∆2 U)−1 ν,

((id + h2 ◦ δ2)−1 ◦ h2)(ξ)
= (Ir − U ∆3 + Si ∆4)−1 (−U Si) ξ.

Using Theorem 1, we obtain that the following controller
C ′ := (U (Iq + ∆1 So −∆2 U)−1)

(So (Iq + ∆1 So −∆2 U)−1)−1

= U S−1
o = C,

stabilizes P ′. Similarly, using Theorem 2, we obtain that
the following controller

C ′′ := ((Ir − U ∆3 + Si ∆4)−1 Si)−1

((Ir − U ∆3 + Si ∆4)−1 U)
= S−1

i U = C

stabilizes P ′.

Let us sum up the above results.
Theorem 7. Let P be a stabilizable plant, C a stabilizing
controller of P ,

So := (Iq − P C)−1 ∈ Aq×q,
U := C (Iq − P C)−1 = (Ir − C P )−1 C ∈ Ar×q,
Si := (Ir − C P )−1 ∈ Ar×r,

and the matrices Π1, Π2 ∈ A(q+r)×(q+r) defined by (6).
Then, C = U S−1

o = S−1
i U stabilizes the following plant

P ′ := (Iq + ∆1)−1 (P + ∆2) = (P + ∆3) (Ir + ∆4)−1,

for all perturbations ∆n’s of the form of (4) (where the
Vij ’s and Wkl’s are given by (5)) which satisfy

Iq+r + Π1 V ∈ GLq+r(A),
Iq+r +W Π2 ∈ GLq+r(A),
det(Iq + V11 − P V21) 6= 0,
det(Ir +W22 +W21 P ) 6= 0.

(17)

Remark 8. As shown in (12) and (15), the first two condi-
tions of (17) are equivalent to the following conditions:{

det(Ir − U ∆3 + Si ∆4) ∈ U(A),
det(Iq + ∆1 So −∆2 U) ∈ U(A).

Remark 9. We point out that Theorem 7 holds for a sta-
bilizable plant P which does not necessarily admit a doubly
coprime factorization. Thus, Theorem 7 is an extension
of the standard results developed in the literature. More-
over, as shown in Example 4 below, Theorem 7 yields the
different standard models of perturbations at once.
Remark 10. Let us check again Theorem 7 by direct com-
putations. We first have

Iq − P ′ C = Iq − (Iq + ∆1)−1 (P + ∆2)U S−1
o

= (Iq + ∆1)−1 ((Iq + ∆1)So − (P + ∆2)U)S−1
o

= (Iq + ∆1)−1 (Iq + ∆1 So −∆2 U)S−1
o

which yields:
(Iq − P ′ C)−1 = So (Iq + ∆1 So −∆2 U)−1 (Iq + ∆1),
C (Iq − P ′ C)−1 = U (Iq + ∆1 So −∆2 U)−1 (Iq + ∆1),
(Iq − P ′ C)−1 P ′ = So (Iq + ∆1 So −∆2 U)−1 (P + ∆2),
C (Iq − P ′ C)−1 P ′ = U (Iq + ∆1 So −∆2 U)−1 (P + ∆2).

Using the above identities, we then obtain:

L(P ′, C) :=

(
(Iq − P ′ C)−1 (Iq − P ′ C)−1 P ′

C (Iq − P ′ C)−1 C (Iq − P ′ C)−1 P ′

)

=
(
So
U

)
(Iq + ∆1 So −∆2 U)−1 (Iq + ∆1 P + ∆2).

According to the definition of ∆1 and ∆2, i.e., (5), we have:

(Iq + ∆1 P + ∆2) = (Iq − P )
(
Iq + V11 V12

V21 −Ir + V22

)
.

Combining the last two identities with (16), we obtain:

L(P ′, C) =
(
So
U

)
(Iq − P )

(Iq+r + V Π1)−1

(
Iq + V11 V12

V21 −Ir + V22

)
= Π1 (Iq+r + V Π1)−1

(
Iq + V11 V12

V21 −Ir + V22

)
.

Using Π1, V ∈ A(q+r)×(q+r), Iq+r + V Π1 ∈ GLq+r(A),
we get L(P ′, C) ∈ A(q+r)×(q+r), i.e., using (1), we obtain
H(P ′, C) ∈ A(q+r)×(q+r), i.e., C stabilizes P ′.

Similar computations can be done with C = S−1
i U and:

P ′ = (P + ∆3) (Ir + ∆4)−1.

We now show how Theorem 7 yields well-known conditions
of robust stabilization for the different standard models of
perturbations (i.e., additive, multiplicative, inverse addi-
tive, inverse multiplicative) (Zhou et al. (1995)).
Example 4. Using (9), we obtain the following results.

(1) If V12 = 0, V21 = 0 and V22 = 0, then Theorem 7
yields that C stabilizes P ′ := (Iq + V11)−1 P if:(

Iq + So V11 0
U V11 Ir

)
∈ GLq+r(A)

⇔ Iq + So V11 ∈ GLq(A).
(2) If V11 = 0, V21 = 0 and V22 = 0, then Theorem 7

yields that C stabilizes P ′ := P − V12 if:(
Iq So V12

0 Ir + U V12

)
∈ GLq+r(A)

⇔ Ir + U V12 ∈ GLr(A).
(3) If V11 = 0, V12 = 0 and V22 = 0, then Theorem 7

yields that C stabilizes P ′ := (Iq − P V21)−1 P if:(
Iq − So P V21 0
−U P V21 Ir

)
∈ GLq+r(A)

⇔ Iq − So P V21 ∈ GLq(A).



(4) If V11 = 0, V12 = 0 and V21 = 0, then Theorem 7
yields that C stabilizes P ′ := P (Ir + V22) if:(

Iq −So P V22

0 Ir − U P V22

)
∈ GLq+r(A)

⇔ Ir − Ti V22 ∈ GLr(A).
(5) If W12 = 0, W21 = 0 and W22 = 0, then Theorem 7

yields that C stabilizes P ′ := (Iq +W11)P if:(
Iq −W11 P U W11 P Si

0 Ir

)
∈ GLq+r(A)

⇔ Iq −W11 To ∈ GLq(A).
(6) If W11 = 0, W21 = 0 and W22 = 0, then Theorem 7

yields that C stabilizes P ′ := P +W12 if:(
Iq −W12 U W12 Si

0 Ir

)
∈ GLq+r(A)

⇔ Iq −W12 U ∈ GLq(A).
(7) If W11 = 0, W12 = 0 and W22 = 0, then Theorem 7

yields that C stabilizes P ′ := P (Ir +W21 P )−1 if:(
Iq 0

−W21 P U Ir +W21 P Si

)
∈ GLq+r(A)

⇔ Ir +W21 P Si = Ir +W21 So P ∈ GLr(A).
(8) If W11 = 0, W12 = 0 and W21 = 0, then Theorem 7

yields that C stabilizes P ′ := P (Ir +W22)−1 if:(
Iq 0

−W22 U Ir +W22 Si

)
∈ GLq+r(A)

⇔ Ir +W22 Si ∈ GLr(A).

Using the standard small gain theorem (Curtain et al.
(1991); Georgiou et al. (1992); Zhou et al. (1995)), we
obtain the following result.
Corollary 11. Let A := H∞(C+). If V ∈ A(q+r)×(q+r) and
W ∈ A(q+r)×(q+r) are such that

‖ V ‖∞< ‖ Π1 ‖−1
∞ , ‖W ‖∞< ‖ Π2 ‖−1

∞ ,

then the first two conditions of (17) are satisfied.

Let us now suppose that P admits a doubly coprime
factorization P = D−1N = Ñ D̃−1. Using Corollary 3, we
obtain L = D−1Aq, M = A1×r D̃−1, and thus A : M =
D̃ Ar (see Quadrat (2006a)), So = XD, U = Y D = D̃ Ỹ

and Si = D̃ X̃. The split exact sequence (2) yields

0 // D̃ Ar

(
P
Ir

)
//
Aq+r

(Iq −P ) //

D̃ (−Ỹ X̃)

oo D−1Aq //(
X
Y

)
D

oo 0,

which yields the following split exact sequence:

0 // Ar

(
Ñ

D̃

)
//
Aq+r

(D −N) //

(−Y X̃)

oo Aq //(
X
Y

)oo 0.

Now, note that we have{
δ1 ∈ homA(Aq+r,L) ∼= L1×(q+r) = D−1Aq×(q+r),

δ2 ∈ homA(A :M, Aq+r) ∼=Mq+r = A(q+r)×r D̃−1,

i.e., we have:
(∆1 −∆2) = D−1 (∆D −∆N ),(

∆3

∆4

)
=
(

∆
Ñ

∆
D̃

)
D̃−1,

∆D ∈ Aq×q, ∆N ∈ Aq×r, ∆
Ñ
∈ Aq×r, ∆

D̃
∈ Ar×r.

(18)

Condition (15), i.e. det(Iq + ∆1 So−∆2 U) ∈ U(A), yields
det(Iq +D−1 (∆DX −∆N Y )D)

= det(D−1 (Iq + ∆DX −∆N Y )D)
= (detD)−1 det(Iq + ∆DX −∆N Y ) detD
= det(Iq + ∆DX −∆N Y ) ∈ U(A),

and similarly with (12). Hence, if P admits a doubly co-
prime factorization P = D−1N = Ñ D̃−1, then Theorem 7
yields that C = Y X−1 = X̃−1 Ỹ stabilizes the plant

P ′ = (D + ∆D)−1 (N + ∆N ) = (Ñ + ∆
Ñ

) (D̃ + ∆
D̃

)−1

for all perturbations (18) satisfying the conditions:{
Iq + ∆DX −∆N Y ∈ GLq(A),

Ir − Ỹ ∆
Ñ

+ X̃ ∆
D̃
∈ GLr(A).

We have just found again the standard result of robust
stabilization for perturbed doubly coprime factorizations
(see, e.g., Curtain et al. (1991); Georgiou et al. (1992)).
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