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Réduction de Serre des systèmes linéaires fonctionnels

Résumé : La réduction de Serre a pour but de réduire le nombre d’inconnues et d’équations
d’un système linéaire fonctionnel (e.g., système d’équations aux dérivées partielles, système
d’équations différentielles à retard, système d’équations aux différences). Trouver une représenta-
tion équivalente d’un système linéaire fonctionnel contenant moins d’équations et d’inconnues
simplifie généralement l’étude de ses propriétés structurelles, son intégration sous forme fermée
ainsi que différents problèmes d’analyse numérique. Le but de ce papier est de présenter une
approche constructive de la réduction de Serre des systèmes linéaires fonctionnels déterminés et
sous-déterminés.

Mots-clés : Réduction de Serre, systèmes linéaires fonctionnels, théorie des modules, algèbre
homologique, calcul formel, théorie mathématique des systèmes.
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1 Introduction

Over the years, the Smith normal form has played an important role in the study of linear
systems defined over a univariate commutative polynomial ring k[x], where k is a field (e.g., the
univariate commutative polynomial ring of ordinary differential operators with coefficients in a
differential field of constants). For more details, see, e.g., [17, 37] and the references therein.

The concept of the Smith normal form can be extended to a matrix R with entries in a
multivariate commutative polynomial ring D = k[x1, . . . , xn] over a field k when defined as
being the diagonal matrix diag(γ1, . . . , γr) formed by the polynomials γ1, . . . , γr defined as the
successive quotients γi = αi/αi−1 of the greatest common divisors αi of the i× i-minors of the
matrix R (α0 = 1, r is the rank of the matrix). Despite its relevance in mathematical systems
theory and numerical analysis, the problem of the equivalence of a multivariate polynomial
matrix to its Smith normal form by means of unimodular transformations has only been sparsely
studied in the mathematical systems theory literature. See a few exceptions [3, 14, 15, 16, 20].

An interesting result in this direction is the following one.

Theorem 1 ([3, 16]). Let D = R[x1, . . . , xn] be the commutative polynomial ring with coefficients
in R, R ∈ Dp×p a full row rank matrix, i.e., detR 6= 0, and R? = R \ {0}. Then, there exist two
unimodular matrices V ∈ Dp×p and W ∈ Dp×p, i.e., det V ∈ R? and detW ∈ R?, such that

V RW =

(
Ip−1 0

0 detR

)
iff there exists a column vector Λ ∈ Dp admitting a left-inverse over D and such that the matrix
P , (R − Λ) ∈ Dp×(p+1) admits a right-inverse over D.

Theorem 1 states a necessary and sufficient condition for the linear multidimensional system
Ry = 0 defined by a full row rank matrix R ∈ Dp×p (i.e., detR 6= 0) over the commutative
polynomial ring D = R[x1, . . . , xn] to be equivalent to the sole equation (detR) z = 0, where z
is the last component of the column vector W−1 y. In terms of module theory, Theorem 1 gives
a necessary and sufficient condition for the D-module M = D1×p/(D1×pR) finitely presented
by the matrix R to be cyclic, i.e., to be generated by one element (namely, the residue class of
the row vector (0 . . . 0 1) ∈ D1×p in M).

The purpose of this paper is to show that Theorem 1 has deep connections with a result
obtained by J.-P. Serre in [39] concerning the number of generators of modules finitely presented
by full row rank matrices with entries in the commutative polynomial ring D = k[x1, . . . , xn],
where k is a field. The main motivation of [39] was the problem called the efficient generation of
ideals of D − which aims at finding the minimal number of generators of an ideal I of D − and
its applications to algebraic geometry and particularly to the study of the complete intersection
of affine algebraic varieties of dimension n− 2. Moreover, as explained in [10], Serre’s reduction
problem is also related to the existence of a cyclic vector for linear systems of ordinary differential
equations with coefficients in a differential ring or field.

In this paper, we develop a constructive approach to Serre’s reduction and we give necessary
and sufficient conditions for a full row rank matrix R ∈ Dq×p (i.e., the rows of R are left D-
linearly independent) to be equivalent to the diagonal matrix diag(Ir, R) formed by the r × r
identity matrix Ir and R ∈ D(q−r)×(p−r). These conditions generalize Theorem 1 for different
classes of linear functional systems (e.g., systems of ordinary or partial differential equations,
systems of differential time-delay equations, systems of difference equations) for matrices of
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functional operators which are not necessarily square. Following Serre’s approach ([39]), our
results use module theory (e.g., Baer extensions ([38, 35])) and homological algebra ([38]).

Finally, based on the resolution of algebraic Riccati equations of the form ΛRΛ = Λ, Serre’s
reduction was also studied in [8, 9] as a particular case of the decomposition problem which
aims at studying when there exist two unimodular matrices V ∈ GLq(D) and W ∈ GLp(D)
such that V RW = diag(R11, R22) (R11 being Ir in the case of Serre’s reduction). However, the
constructive methods developed in this paper are dedicated to Serre’s reduction, and thus are
more efficient than the ones developed in [8] as we shall illustrate it with explicit examples.

2 A pedestrian approach to Baer extensions

In what follows, D will denote a noncommutative noetherian domain, namely, a unital ring
satisfying that d d′ is not necessarily equal to d′ d for d, d′ ∈ D, containing no nontrivial zero-
divisors, i.e., d d′ = 0 implies d = 0 or d′ = 0, and every left (resp., right) ideal of D is finitely
generated, i.e., can be generated by a finite family of elements of D as a left (resp., right) D-
module ([24, 38]). Moreover, we shall denote by D1×p (resp., Dq) the left (resp., right) D-module
formed by row (resp., column) vectors of length p (resp., q) with entries in D and by R ∈ Dq×p

a q × p matrix R with entries in D. Moreover, we shall use the following notations:

.R : D1×q −→ D1×p

µ 7−→ µR,
R. : Dp −→ Dq

η 7−→ Rη.

In what follows, we shall assume that p ≥ q and R has full row rank, namely

kerD(.R) , {µ ∈ D1×q | µR = 0} = 0,

i.e., that the rows of R are left D-linearly independent, namely, µR = 0 implies µ = 0.

Since imD(.R) , {λ ∈ D1×p | ∃ µ ∈ D1×q : λ = µR}, simply denoted by D1×q R, is a left
D-submodule of D1×p, we can introduce the quotient/factor left D-module M = D1×p/(D1×q R)
and the left D-homomorphism (i.e., the left D-linear application) π : D1×p −→M which sends
an element λ ∈ D1×p to its residue class π(λ) in M (i.e., π(λ) = π(λ′) iff there exists µ ∈ D1×q

such that λ− λ′ = µR). The left D-module M is then said to be finitely presented by R ([38]).
We have the following short exact sequence of left D-modules

0 −→ D1×q .R−→ D1×p π−→M −→ 0, (1)

namely, .R is an injective left D-homomorphism (since kerD(.R) = 0), kerD π = D1×q R and π
is a surjective left D-homomorphism (since, by definition of M , every element m ∈ M has the
form m = π(λ) for a certain λ ∈ D1×p).

Let us describe the left D-module M = D1×p/(D1×q R) in terms of generators and relations.
Let {fj}j=1,...,p be the standard basis of the left D-module D1×p, namely, fj is the row vector
of length p with 1 at the jth position and 0 elsewhere, and yj , π(fj) ∈ M for all j = 1, . . . , p.
Since every m ∈M has the form m = π(λ) for a certain row vector λ = (λ1 . . . λp) ∈ D1×p,

m = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj ,
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which shows that every element m of M can be written as a left D-linear combination of the
yj ’s, i.e., {yj}j=1,...,p is a family of generators of M . Moreover, if Ri• denotes the ith row of the
matrix R ∈ Dq×p, then Ri• ∈ D1×q R which yields π(Ri•) = 0 for all i = 1, . . . , q, i.e.,

∀ i = 1, . . . , q, π

 p∑
j=1

Rij fj

 =
p∑
j=1

Rij π(fj) =
p∑
j=1

Rij yj = 0, (2)

and shows that the generators yj ’s of M satisfy the left D-linear relations (2) and all their left
D-linear combinations.

Let us now consider the following two matrices

Λ ∈ Dq×(q−r), 0 ≤ r ≤ q − 1, P , (R − Λ) ∈ Dq×(p+q−r),

the left D-module E = D1×(p+q−r)/(D1×q P ) finitely presented by the full row rank matrix P
and the following short exact sequence of left D-modules

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0, (3)

where % : D1×(p+q−r) −→ E denotes the canonical projection onto E, i.e., the leftD-homomorphism
which sends ζ ∈ D1×(p+q−r) to its residue class %(ζ) in E.

Let us study the connections between the left D-modules M and E. If we introduce the
matrix X = (ITp 0T )T ∈ D(p+q−r)×p, then the identity R = P X induces the following commu-
tative exact diagram of left D-modules

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0
‖ ↓ .X

0 −→ D1×q .R−→ D1×p π−→ M −→ 0,

as well as the well-defined left D-homomorphism β : E −→M defined by:

∀ µ1 ∈ D1×p, ∀ µ2 ∈ D1×(q−r), β(%((µ1 µ2))) = π((µ1 µ2)X) = π(µ1).

For every m ∈ M , there exists µ1 ∈ D1×p such that m = π(µ1) and thus m = β(%((µ1 0))),
which proves that β is surjective, i.e., imβ = M .

Let us study kerβ. An element %((µ1 µ2)) ∈ kerβ satisfies π(µ1) = 0, i.e., µ1 = ν R for a
certain ν ∈ D1×q. Since %((ν R − ν Λ)) = 0 yields %((ν R 0)) = %((0 ν Λ)), we obtain:

kerβ =
{
%((ν R µ2)) = %((0 µ2 + ν Λ)) | ν ∈ D1×q, µ2 ∈ D1×(q−r)

}
=
{
%((0 ξ)) | ξ ∈ D1×(q−r)

}
.

Let γ : D1×(q−r) −→ kerβ be the left D-isomorphism defined by γ(ξ) = %((0 ξ)) for all
ξ ∈ D1×(q−r) (i.e., α is injective and surjective). The canonical short exact sequence

0 −→ kerβ i−→ E
β−→ imβ −→ 0

then yields the following one

0 −→ D1×(q−r) α−→ E
β−→M −→ 0, (4)

RR n° 7214
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where α = i◦γ. The short exact sequence (4) is called a Baer extension of D1×(q−r) by M ([38])
and we shall simply say an extension of D1×(q−r) by M .

Let us now introduce the following matrices

Θ ∈ Dp×(q−r), Λ , Λ +RΘ ∈ Dq×(q−r), P , (R − Λ) ∈ Dq×(p+q−r),

and the left D-module E = D1×(p+q−r)/(D1×q P ) finitely presented by P . Let us also denote
by % : D1×(p+q−r) −→ E the canonical projection onto E. Doing as previously with the left
D-module E, we obtain the extension of D1×(q−r) by M defined by

0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

with the following notations:

∀ ξ ∈ D1×(q−r), α(ξ) = %((0 ξ)),

∀ µ1 ∈ D1×p, ∀ µ2 ∈ D1×(q−r), β(%((µ1 µ2))) = π(µ1).

If we introduce the general linear group GLr(D) of D of index r defined by

GLr(D) = {U ∈ Dr×r | ∃ V ∈ Dr×r : U V = V U = Ir}

and the unimodular matrix V , namely, V ∈ GLp+q−r(D), defined by

V =

(
Ip Θ
0 Iq−r

)
,

then the identity P = P V induces the following commutative exact diagram:

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0
‖ ↓ .V

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0.

Since V ∈ GLp+q−r(D), we get the left D-isomorphism ψ : E −→ E defined by

ψ(%((µ1 µ2))) = %((µ1 µ2)V ) = %((µ1 µ1 Θ + µ2)),

for all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r). Then, for every ξ ∈ D1×(q−r), we have

(ψ ◦ α)(ξ) = ψ(%((0 ξ))) = %((0 ξ)) = α(ξ),

which proves α = ψ ◦ α. Now, for every µ1 ∈ D1×p and every µ2 ∈ D1×(q−r),

(β ◦ ψ)(%((µ1 µ2))) = β(%((µ1 µ2 + µ1 Θ))) = π1(µ1) = β(%((µ1 µ2))),

which proves β = β ◦ ψ. Therefore, we obtain the commutative exact diagram:

0 −→ D1×(q−r) α−→ E
β−→ M −→ 0

‖ ↓ ψ ‖
0 −→ D1×(q−r) α−→ E

β−→ M −→ 0.

(5)

We are then led to the following definition of equivalent extensions.

RR n° 7214
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Definition 1 ([38]). Two extensions of D1×(q−r) by M

e : 0 −→ D1×(q−r) α−→ E
β−→M −→ 0, e : 0 −→ D1×(q−r) α−→ E

β−→M −→ 0,

are said to be equivalent if there exists a left D-homomorphism ψ : E −→ E satisfying α = ψ ◦α
and β = β ◦ ψ, i.e., if (5) is a commutative exact diagram.

If e and e are equivalent extensions, then we can easily check that ψ is necessarily a left
D-isomorphism (e.g., apply the snake lemma ([38]) to (5)). Hence, we can easily check that
the equivalence defined in Definition 1 is an equivalence relation ∼ on the set of extensions
of D1×(q−r) by M ([38]). We denote by eD

(
M,D1×(q−r)) the set of all equivalence classes of

extensions of D1×(q−r) by M and [e] the equivalence class of the extension e in eD
(
M,D1×(q−r)).

The previous results show that the extensions of D1×(q−r) by M defined by E and E, i.e.,
by means of the matrices Λ and Λ = Λ + RΘ for Θ ∈ Dp×(q−r), are equivalent, and thus they
define the same equivalence class in eD

(
M,D1×(q−r)).

Let us now explain another relation between eD
(
M,D1×(q−r)) and the matrices Λ and

Λ = Λ +RΘ. To do that, we first need to introduce the right D-module

ext1
D

(
M,D1×(q−r)

)
, Dq×(q−r)/

(
RDp×(q−r)

)
, (6)

called the first extension right D-module of M with value in D1×(q−r). We use the nota-
tion ext1

D

(
M,D1×(q−r)) since we can prove that Dq×(q−r)/(RDp×(q−r)) depends only on M

and D1×(q−r) and not on the choice of the matrix R which presents the left D-module M
(see, e.g., [38]). Moreover, since R has full row rank, the higher extension right D-modules
extiD

(
M,D1×(q−r)) of M with values in D1×(q−r) are reduced to 0 for all i ≥ 2 (see, e.g., [38]).

Remark 1. We recall that the vanishing of the leftD-modules extiD(N,D) for i ∈ N = {0, 1, . . .},
where the right D-module N = Dq/(RDp) is called the Auslander transpose of left D-module
M = D1×p/(D1×q R), characterizes the module properties of M ([6, 28]). Moreover, if F is a left
D-module, homD(M,F) the abelian group of left D-homomorphisms from M to F and ∼= the
relation of being isomorphic, then kerF (R.) , {η ∈ Fp | Rη = 0} ∼= homD(M,F), which proves
that the F-solution space of the linear system Rη = 0 is intrinsically defined by homD(M,F).
This result, classical in homological algebra, was first pointed out by Malgrange ([22]). In
particular, the left D-isomorphism χ : kerF (R.) −→ homD(M,F) is defined by χ(η)(π(λ)) = λ η
for all η ∈ kerF (R.) and all λ ∈ D1×p and its inverse χ−1 : homD(M,F) −→ kerF (R.) is
χ−1(φ) = (φ(y1) . . . φ(yp))T for all φ ∈ homD(M,F). Hence, the vanishing of the extiD(N,D)’s
for i ∈ N characterizes structural properties of kerF (R.) ([6, 28]).

If ρ : Dq×(q−r) −→ ext1
D

(
M,D1×(q−r)) = Dq×(q−r)/

(
RDp×(q−r)) is the canonical projection,

then we have
∀ Θ ∈ Dp×(q−r), ρ(Λ) = ρ(Λ +RΘ) = ρ(Λ),

i.e., Λ and Λ = Λ +RΘ belong to the same residue class in ext1
D

(
M,D1×(q−r)).

We have just proved that every element ρ(Λ) ∈ ext1
D

(
M,D1×(q−r)) defines the unique equiv-

alence class [e] of extensions of D1×(q−r) by M , where

e : 0 −→ D1×(q−r) α−→ E
β−→M −→ 0,
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and the left D-module E is finitely presented by the matrix P = (R − Λ), i.e.:

E = D1×(p+q−r)/(D1×q P ).

Let us now study the converse of the last result. We first consider the following extension of
D1×(q−r) by M :

0 −→ D1×(q−r) ε−→ F
δ−→M −→ 0. (7)

Let {fi}i=1,...,p be the standard basis of D1×p, namely, fi is the row vector with 1 at the ith

position and 0 elsewhere. Since the left D-homomorphism δ is surjective, there exists ζi ∈ F
such that δ(ζi) = π(fi) ∈M for all i = 1, . . . , p. Then, we get

δ

(
p∑

k=1

Rjk ζk

)
=

p∑
k=1

Rjk δ(ζk) =
p∑

k=1

Rjk π(fk) = π

(
p∑

k=1

Rjk fk

)
= π(Rj•) = 0,

for all j = 1, . . . , q, where Rj• denotes the jth row of the matrix R. Since ker δ = im ε and ε
is injective, there exists a unique element λj ∈ D1×(q−r) such that

∑p
k=1Rjk ζk = ε(λj). If we

denote by Λ = (λT1 . . . λTq )T ∈ Dq×(q−r), then we get ρ(Λ) ∈ ext1
D

(
M,D1×(q−r)). Let us check

that the residue class ρ(Λ) of Λ in ext1
D

(
M,D1×(q−r)) is well-defined, i.e., it does not depend on

the choice of the pre-images ζi’s of the π(fi)’s. Let us consider other pre-images ζi’s of the π(fi),
i.e., δ(ζi) = π(fi) for all i = 1, . . . , p. Using the same arguments, there exists λj ∈ D1×(q−r)

such that
∑p

k=1Rjk ζk = ε(λj) for all j = 1, . . . , q. But, δ(ζi) = δ(ζi) yields δ(ζi − ζi) = 0, i.e.,
ζi − ζi ∈ ker δ = im ε and thus there exists θi ∈ D1×(q−r) such that ζi = ζi + ε(θi) and thus:

ε(λj) =
p∑

k=1

Rjk ζk = ε(λj) +
p∑

k=1

Rjk ε(θk) = ε

(
λj +

p∑
k=1

Rjk θk

)
. (8)

If we introduce the following two matrices

Λ =

 λ1
...
λq

 ∈ Dq×(q−r), Θ =

 θ1
...
θp

 ∈ Dp×(q−r),

then, since ε is injective, (8) yields λj = λj +
∑p

k=1Rjk θk for all j = 1, . . . , q, i.e., Λ = Λ +RΘ,
and thus ρ(Λ) = ρ(Λ + RΘ) = ρ(Λ), which finally proves that every extension (7) of D1×(q−r)

by M defines a unique element ρ(Λ) of the right D-module ext1
D

(
M,D1×(q−r)). Finally, let us

prove that every extension in the same equivalence class of (7) in eD
(
M,D1×(q−r)) defines the

same element ρ(Λ) ∈ ext1
D

(
M,D1×(q−r)). Let us consider an extension of D1×(q−r) by M in the

same equivalence class of (7). Then, the following commutative exact diagram

0 −→ D1×(q−r) ε−→ F
δ−→ M −→ 0

‖ ↓ ψ ‖
0 −→ D1×(q−r) ε′−→ F ′

δ′−→ M −→ 0,

holds for a certain left D-isomorphism ψ. Using δ′ ◦ ψ = δ, we obtain that δ′(ψ(ζi)) = π(fi)
for all i = 1, . . . , p, and applying ψ to

∑p
k=1Rjk ζk = ε(λj) and using ε′ = ψ ◦ ε, we get∑p

k=1Rjk ψ(ζk) = ε′(λj) for all j = 1, . . . , q, , which gives the same matrix Λ = (λT1 . . . λTq ) as
previously and thus the same residue class ρ(Λ) in ext1

D

(
M,D1×(q−r)).

RR n° 7214



Serre’s reduction of linear functional systems 9

Hence, there is a one-to-one correspondence between the elements of the right D-module
ext1

D

(
M,D1×(q−r)) and the equivalence classes of extensions of D1×(q−r) by M . This result is

attributed to Baer ([1]). An important consequence of this result is that every equivalence class
of extensions of D1×(q−r) by M contains a representative defined by the short exact sequence

0 −→ D1×(q−r) α−→ Eρ(Λ)
β−→M −→ 0,

where Eρ(Λ) = D1×(p+q−r)/(D1×q (R −Λ)) for a certain Λ ∈ Dq×(q−r). The Baer sum [e1]+[e2]
of two equivalence classes [e1] and [e2] of extensions of D1×(q−r) by M , respectively defined by
representatives formed by Eρ(Λ1) and Eρ(Λ2), is the equivalence class of the extension defined by
Eρ(Λ1+Λ2). See [34, 38] for proofs. Endowed with the Baer sum and the neutral element defined
by the equivalence class of the extension of D1×(q−r) by M defined by the central left D-module

Eρ(0) = D1×(p+q−r)/(D1×q (R 0)) = D1×(q−r) ⊕M,

i.e., the equivalence class of the following split short exact sequence

0 −→ D1×(q−r) α−→ D1×(q−r) ⊕M β−→M −→ 0,

we can prove that eD
(
M,D1×(q−r)) becomes an abelian group which is isomorphic to the abelian

group ext1
D

(
M,D1×(q−r)) (see, e.g., [38]).

We obtain the following important result in homological algebra.

Theorem 2 ([38]). ext1
D

(
M,D1×(q−r)) ∼= eD

(
M,D1×(q−r)).

A classical result in homological algebra asserts that

ext1
D

(
M,D1×(q−r)

)
∼= ext1

D(M,D)⊗D D1×(q−r) ∼= ext1
D(M,D)1×(q−r),

for all left D-modules M , where ⊗D denotes the tensor product (see, e.g., [38]). Substituting
r = q− 1 in (6), we get ext1

D (M,D) = Dq/ (RDp) (i.e., ext1
D (M,D) is the Auslander transpose

N of M by Remark 1). If τ : Dq −→ ext1
D(M,D) is the canonical projection onto ext1

D(M,D),
then ρ = τ ⊗ id(q−r), i.e., an element ρ(Λ) can be interpreted as a row vector of length q − r
formed by the elements τ(Λ•i) ∈ ext1

D (M,D), where Λ•i denotes the ith column of the matrix
Λ ∈ Dq×(q−r), i.e., ρ(Λ) = (τ(Λ•1) . . . τ(Λ•(q−r))) ∈ ext1

D(M,D)1×(q−r).

For more details on the applications of Baer extensions to mathematical systems theory, see
[31, 32, 34, 35].

To finish with this section, we give more examples of extensions which will be used later on.
To do that, we first recall two useful lemmas. The first one gives a finite presentation of a left
D-module of the form (D1×q′ R′)/(D1×q R), whenever D1×q R ⊆ D1×q′ R′ ⊆ D1×p. This result
was first obtained in [8]. For the sake of completeness, we recall its proof.

Lemma 1 (Lemma 3.1 of [8]). Let R ∈ Dq×p and R′ ∈ Dq′×p be two matrices which satisfy
D1×q R ⊆ D1×q′ R′ and R′′ ∈ Dq×q′ and T ′ ∈ Dr′×q′ such that R = R′′R′ and kerD(.R′) =
D1×r′ T ′. Let us also consider the following canonical projections:

π1 : D1×q′ R′ −→M1 = (D1×q′ R′)/(D1×q R),

π2 : D1×q′ −→M2 = D1×q′/(D1×q R′′ +D1×r′ T ′).
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Then, the left D-homomorphism ψ defined by

ψ : M2 −→ M1

m2 = π2(λ) 7−→ ψ(m2) = π1(λR′),

is an isomorphism and its inverse φ = ψ−1 is defined by:

φ : M1 −→ M2

m1 = π1(λR′) 7−→ φ(m1) = π2(λ).

In other words, we have the following isomorphism of left D-modules:

(D1×q′ R′)/(D1×q R) ∼= D1×q′/(D1×q R′′ +D1×r′ T ′). (9)

Proof. Let us first prove that ψ is a well-defined left D-homomorphism. Let us assume that
m2 = π2(λ) = π2(λ′), where λ, λ′ ∈ D1×q′ . Then, π2(λ−λ′) = 0, i.e., λ−λ′ ∈ D1×q R′′+D1×r′ T ′

so that there exist µ ∈ D1×q and ν ∈ D1×r′ such that λ− λ′ = µR′′ + ν T ′. We then have:

(λ− λ′)R′ = (µR′′ + ν T ′)R′ = µR ⇒ π1((λ− λ′)R′) = π1(µR) = 0

⇒ π1(λ′R′) = π1(λR′) = ψ(m2).

Let us now prove that φ is also well-defined. Let us suppose that m1 = π1(λR′) = π1(λ′R′),
where λ, λ′ ∈ D1×q′ . Then, π1(λR′)−π1(λ′R′) = π1((λ−λ′)R′) = 0, i.e., (λ−λ′)R′ ∈ D1×q R,
and thus, there exists µ ∈ D1×q such that (λ − λ′)R′ = µR. Now, using R = R′′R′, we get
(λ − λ′ − µR′′)R′ = 0 so that λ − λ′ − µR′′ ∈ kerD(.R′) = D1×r′ T ′. Therefore, there exists
ν ∈ D1×r′ such that λ− λ′ = µR′′ + ν T ′ and thus:

π2(λ)− π2(λ′) = π2(λ− λ′) = π2(µR′′ + ν T ′) = 0.

For every m1 = π1(λR′) ∈M1 and every m2 = π2(λ) ∈M2, where λ ∈ D1×q′ , we have{
(ψ ◦ φ)(m1) = ψ(π2(λ)) = π1(λR′) = m1,

(φ ◦ ψ)(m2) = φ(π1(λR′)) = π2(λ) = m2,

which finally proves that ψ ◦ φ = idM1 , φ ◦ ψ = idM2 , ψ = φ−1 and (9).

The second one is the classical third isomorphism theorem of module theory.

Lemma 2 ([38]). If L′′ ⊆ L′ ⊆ L are three left (resp., right) D-modules, then we have the
following isomorphism of left (resp., right) D-modules:

L/L′ ∼= [L/L′′]/[L′/L′′].

Example 1. Let us split the matrix R ∈ Dq×p as follows:

R =

(
R1

R2

)
, R1 ∈ Dr×p, R2 ∈ D(q−r)×p.

Using the inclusion D1×r R1 ⊆ D1×q R = D1×r R1 + D1×(q−r)R2 ⊆ D1×p of left D-modules,
Lemma 2 applied to L = D1×p, L′ = D1×q R and L′′ = D1×r R1 yields the following short exact
sequence of left D-modules

0 −→ (D1×q R)/(D1×r R1) α−→M1 = D1×p/(D1×r R1)
β−→M −→ 0,
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where M1 is the left D-module finitely presented by R1 and the left D-homomorphisms α and
β are defined by

α = id : (D1×q R)/(D1×r R1) −→ M1

π1(µR) 7−→ π1(µR),
β : M1 −→ M
π1(λ) 7−→ π(λ),

where π1 : D1×p −→ M1 = D1×p/(D1×r R1) is the canonical projection onto M1. Let S =
(S1 S2) ∈ Ds×q, where S1 ∈ Ds×r and S2 ∈ Ds×(q−r), be such that kerD(.R) = D1×s S and
let us introduce the matrix T = (LT ST )T ∈ D(r+s)×q, where L = (Ir 0) ∈ Dr×q, and
ϑ : D1×q −→ D1×q/(D1×(r+s) T ) the canonical projection. Then, Lemma 1 yields:

(D1×q R)/(D1×r R1) ∼= D1×q/

(
D1×(r+s)

(
Ir 0
S1 S2

))

∼= D1×q/

(
D1×(r+s)

(
Ir 0
0 S2

))
∼= D1×(q−r)/(D1×s S2).

If ψ : Q , D1×(q−r)/(D1×r S2) −→ (D1×q R)/(D1×r R1) denotes the previous leftD-isomorphism,
then we obtain the following extension of Q by M :

0 −→ Q
α ◦ψ−−−→M1

β−→M −→ 0.

Finally, if R has full row rank, i.e., kerD(.R) = 0, then T = L = (Ir 0) ∈ Dr×q and thus
Q = D1×(q−r), which yields the following extension of D1×(q−r) by M :

0 −→ D1×(q−r) α ◦ψ−−−→M1
β−→M −→ 0. (10)

Finally, let us state a “dual version” of Example 1.

Example 2. Let us split R ∈ Dq×p as R = (R1 R2), where R1 ∈ Dq×r and R2 ∈ Dq×(p−r),
and let Q1 ∈ Dt×q be such that kerD(.R1) = D1×tQ1. Repeating what we did previously for the
left D-module module N1 = D1×r/(D1×q R1) (resp., M = D1×p/(D1×q R)) instead of M (resp.,
E), we get the short exact sequence

0 −→ kerβ i−→M
β−→ N1 −→ 0, (11)

where β(π(λ1 λ2)) = κ1(λ1) for all λ1 ∈ D1×r and all λ2 ∈ D1×(p−r) and κ1 is the canonical
projection onto N1. Now, m = π((λ1 λ2)) ∈ kerβ iff κ1(λ1) = 0, i.e., iff there exists µ ∈ D1×q

such that λ1 = µR1, i.e., m = π((µR1 λ2)), which, using (9) of Lemma 1, shows that:

kerβ =

(
D1×(q+p−r)

(
R1 0
0 Ip−r

))
/(D1×q (R1 R2))

∼= D1×(q+p−r)/

(
D1×(q+t)

(
Iq R2

Q1 0

))

∼= D1×(q+p−r)/

(
D1×(q+t)

(
Iq 0
0 Q1R2

))
∼= D1×(p−r)/(D1×t (Q1R2)).
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If L = D1×(p−r)/(D1×t (Q1R2)) is the left D-module finitely presented by Q1R2, then we get

the extension 0 −→ L
α−→ M

β−→ N1 −→ 0 of L by N1, where α = i ◦ ψ and ψ : L −→ kerβ
denotes the previous left D-isomorphism. Moreover, if R1 has full row rank, i.e., kerD(.R1) = 0,
then L = D1×(p−r) and M defines an extension of D1×(p−r) by N1.

3 Serre’s theorem

Let us recall a few well-known definitions of module theory.

Definition 2 ([24, 38]). Let D be a left noetherian domain and M = D1×p/(D1×q R) the left
D-module finitely presented by the matrix R ∈ Dq×p.

1. M is free of rank p ∈ N = {0, 1, . . .} if M ∼= D1×p.

2. M is stably free of rank p − q if there exist two non-negative integers p and q such that
M ⊕D1×q ∼= D1×p, where ⊕ denotes the direct sum of left D-modules.

3. M is projective if there exist a non-negative integer p and a left D-module P such that
M ⊕ P ∼= D1×p.

4. M is torsion-free if the torsion left D-submodule

t(M) = {m ∈M | ∃ d ∈ D \ {0} : dm = 0}

of M is reduced to 0, i.e., t(M) = 0.

5. M is torsion if t(M) = M , i.e., every m ∈M is a torsion element of M , namely, m ∈ t(M).

6. M is cyclic if M is generated by one element m ∈M , i.e., M = Dm , {dm | d ∈ D}.

A free module is clearly stably free (take q = 0 in 2 of Definition 2) and a stably free module
is projective (take P = D1×q in 3 of Definition 2) and a projective module is torsion-free (since
it can be embedded into a free, and thus, into a torsion-free module) but the converse of these
results are generally not true for a general left noetherian domain D.

The next proposition characterizes stably free and free modules.

Proposition 1 ([6, 13, 33]). Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix,
i.e., kerD(.R) = 0, and the left D-module M = D1×p/(D1×q R) finitely presented by R.

1. M is a projective left D-module iff M is a stably free left D-module.

2. M is a stably free left D-module of rank p− q iff R admits a right-inverse over D, namely,
iff there exists a matrix S ∈ Dp×q satisfying RS = Iq.

3. M is a free left D-module of rank p− q iff there exists U ∈ GLp(D) such that:

RU = (Iq 0).

If we write U = (S Q), where S ∈ Dp×q and Q ∈ Dp×(p−q), then

ψ : M −→ D1×(p−q)

π(λ) 7−→ λQ,
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is a left D-isomorphism and its inverse ψ−1 : D1×(p−q) −→ M is defined by ψ−1(µ) =
π(µT ) for all µ ∈ D1×(p−q), where the matrix T ∈ D(p−q)×p is defined by:

U−1 =

(
R

T

)
∈ Dp×p.

Then, M ∼= D1×pQ = D1×(p−q) and the matrix Q is called an injective parametrization
of M . Finally, {π(Ti•)}i=1,...,p−q defines a basis of the free left D-module M of rank p− q,
where Ti• denotes the ith row of the matrix T .

When D is a noncommutative polynomial ring over which Gröbner bases exist for any term
order (e.g., certain classes of Ore algebras ([5])), constructive algorithms which check whether
or not a finitely presented left D-module M is torsion, torsion-free, projective or stably free
are obtained in [6, 13, 33] by means of the computation of the left D-modules extiD(N,D) for
i ∈ N (see Remark 1). If R has full row rank, then a right Gröbner basis computation can check
whether or not ext1

D(E,D) is reduced to 0 or equivalently check the existence of a right-inverse
of P = (R − Λ) over D. In [6, 33], we show how to compute the obstructions for a finitely
presented left D-module to be stably free. These obstructions generate a two-sided ideal defined
by the so-called π-polynomials. They can be used to characterize the obstructions for Λ to define
a stably free left D-module E = D1×(p+q−r)/(D1×q P ).

Checking whether or not M is free is known to be a difficult problem in algebra. Let us state
a few important results.

Theorem 3 ([19, 24, 36, 38]). We have the following results:

1. If D is a principal left ideal domain, namely, every left ideal of D can be generated by
one element of D (e.g., the ring of ordinary differential operators with coefficients in a
differential field such that K = R or Q(t)), then every torsion-free left D-module is free.

2. If D = k[x1, . . . , xn] is a commutative polynomial ring over a field k, then every projective
D-module is free (Quillen-Suslin theorem).

3. If k is a field of characteristic 0 (e.g., Q, R, C) and D = An(k) (resp., Bn(k)) is the first
(resp., second) Weyl algebra of partial differential operators in ∂1 = ∂

∂x1
, . . . , ∂n = ∂

∂xn

with coefficients in k[x1, . . . , xn] (resp., k(x1, . . . , xn)), then every projective left D-module
of rank at least 2 is free (Stafford’s theorem).

4. If D is the ring of ordinary differential operators with coefficients in the ring of formal
power series kJtK, where k is a field of characteristic 0, or in the ring of convergent power
series k{t} with coefficients in k = R or C, then every projective left D-module of rank at
least 2 is free.

A natural question is whether or not there exists ρ(Λ) ∈ ext1
D

(
M,D1×(q−r)) such that the

left D-module Eρ(Λ) = D1×(p+q−r)/(D1×q P ) − finitely presented by the matrix P = (R −Λ)
and defining an extension of D1×(q−r) by M − is respectively torsion-free, projective, stably
free or free. In [39], J.-P. Serre studied when Eρ(Λ) is a projective or a free D-module when
M has a projective dimension equal to 1 (see, e.g., [38]) over a commutative polynomial ring
D = k[x1, . . . , xn], where k is a field. If the ring D is strongly regular in the sense that every
finitely generated left D-module admits a finite free resolution of finite length (see, e.g., [38]),
then Serre’s hypothesis is equivalent to the existence of a full row rank matrix R ∈ Dq×p
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satisfying M ∼= D1×p/(D1×q R) ([33]). See [33] for a constructive algorithm which computes such
a matrix R and [7] for its implementation in the package OreModules ([7]). In what follows,
without loss of generality for the applications we have in mind (e.g., mathematical systems
theory, control theory, mathematical physics), we shall assume that M is finitely presented by
a full row rank matrix R ∈ Dq×p, i.e., M = D1×p/(D1×q R) and kerD(.R) = 0.

We recall that, by definition of the extension right D-module, we have:

ext1
D (M,D) = Dq/ (RDp) , ext1

D (E,D) = Dq/
(
P D(p+q−r)

)
.

Now, using the following inclusions of right D-modules

RDp ⊆ P D(p+q−r) = RDp + ΛD(q−r) ⊆ Dq,

Lemma 2 yields the following short exact sequence of right D-modules

0 −→
(
P D(p+q−r)

)
/(RDp)

j−→ ext1
D (M,D) σ−→ ext1

D (E,D) −→ 0, (12)

where j is the canonical injection. Hence, (12) shows that

ext1
D (E,D) = 0 ⇔ ext1

D (M,D) =
(
RDp + ΛD(q−r)

)
/(RDp)

⇔ ext1
D (M,D) =

(
RDp +

q−r∑
i=1

Λ•iD

)
/(RDp),

⇔ ext1
D (M,D) =

q−r∑
i=1

τ(Λ•i)D,

where τ : Dp −→ ext1
D (M,D) = Dp/(RDq) is the canonical projection. Hence, ext1

D (E,D) = 0
iff the right D-module ext1

D (M,D) is generated by the family {τ(Λ•i)}i=1,...,q−r of q−r elements.

Lemma 3. With the previous notations, ext1
D (E,D) = 0 iff the right D-module ext1

D (M,D) is
generated by {τ(Λ•i)}i=1,...,q−r, i.e., iff ext1

D (M,D) can be generated by q − r elements.

Let us now study the condition ext1
D(E,D) = 0. By definition, ext1

D(E,D) = 0 is equivalent
to Dq = P D(p+q−r). If we denote by {gk}k=1,...,q the standard basis of Dq, then the last module
equality is equivalent to the existence of a matrix Sk ∈ D(p+q−r) satisfying gk = P Sk for all
k = 1, . . . , q, i.e., to the existence of the matrix S = (S1 . . . Sq) ∈ D(p+q−r)×q satisfying
P S = Iq, i.e., a right-inverse of P over D, which, by 2 of Proposition 1, is equivalent to E is a
stably free left D-module.

Lemma 4. ext1
D(E,D) = 0 iff the left D-module E is stably free of rank p− r.

Similarly, ext1
D(M,D) = 0 is equivalent to the existence of a right-inverse of the matrix R

over D, i.e., to M is a stably free left D-module of rank p− q.
Combining Lemmas 3 and 4, we obtain the following important result.

Theorem 4. Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix, namely,
kerD(.R) = 0, Λ ∈ Dq×(q−r), P = (R − Λ) ∈ Dq×(p+q−r) and M = D1×p/(D1×q R) (resp.,
E = D1×(p+q−r)/(D1×q P )) the left D-module finitely presented by R (resp., P ) which defines
the following extension of D1×(q−r) by M :

0 −→ D1×(q−r) α−→ E
β−→M −→ 0.

Then, the following results are equivalent:
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1. The left D-module E is stably free of rank p− r.

2. The matrix P = (R − Λ) ∈ Dq×(p+q−r) admits a right-inverse over D.

3. ext1
D(E,D) = Dq/

(
P D(p+q−r)) = 0.

4. The right D-module ext1
D(M,D) = Dq/(RDp) is generated by {τ(Λ•i)}i=1,...,q−r, where

τ : Dq −→ ext1
D(M,D) is the canonical projection onto ext1

D(M,D).

Finally, the previous equivalences depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in the
right D-module

ext1
D

(
M,D1×(q−r)

)
= Dq×(q−r)/

(
RDp×(q−r)

)
∼= ext1

D(M,D)1×(q−r),

i.e., they depend only on the row vector (τ(Λ•1) . . . τ(Λ•(q−r))) ∈ ext1
D(M,D)1×(q−r).

Remark 2. Theorem 4 was first obtained by J.-P. Serre in [39] for a commutative ring D and
r = q − 1. In this case, ext1

D(M,D) is the right D-module generated by τ(Λ), i.e., ext1
D(M,D)

is the cyclic right D-module generated by τ(Λ).

Example 3. Theorem 4 is fulfilled if ext1
D(M,D) = 0, i.e., if M is a stably free left D-module

or, equivalently, if R admits a right-inverse over D since we can take Λ = 0. Another explanation
of this last result is that ext1

D(M,D) is then the trivial cyclic left D-module or, equivalently,
the short exact sequence (12) yields ext1

D(E,D) = 0.

On simple examples over a commutative polynomial ring D = k[x1, . . . , xn] with coeffi-
cients in a computable field k (e.g., k = Q or Fp where p is a prime number), we can take a
generic matrix Λ ∈ Dq×(q−r) with a fixed total degree in the xi’s and compute the D-module
ext1

D(E,D) = D1×q/
(
D1×(p+q−r) P T

)
by means of a Gröbner basis computation and check

whether or not the D-module ext1
D(E,D) vanishes on certain branches of the corresponding

tree of integrability conditions ([29]) or on certain parts of the underlying constellation of semi-
algebraic sets in the k-parameters of Λ ([21]). See [21] for a survey explaining the constellation
techniques and their implementations in Singular. In particular, we can test whether or not a
non-zero constant belongs to the annihilator of the D-module ext1

D(E,D), namely,

annD(ext1
D(E,D)) = {d ∈ D | ∀ n ∈ ext1

D(E,D), d n = 0},

i.e., whether or not annD(ext1
D(E,D)) = D. Since, homD(ext1

D(E,D), D) ∼= kerD(.R) = 0 by
Remark 1, ext1

D(E,D) is a torsion right D-module (see Corollary 1 of [6]), and thus we obtain
ext1

D(E,D) = 0 iff annD(ext1
D(E,D)) = D.

The constellation technique is particularly interesting when the finitely presented D =
k[x1, . . . , xn]-module ext1

D(M,D) is 0-dimensional, i.e., when the ring A = D/I is a finite
k-vector space, where I = annD(ext1

D(M,D)). Indeed, a Gröbner basis computation of the D-
module RDp then gives a finite set of row vectors {λk}k=1,...,s, where λk ∈ Dq and s = dimk(A),
such that ext1

D(M,D) =
⊕s

k=1 k τ(λk). Then, we can consider a generic matrix of the form

Λ =

(
s∑

k=1

a1k λk . . .

s∑
k=1

a(q−r)k λk

)
∈ Dq×(q−r),

where the alk’s are arbitrary elements of k for l = 1, . . . , (q − r) and k = 1, . . . , s, and compute
the constellation of semi-algebraic sets corresponding to the possible vanishing of ext1

D(E,D).
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Example 4. We consider the model of a string with an interior mass defined by
φ1(t) + ψ1(t)− φ2(t)− ψ2(t) = 0,

φ̇1(t) + ψ̇1(t) + η1 φ1(t)− η1 ψ1(t)− η2 φ2(t) + η2 ψ2(t) = 0,
φ1(t− 2h1) + ψ1(t)− u(t− h1) = 0,
φ2(t) + ψ2(t− 2h2)− v(t− h2) = 0,

(13)

introduced and studied in [25], where h1, h2 ∈ R+ are such that Qh1+Qh2 is a 2-dimensional Q-
vector space and η1 and η2 are two constant parameters. Let us denote byD = Q(η1, η2) [∂, σ1, σ2]
the commutative polynomial algebra of differential incommensurable time-delay operators in ∂,
σ1 and σ2, where:

∂ f(t) = ḟ(t), σ1f(t) = f(t− h1), σ2f(t) = f(t− h2).

Let M = D1×6/(D1×4R) be the D-module finitely presented by the matrix

R =


1 1 −1 −1 0 0

∂ + η1 ∂ − η1 −η2 η2 0 0
σ2

1 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2

 ∈ D4×6,

which is associated with (13). Then, we have ext1
D(M,D) = D4/(RD6). Computing a Gröbner

basis of the D-module ext1
D(M,D), we obtain that ext1

D(M,D) is a 1-dimensional Q(η1, η2)-
vector space and τ((0 0 0 1)T ) is a basis, where τ : D4 −→ ext1

D(M,D) is the canonical
projection onto ext1

D(M,D). Hence, the only possible Λ’s for which P = (R −Λ) admits a right-
inverse over D belong to V =

{
a (0 0 0 1)T | a ∈ Q(η1, η2)

}
. In particular, if we consider

the column vector Λ = (0 0 0 1)T , then we can easily check that P = (R − Λ) ∈ D4×7

admits the following right-inverse over D:

S =



0 0 −1
2

−1
2

0 −1
2
σ2 −1

2

0 0 − 1
2 η2

1
2 η2

0
1

2 η2
σ2 − 1

2 η2

−1 1 −η1

η2

η1

η2
−σ1

η1

η2
σ2 −η1

η2

0 0 0 0 0 0 −1



T

.

Hence, the D-module ext1
D(M,D) = D4/(RD6) is cyclic and is generated by τ(Λ).

Remark 3. If D = k[x1, x2] is a commutative polynomial ring over a field k, R ∈ Dq×p

and M = D1×p/(D1×q R), then M can either admit a non-trivial torsion submodule t(M), be
torsion-free or projective, i.e., free by the Quillen-Suslin. For more details, see, e.g., [6, 27, 28].
Hence, if p > q and R has full row rank, then the generic situation is that M is a torsion-free
D-module, which implies that ext1

D(M,D) is generically 0-dimensional since D is a so-called
regular Cohen-Macaulay ring (see, e.g., [12]). Indeed, we then have that the codimension of
ext1

D(M,D), namely, 2 − dimD(ext1
D(M,D)), where dimD(ext1

D(M,D)) denotes the so-called
Krull dimension of the ring A = D/I, where I is the annihilator of ext1

D(M,D) (see, e.g., [38]),
is equal to the grade jD(ext1

D(M,D)) of ext1
D(M,D), namely, 2 if M is torsion-free but not

free and 3 if M is projective (dim(ext1
D(M,D)) = −1 means that ext1

D(M,D) = 0). For more
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Serre’s reduction of linear functional systems 17

details, see [28] and the references therein. Hence, using constellation techniques, we can check
whether or not there exists a matrix Λ ∈ Dq×(q−r) such that P = (R − Λ) admits a right-
inverse over D = k[x1, x2], whenever R is a generic full row rank matrix with p > q and the
columns of the matrix Λ are generic k-linear combinations of the basis of the finite-dimensional
k-vector ext1

D(M,D). This situation particularly holds in the study of control linear differential
time-delay systems defined over D = k[∂, δ]. For more details, see [6, 7, 8, 9].

Apart from the previous 0-dimensional case, we do not know yet how to recognize the
existence of Λ ∈ Dq×(q−r) satisfying 2 of Theorem 4. However, using an ansatz, we can give the
sketch of an algorithm in the case of the second Weyl algebra Bn(k). This case encapsulates the
cases of a commutative polynomial ring and the first Weyl algebra An(k) since we have:

k[x1, . . . , xn] ⊂ An(k) ⊂ Bn(k).

Algorithm 1. • Input: Let k be an algebraically closed computational field, D = Bn(k),
R ∈ Dq×p a full row rank matrix and three non-negative integers α, β and γ.

• Output: A set (possibly empty) of {Λi}i∈I such that the matrix (R − Λi) admits a
right-inverse over D.

1. Consider an ansatz Λ ∈ Dq×(q−r) whose entries have a fixed total order α in the ∂i’s and a
fixed total degree β (resp., γ) for the polynomial numerators (resp., denominators) in the
xj ’s of the arbitrary coefficients of the ansatz Λ.

2. Compute a Gröbner basis of the right D-module RDp.

3. Compute the normal form Λ•i ∈ Dq of the ith column Λ•i of Λ in the right D-module
ext1

D(M,D) = Dq/(RDp) for all i = 1, . . . , q − r.

4. Compute the obstructions for projectivity of the left D-module

E = D1×(p+q−r)/(D1×q (R − Λ))

(e.g., computation of a Gröbner basis of the right D-module (R − Λ)D(p+q−r) or com-
putation of the π-polynomials of the left D-module E).

5. Solve the systems in the arbitrary coefficients of the ansatz Λ obtained by making the
obstructions vanish.

6. Return the set of solutions for Λ.

Let us illustrate Algorithm 1 with explicit examples.

Example 5. Let us consider a general transmission line defined by
∂V

∂x
+ L

∂I

∂t
+RI = 0,

C
∂V

∂t
+GV +

∂I

∂x
= 0,

(14)

where I denotes the current, V the voltage, L the self-inductance, R the resistance, C the
capacitor and G the conductance. Let D = Q(L,R,C,G)[∂t, ∂x] be the commutative polynomial
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Serre’s reduction of linear functional systems 18

ring of partial differential operators in ∂t and ∂x with coefficients in the field Q(L,R,C,G), the
presentation matrix J ∈ D2×2 of (14) defined by

J =

(
∂x L∂t +R

C ∂t +G ∂x

)
, (15)

and the D-module M = D1×2/(D1×2 J). In this example, we have slightly changed the previous
notations since the standard notation for a resistance is also R. Let us consider Λ = (α β)T ,
where α and β are two new variables, A = D[α, β], P = (J − Λ) ∈ A2×3 and the A-module
E = A1×3/(A1×2 P ) finitely presented by P . Using the results developed in [6] and the pack-
age OreModules ([7]), the obstructions for E to be a stably free A-module are defined by
A/(π1, π2), where the π-polynomials π1 and π2 are respectively:{

π1 = (C α2 − Lβ2) ∂t +Gα2 −Rβ2,

π2 = (C α2 − Lβ2) ∂x + (LG−RC)αβ.

Hence, if C α2 = Lβ2 and Gα2 −Rβ2 6= 0 (resp., (LG−RC)αβ 6= 0), then π1 (resp., π2) is a
non-zero constant. In particular, if we consider the following values

β = C 6= 0, α2 = LC 6= 0, LG−RC 6= 0,

the ring B = (Q(L,R,C,G)[α]/(α2 − LC))[∂t, ∂x] and Λ = (α C)T ∈ B2, then the matrix
P = (J − Λ) ∈ B2×3 admits the following right-inverse over B:

S =
1

(RC − LG)

 −α L

−C α

−(C ∂x + αC ∂t + αG)/C (α∂x + LC ∂t +RC)/C

 .

Therefore, the B-module ext1
B(M,B) = B2/(J B3) is cyclic and is generated by τ(Λ), where

τ : B2 −→ ext1
B(M,B) is the canonical projection onto ext1

B(M,B).

Remark 4. If D admits an involution θ, namely, an anti-isomorphism of D of order two or,
equivalently, θ : D −→ D satisfies that θ2 = idD, θ(d+d′) = θ(d)+θ(d′) and θ(d d′) = θ(d′) θ(d),
for all d and d′ ∈ D, and if we introduce θ(P ) = (θ(Pij))T ∈ D(p+q−r)×q, then the assertions
of Theorem 4 are equivalent to D1×q/(D1×(p+q−r) θ(R)) = 0, which is also equivalent to the
existence of a left-inverse of θ(R) over D. For more details, see [6].

Example 6. Let us consider the conjugate Beltrami equations with σ = x−1:
∂u

∂x
− x ∂v

∂y
= 0,

∂u

∂y
+ x

∂v

∂x
= 0.

(16)

Let D = A2(Q(a, b)) = Q(a, b)[x, y]〈∂x, ∂y〉 be the ring of noncommutative polynomials in ∂x,
∂y, x and y with coefficients in the field Q(a, b) which satisfy

x y = y x, ∂x ∂y = ∂y ∂x, ∂x x = x ∂x + 1, ∂y y = y ∂y + 1,

the presentation matrix R ∈ D2×2 of (16) defined by

R =

(
∂x −x ∂y
∂y x ∂x

)
, (17)
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and the left D-module M = D1×2/(D1×2R) finitely presented by R. If we consider the column
vector Λ = (a b)T and the left D-module E = D1×3/(D1×2 P ) finitely presented by the matrix
P = (R − Λ) ∈ D2×3, then we can check that P admits the following right-inverse over D
whenever both a and b are non-zero:

S =

 x (a x ∂x + b x ∂y + a)/a −x (a x ∂x + b x ∂y + a)/b
−(a x ∂y − b x ∂x − 2 b)/a (a x ∂y − b x ∂x − 2 b)/b

x (x ∂2
x + x ∂2

y + 3 ∂x)/a −(x2 ∂2
x + x2 ∂2

y + 3x ∂x + 1)/b

 ∈ D3×2.

Hence, the right D-module ext1
D(M,D) = D2/(RD3) is cyclic and is generated by τ(Λ), where

τ : D2 −→ ext1
D(M,D) is the canonical projection onto ext1

D(M,D).

We have the following corollary of Theorem 4.

Corollary 1. Let A be a commutative ring, D = A[x], F ∈ Ap×p, R = x Ip − F ∈ Dp×p and
M = D1×p/(D1×pR). Then, the following assertions are equivalent:

1. There exists Λ ∈ Dp×(p−r) such that the D-module E = D1×(2 p−r)/(D1×p (R − Λ)) is
stably free of rank p− r.

2. {τ(Λ•i)}i=1,...,p−r generates the following finitely presented D-module:

ext1
D(M,D) = Dp/(RDp) ∼= D1×p/

(
D1×pRT

)
.

3. There exists a matrix Λ ∈ Ap×(p−r) such that the matrix

Ω , (Λ F Λ F 2 Λ . . . F p−1 Λ) ∈ Ap×p (p−r) (18)

admits a right-inverse over A.

In particular, if Λ ∈ Ap×(p−r) satisfies 2 then Λ = Λ satisfies 1.

Proof. 1 and 2 are equivalent by Theorem 4. Moreover, Theorem 4 shows that the property of
E of being a stably free D-module depends only on the residue classes {τ(Λ•i)}i=1,...,p−r of the
columns {Λ•i}i=1,...,p−r of Λ in the D-module ext1

D (M,D) = Dp/(RDp). Since R = x Ip − F
and F ∈ Ap×p, we can assume without loss of generality that Λ•i ∈ Ap for all i = 1, . . . , p−r, i.e.,
Λ ∈ Ap×(p−r). If P = (R − Λ) then ext1

D(E,D) = Dp/(P D2 p−r) ∼= D1×p/
(
D1×(2 p−r) P T

)
is

defined by the generators {yj}j=1,...,p which satisfy the following D-linear relations{
x y − F T y = 0,
ΛT y = 0,

(19)

where y = (y1 . . . yp)T . Multiplying the last equation by x and using the first one, we obtain
the new equation ΛT F T y = 0. Repeating inductively the same operations, we get ΛT F T k y = 0
for all k ∈ N. Using the Caley-Hamilton theorem stating that F p =

∑p−1
k=0 ak F

k for certain ak’s
in A (see, e.g., [12]), we obtain:

(19) ⇔



x y − F T y = 0,
ΛT

ΛT F T

...

ΛT F T p−1

 y = 0.
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By Theorem 4, E is a stably free of rank p − r iff ext1
D(E,D) = 0, i.e., iff (19) is equivalent

to y = 0, i.e., iff (Λ F Λ . . . F p−1 Λ)T admits a left-inverse over A, i.e., iff the matrix
Ω = (Λ F Λ . . . F p−1 Λ) admits a right-inverse over A.

Corollary 1 is a generalization of a result of [20]. See [10] for an extension.

Example 7. We note that (15) has the form of J = ∂x I2 − F ∈ D2×2, where

F = −

(
0 L∂t +R

C ∂t +G 0

)
∈ Q(L,R,C,G)[∂t]2×2,

and D = A[∂x]. If Λ ∈ A2, then the matrix Ω defined by (18) is

Ω =

(
Λ1 −(L∂t +R) Λ2

Λ2 −(C ∂t +G) Λ1

)
,

and thus det Ω = −(C ∂t + G) Λ2
1 + (L∂t + R) Λ2

2 = (LΛ2
2 − C Λ2

1) ∂t + (RΛ2
2 − GΛ2

1). Thus,
det Ω ∈ k \ {0} iff LΛ2

2 −C Λ2
1 = 0 and RΛ2

2 −GΛ2
1 ∈ k \ {0}. In particular, if Λ1, Λ2 ∈ k, then

det Ω ∈ k \ {0} iff LΛ2
2 − C Λ2

1 = 0 and RΛ2
2 −GΛ2

1 6= 0 and we find again the result obtained
in Example 5.

Example 8. Let k be a field, A = k[y], D = A[x] = k[x, y] and the matrices

F =

(
0 y + 1
y2 0

)
∈ A2×2, R = x I2 − F =

(
x −y − 1
−y2 x

)
∈ D2×2 (20)

considered in [20]. Let M = D1×2/(D1×2R) be the D-module finitely presented by R and
Λ ∈ A2 a column vector. Then, using (18), the matrix Ω is defined by:

Ω =

(
Λ1 (y + 1) Λ2

Λ2 y2 Λ1

)
.

Since det Ω = (yΛ1)2 − (y + 1) Λ2
2 has degree at least 1 in y, we get det Ω /∈ k \ {0} for all

Λ ∈ A2, and thus, by Corollary 1, there exists no column vector Λ ∈ D2 such that the D-module
E = D1×3/(D1×2 (R − Λ)) is stably free.

Let us now consider the following matrices

F ′ =

(
0 1

y2 (y + 1) 0

)
∈ A2×2, R′ = x I2 − F ′ =

(
x −1

−y2 (y + 1) x

)
,

also considered in [20], the D-module M ′ = D1×2/(D1×2R′) finitely presented by R′ and Λ ∈ A2.
The matrix Ω′ defined by (18) is then

Ω′ =

(
Λ1 Λ2

Λ2 y2 (y + 1) Λ1

)

and det Ω′ = y2 (y + 1) Λ1 − Λ2
2. Hence, if we consider Λ1 = 0 and Λ2 = 1, then det Ω′ =

−1 ∈ k \ {0}, which, by Corollary 1, proves that the D-module E′ = D1×3/(D1×2 (R′ − Λ))
is a stably free, and thus free of rank 1 by the Quillen-Suslin theorem (see 2 of Theorem 3).
Finally, 4 of Theorem 4 shows that ext1

D(M,D) is not a cyclic D-module whereas the D-module
ext1

D(M ′, D) is cyclic, a fact implying that the D-modules M and M ′ are not isomorphic. This
result is not trivial since the main basic invariants of M and M ′ are the same.
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4 Serre’s reduction problem

We can now use Theorem 4 to study Serre’s reduction.

Theorem 5. Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix, 0 ≤ r ≤ q − 1
and a matrix Λ ∈ Dq×(q−r) such that there exists U ∈ GLp+q−r(D) satisfying:

(R − Λ)U = (Iq 0).

If we decompose the unimodular matrix U as follows

U =

(
S1 Q1

S2 Q2

)
, (21)

where S1 ∈ Dp×q, S2 ∈ D(q−r)×q, Q1 ∈ Dp×(p−r), Q2 ∈ D(q−r)×(p−r), and if we introduce the left
D-module L = D1×(p−r)/(D1×(q−r)Q2) finitely presented by the full row rank matrix Q2, i.e.,
defined by the following short exact sequence

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) κ−→ L −→ 0, (22)

then we have:
M = D1×p/(D1×q R) ∼= L = D1×(p−r)/(D1×(q−r)Q2). (23)

Conversely, if M is isomorphic to a left D-module L defined by the short exact sequence (22)
for a certain matrix Q2 ∈ D(q−r)×(p−r), then there exist Λ ∈ Dq×(q−r) and U ∈ GLp+q−r(D)
such that (R − Λ)U = (Iq 0).

Proof. ⇒ By hypothesis, we have (R − Λ)S = Iq, where S = (ST1 ST2 )T , which shows that
P = (R −Λ) admits a right-inverse over D. By Theorem 4, the extension (4) of D1×(q−r) by M
is then defined by a stably free left D-module E, and thus, free of rank p−r by 3 of Proposition 1
applied to E. Moreover, by 3 of Proposition 1, the left D-homomorphism ψ : E −→ D1×(p−r)

defined by ψ(%((µ1 µ2))) = µ1Q1 + µ2Q2 for all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r), is a left
D-isomorphism, which yields the equivalence of extensions of D1×(q−r) by M :

0 −→ D1×(q−r) α−→ E
β−→ M −→ 0

‖ ↓ ψ ‖
0 −→ D1×(q−r) ψ ◦α−−−→ D1×(p−r) β ◦ψ−1

−−−−→ M −→ 0.

Using the standard basis {ei}i=1,...,q−r of D1×(q−r), we obtain

∀ i = 1, . . . , q − r, (ψ ◦ α)(ei) = ψ(α(ei)) = ψ(%((0 ei)) = eiQ2,

which implies that ψ ◦ α : D1×(q−r) −→ D1×(p−r) is defined by (ψ ◦ α)(ν) = ν Q2 for all
ν ∈ D1×(q−r). The matrix Q2 has full row rank since ψ ◦α is injective as the composition of two
injective left D-homomorphisms. If L = D1×(p−r)/(D1×(q−r)Q2) is the left D-module finitely
presented by the matrix Q2 ∈ D(q−r)×(p−r) and κ : D1×(p−r) −→ L the canonical projection
onto L, then we get (22) and L = cokerD(.Q2) ∼= im (β ◦ ψ−1) = M .

⇐ Let us suppose that there exists a left D-isomorphism γ : L −→ M , where L is defined
by (22). Then, we have the following extension of D1×(q−r) by M :

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) γ ◦κ−−−→M −→ 0. (24)
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By Theorem 2, the equivalence class of extension (24) defines a unique element ρ(Λ) of the right
D-module ext1

D

(
M,D1×(q−r)) for a certain matrix Λ ∈ Dq×(q−r). Then, the finitely presented

left D-module E = D1×(p+q−r)/(D1×q (R − Λ)) defines the extension (4) of D1×(q−r) by M
which belongs to the same equivalence class as (24). Since extensions of D1×(q−r) by M belonging
to the same equivalence class are defined by isomorphic central left D-modules (see the comment
after Definition 1), we obtain E ∼= D1×(p−r). Hence, E is a free left D-module of rank p − r,
which, by 2 of Proposition 1, implies the existence a matrix U ∈ GLp+q−r(D) such that:

(R − Λ)U = (Iq 0).

We now can give an explicit description of the isomorphism obtained in Theorem 5.

Corollary 2. With the notations of Theorem 5, the left D-isomorphism (23) obtained in The-
orem 5 is explicitly defined by:

ϕ : M = D1×p/(D1×q R) −→ L = D1×(p−r)/(D1×(q−r)Q2)
π(λ) 7−→ κ(λQ1).

Moreover, its inverse ϕ−1 : L −→M is defined by ϕ−1(κ(µ)) = π(µT1), where:

U−1 =

(
R −Λ
T1 −T2

)
∈ GLp+q−r(D), T1 ∈ D(p−r)×p, T2 ∈ D(p−r)×(q−r).

These results depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in the right D-module:

ext1
D

(
M,D1×(q−r)

)
= Dq×(q−r)/

(
RDp×(q−r)

)
.

Proof. Let us first check that ϕ is well-defined: if λ, λ′ ∈ D1×p satisfy π(λ) = π(λ′), then there
exists ν ∈ D1×q such that λ = λ′+ν R and using (R −Λ)U = (Iq 0), where U ∈ GLp+q−r(D)
is defined by (21), we get RQ1 = ΛQ2, and thus:

ϕ(π(λ)) = κ(λQ1) = κ(λ′Q1) + κ((ν Λ)Q2) = κ(λ′Q1) = ϕ(π(λ′)).

Similarly, let us now prove that the following left D-homomorphism

φ : L −→ M
κ(µ) 7−→ π(µT1),

is also well-defined: if µ, µ′ ∈ D1×(p−r) satisfy κ(µ) = κ(µ′), then there exists θ ∈ D1×(q−r) such
that µ = µ′ + θ Q2 and using the identity U U−1 = Ip+q−r, we get Q2 T1 = −S2R which yields:

φ(κ(µ)) = π(µT1)) = π(µ′ T1)− π((θ S2)R) = π(µ′ T1) = φ(κ(µ′)).

Now, using the identity U−1 U = Ip+q−r, we obtain S1R+Q1 T1 = Ip and thus

(φ ◦ ϕ)(π(λ)) = φ(κ(λQ1)) = π(λQ1 T1) = π(λ)− π((λS1)R) = π(λ),

for all λ ∈ D1×p, i.e., φ ◦ ϕ = idM . Using U U−1 = Ip+q−r, we get T1Q1 − T2Q2 = Ip−r and

(ϕ ◦ φ)(κ(µ)) = ϕ(π(µT1)) = κ(µT1Q1) = κ(µ) + κ((µT2)Q2) = κ(µ),
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for all µ ∈ D1×(p−r), i.e., ϕ◦φ = idL, which finally proves that ϕ is an isomorphism and ϕ−1 = φ.

Finally, the fact that the previous results depend only on the residue class ρ(Λ) of the matrix
Λ ∈ Dq×(q−r) in ext1

D

(
M,D1×(q−r)) = Dq×(q−r)/

(
RDp×(q−r)) is a direct consequence of the

equivalence of extensions defined in Section 2. This result can also be easily understood as
follows: the following equivalence of identities(

R −Λ
T1 −T2

) (
S1 Q1

S2 Q2

)
= Ip+q−r

⇔

(
R −(Λ +RΘ)
T1 −(T2 + T1 Θ)

) (
S1 + ΘS2 Q1 + ΘQ2

S2 Q2

)
= Ip+q−r,

for all Θ ∈ Dq×(q−r), shows that the left D-homomorphisms ϕ and ϕ−1 = φ do not depend on
the choice of the representative Λ of the equivalence class ρ(Λ) in ext1

D

(
M,D1×(q−r)).

Let us illustrate Theorem 5 and Corollary 2 in a situation encounters in many explicit
examples coming from applications (e.g., mathematical systems theory, control theory).

Example 9. We consider again Example 1 where we suppose that R ∈ Dq×p has full row rank
and the left D-module M1 = D1×p/(D1×r R1), finitely presented by the submatrix R1 ∈ Dr×p of
R, is free of rank p−r. If χ : M1 −→ D1×(p−r) is a left D-isomorphism, then the extension (10) of

D1×(q−r) by M then yields the following one 0 −→ D1×(q−r) χ ◦α ◦ψ−−−−−→ D1×(p−r) β ◦χ−1

−−−−→M −→ 0.
Within the standard bases of D1×(q−r) and D1×(p−r), there exists a matrix F ∈ D(q−r)×(p−r) such
that (χ ◦ α ◦ ψ)(ν) = ν F for all ν ∈ D1×(q−r), i.e., M admits the following finite presentation:

0 −→ D1×(q−r) .F−→ D1×(p−r) π′−→M −→ 0. (25)

We find again a useful result explained in [3, 13] and implemented in the package QuillenSuslin
([13]) where the presentation matrix R of the left D-module M can be easily reduced. Let us give
a precise description of the matrix F . According to 3 of Proposition 1, there exists U1 ∈ GLp(D)
such that R1 U1 = (Ir 0). If we write U1 = (S1 Q1), where S1 ∈ Dp×r and Q1 ∈ Dp×(p−r),
then we have

RU1 =

(
R1 U1

R2 U1

)
=

(
Ir 0

R2 S1 R2Q1

)
,

and the last matrix is equivalent to diag(Ir, R2Q1), which shows that F = R2Q1.

Let us show that this result is a also consequence of Theorem 5. If we take the matrix
Λ = (0T ITq−r)

T ∈ Dq×(q−r) and write U−1 = (RT1 T T1 )T , T1 ∈ D(p−r)×p, then R1 0
R2 −Iq−r
T1 0

 (
S1 0 Q1

R2 S1 −Iq−r R2Q1

)
= Ip+q−r,

and Theorem 5 then yields M ∼= D1×(p−r)/(D1×(q−r) (R2Q1)).

Similarly, if R = (R1 R2), where R1 ∈ Dq×r and R2 ∈ Dq×(p−r), and if there exists
V1 = (ST1 QT1 )T ∈ GLq(D), where S1 ∈ Dr×q and Q1 ∈ D(q−r)×q, such that

V1R1 =

(
S1R1

Q1R1

)
=

(
Ir

0

)
, (26)
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then we have

V1R = (V1R1 V1R2) =

(
Ir S1R2

0 Q1R2

)
,

and the last matrix is clearly equivalent to diag(Ir, Q1R2), which proves that the left D-module
M admits a finite presentation of the form (25) where F = Q1R2. Equivalently, using Example 2,
the extension (11) of L = D1×(p−r)/(D1×r (Q1R2)) by N1 = D1×r/(D1×q R1) holds. Since we
have S1R1 = Ir, we get N1 = 0 and thus M ∼= D1×(p−r)/(D1×r (Q1R2)). These two results
were already obtained in [3, 13].

A straightforward consequence of Corollary 2 is the following result.

Corollary 3. Let F be a left D-module and the following two linear systems:

kerF (R.) = {η ∈ Fp | Rη = 0}, kerF (Q2.) = {ζ ∈ F (p−r) | Q2 ζ = 0}.

Then, we have the abelian group isomorphism kerF (R.) ∼= kerF (Q2.) and:

kerF (R.) = Q1 kerF (Q2.), kerF (Q2.) = T1 kerF (R.).

Proof. Corollary 2 yields the following two commutative exact diagrams:

0 −→ D1×q .R−→ D1×p π−→ M −→ 0
↓ .Λ ↓ .Q1 ↓ ϕ

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) κ−→ L −→ 0,

0 −→ D1×q .R−→ D1×p π−→ M −→ 0
↑ .S2 ↑ .T1 ↑ ϕ−1

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) κ−→ L −→ 0.

If F is a left D-module, then applying the contravariant left exact functor homD( · ,F) to the
two previous commutative exact diagrams, we obtain the following ones

Fq R.←− Fp ←− kerF (R.) ←− 0
↑ Λ. ↑ Q1. ↑ ϕ?

F (q−r) Q2.←−− Fp−r ←− kerF (Q2.) ←− 0,

Fq R.←− Fp ←− kerF (R.) ←− 0
↓ S2. ↓ T1. ↓ (ϕ−1)?

F (q−r) Q2.←−− F (p−r) ←− kerF (Q2.) ←− 0

(see, e.g., [38]), which shows that ϕ? is the following abelian group isomorphism:

ϕ? : kerF (Q2.) −→ kerF (R.)
ζ 7−→ Q1 ζ,

(ϕ−1)? : kerF (R.) −→ kerF (Q2.)
η 7−→ T1 η.

Corollary 4. Let R ∈ Dq×p be a full row rank matrix and Λ ∈ Dq×(q−r) a matrix such that
P = (R − Λ) ∈ Dq×(p+q−r) admits a right-inverse over D. Then, Theorem 5 holds when D
satisfies one of the following properties:
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1. D is a left principal ideal domain (e.g., the ring of ordinary differential operators with
coefficients in a differential field such that K = R or Q(t)),

2. D = k[x1, . . . , xn] is a commutative polynomial ring over a field k,

3. D is one of the two Weyl algebras An(k) or Bn(k), where k a field of characteristic 0 (e.g.,
k = Q, R, C), and p− r ≥ 2.

4. D is the ring of ordinary differential operators with coefficients in the ring of formal power
series kJtK, where k is a field of characteristic 0, or in the ring of convergent power series
k{t} with coefficients in k = R or C, and p− r ≥ 2.

Proof. If D satisfy one of the four conditions, then the stably free left D-module E finitely
presented by P = (R − Λ) ∈ Dq×(p+q−r), is free of rank p − r by Theorem 3. The result is
then a consequence of Theorem 5.

Remark 5. Corollary 4 can also be understood as follows: if the noetherian domain D is a
so-called Hermite ring, namely, if every finitely generated stably free left D-module is free,
and M = D1×p/(D1×q R) is the left D-module finitely presented by the full row rank matrix
R, then M can be generated by p − r elements iff its Auslander transpose right D-module
ext1

D(M,D) = Dq/(RDp) can be generated by q − r elements (see Lemma 3 and Theorem 5).

If D satisfy one of the four conditions of Corollary 4, then it is enough to search for a matrix
Λ ∈ Dq×(q−r) such that P = (R − Λ) admits a right-inverse over D by Proposition 1.

Let us illustrate Theorem 5 and Corollary 4.

Example 10. We consider again Example 4 where the D = Q(η1, η2) [∂, σ1, σ2]-module E =
D1×7/(D1×4 P ) was proved to be a stably free and thus free by Quillen-Suslin theorem (see also
2 of Corollary 4). Using constructive versions of the Quillen-Suslin theorem ([13]) and their
implementation in the package QuillenSuslin ([13]) and OreModules ([6]), we obtain that

U =



0 0 −1 0 −1 −σ1 0
0 0 1 0 0 σ1 0
0 0 0 1 0 0 σ2

−1 0 0 −1 −1 0 −σ2

0 0 −σ1 0 −σ1 1− σ2
1 0

−σ2 0 0 −σ2 −σ2 0 1− σ2
2

η2 1 2 η1 2 η2 ∂ + η1 + η2 2 η1 σ1 2 η2 σ2


∈ GL7(D),

satisfies (R − Λ)U = (I4 0), and thus Q2 = (∂ + η1 + η2 2 η1 σ1 2 η2 σ2). We then have
M = D1×6/(D1×4R) ∼= L = D1×3/(DQ2), i.e., using Corollary 3, (13) is equivalent to the
following sole differential time-delay equation:

ẋ1(t) + (η1 + η2)x1(t) + 2 η1 x2(t− h1) + 2 η2 x3(t− h2) = 0. (27)

This result was already obtained in [9] after the resolutions of algebraic Riccati equations of the
form X RX = X (see [8, 9]). But, Serre’s reduction allows us to obtain this result in a more
direct way. Finally, we point out that the study of the algebraic properties of (13) is now highly
simplified since we can easily checked that M ∼= L is torsion-free and σ1 and σ2-free (see [25]).
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Example 11. We consider again the general transmission line (14) studied in Example 5. If
B = K[∂t, ∂x] is the commutative polynomial ring of differential operators in ∂t and ∂x with
coefficients in the field K = Q(L,R,C,G)[α]/(α2 − LC) and P = (J − Λ) ∈ B2×3 is the
matrix formed by the matrix J defined by (15) and Λ = (α C)T , then the stably free B-
module E = B1×3/(B1×2 P ) is free by the Quillen-Suslin theorem. Computing a basis of E
using the constructive versions of the Quillen-Suslin theorem explained in [13] and implemented
in QuillenSuslin ([13]) and OreModules ([6]), the matrix U = (ST QT )T ∈ GL3(B)
defined by the matrix S ∈ B3×2 given in Example 5 and Q = (QT1 QT2 )T , where{

Q1 = (α∂x − LC ∂t −RC C ∂x − αC ∂t − αG)T ,
Q2 = ∂2

x − LC ∂2
t − (LC +RC) ∂t −RG,

satisfies (J − Λ)U = (I2 0). Hence, if C 6= 0, L 6= 0 and LG − RC 6= 0, then (14) is
equivalent to the following sole partial differential equation:

(∂2
x − LC ∂2

t − (LC +RC) ∂t −RG)Z(t, x) = 0.

Example 12. We consider again Example 6 where we proved that the left D = A2(Q(a, b))-
module E = D1×3/(D1×2 P ) was stably free, where P = (R − Λ) is formed by the matrix R
defined by (17) and by Λ = (a b)T . Since the rank of E is 3− 2 = 1, we cannot use Stafford’s
theorem (see 3 of Theorem 3) to conclude that E is a free left D-module of rank 1. We need to
investigate whenever or not E is a free left D-module of rank 1 for particular values of a and
b. Using a constructive algorithm explained in [6] and implemented in OreModules ([7]), the
stably free left D-module E admits the following minimal parametrization ([6])

Q = −a2 b+ b a2 x ∂x − a3 x ∂y − a
(
a2 + b2

)
x2 ∂x ∂y − b

(
a2 + b2

)
x2 ∂2

y

a b2 ∂x − b
(
2 b2 + 3 a2

)
∂y − b

(
a2 + b2

)
x ∂x ∂y + a (a2 + b2)x ∂2

y

−a2 ∂y −
(
a2 + b2

)
x2 ∂y ∂

2
x + a b x ∂2

x − 3
(
a2 + b2

)
x ∂x ∂y + a b x ∂2

y −
(
a2 + b2

)
x2 ∂3

y

 ,

namely, E ∼= D1×3Q =
∑3

i=1DQi1, i.e., E is isomorphic to the left ideal of D generated by
the three entries of Q. Therefore, the following long exact sequence

0 −→ D1×2 .P−→ D1×3 .Q−→ D
σ−→ N −→ 0,

holds, where σ : D −→ N is the canonical projection onto N = D/(D1×3Q). If there exists
a set of values for the arbitrary constant parameters a and b such that the left D-module N
vanishes, then the last long exact sequence shows that D1×3Q = D, and thus E ∼= D1×3Q = D
is a free left D-module of rank 1. Computing a Gröbner basis of the left D-module D1×3Q, we
obtain that the generator z = σ(1) of N satisfies the equation d z = 0, where:

d = −
(
a2 + b2

)2
x2 ∂2

y + 2 a b
(
a2 + b2

)
x ∂y − a2 b2 ∈ D.

Therefore, if we consider a solution of the following polynomial system
(
a2 + b2

)2 = 0,
a b
(
a2 + b2

)
= 0,

a2 b2 = −1,

⇔

{
a2 + b2 = 0,
a2 b2 = −1,

⇔

{
b2 = −a2,

a4 = 1,
⇔

{
b = ± i a,
a ∈ {±1, ±i},
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such as, e.g., a = 1 and b = i, then d is then reduced to 1. If we consider the new ring
A = A2(Q(i)), then the left A-module Eρ((1 i)T ) = A1×3/(A1×2 P ), where Λ = (1 i)T , admits
the following injective parametrization

Q =

 x (i ∂x − ∂y)− i
−(∂x + i ∂y)

i x (∂2
x + ∂2

y)− ∂y

 (28)

and T = (i − x 0) is a left-inverse of Q over A. Using Theorem 5 and Corollary 3, we finally
obtain M ∼= A/(A (i x (∂2

x + ∂2
y)− ∂y)) and:

(6) ⇔ (i x (∂2
x + ∂2

y)− ∂y))u = 0 ⇔ (x (∂2
x + ∂2

y) + i ∂y)u = 0.

Let us now study when the matrix R is equivalent to diag(Ir, Q2), where diag(Ir, Q2) denotes
the block-diagonal matrix formed by the blocks Ir and Q2.

Corollary 5. With the notations of Theorem 5 and Corollary 2, if the matrix Λ ∈ Dq×(q−r)

admits a left-inverse Γ ∈ D(q−r)×q, i.e., Γ Λ = Iq−r, then the matrix Q1 admits the left-inverse
T1 − T2 ΓR ∈ D(p−r)×p and the left D-module kerD(.Q1) is stably free of rank r.

Moreover, if the left D-module kerD(.Q1) is free of rank r, then there exists Q3 ∈ Dp×r

such that W , (Q3 Q1) ∈ GLp(D). If we write W−1 = (Y T
3 Y T

1 )T , where Y3 ∈ Dr×p and
Y1 ∈ D(p−r)×p, then the matrix X , (RQ3 Λ) is unimodular, i.e., X ∈ GLq(D) and:

V , X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

The matrix R is then equivalent to the matrix X diag(Ir, Q2)W−1 or equivalently:

V RW =

(
Ir 0
0 Q2

)
.

Finally, the left D-module kerD(.Q1) is free when D satisfies 1 or 2 of Corollary 4 or if D is
An(k) or Bn(k) over a field k of characteristic 0 and r ≥ 2 or if D is the ring of ordinary differ-
ential operators with coefficients in kJtK, where k a field of characteristic 0, or with coefficients
in k{t}, where k = R or C, and r ≥ 2.

Proof. By hypothesis, the following Bézout identity holds:

(
R −Λ
T1 −T2

) (
S1 Q1

S2 Q2

)
= Ip+q−r ⇔


RS1 − ΛS2 = Iq,

RQ1 = ΛQ2,

T1 S1 = T2 S2,

T1Q1 − T2Q2 = Ip−r.

(29)

Moreover, we know that there exists Γ ∈ D(q−r)×q such that Γ Λ = Iq−r. Pre-multiplying the
second equation of (29) by Γ, we get Q2 = ΓRQ1, which, combined with the last equation of
(29), yields (T1−T2 ΓR)Q1 = Ip−r and proves that Q1 admits a left-inverse over D. Therefore,
the following short exact sequence

0 −→ kerD(.Q1) i−→ D1×p .Q1−→ D1×(p−r) −→ 0 (30)
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splits, namely, we haveD1×p ∼= kerD(.Q1)⊕D1×(p−r) (see, e.g., [38]), which proves that kerD(.Q1)
is a stably free left D-module of rank p− (p− r) = r.

Now, let us suppose that kerD(.Q1) is a free left D-module of rank r and let denote by
ψ : D1×r −→ kerD(.Q1) a left D-isomorphism. The split short exact sequence (30) then yields

0 −→ D1×r .Y3−−→ D1×p .Q1−−→ D1×(p−r) −→ 0,
.Q3←−− .Y1←−−

(31)

where Y3 ∈ Dr×p is a matrix such that (i ◦ ψ)(ν) = ν Y3 for all ν ∈ D1×r. Hence, if we write
W = (Q3 Q1) ∈ Dp×p, then the previous split short exact sequence yields

(Q3 Q1)

(
Y3

Y1

)
= Q3 Y3 +Q1 Y1 = Ip,

(
Y3

Y1

)
(Q3 Q1) =

(
Ir 0
0 Ip−r

)
= Ip, (32)

i.e., W ∈ GLp(D) and W−1 = (Y T
3 Y T

1 )T . The second identity of (29) yields:

RW = R (Q3 Q1) = (RQ3 RQ1) = (RQ3 ΛQ2) = (RQ3 Λ)

(
Ir 0
0 Q2

)
. (33)

The first identity of (32) and the first and the second identities of (29) imply

(RQ3 Λ)

(
Y3 S1

Q2 Y1 S1 − S2

)
= RQ3 Y3 S1 + ΛQ2 Y1 S1 − ΛS2

= RS1 −RQ1 Y1 S1 + ΛQ2 Y1 S1 − ΛS2

= Iq − (RQ1 − ΛQ2)Y1 S1 = Iq,

which implies X , (RQ3 Λ) ∈ GLq(D) since D is a noetherian ring and thus a stably finite
ring (i.e., a ring over which every left or right invertible matrix is invertible ([19])) and:

V , X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

Using (33), we finally obtain V RW = diag(Ir, Q2), which proves the corollary.

Let us illustrate Corollary 5 with explicit examples.

Example 13. We consider again Examples 4 and 10. Since Λ clearly admits a left-inverse
over D, we can check that the matrix Q1 ∈ D6×3 defined by the first 6 rows of Q also admits
a right-inverse over D. Using constructive versions of the Quillen-Suslin theorem and their
implementations in QuillenSuslin and OreModules, we can complete the matrix Q1 to the
following unimodular matrix:

W = (Q3 Q1) =



1 0 0 −1 −σ1 0
0 −1 0 0 σ1 0
0 0 1 0 0 σ2

0 −1 −1 −1 0 −σ2

0 0 0 −σ1 1− σ2
1 0

0 −σ2 −σ2 −σ2 0 1− σ2
2



T

∈ GL6(D).
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We can now check that the following matrix

X = (RQ3 Λ) =


1 0 0 0

∂ + η1 −∂ + η1 − η2 −2 η2 −1
σ2

1 −1 0 0
0 0 1 0

 ∈ D4×4

is unimodular over D, i.e., X ∈ GL4(D), and satisfies

RW = X diag(I3, Q2) ⇔ diag(I3, Q2) = X−1RW,

which finally proves that R is equivalent to diag(I3, Q2).

Example 14. We consider again Examples 5 and 11. We can easily check that Λ admits a
left-inverse over B. Using Corollary 5, the matrix Q1 ∈ B2 defined by the first 2 entries of Q
admits a right-inverse over B. Then, using constructive versions of the Quillen-Suslin theorem
and their implementations in QuillenSuslin and OreModules, we can complete Q1 to the
following unimodular matrix:

W = (Q3 Q1) =


α

C (RC − LG)
−C (L∂t +R) + α∂x

1
RC − LG

C (∂x − α∂t)− αG

 ∈ GL2(A).

Moreover, we can check that the following matrix

X = (J Q3 Λ) =


α∂x + C (L∂t +R)
C (RC − LG)

α

C (∂x + α∂t) + αG

C (RC − LG)
C

 ∈ B2×2

is unimodular over B, i.e., X ∈ GL2(B), and satisfies

J W = X diag(1, Q2) ⇔ X−1 J W = diag(1, Q2),

which proves that the matrix R is equivalent to diag(1, Q2).

Example 15. We consider again Examples 6 and 12. Since Λ = (1 i)T admits the left-
inverse Γ = (1 0) over A, Corollary 5 shows that the matrix R defined by (17) is equivalent to
diag(1, i x (∂2

x + ∂2
y) − ∂y)). If Q1 denotes the column vector formed by the first two entries of

(28), then kerA(.Q1) = A (−i ∂x + ∂y x (∂x + i ∂y)) ∼= A, i.e., kerA(.Q1) is a free left A-module
of rank 1. Since Q3 = (i x − 1)T is a right-inverse of (−i ∂x + ∂y x (∂x + i ∂y)) over A, we
obtain the unimodular matrix:

W =

(
i x x (i ∂x − ∂y)− i
−1 −∂x − i ∂y

)
, W−1 =

(
−i ∂x + ∂y x (∂x + i ∂y)

i −x

)
.

Moreover, using Corollary 5, we can also introduce the unimodular matrices:

X = (RQ3 Λ) =

(
x (i ∂x + ∂y) + i 1
−x (∂x − i ∂y) i

)
,

V = X−1 =

(
−i 1

−x (∂x − i ∂y) −x (i ∂x + ∂y)− i

)
.

Finally, we can easily check that V RW = diag(1, i x (∂2
x + ∂2

y)− ∂y)).
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Example 16. Let us consider a model of a two reflector antenna studied in [18, 26] which is
defined by the linear differential time-delay system kerF (R.), where

R =



∂ −K1 0 0 0 0 0 0 0

0 ∂ +
K2

Te
0 0 0 0 −Kp

Te
δ −Kc

Te
δ −Kc

Te
δ

0 0 ∂ −K1 0 0 0 0 0

0 0 0 ∂ +
K2

Te
0 0 −Kc

Te
δ −Kp

Te
δ −Kc

Te
δ

0 0 0 0 ∂ −K1 0 0 0

0 0 0 0 0 ∂ +
K2

Te
−Kc

Te
δ −Kc

Te
δ −Kp

Te
δ


,

∂ y(t) = ẏ(t), δ y(t) = y(t − 1) for all y ∈ F = C∞(R), and K1, K2, Kc, Ke, Kp and Te are
constant parameters. Let D = Q(K1,K2,Kc,Ke, Te) [∂, δ] be the commutative polynomial ring
of differential time-delay operators and M = D1×9/(D1×6R) the D-module finitely presented
by R. If we introduce the following matrix

Λ =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


∈ D6×3,

then the matrix S ∈ D12×6 defined in Figure 1 is a right-inverse of P = (R − Λ) ∈ D6×12.
Hence, the D-module E = D1×12/(D1×6 P ) is projective, and thus free by the Quillen-Suslin
theorem. Using the packages QuillenSuslin or OreModules, we can compute a basis and
an injective parametrization of E. We get that the matrix Q ∈ D12×6 given in Figure 1 defines
an injective parametrization of E, i.e., kerD(.Q) = D1×6 P ∼= D1×6. Using Theorem 5 and
Corollary 3, we obtain that M ∼= L = D1×6/(D1×3Q2), where Q2 is the matrix defined by the
last three rows of Q, and thus kerF (R.) ∼= kerF (Q2.), i.e.:

Te ζ̈1(t) +K2 ζ̇1(t) + (Kp + 2Kc) (Kc −Kp) ζ2(t− 1) = 0,

Te ζ̈3(t) +K2 ζ̇3(t) + (Kp + 2Kc) (Kc −Kp) ζ4(t− 1) = 0,

Te ζ̈5(t) +K2 ζ̇5(t) + (Kp + 2Kc) (Kc −Kp) ζ6(t− 1) = 0.

We note the equations of the previous system are uncoupled, i.e.:

M ∼= [D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ)]3. (34)

We note that Λ admits a left-inverse Γ over D defined by:

Γ =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

Hence, let us compute V ∈ GL6(D) and W ∈ GL9(D) such that V RW = diag(I3, Q2). The
D-module kerD(.Q1) is a stably free and thus a free D-module of rank 3 by the Quillen-Suslin
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S =



0 0 0 0 0 0

− 1
K1

0 0 0 0 0

0 0 0 0 0 0

0 0 − 1
K1

0 0 0

0 0 0 0 0 0

0 0 0 0 − 1
K1

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Te +K2

K1 Te
∂ −1 0 0 0 0

0 0 −Te +K2

K1 Te
∂ −1 0 0

0 0 0 0 −Te +K2

K1 Te
∂ −1



Q =



K1 Te 0 0
Te ∂ 0 0

0 0 K1 Te

0 0 Te ∂

0 0 0
0 0 0
0 Te (Kp +Kc) 0
0 −Kc Te 0
0 −Kc Te 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0
0 0 (Te ∂ +K2) ∂
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 K1 Te 0
0 Te ∂ 0

−Kc Te 0 −Kc Te

Te (Kp +Kc) 0 −Kc Te

−Kc Te 0 Te (Kp +Kc)
0 0 0

(Kp + 2Kc) (Kc −Kp) δ 0 0
0 (Te ∂ +K2) ∂ (2Kc +Kp) (Kc −Kp) δ



Figure 1: Matrices S and Q
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theorem. This last result can be checked again by computing kerD(.Q1): we have kerD(.Q1) =
D1×3 F ∼= D1×3, where the full row rank matrix F ∈ D3×9 is defined by:

F =

 ∂ −K1 0 0 0 0 0 0 0
0 0 ∂ −K1 0 0 0 0 0
0 0 0 0 ∂ −K1 0 0 0

 .

Computing a right-inverse of F , we obtain that the matrix Q3 ∈ D9×3 defined by

Q3 = − 1
K1



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0


is such that the matrix W defined by

W = (Q3 Q1) =

0 0 0 K1 Te 0 0
−K−1

1 0 0 Te ∂ 0 0
0 0 0 0 0 K1 Te

0 −K−1
1 0 0 0 Te ∂

0 0 0 0 0 0
0 0 −K−1

1 0 0 0
0 0 0 0 Te (Kp +Kc) 0
0 0 0 0 −Kc Te 0
0 0 0 0 −Kc Te 0

0 0 0
0 0 0
0 0 0
0 0 0
0 K1 Te 0
0 Te ∂ 0

−Kc Te 0 −Kc Te

Te (Kp +Kc) 0 −Kc Te

−Kc Te 0 Te (Kp +Kc)


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is unimodular, i.e., W ∈ GL9(D). Forming the matrix X = (RQ3 Λ) ∈ D6×6, namely,

X =



1 0 0 0 0 0

−Te ∂ +K2

K1 Te
0 0 1 0 0

0 1 0 0 0 0

0 −Te ∂ +K2

K1 Te
0 0 1 0

0 0 1 0 0 0

0 0 −Te ∂ +K2

K1 Te
0 0 1


,

then X ∈ GL6(D). Its inverse is defined by

V = X−1 =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

Te ∂ +K2

K1 Te
1 0 0 0 0

0 0
Te ∂ +K2

K1 Te
1 0 0

0 0 0 0
Te ∂ +K2

K1 Te
1


and R = V RW has finally the form diag(I3, Q2):

R = V RW =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0 0
0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ


.

Finally, theD-module L = D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ) is clearly torsion-
free and δ-free ([26]) and, using (34), and thus so is M ∼= N3 (see also [26]).

The next example shows that the previous results can also be used to compute the minimal
number of generators of certain finitely presented modules.
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Example 17. Let us consider the commutative polynomial ring D = Q [∂x, ∂y] and the D-
module M = D1×3/(D1×2R) finitely presented by R defined by:

R =

(
∂x ∂y 0
0 ∂x ∂y

)
∈ D2×3. (35)

The matrix R defines the equation of equilibrium of the stress tensor in R2, namely:{
∂x σ

11 + ∂y σ
12 = 0,

∂x σ
12 + ∂y σ

22 = 0.
(36)

We can easily check that the D-module ext1
D(M,D) ∼= D1×2/

(
D1×3RT

)
is a Q-vector space

of dimension 3 and a basis of ext1
D(M,D) is defined by the vectors τ((1 0)T ), τ((0 1)T )

and τ((0 ∂x)T ), where τ : D2 −→ ext1
D(M,N) = D2/(RD3) is the canonical projection.

Hence, without loss of generality, we can assume that Λ has the form of Λ = (a b + c ∂x)T ,
where a, b and c are three arbitrary constants. Considering the ring A = Q[a, b, c] [∂x, ∂y],
the matrix P = (R − Λ) ∈ A2×4, the A-module E = A1×4/(A1×2 P ) and the A-module
ext1

A(E,A) ∼= N = A1×2/(A1×4 P T ) and using the algorithms developed in [6] and implemented
in OreModules, we can check that t(E) ∼= ext1

A(N,A) = 0 and ext2
A(N,A) = A/(∂x, ∂y) 6= 0.

Hence, using ([6]), we obtain that the A-module E is a torsion-free but not projective whatever
the values of the parameters a, b and c are, which finally proves that (36) cannot be defined by
sole partial differential equation with constant coefficients and the minimal number of generators
µ(M) of the D-module M is 3.

A similar comment holds for Cosserat’s system also studied in linear elasticity:
∂x σ

11 + ∂y σ
12 = 0,

∂x µ
1 + ∂y µ

2 + σ21 − σ12 = 0,
∂x σ

21 + ∂y σ
22 = 0.

Example 18. Using Example 8 and 2 of Corollary 4, the matrix R defined by (20) is not
equivalent to its Smith normal form diag(1, x2−y2 (y+1)). This result was first obtained in [20]
(see also [3]). However, the stably free D = k[x, y]-module E′ of rank 1 defined in Example 8 is
free by the Quillen-Suslin theorem. Therefore, R′ is equivalent to its Smith normal defined by
diag(1, x2 − y2 (y + 1)) ([20]) and we have V RW = diag(1, x2 − y2 (y + 1)) where:

V =

(
1 0
x 1

)
∈ GL2(D), W =

(
0 1
−1 x

)
∈ GL2(D).

In particular, the matrices R and R′ are not equivalent ([15]). This example shows that even if
a matrix with entries in D is generally no more equivalent to its Smith normal form as it is the
case for a principal ideal domain (e.g., k[x]), Serre’s reduction can sometimes be useful to check
whether or not two finitely presented modules are isomorphic, i.e., to check non-equivalence of
linear systems.

Finally, let us study the converse of Corollary 5.

Corollary 6. Let R ∈ Dq×p be a full row rank matrix and V ∈ GLq(D) and W ∈ GLp(D) two
matrices such that V RW = diag(Ir, Q2), where 0 ≤ r ≤ q − 1 and Q2 ∈ D(q−r)×(p−r). Then,
there exist U ∈ GLp+q−r(D) and Λ ∈ Dq×(q−r) which admits a left inverse Γ ∈ D(q−r)×q such that
(R − Λ)U = (Iq 0) and kerD(.Q1) is a free left D-module of rank r, where W = (Q3 Q1),
Q3 ∈ Dp×r and Q1 ∈ Dp×(p−r). In particular, Λ ∈ Dq×(q−r) can be chosen to be the submatrix
of V −1 = (Φ Λ), where Φ ∈ Dq×r.
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Proof. If W = (Q3 Q1), where Q3 ∈ Dp×r and Q1 ∈ Dp×(p−r), and V −1 = (X1 Λ), where
X1 ∈ Dq×r and Λ ∈ Dq×(q−r), then V RW = diag(Ir, Q2) yields:

RW = (RQ3 RQ1) = V −1 diag(Ir, Q2) = (X1 ΛQ2) ⇔

{
X1 = RQ3,

RQ1 = ΛQ2.

Now, if we write V = (V T
1 V T

2 )T , where V1 ∈ Dr×q and V2 ∈ D(q−r)×q, then the relation
V −1 V = Iq yields RQ3 V1 + ΛV2 = Iq, i.e., R (Q3 V1) − Λ (−V2) = Iq, which shows that the
matrix P = (R − Λ) ∈ Dq×(p+q−r) admits the right-inverse S = ((Q3 V1)T − V T

2 )T and
the left D-module E = D1×(p+q−r)/(D1×q P ) is stably free of rank r. The relation V V −1 = Iq
implies that V2 Λ = Iq−r, which shows that the matrix Λ admits the left-inverse V2 over D. Now
if W−1 = (Y T

3 Y T
1 )T , where Y3 ∈ Dr×p and Y1 ∈ D(p−r)×p, then the identity W−1W = Ip

particularly gives Y1Q3 = 0 and Y1Q1 = Ip−r, and thus(
R −Λ
Y1 0

) (
Q3 V1 Q1

−V2 Q2

)
=

(
Iq 0
0 Ip−r

)
= Ip+q−r,

which proves the existence of U ∈ GLp+q−r(D) satisfying (R − Λ)U = (Iq 0). Finally,
the identities W W−1 = Ip and W−1W = Ip are equivalent to the split short exact sequence
(31), which shows that kerD(.Q1) = D1×r Y3

∼= D1×r and proves that kerD(.Q1) is a free left
D-module of rank r.

Corollaries 5 and 6 generalize Theorem 1 to matrices which are not necessarily square over
a more general class of rings D.

We finally state a straightforward application of Theorem 5 to the study of the so-called
doubly coprime factorizations of a transfer matrix P (see, e.g., [2, 13, 30]). We slightly change
the notation of the base ring from D to A in order to use the standard notation P = D−1N
chosen in control theory. We recall that an integral domain is a commutative domain.

Corollary 7. Let A be an integral domain, K = {d/n | d ∈ A\{0}, n ∈ A} its quotient field and
P = D−1N = Ñ D̃−1 a doubly coprime factorization of the transfer matrix P ∈ Kq×r, where
D ∈ Aq×q, N ∈ Aq×r, D̃ ∈ Ar×r and Ñ ∈ Aq×r, namely, there exist X ∈ Aq×q, Y ∈ Ar×q,
X̃ ∈ Ar×r and Ỹ ∈ Ar×q such that:(

D −N
−Ỹ X̃

)(
X Ñ

Y D̃

)
= Ip.

Then, we have the following A-isomorphism:

M = A1×q/(A1×qD) ∼= L = A1×r/
(
A1×r D̃

)
.

Moreover, if N admits a left-inverse over A and q ≥ r, then kerA(.Ñ) is a stably free A-module
of rank q − r. If kerA(.Ñ) is a free of rank q − r, then there exists a matrix Z ∈ Dq×(q−r) such
that W = (Z Ñ) ∈ GLq(A), V = (DZ N)−1 ∈ GLq(A) and V DW = diag(Iq−r, D̃).

More generally, if we set

1 ≤ s ≤ r,


N = (N1 N2), N1 ∈ Aq×(r−s), N2 ∈ Aq×s,

D̃ =

(
D̃1

D̃2

)
, D̃1 ∈ A(r−s)×r D̃2 ∈ As×r,
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then we have the following A-isomorphism:

Ms = A1×(q+r−s)/(A1×q (D −N1)) ∼= Ls = A1×r/(A1×s D̃2).

Moreover, if N2 admits a left-inverse over A and q ≥ s, then kerA(.(ÑT D̃T
1 )T ) is a stably free

A-module of rank q− s. If kerA(.(ÑT D̃T
1 )T ) is a free A-module of rank q− s, then there exists

Z = (ZT1 ZT2 )T ∈ D(q+r−s)×(q−s), where Z1 ∈ Aq×(q−s) and Z2 ∈ A(r−s)×(q−s), such that:
W =

(
Z1 Ñ

Z2 D̃1

)
∈ GLq+r−s(A),

V = ((D −N1)Z N2)−1 ∈ GLq(A),

V (D −N1)W = diag(Iq−s, D̃2).

Example 19. Let us consider the following rational transfer ([40])

P =
1

(x1 − x2 − 1)

(
−x2

2 − x1 x2 + x1 + x2 − 1 −2x2

x2
2 + x1 x2 − x1 + x2 x1 + x2 + 1

)
∈ K2×2,

where K = R(x1, x2, x3) is the quotient field of the integral domain A = R[x1, x2, x3]. Using the
algorithms for the computation of doubly coprime factorizations of rational transfer matrices
(when they exist) described in [13] and implemented in the package QuilenSuslin ([13]), we
obtain that P admits the doubly coprime factorization P = D−1N = Ñ D̃−1, where:

D =

(
x1 + x2 + 1 x1 + x2 − 1

x2
2 + x1 x2 − x1 + x2 x2

2 + x1 x2 − x1 − x2 + 1

)
,

N =

(
1 x1 + x2 + 1
0 x2

2 + x1 x2 − x1 + x2 − 1

)
,

X =

(
0 1
0 0

)
,

Y =

(
−1 0
0 1

)
,



D̃ =

(
2 0

−2x2 + 1 −2x1 + 2x2 + 2

)
,

Ñ =

(
−2x2 + 2 4x2

−1 −2x1 − 2x2 − 2

)
,

X̃ =
1
4

(
2 0
0 1

)
,

Ỹ =
1
4

(
0 0
1 1

)
.

For more details, see [13]. Hence, we obtain the following two A-isomorphisms

M = A1×2/(A1×2D) ∼= L = A1×2/(A1×2 D̃),

M1 = A1×3/(A1×2 (D −N1)) ∼= L1 = A1×2/(AD̃2),
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where N1 = (1 0)T and D̃2 = (−2x2 + 1 − 2x1 + 2x2 + 2). Finally, since the matrix N
(resp., N2 = (x1 + x2 + 1 x2

2 + x1 x2 − x1 + x1 − 1)T ) does not admit a left-inverse over A, we
cannot conclude on the possible equivalence of the matrices (D −N1) and diag(1, D̃2).

Corollary 7 has particularly interesting applications to stabilization problems studied in
control theory when A = RH∞, H∞(C+), H∞(D), A, Â, W+, . . . (see [30] and the references
therein). They will be developed in a forthcoming publication. Finally, if Ms is a torsion-free
A-module, then the presentation matrix Rs = (D −N1) of the A-module Ms corresponds to
the transfer matrix y = P u where the last s components of the input u, namely, ur+1−s, . . . , ur,
are set to 0. For more details, see [30].

5 Conclusion

In this paper, we have studied a constructive version of Serre’s reduction ([39]) and explained
its main interests in mathematical systems theory. Moreover, we have pointed out interesting
connections between Serre’s reduction and the problem of recognizing when a matrix over a
commutative polynomial ring with coefficients in a field is equivalent to its Smith normal form.
As we have shown on different explicit examples, Serre’s reduction of rather complicated linear
functional systems can sometimes be extremely simple and useful for the investigation of their
structural properties, their closed-form integration as well as numerical analysis issues.

Serre’s reduction of linear systems of partial differential equations with varying coefficients
is studied in more details in [10] and particularly in the case where ext1

D(M,D) is a so-called
holonomic right D-module.

Finally, the different algorithms explained in this paper will be soon available in the package
Serre ([11]) and a large library of examples will illustrate its functionalities and interest of
Serre’s reduction (for more examples of Serre’s reductions, see also [9]).
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Appendix: Worked examples using Maple

We now demonstrate how Serre’s reductions can be explicitly obtained on explicit examples
using the package OreModules ([7]). These different steps of Serre’s reduction will soon be
implemented in the package Serre ([11]).

We first need to call the package OreModules and the Maple library linalg:

> with(OreModules):

> with(linalg):

In the previous sections, we have used the notation D for a ring of functional operators.
Since this notation is protected in Maple, we shall now use the notation A instead of D.
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Example 20. We consider the linear system of ordinary differential time-delay equations defin-
ing a wind tunnel model studied in [23]:

ẋ1(t) + a x1(t)− k a x2(t− h) = 0,
ẋ2(t)− x3(t) = 0,
ẋ3(t) + ω2 x2(t) + 2 ζ ω x3(t)− ω2 u(t) = 0.

(37)

The presentation matrix of (37) is defined by

> R:=matrix(3,4,[d+a,k*a*delta,0,0,0,d,-1,0,0,omega^2,d+2*xi*omega,
> -omega^2]);

R :=


d+ a k a δ 0 0

0 d −1 0

0 ω2 d+ 2 ζ ω −ω2


where a, k, ω and ζ are constant parameters of the system. Let us now introduce the commu-
tative polynomial ring A = Q(a, k, ω, ζ)[d, δ] of ordinary differential time-delay operators, i.e.,
d y(t) = ẏ(t) and δ y(t) = y(t− h),

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[a,k,omega,xi]):

and the finitely presented A-module M = A1×4/(A1×3R). Let us show how to use Theo-
rem 5 to find Serre’s reduction of the corresponding differential time-delay system. As explained
in Section 3, the hypothesis of Theorem 5 can completely be checked when the A-module
ext1

A(M,A) = A3/(RA4) is 0-dimensional, i.e., a finite-dimensional Q(a, k, ω, ζ)-vector space
(see also Remark 3). Let us check whether or not this hypothesis is fulfilled using the command
DimensionRat of OreModules:

> DimensionRat(transpose(R),A);

0

Now, we can compute a finite basis of the Q(a, k, ω, ζ)-vector space ext1
A(M,A) using the function

KBasis of OreModules:

> KBasis(transpose(R),A);

[λ1]

We obtain that ext1
A(M,A) is a 1-dimensional Q(a, k, ω, ζ)-vector space defined by the residue

class τ(Λ) of the column vector Λ = (1 0 0)T in ext1
A(M,A). Hence, we can consider the

column vector Λ defined by:

> Lambda:=evalm([[1],[0],[0]]);

Λ :=


1

0

0


Let us now define the new matrix P = (R − Λ) ∈ D4×5:

> L:=augment(R,-Lambda);
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P :=


d+ a −k a δ 0 0 −1

0 d −1 0 0

0 ω2 d+ 2 ζ ω −ω2 0


Let us check whether or not the matrix P admits a right-inverse over A:

> S:=RightInverse(P,A);

S :=



0 0 0

0 0 0

0 −1 0

0 −d+2 ζ ω
ω2 −ω−2

−1 0 0


According to Theorem 4 and the Quillen-Suslin theorem (see 2 of Theorem 3), the A-module
E = A1×5/(A1×3 P ) is stably free, and thus, free of rank 2. Let us compute an injective
parametrization of the free A-module E:

> Q:=MinimalParametrization(P,A);

Q :=



−1 0

0 ω2

0 ω2 d

0 ω2 + d2 + 2 d ζ ω

−d− a −ω2 k a δ


We get kerA(.Q) = A1×3 P , i.e., Q is a parametrization of E. Let us check whether or Q admits
a left-inverse over A:

> T:=LeftInverse(Q,A);

T :=

[
−1 0 0 0 0

0 ω−2 0 0 0

]
The matrix Q is then an injective parametrization of E and the residue classes of the rows of
T define a basis of the free A-module E of rank 2. Let us now write Q = (QT1 QT2 )T , where
Q1 ∈ A4×2 is the matrix defined by

> Q_1:=submatrix(Q,1..4,1..2);

Q1 :=


−1 0

0 ω2

0 ω2 d

0 ω2 + d2 + 2 d ζ ω


and Q2 ∈ A1×3 is given by:

> Q2:=submatrix(Q,5..5,1..2);

Q2 :=
[
−d− a −ω2 k a δ

]
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Theorem 5 then shows that M ∼= A1×2/(AQ2), a fact proving kerF (R.) ∼= kerF (Q2.) for all
A-module F (see Corollary 3).

Let us now check whether or not the matrix R is equivalent to the block-diagonal matrix
R = diag(I2, Q2). The column vector Λ admits the following left-inverse:

> LeftInverse(Lambda,A); [
1 0 0

]
Let us check whether or not the A-module kerA(.Q1) is free of rank 2:

> K:=SyzygyModule(Q_1,A);

K :=

[
0 ω2 d+ 2 ζ ω −ω2

0 d −1 0

]
Since the matrix K satisfies kerA(.Q1) = A1×2K and K has full row rank

> SyzygyModule(K,A);

INJ (2)

we obtain that kerA(.Q1) = A1×2K ∼= A1×2 is a free A-module of rank 2. Hence, the hypotheses
of Corollary 5 are fulfilled. Let us now complete the matrix Q1 to a unimodular matrix W =
(Q3 Q1) ∈ GL4(A). We can take:

> Q_3:=RightInverse(K,A);

Q3 :=


0 0

0 0

0 −1

−ω−2 −d+2 ζ ω
ω2


The matrix W = (Q3 Q1) is then defined by:

> W:=augment(Q_3,Q_1);

W :=


0 0 −1 0

0 0 0 ω2

0 −1 0 ω2 d

−ω−2 −d+2 ζ ω
ω2 0 ω2 + d2 + 2 d ζ ω


Let us check again that the matrix W is unimodular, i.e., W ∈ GL4(A):

> W_inv:=inverse(W);

W inv :=


0 ω2 d+ 2 ζ ω −ω2

0 d −1 0

−1 0 0 0

0 ω−2 0 0


According to Corollary 5, the matrix X = (RQ3 Λ) defined by
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> X:=augment(Mult(R,Q3,A),Lambda);

X :=


0 0 1

0 1 0

1 0 0


is unimodular, i.e., X ∈ GL3(A), V = X−1 = X and the matrix R is equivalent to the block-
diagonal matrix V RW = diag(I2, Q2):

> Mult(X,R,W,A); 
1 0 0 0

0 1 0 0

0 0 −d− a −ω2 k a δ


The linear differential time-delay system (37) is then equivalent to the following single-input
single-output differential time-delay system:

ż(t) + a z(t) + ω2 k a v(t− h) = 0.

Then, we can then easily study the structural properties of the latter simple differential time-
delay system and of its associated A-module (e.g., torsion-free, δ-free), and thus those of (37).

Example 21. We consider the model (13) of a string with an interior mass studied in Ex-
amples 4, 10 and 13 (see also [25]). We first introduce the commutative polynomial ring
A = Q(η1, η2)[d, σ1, σ2] of ordinary differential incommensurable time-delay operators, where
d y(t) = ẏ(t) and σi y(t) = y(t− hi) for all i = 1, 2.

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[sigma[1],x[1]],
> dual_shift=[sigma[2],x[2]],polynom=[t,x[1],x[2]],comm=[eta[1],eta[2]]):

The presentation matrix R ∈ A4×6 of (13) is defined by:

> R:=matrix(4,6,[1,1,-1,-1,0,0,d+eta[1],d-eta[1],-eta[2],eta[2],0,0,
> sigma[1]^2,1,0,0,-sigma[1],0,0,0,1,sigma[2]^2,0,-sigma[2]]);

R :=


1 1 −1 −1 0 0

d+ η1 d− η1 −η2 η2 0 0

σ1
2 1 0 0 −σ1 0

0 0 1 σ2
2 0 −σ2


Let us illustrate Algorithm 1 with this example. As explained in Section 3, the hypothesis
of Theorem 5 can be completely checked when the A-module ext1

A(M,A) = A3/(RA4) is 0-
dimensional, i.e., is a finite-dimensional Q(η1, η2)-vector space. Let us check whether or not this
hypothesis is fulfilled using the command DimensionRat of OreModules:

> DimensionRat(transpose(R),A);

0

Now, we can compute a finite basis of the Q(η1, η2)-vector space ext1
A(M,A) using the command

KBasis of OreModules:

> KBasis(transpose(R),A);
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[λ4]

We obtain that the A-module ext1
A(M,A) = A3/(RA4) is a 1-dimensional Q(η1, η2)-vector space

of basis the residue class τ(Λ) of the column vector Λ = (0 0 1)T in ext1
A(M,A). Hence, let

us consider the column vector Λ = (0 0 1)T

> Lambda:=evalm([[0],[0],[0],[1]]);

Λ :=


0

0

0

1


the matrix P = (R − Λ) defined by

> P:=augment(R,-evalm([[0],[0],[0],[1]]));

P :=


1 1 −1 −1 0 0 0

d+ η1 d− η1 −η2 η2 0 0 0

σ1
2 1 0 0 −σ1 0 0

0 0 1 σ2
2 0 −σ2 −1


and the A-module E = A1×7/(A1×4 P ). Let us now check whether or not the A-module E is
free. According to Theorem 4, the full row rank matrix P presents a stably free A-module E iff
P admits a right-inverse over A. Let us check this point:

> RightInverse(P,A); 

0 0 −1 0

0 0 1 0

−1/2 −1/2 η2
−1 −η1

η2
0

−1/2 1/2 η2
−1 η1

η2
0

0 0 −σ1 0

−1/2σ2 1/2 σ2
η2

η1σ2

η2
0

−1/2 −1/2 η2
−1 −η1

η2
−1


We obtain that E is a stably free A-module, and thus, a free of rank 2 by the Quillen-Suslin
theorem (2 of Theorem 3). Let us compute a minimal parametrization of the A-module E:

> Q:=MinimalParametrization(P,A);
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Q :=



−2 η2 η2 σ1 0

0 −η2 σ1 0

−d− η1 − η2 σ1 η1 0

η1 − η2 + d −σ1 η1 0

−2 η2 σ1 −η2 + η2 σ1
2 0

η1 σ2 − σ2 η2 + σ2d −σ1 η1 σ2 1

−d− η1 − η2 σ1 η1 −σ2


Hence, we get kerA(.Q) = A1×4 P or equivalently E ∼= A1×7Q. Let us check whether or not this
parametrization is injective:

> T:=LeftInverse(Q,A);

T :=


0 0 −1/2 η2

−1 −1/2 η2
−1 0 0 0

0 −σ1
η2

σ1
η2

σ1
η2

−η2
−1 0 0

0 0 0 −σ2 0 1 0


We get T Q = I3, i.e., A1×7Q = A1×3, which proves that Q is an injective parametrization of
E. Let us now write Q = (QT1 QT2 )T , where the submatrix Q1 ∈ A6×3 is defined by

> Q_1:=submatrix(Q,1..6,1..3);

Q1 :=



−2 η2 η2 σ1 0

0 −η2 σ1 0

−d− η1 − η2 σ1 η1 0

η1 − η2 + d −σ1 η1 0

−2 η2 σ1 −η2 + η2 σ1
2 0

η1 σ2 − σ2 η2 + σ2 d −σ1 η1 σ2 1


and the matrix Q2 ∈ A1×3 is defined by:

> Q_2:=submatrix(Q,7..7,1..3);

Q2 :=
[
−d− η1 − η2 σ1 η1 −σ2

]
According to Theorem 5, we have M ∼= A1×3/(AQ2), which, using Corollary 3, proves again
that the linear system kerF (R.) is equivalent to kerF (Q2.), namely, (27).

Since the column vector Λ admits a left-inverse over A defined by

> LeftInverse(Lambda,A); [
0 0 0 1

]
the Quillen-Suslin theorem (3 of Theorem 3) implies that there exist two matrices V ∈ GL4(A)
and W ∈ GL6(A) such that V RW = diag(I3, Q2). For more details, see Corollary 5. Let us
compute such matrices V and W following Corollary 5. We first need to check that kerA(.Q1)
is a free A-module of rank 3:

> K:=SyzygyModule(Q_1,A);
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K :=


1 1 −1 −1 0 0

0 −2 η1 η1 − η2 + d d+ η2 + η1 0 0

0 −1 + σ1
2 −σ1

2 −σ1
2 σ1 0


Then, we get kerA(.Q1) = A1×3K. Moreover, K has full row rank since:

> SyzygyModule(K,A);

INJ (3)

Hence, we get A1×3K ∼= A1×3, a fact proving that kerA(.Q1) is a free A-module of rank 3. Let
us now compute a matrix Q3 ∈ A6×3 such that W = (Q3 Q1) ∈ GL6(A). We can take:

> Q_3:=RightInverse(K,A);

Q3 :=



1 0 1

0 0 −1

0 −1/2 η2
−1 η1

η2

0 1/2 η2
−1 −η1

η2

0 0 σ1

0 0 0


Then, the matrix W = (Q3 Q1) defined by

> W:=augment(Q_3,Q_1);

W :=



1 0 1 −2 η2 η2 σ1 0

0 0 −1 0 −η2 σ1 0

0 −1/2 η2
−1 η1

η2
−d− η1 − η2 σ1 η1 0

0 1/2 η2
−1 −η1

η2
η1 − η2 + d −σ1 η1 0

0 0 σ1 −2 η2 σ1 −η2 + η2 σ1
2 0

0 0 0 η1 σ2 − σ2 η2 + σ2 d −σ1 η1 σ2 1


is invertible over A, i.e., W ∈ GL6(A), and its inverse W−1 ∈ A6×6 is defined by:

> W_inv:=inverse(W);

W inv :=



1 1 −1 −1 0 0

0 −2 η1 η1 − η2 + d d+ η2 + η1 0 0

0 −1 + σ1
2 −σ1

2 −σ1
2 σ1 0

0 0 −1/2 η2
−1 −1/2 η2

−1 0 0

0 −σ1
η2

σ1
η2

σ1
η2

−η2
−1 0

0 −σ1
2 η1 σ2

η2
1/2

σ2 (2σ1
2 η1+η1−η2+d)
η2

1/2
σ2(2σ1

2 η1+η1−η2+d)
η2

−σ1 η1 σ2

η2
1


Finally, if we define the matrix X = (RQ3 Λ), namely,

> X:=augment(Mult(R,Q_3,A),Lambda);
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X :=


1 0 0 0

d+ η1 1 0 0

σ1
2 0 −1 0

0 1/2 −1+σ2
2

η2
−η1 (−1+σ2

2)
η2

1


then X is invertible over A, i.e., V ∈ GL4(A), and its inverse V = X−1 ∈ A4×4 is defined by:

> V:=inverse(X);

V :=


1 0 0 0

−d− η1 1 0 0

σ1
2 0 −1 0

1/2 (−1+σ2
2)(d+η1+2σ1

2 η1)
η2

−1/2 −1+σ2
2

η2
−η1 (−1+σ2

2)
η2

1


Finally, by Corollary 5, the matrix R is then equivalent to the matrix V RW = diag(I3, Q2):

> Mult(V,R,W,A); 
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −d− η1 − η2 σ1 η1 −σ2


Example 22. We consider the general transmission line (14) studied in Examples 5, 11 and 14.
Let A = Q(α, β)[dx, dt] be the ring of partial differential operators in dx and dt with coefficients
in the field Q(α, β)

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dt,t],polynom=[x,t],
> comm=[L,R,C,G,alpha,beta]):

and the presentation matrix J ∈ A2×2 defined by (15), namely:

> J:=evalm([[dx,L*dt+R],[C*dt+G,dx]]);

J :=

[
dx Ldt +R

Cdt +G dx

]
Let us introduce the column vector Λ = (α β)T , where α and β are two arbitrary constants:

> Lambda:=evalm([[alpha],[beta]]);

Λ :=

[
α

β

]
If we now consider the new matrix P = (J − Λ), namely,

> P:=augment(J,-Lambda);

P :=

[
dx Ldt +R −α

Cdt +G dx −β

]
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then we can check that P does not admit a right-inverse over A:

> RightInverse(P,A);

[]

Hence, the A-module E = A1×3/(A1×2 P ) is generically not a stably free A-module. Let us
determine the obstructions for E to be a stably free A-module:

> pi:=map(collect,PiPolynomial(P,A),{dx,dt},distributed);
π := [Rβ2 − α2G+

(
−α2C + Lβ2

)
dt , αCRβ − αLβ G+

(
−α2C + Lβ2

)
dx ]

The obstructions are defined by the two polynomials π1 and π2. Let us now check whether or
not there exist particular values for the arbitrary parameters α and β so that π1 or π2 is reduced
to a non-zero constant. The first entry π1 of π becomes Rβ2 − Gα2 if we set the coefficient
−C α2 + Lβ2 of dt to 0. The solutions of −C α2 + Lβ2 = 0 are then:

> sols:=solve({-alpha^2*C+L*beta^2},{alpha,beta});

sols :=

{
α =

√
LCβ

C
, β = β

}
,

{
α = −

√
LCβ

C
, β = β

}
For the first solution of −C α2 + Lβ2 = 0, the value of Rβ2 −Gα2 becomes:

> factor(subs(sols[1],R*beta^2-alpha^2*G));

−β
2 (−RC + LG)

C

For the second solution of −C α2 + Lβ2 = 0, the value of Rβ2 −Gα2 becomes:

> factor(subs(sols[2],R*beta^2-alpha^2*G));

−β
2 (−RC + LG)

C

Hence, for these two solutions, the values of Rβ2−Gα2 are the same and are non-zero whenever
−RC+LG 6= 0. In other words, if we set −C α2 +Lβ2 = 0 and −RC+LG 6= 0, then the first
obstruction π1 is reduced to a non-zero constant. This particular choice is a good candidate for
P to admit a right-inverse.

Let us study the second obstruction π2. Let us set the coefficient −C α2 + Lβ2 of dx to 0.
Then, the parameters α and β must satisfy:

> sols2:=solve({-alpha^2*C+L*beta^2},{alpha,beta});

sols2 :=

{
α =

√
LCβ

C
, β = β

}
,

{
α = −

√
LCβ

C
, β = β

}
For the first solution of −C α2 + Lβ2 = 0, the constant term of π2 becomes:

> factor(subs(sols2[1],alpha*C*R*beta-alpha*L*beta*G));

−
√
LCβ2 (−RC + LG)

C

For the second solution of −C α2 + Lβ2 = 0, the constant term of π2 becomes:

> factor(subs(sols2[2],alpha*C*R*beta-alpha*L*beta*G));
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√
LCβ2 (−RC + LG)

C

Therefore, if we choose the parameters α and β to satisfy the conditions −C α2 + Lβ2 = 0 and
−RC+LG 6= 0, then π2 is reduced to a non-zero constant. This particular choice of conditions
on α and β is a good candidate for P to admit a right-inverse.

Let us check whenever or not the first choice of conditions on α and β is a good one (one can do
the same for the second one). To simplify, we first fix β = C and take α to satisfy the equation
α2 = LC. We then define the new ring B = (Q(α, β)[α]/(α2 − LC))[dx, dt]:

> B:=DefineOreAlgebra(diff=[dx,x],diff=[dt,t],polynom=[x,t],
> comm=[L,R,C,G,alpha],alg_relations=[alpha^2-L*C]):

The column vector Λ then becomes

> Lambda_2:=subs(beta=C,evalm(Lambda));

Λ2 :=

[
α

C

]
and the matrix P becomes the matrix P2 defined by:

> P_2:=subs(beta=C,evalm(P));

P2 :=

[
dx Ldt +R −α

Cdt +G dx −C

]
Let us check whether of this last matrix admits a right-inverse over B:

> simplify(subs(alpha^2=L*C,RightInverse(P_2,B)));
− α
−RC+LG

L
−RC+LG

− C
−RC+LG

α
−RC+LG

−αCdt+αG+Cdx
C(−RC+LG)

RC+LCdt+α dx
C(−RC+LG)


Therefore, the B-module E = B1×3/(B1×2 P2) finitely presented by the last matrix P2 is stably
free and thus free by the Quillen-Suslin theorem. Let us compute a minimal parametrization of
the free B-module E of rank 1:

> Q:=MinimalParametrization(P_2,B);

Q :=


−α2dt + α dx −RC

−αCdt − αG+ Cdx

−α2dt2 − LGdt + dx 2 −GR− Cdt R


Therefore, kerB(.Q) = B1×2 P2 or, equivalently, E ∼= B1×3Q. Let us check whether or not this
parametrization Q is injective:

> T:=LeftInverse(Q,B);

T :=
[
− C
−α2G+RC2

α
−α2G+RC2 0

]
We obtain T Q = 1, which proves that Q is an injective parametrization of the free B-module
E, i.e., E ∼= D1×3Q = D. In particular, the residue class τ(T ) in E defines a basis of the free
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B-module E and the generators {V = τ(h1), I = τ(h2), H = τ(h3)} of E, where {hi}i=1,2,3 is the
standard basis of A1×3, satisfying the B-linear relation P (V I H)T = 0, can be expressed as
(V I H)T = Qρ(T ). For more details, see [13, 33].

Let us denote by Q1 the first two entries of Q

> Q_1:=submatrix(Q,1..2,1..1);

Q1 :=

[
−α2dt + α dx −RC

−αCdt − αG+ Cdx

]
and Q2 the last one:

> Q_2:=collect(submatrix(Q,3..3,1..1),{dx,dt},distributed);
Q2 :=

[
−GR+ (−RC − LG) dt + dx 2 − α2dt2

]
Theorem 5 then shows that M ∼= B/(BQ2), i.e., M is a cyclic B-module.

Since the column vector Λ admits the following left-inverse over B

> Gamma:=LeftInverse(Lambda_2,B);

Γ :=
[

0 C−1
]

Corollary 5 shows that the matrix J is equivalent to diag(1, Q2), i.e., V J W = diag(1, Q2),
where V, W ∈ GL2(A). Let us compute the unimodular matrices V and W . We first compute
kerB(.Q1):

> K:=SyzygyModule(Q_1,B);

K :=
[
−αCdt − αG+ Cdx RC + α2dt − α dx

]
Since kerB(.Q1) = BK, the B-module kerB(.Q1) is free of rank 1. In particular, if we compute
a right-inverse Q3 of the row vector K

> Q_3:=RightInverse(K,B);

Q3 :=

[ α
−α2G+RC2

C
−α2G+RC2

]
then we obtain the following matrix W = (Q3 Q1)

> W:=simplify(subs(alpha^2=L*C,augment(Q_3,Q_1)));

W :=

[
− α
C(−RC+LG) −LCdt + α dx −RC

− (−RC + LG)−1 −αCdt − αG+ Cdx

]
and W ∈ GL2(B) since:

> W:=simplify(subs(alpha^2=L*C,det(W)));

1

Finally, if we define the matrix X = (J Q3 Λ), namely,

> X:=simplify(subs(alpha^2=L*C,augment(Mult(J,Q_3,B),Lambda_2)));

X :=

 −RC+LCdt+α dx
C(−RC+LG) α

−αCdt+αG+Cdx
C(−RC+LG) C


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then its inverse V is defined by

> V:=simplify(subs(alpha^2=L*C,LeftInverse(X,B)));

V :=

[
C −α

αCdt+αG+Cdx
C(−RC+LG) −RC+LCdt+α dx

C(−RC+LG)

]
i.e., V ∈ GL2(B), and we finally have V J W = diag(1, Q2):

> map(collect,simplify(subs(alpha^2=L*C,Mult(V,J,W,B))),{dx,dt},
> distributed); [

1 0

0 −GR+ (−RC − LG) dt − Cdt2L+ dx 2

]
Example 23. We consider the conjugate Beltrami equations (16) studied in Examples 6, 12
and 15. We first introduce the first Weyl algebra A = A2(Q) = Q[x, y][dx, dy] of differential
operators in dx and dy with coefficients in the commutative polynomial ring Q[x, y]:

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[a,b]):

The presentation matrix (16) is defined by:

> R:=evalm([[dx, -x*dy],[dy, x*dx]]);

R :=

[
dx −xdy

dy xdx

]
Let us introduce the following column vector

> Lambda:=evalm([[a],[b]]);

Λ :=

[
a

b

]
where a and b are two arbitrary constants, and the matrix P = (R − Λ) defined by:

> P:=augment(R,-Lambda);

P :=

[
dx −xdy −a

dy xdx −b

]
Let us check whether or not the matrix P admits a right-inverse over A:

> RightInverse(P,A);
x(axdx+xdy b+a)

a −x(axdx+xdy b+a)
b

−ady x−2 b−dx bx
a

ady x−2 b−dx bx
b

x(xdx2+3 dx+xdy2)
a −1+x2dx2+3xdx+x2dy2

b


We obtain that P admits the previous right-inverse whenever a 6= 0 and b 6= 0, which shows
that P generically admits a right-inverse over A. We shall suppose that a 6= 0 and b 6= 0 in what
follows. Then, the left A-module E = A1×3/(A1×2 P ) is a stably free of rank 1.

Let us compute minimal parametrizations of E, namely, matrices Li ∈ A3 such that the left
A-modules Ni = A/(A1×3 Li) are torsion and kerA(.Li) = A1×2R, i.e., E ∼= A1×3 Li.
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> L:=map(collect,MinimalParametrizations(P,A),{x,y,dx,dy},distributed):

> nops(L);

2

The OreModules command MinimalParametrizations returns 2 minimal parametriza-
tions. The first one is

> L[1]; 
axdy2b− adx 2bx+ adx b+ dy b2 +

(
a2 − b2

)
dy xdx

−a2dy2 + 2 ady dx b− dx 2b2

adx 2xdy + ady dx + ady3x− dx 3bx+ dy2b− dx dy2bx


and the second one is:

> L[2];
−ba2 − xdy a3 + dx ba2x− a

(
a2 + b2

)
x2dy dx − b

(
a2 + b2

)
x2dy2

a
(
a2 + b2

)
xdy2 + dx b2a− b

(
3 a2 + 2 b2

)
dy − b

(
a2 + b2

)
dy xdx

axdy2b+ adx 2bx− a2dy −
(
a2 + b2

)
dx 2x2dy −

(
a2 + b2

)
x2dy3 − 3

(
a2 + b2

)
dy xdx


Let us check whether or not they are injective, i.e., whether or not they admit a left-inverse:

> map(LeftInverse,L,A);

[[], []]

None of them is injective. The left A-module N1 = A/(A1×3 L1) is then defined by

> J_1:=map(collect,Exti(Involution(Min[1],A),A,1),{dx,dy,x,y},distributed);

J1 := [

[
dx 2b2 − 2 ady dx b+ a2dy2(

−b2a− a3
)
xdy2 − dx b2a− dy b3 +

(
ba2 + b3

)
xdy dx

]
,
[

1
]
,SURJ (1)]

i.e., the two entries of the first matrix J1[1] of J1 annihilate the generator σ1(1) of N1, where
σ1(1) denotes the residue class of the standard basis 1 of A in N1.

> J_2:=map(collect,Exti(Involution(Min[2],A),A,1),{dx,dy,x,y},distributed);

J2 := [

[
−dx b2a+

(
2 b3 + 3 ba2

)
dy +

(
ba2 + b3

)
xdy dx +

(
−b2a− a3

)
xdy2

a2b2 +
(
−2 a3b− 2 ab3

)
xdy +

(
2 a2b2 + a4 + b4

)
x2dy2

]
,
[

1
]
,SURJ (1)]

Similarly, the two entries of the first matrix J2[1] of J2 annihilates the generator σ2(1) of N2,
where σ2(1) denotes the residue class of 1 in the left A-module N2 = A/(A1×3 L2), i.e., σ2(1)
satisfies di σ2(1) = 0, for i = 1, 2, where d1 ∈ A is defined by

> N2[1][1,1];

−dx b2a+
(
2 b3 + 3 ba2

)
dy +

(
ba2 + b3

)
xdy dx +

(
−b2a− a3

)
xdy2

and d2 is defined by:

> N2[1][2,1];

a2b2 +
(
−2 a3b− 2 ab3

)
xdy +

(
2 a2b2 + a4 + b4

)
x2dy2
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Since the two entries of J1[1] do not contain constant terms, they cannot be equal to non-
zero constants for particular values of the constants a and b. The same comment holds for d1.
However, the coefficients of d2 in dx and dy are:

> l:=[coeffs(%,{dx,dy})]: coefs:=map(factor,map(coeffs,l,x));

coefs := [a2b2,
(
a2 + b2

)2
,−2 ba

(
a2 + b2

)
]

Let us find a and b such that d2 becomes the non-zero constant −1:

> Eqs:={coefs[1]=-1,seq(coefs[i]=0,i=2..nops(coefs))};

Eqs :=
{(
a2 + b2

)2 = 0, a2b2 = −1,−2 ba
(
a2 + b2

)
= 0
}

> Sols:=solve(Eqs,{a,b});
Sols :=

{
a = RootOf

(
Z 2 + 1

)
, b = 1

}
,
{
a = RootOf

(
Z 2 + 1

)
, b = −1

}
,{

a = 1, b = RootOf
(

Z 2 + 1
)}
,
{
a = −1, b = RootOf

(
Z 2 + 1

)}
For instance, if we take a = 1 and b = i, then the coefficients of d2 become:

> subs({a=1,b=I},coefs);
[−1, 0, 0]

Hence, let us consider the new ring B = Q[i]/(i2 + 1)[x, y][dx, dy] of differential operators in dx
and dy with coefficients in the field Q(i) = Q[i]/(i2 + 1):

> B:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[i,a,b],
> alg_relations=[i^2=-1]):

The column vector Λ is then

> Lambda_2:=subs({a=1,b=i},evalm(Lambda));

Λ2 :=

[
1

i

]
and the matrix P becomes:

> P_2:=simplify(subs({i^2=-1,i^3=-i},subs({a=1,b=i},evalm(P))));

P2 :=

[
dx −xdy −1

dy xdx −i

]
Substituting a = 1 and b = i into L2, we obtain the matrix Q defined by:

> Q:=simplify(subs({i^2=-1,i^3=-i},subs({a=1,b=i},evalm(L[2]))));

Q :=


−i− xdy + dx ix

−dx − dy i

xdy2i+ dx 2ix− dy


We can check that the last matrix defines a minimal parametrization of B1×3/(B1×2 P2):

> MinimalParametrizations(P_2,B);
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[


−dx ix+ i+ xdy

dx + dy i

−dx 2ix+ dy − xdy2i

]

Moreover, the minimal parametrization Q admits a left-inverse over B defined by:

> T:=LeftInverse(Q,B);

T :=
[
−i−1 −x 0

]
Hence, the left B-module F = B1×3/(B1×2 P2) is free of rank 1 and Theorem 5 shows that F is
isomorphic to the cyclic left B-module B/(BQ2), where Q2 is defined by:

> Q_2:=submatrix(Q,3..3,1..1);

Q2 :=
[
xdy2i+ dx 2ix− dy

]
Moreover, the column vector Γ admits the following left-inverse Γ over B:

> Gamma:=LeftInverse(Lambda_2,B);

Γ :=
[

0 i−1
]

If we denote by Q1 ∈ B2 defined by the first two components of Q

> Q_1:=submatrix(Q,1..2,1..1);

Q1 :=

[
−i− xdy + dx ix

−dx − dy i

]
then Corollary 5 shows that kerB(.Q1) is a stably free left B-module of rank 1. Moreover, we
have kerB(.Q1) = BK, where the matrix K is defined by

> K:=SyzygyModule(Q_1,B);

K :=
[
−dx i+ dy dy ix+ xdx

]
i.e., kerB(.Q1) is a free left B-module of rank 1. Corollary 5 then shows that the matrices R
and diag(1, Q2) are equivalent, where Q2 = i x (dx2 + dy2) − dy. Let us compute two matrices
V, W ∈ GL2(B) such that V RW = diag(1, Q2).

The right-inverse Q3 of K over B defined

> Q_3:=RightInverse(K,B);

Q3 :=

[
−x
i

−1

]
is such that the following matrix W = (Q3 Q1) defined by

> W:=augment(Q_3,Q_1);

W :=

[
−x
i −i− xdy + dx ix

−1 −dx − dy i

]
is unimodular, i.e., W ∈ GL2(B):

> W_inv:=LeftInverse(W,B);
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W inv :=

[
−dx i+ dy dy ix+ xdx

i −x

]
Moreover, the matrix X = (RQ3 Λ) defined by

> X:=augment(Mult(R,Q_3,B),Lambda_2);

X :=

[ −xdx−1+dy ix
i 1

−x(dy+dx i)
i i

]
i.e., after simplifications, by

> map(expand,subs(i=I,evalm(X)));[
ixdx + i+ xdy 1

idy x− xdx i

]
is also unimodular, i.e., X ∈ GL2(B), and its inverse V = X−1 is defined by

> V:=LeftInverse(X,B);

V :=

[
i−1 1

−xdx + dy ix −i− xdy − dx ix

]
or, equivalently, after simplifications, by

> map(expand,subs(i=I,evalm(V)));[
−i 1

idy x− xdx −i− xdy − ixdx

]
Finally, we obtain that V RW = diag(1, Q2):

> map(collect,subs(i=I,Mult(V,R,W,B)),x);[
1 0

0 ix
(
dx 2 + dy2

)
− dy

]

Finally, we refer the reader to Serre webpages ([11]) for a library of examples coming from
mathematical systems theory, control theory, engineering sciences and mathematical physics.
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