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Abstract: The grade filtration of a finitely generated left module M over an Auslander reg-
ular ring D is a built-in classification of the elements of M in terms of their grades (or their
(co)dimensions if D is also a Cohen-Macaulay ring). In this paper, we show how grade filtra-
tion can be explicitly characterized by means of elementary methods of homological algebra.
Our approach avoids the use of sophisticated methods such as bidualizing complexes, spectral
sequences, associated cohomology, and Spencer cohomology used in the literature of algebraic
analysis. Efficient implementations dedicated to the computation of grade filtration can then
be easily developed in the standard computer algebra systems (see the Maple package PURI-
TYFILTRATION and the GAP4 package AbelianSystems). Moreover, this characterization of
grade filtration is shown to induce a new presentation of the left D-module M which is defined
by a block-triangular matrix formed by equidimensional diagonal blocks. The linear functional
system associated with the left D-module M can then be integrated in cascade by successively
solving inhomogeneous linear functional systems defined by equidimensional homogeneous linear
systems of increasing dimension. This equivalent linear system generally simplifies the compu-
tation of closed-form solutions of the original linear system. In particular, many classes of
underdetermined/overdetermined linear systems of partial differential equations can be explic-
itly integrated by the packages PURITYFILTRATION and AbelianSystems, but not by computer
algebra systems such as Maple.
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Filtration par grade des systemes linéaires fonctionnels

Résumé : La filtration par grade d’'un module a gauche M finiment engendré sur un anneau
Auslander-régulier D est une classification intrinseque des éléments de M en fonction de leurs
grades (ou de leurs (co)dimensions si D est aussi un anneau de Cohen-Macaulay). Dans ce
papier, nous montrons comment la filtration par grade peut étre explicitement caractérisée au
moyen de techniques élémentaires d’algebre homologique. Notre approche évite 'utilisation de
techniques sophistiquées telles que les complexes bidualisants, les suites spectrales, la cohomolo-
gie associée et la cohomologie de Spencer utilisées dans la littérature d’analyse algébrique. Des
implantations efficaces dédiées au calcul de la filtration par grade peuvent alors étre facilement
développées dans les systemes standards de calcul formel (voir le package PURITYFILTRATION
de Maple et le package AbelianSystems de GAP4). De plus, cette caractérisation de la filtra-
tion par grade induit une nouvelle présentation du D-module a gauche M qui est définie par
une matrice triangulaire par blocs formée de blocs diagonaux équidimensionnels. Le systeme
linéaire fonctionnel associé au D-module a gauche M peut alors étre intégré en cascade par la
résolution successive de systemes linéaires fonctionnels inhomogenes définis par des systemes
linéaires homogenes équidimensionnels de dimension croissante. Ce systéme linéaire équivalent
simplifie généralement le calcul des solutions sous formes closes du systeme linéaire originel.
En particulier, de nombreux systémes linéaires sur-déterminés/sous-déterminés d’équations aux
dérivées partielles peuvent étre explicitement intégrés au moyen des packages PURITYFILTRA-
TION et AbelianSystems, alors qu’ils ne peuvent I’étre par des systemes de calcul formel tels
que Maple.

Mots-clés : Analyse algébrique, filtration par grade, théorie des modules, algebre homologique,
calcul formel, théorie mathématique des systémes, systémes linéaires fonctionnels sur-déterminés/
sous-déterminés, systemes linéaires d’équations aux dérivées partielles.
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1 Introduction

The theory of linear functional systems such as linear systems of partial differential/time-delay/
difference equations is a rich branch of mathematics which finds its foundation in mathematical
physics. Different analytic methods can be used to study determined linear functional sys-
tems (see, e.g., [19]), namely linear functional systems containing as many unknown functions
as functionally independent linear equations. Querdetermined (resp., underdetermined) linear
functional systems, namely linear functional systems containing fewer (resp., more) unknown
functions than functionally independent linear equations, also find important applications in
mathematical physics (see, e.g., [13, 38]), in differential geometry (see, e.g., [24, 38]), or in
mathematical systems theory (see, e.g., [14, 36, 38, 40]). Formal methods for studying overde-
termined linear systems of PD equations can be traced back to the works of Cartan, Riquier and
Janet [27]. A modern approach was developed in the sixties by Spencer and his collaborators
(see, e.g., [38, 51]). Grdébner bases and Janet bases [12, 27] over a noncommutative polynomial
ring of functional operators are nowadays two fundamental computational tools for the formal
study of overdetermined linear functional systems (see, e.g., [14, 31, 48]).

Despite these important computational methods, computer algebra systems still have many
difficulties to find closed-form solutions of overdetermined or undetermined linear functional sys-
tems (when they exist), for instance of linear systems of PD equations. One of the main reasons
for this failure is that linear functional systems generally mix together unknown functions which
satisfy linear functional systems of different dimension. For instance, the integration of the
unknown functions of an overdetermined linear systems of PD equations depends on arbitrary
functions of a certain number of the independent variables (due to the Cartan-Kdahler-Janet
theorem which generalizes the well-known Cauchy-Kowalevski theorem) (see, e.g., [27, 38, 51]).
The maximal number of independent variables which appear in these arbitrary functions (some-
times plus the number of independent variables) is called the dimension of the system. Hence, an
important issue for the study of overdetermined linear functional systems is to determine the un-
known functions or their linear functional combinations which satisfy a linear functional system
of a given dimension. This problem, related to the equidimensional decomposition of algebraic
varieties (see, e.g., [20, 25, 49]), has lengthly been studied within algebraic analysis and alge-
braic/analytic D-module theory [9, 10, 11, 33] by Roos [49], Sato and Kashiwara [29, 30], Bjork
[9, 10], Ginsburg [23], and others. This problem corresponds to the so-called grade filtration
{M;}i>o (also called bidualizing or purity filtration) of the finitely generated left D-module M
which defines the linear system of PD equations, where D is a noncommutative polynomial ring
of PD operators satisfying certain regularity conditions (e.g., D is an Auslander regular ring).
This filtration of M is defined by the left D-submodules M;’s of M formed by the elements of
M having a codimension (or a grade) greater or equal to i. The existence of the grade filtra-
tion of a finitely generated left/right module M over an Auslander regular ring D is proved in
[9, 10, 23, 32, 49] (resp., in [30, 29]) using bidualizing complexes and spectral sequence arguments
(resp., derived categories, derived functors and associated cohomology [25]), i.e., by means of
sophisticated homological algebra techniques (resp., modern developments of category theory).
See also [38, 39] (resp., [37]) for a recent study of grade filtration based on Spencer cohomology
and Spencer sequences (resp., Gabriel localization for commutative polynomial rings). Despite
the difficulties for the computation of the spectral sequences defining the grade filtration, they
were recently made constructive in [2, 3] thanks to the new concept of generalized morphisms,
and they were implemented in the homalg package [8] of the system GAP4 [22] (homalg is a
package dedicated to homological algebra oriented computations). To our knowledge, it is the
first implementation of the computation of the grade filtration in a computer algebra system.

RR n°® 7769
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We refer the reader to [20, 25, 49] (resp., [9, 10, 23, 29]) for applications of grade filtration to
algebraic geometry (resp., algebraic analysis). Finally, techniques based on grade filtration have
recently been introduced in mathematical systems theory (see [4, 37, 38, 39, 40, 41, 42, 43, 44]).

The purpose of this paper is to develop a new algorithm which computes the grade filtration
of a finitely generated left module M over a noetherian reqular domain D satisfying a slightly
weaker condition than the standard Auslander condition (see, e.g., [9, 10]). In particular, many
important classes of noncommutative polynomial rings of functional systems satisfy these condi-
tions. The first benefit of this new algorithm is that it is an extension of the methods developed
in [1, 14, 30, 38, 40] for the classification of modules (torsion modules, modules with torsion
submodules, torsion-free/reflexive/projective modules). These methods have recently been ap-
plied to solve the problem of parametrizing underdetermined linear functional systems by means
of arbitrary functions (potentials) studied in mathematical physics and in control theory (see
[14, 15, 21, 38, 40, 53]). The second benefit of this algorithm is that it is conceptually much
simpler than the algorithms based on bidualizing complexes, spectral sequences and associated
cohomology. In particular, it can be easily implemented in any computer algebra system in
which Grébner basis techniques are available (e.g., Maple, Mathematica, Singular, Macaulay2,
Magma). The corresponding algorithm was implemented by the author in the Maple package
PURITYFILTRATION [45] built upon OREMODULES [15]. Using the PURITYFILTRATION pack-
age, classes of overdetermined/underdetermined linear systems of PD equations which cannot
be directly integrated by Maple can be explicitly solved [45] (see also the forthcoming homalg
based package D-modules). Moreover, the algorithm has also been implemented recently in
the homalg project package AbelianSystems [7] developed in collaboration with M. Barakat
(University of Kaiserslautern). This implementation is much faster than the original homalg
command based on spectral sequence computation (10 times faster on small PD examples), and
thus it can be used to study larger examples. We hope that the results developed in this paper
and demonstrated by the PURITYFILTRATION and AbelianSystems packages will be used in
the future to improve standard computer algebra systems such as Maple or Mathematica for
the symbolic integration of overdetermined /underdetermined linear functional systems. More
generally, this new algorithm holds for constructive abelian categories [6], and thus it can be
used in different contexts such as the computation of the grade filtration of coherent sheaves
over projective schemes as shown in the homalg project package Sheaves [5].

Since techniques of module theory, homological algebra and algebraic analysis are not largely
well-known, they are summarized in Section 2. The main results about grade filtration are de-
veloped in Section 3. In Section 4, we show how the concept of grade filtration can be used to
compute an equivalent block-triangular form of a linear functional system whose diagonal blocks
define equidimensional linear functional systems. The integration of the original system is then
equivalent to a cascade integration of inhomogeneous linear functional systems, the correspond-
ing homogeneous linear systems being equidimensional and of increasing dimension (e.g., we first
integrate a 0-dimensional/holonomic homogenous linear system, then an inhomogeneous linear
systems defined by a 1-dimensional/subholonomic homogeneous linear system, ... ). In Section 5,
we briefly give a few extensions of the results obtained in Section 3. Finally, in Appendix, we
demonstrate the PURITYFILTRATION package through different explicit examples.

2 Algebraic analysis approach to linear functional systems

In what follows, D will always be a noetherian ring, i.e., a ring D that is both a left and a
right noetherian ring (see, e.g., [50]). Moreover, the set of ¢ x p matrices with entries in D is

RR n°® 7769
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denoted by D9*P and the unit of the ring DP*P by I,. If F is a left D-module (e.g., F = D)
and R € D?7*P_ then .R and R. are respectively the left D-homomorphism (i.e., the left D-linear
map) and the abelian group homomorphism (i.e., Z-homomorphism) defined by:

.R: D1 — DWp R.: FP — F4
A=(A1 ... A) — AR, n=0m ... )T — Rn.

With the above notations, we call linear system an abelian group of the form:
kerr(R.) = {n e FP| Rn=0}.

The study of kerz(R.) in terms of the finitely presented left D-module M = DY*P/(D'*4 R)
and of the left D-module F was first developed in [34]. This idea is nowadays the cornerstone of
the algebraic D-module theory (or algebraic analysis), developed by Bernstein and Sato’s school
(particularly by Kashiwara), in which D stands for a noncommutative ring of partial differential
(PD) operators with coefficients in a differential ring (see, e.g., [9, 10, 11, 30, 33]). More precisely,
if A is a ring and {d;}i=1,...n are n commuting derivations of A, namely, 6;: A — A satisfies
di(ar + a2) = 6;(a1) + di(a), di(a1az) = d;(ar)az + a1 d;(az) for all a1, az € A and for all
i=1,...,n, and §; 0; = §;09; for all 4,5 = 1,...,n, then the ring D = A(01,...,0,) of
PD operators with coefficients in A is the noncommutative polynomial ring in 0y, ..., d, which
satisfies the relations 0;a = a 0; + d;(a) for all a € A and for all i = 1,...,n, and 0;0; = 0, 0;
for all 4,5 = 1,...,n. Prototype examples of a ring D of PD operators are the so-called Weyl
algebras Ay (k) and By (k) of PD operators with respectively coefficients in A = k[x1,...,x,]
and in A = k(x1,...,2,), where k is a field (that we shall suppose to be of characteristic 0),
Dy (k), or Dy (k') the rings of PD operators with coefficients in the ring of formal power series
A = k[z1,...,x,] or in the ring of locally convergent power series A = k'{z1,...,x,}, where
kK =R or C. These rings are noetherian domains (see, e.g., [9, 11, 33]). If D is a ring of PD
operators and F a left D-module (e.g., F = A), then R € D?7*P is a matrix of PD operators and
the linear system kerz(R.) is the k-vector space formed by the F-solutions of the linear system
of PD equations Rn = 0. Within algebraic analysis, more general classes of noncommutative
polynomial rings of functional operators can be considered such as Ore algebras as explained in
[14], which allows one to consider a more general class of linear functional systems.

Let us now explain basic ideas of algebraic analysis. Let m: D' — M be the left D-
homomorphism which maps A € D7 to its residue class w(\) € M, and {f;}j=1..p the
standard basis of DY*P| namely, f; is the row vector of length p with 1 at the 4™ position and
0 elsewhere. Then, {y; = 7(fj)}j=1,..n is a family of generators of M since for every m € M,
there exists A = (A1 ... \p) € DYP such that m = 7()\), which yields:

P p P
m=n(\)=m Z/\jfj :Z)\jﬁ(fj)zz)‘jyf
j=1 Jj=1 J=1

The family of generators {y;};—1,.. , of M satisfies D-linear relations: if R;, denotes the it™? row
of R, then R;s € D9 R, which yields 7(R;s) = 0, and thus:

p p p
Vi=1,...,q, 7(Rie)=m ZRijfj IZRz'jW(fj) :ZRijyj =0.
=1 =1 =1

Ify=(y1 ... yp)T € MP, then the above relations can be rewritten as Ry = 0.

RR n°® 7769
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Now, if F is a left D-module, homp (M, F) the abelian group of left D-homomorphisms from
M to F, and ¢ € homp (M, F), then n = (¢(y1) ... ¢(y,))T € FP and

p p p
Vi=1,...,q, ZRijnj:ZRij¢(yj):¢ ZRijyj :d)(O):O,
j=1 j=1 j=1

ie., n € kerr(R.). Conversely, if ) € kerr(R.), then we can define the map ¢,: M — F by
¢y(m(N)) = An for all A € D*P. Indeed, ¢, is well-defined: if 7(\) = w(\), then A = X + u R,
for a certain p € D*4, which yields ¢, (m(\)) = An= N n+puRn = XNn. The map ¢, is clearly
left D-linear and ¢,(0) = 0 since ¢, (E?:l R;; yj) = E?:l Rijnj =0foralli=1,...,¢, and
thus ¢, € homp (M, F). If we introduce the following abelian group homomorphisms

o: kerr(R.) — homp(M,F) x:homp(M,F) — kerg(R.)
N o, ¢ — (ey) - o))",
then x 0 0 = idyer, (g, since ¢y(y;) = n; for all j = 1,...,p, and 0 0 X = idyom,(ar,F) since

(0 0X)(D) = Do) ... (yp))T = ¢» Which shows that x~! = o, and proves that kerr(R.) and

homp (M, F) are isomorphic as abelian groups, which is denoted by kerz(R.) = homp (M, F).
Theorem 1 ([34]). With the previous notations, we have:

ker]:(R.) = hOIIlD(M, .7:)

Theorem 1 shows that the linear system kerz(R.) can be intrinsically studied by means of the
two left D-modules M = D**P/(D'*4 R) and F. The matrix R is a particular finite presentation
of the left D-module M defined up to isomorphism (see, e.g., [50]). Hence, we can study the
solution space homp (M, F) independently of the particular embedding of ker+(R.) into FP. A
second benefit of Theorem 1 is that the linear system kerz(R.) can be studied by means of the
properties of the left D-modules M and F.

Definition 1 ([50]). Let D be a noetherian ring and M a finitely generated left D-module.

1. M is free if there exists 7 € N = {0,1,2,...} such that M = D'*". Then, r is then called
the rank of M.

2. M is projective if there exist 7 € N and a left D-module N such that M @& N = D",
where @ denotes the direct sum of left D-modules.

3. M is reflexive if the left D-homomorphism ¢: M — homp(homp (M, D), D), defined by
e(m)(f) = f(m) for all m € M and for all f € homp(M, D), is an isomorphism.

4. If D is a domain, then M is torsion-free if the torsion left D-submodule of M defined by
t(M)={meM|3de D\{0}: dm =0}
is reduced to 0, i.e., if £(M) = 0.
5. If D is a domain, then M is torsion if t(M) = M, i.e., if every element of M is a torsion
element.

Theorem 2 ([50]). A free module is projective, a projective module is reflexive, and a reflexive
module is torsion-free.

In the next sections, we summarize basic homological techniques which will be used to
algorithmically test whether or not M admits torsion elements or is torsion-free, reflexive or
projective (see Theorem 5 thereafter). These techniques will then be generalized in Section 3 to
obtain an explicit characterization of the so-called grade filtration of M.

RR n°® 7769
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2.1 Basic homological algebra

Let us shortly recall a few definitions of homological algebra (see, e.g., [50]).
Definition 2. 1. A complex, denoted by
dio dit1 d; di—1 (1)

M....—> Z‘+1—>Mi—>MZ’_1—>...,

is a sequence of left (resp., right) D-modules M; and of left (resp., right) D-homomorphisms
di: M; — M;_ that satisfy imd;+1 C kerd;, i.e., d; od;y1 =0 for all i € Z.

2. The defect of exactness of (1) at M; is the left (resp., right) D-module defined by:
HZ(M.) = kerdi/imdiH.

3. The complex (1) is exact at M; if H;i(M,) = 0, i.e., if ker d; = imd;+1, and ezact if
ker d; = imd;4; for all i € Z. An exact complex is called an exact sequence.

4. An exact sequence of the form

Lo L m o, (2)

0— M
i.e., f is injective, ker g = im f and g is surjective, is called a short exact sequence.
5. A projective resolution of a left D-module M is an exact sequence of the form

d d d d d
LA, p Bop Bop dp b

where the P;’s are projective left D-modules and d; € homp(P;, P;—1) for all i € N. The
smallest n € N such that P, = 0 for all m > n is called the length of the projective
resolution of M. Similarly for right D-modules.

6. A free resolution of a left D-module M is an exact sequence of the form
. 2, preee A2, plxn A, plxee Tap g, (3)
where R; € DPi*Pi-1 and .R;: DYPi — D1*Pi-1 is defined by (.R;)(\) = \ R;.
7. A free resolution of a right D-module N is an exact sequence of the form

. (4)
where S; € D%-1%% and S;.: D% — D%-1 is defined by (5;.)(n) = S;n.

0<—N<LD‘10<_SL'_DQ1<_‘92'_D‘I2<_‘93'_

Example 1. If D is a noetherian domain and M a finitely generated left D-module, then we
have the following short exact sequence of left D-modules:

0 — t(M) L5 M 25 M/+(M) — 0. (5)

Remark 1. A module M is not defined by a unique projective/free resolution: Fitting’s lemma

asserts that if 0 — kerm — P —> M — 0 and 0 — kern/ — P! ~+ M — 0 are
two exact sequences, where P and P’ are projective/free modules, then kerm @ P/ 2 ker ' & P
(see, e.g., [50]). This isomorphism does not generally imply that kerm = ker /. We say that
ker m depends on M up to a projective equivalence (see, e.g., [50]). Similarly, if we consider two

s ;R ;o
finite presentations of M, D*P1 T plxpo T Ay g and DXPY L pixey T A ),
then kerp(.Ry) @ D' @1+r0) = kerp(.R,) @ D' P1+70) For more details, see, e.g., [50]. For a
constructive proof, see [18]. Similar results hold for all the syzygy modules kerp(.R;)’s of M.

RR n°® 7769
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Since D is a noetherian ring, one can easily prove that every finitely generated left (resp.
right) D-module M admits a free resolution (see, e.g., [50]). Now, if F is a left D-module, then
using a free resolution (3) of a finitely generated left D-module M, we can define the extension
abelian groups extiD(M ,F)’s for i > 0 as follows. Up to abelian group isomorphism, they are
defined by the defects of exactness of the following complex of abelian groups

Riq1. - R;. . Ri—1. R3. Rs. R;.
Lo e e S0 T8 ppe 20 FpL S FRO ), (6)

where R;.: FPi-1 — FPi ig defined by (R;.)(n) = R;n for all n € FPi=! and i > 1, namely:
{ extd (M, F) = kerx(Ry.), )

extty (M, F) 2 kerg(Rit1.)/imp(R;.), > 1.

Theorem 1 shows that:
ext, (M, F) = homp (M, F).

See also, e.g., [50]. We say that the complex (6) is obtained by application of the contravariant
left exact functor homp(-,F) to the reduced (truncated) free resolution of M, namely, to the
complex obtained by removing M from the finite free resolution (3) as follows:

C A pixes Bs) pixps e pixpr 0 pixpe g (8)

A fundamental theorem of homological algebra asserts that the abelian groups extiD(M ,F)’s
depend only on the left D-modules M and F (up to abelian group isomorphism), i.e., they do
not depend on the choice of the free resolution (3) of M (see, e.g., [50]). The ext’,(M,F)’s
can also be defined using projective resolutions of M (see, e.g., [50]). But, this approach is
generally less constructive than the one based on free resolutions. In what follows, we shall
only consider free resolutions and we let the reader reformulate the different results based on
projective resolutions.

The idea of replacing a rather complicated left D-module M by the complex (8) formed by the
left D-modules D'*Pi’s (free modules) and trivial left D-homomorphisms .R;’s (defined by ma-
trices) is of paramount importance in the theory of derived category developed by Grothendieck
and Verdier (see, e.g., [25]). In this paper, we shall show how the grade filtration of M, which is
difficult to compute directly on M, can be explicitly characterized by many but simple (matrix)
computations related to the computation of ext’, (M, D) and ext’,(ext’}, (M, D), D).

Similarly, if N a finitely generated right D-module and G a right D-module, then using a
free resolution (4) of N, we can define the following abelian groups:

eXtOD(Nv g) = homD(N, g) = kerg(.Sl),
ext’ (N, G) = kerg(.Si1)/img(.S), i > 1.

We note that if M is a left (resp., right) D-module, then ext’, (M, D) is a right (resp., left)
D-module due to the D — D-bimodule structure of D (see, e.g., [50]).

Definition 3 ([50]). A left D-module F is injective if ext’,(M,F) = 0 for all left D-modules
M and for all 7 > 1.

Example 2. If © is an open convex subset of R”, then the space C*°(Q) (resp., D'(2), S'(2),
A(Q), O(R2)) of smooth functions (resp., distributions/temperate distributions, real analytic/
holomorphic functions) on €2 is an injective D = k[0, ..., 0y]-module (k =R, C) [34, 36, 53].

RR n°® 7769
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If M is a finitely generated left D-module and F an injective left D-module, then applying
the contravariant left exact functor homp( -, F) to (3), and using Theorem 1 and the fact that
ext,(+,F) =0 for all i > 1, we obtain the following exact sequence of abelian groups:

B e S e S o homp (M, F) — 0.

The contravariant functor homp( -, F) is then said to be ezact. Since kerr(R;y1.) = R; FPi-!
for all i > 1, the linear system kerz(R;1.) is then parametrized by R; (called a parametrization).

Let us now state two results which will be used in Section 3.

Theorem 3 ([50]). Let (2) be a short exact sequence of left (resp., right) D-modules and N a
left (resp., right) D-module. Then, the following long exact sequence holds

*

0 — extO(M",N) L5 extO(M,N) 25 extd (M, N)
— exth(M",N) — exth(M,N) — exth(M',N)
— exth(M”,N) — exty(M,N) —

ey

where f* (resp., g*) is defined by f*(¢) = ¢po f (resp., g*(¢) = o g) for all ¢ € homp (M, N)
(resp., for all ¢p € homp(M",N)).

Remark 2. One can prove that a left D-module M is projective iff exti) (M, N) =0 for all left
D-module N and for all i > 1 (see, e.g., [50]). If P and P’ are the two projective left D-modules
considered in Remark 1, the additivity of the functor ext’; (-, N) (see, e.g., [50]) then yields

Vi>1

ext’ (kerm @ P', N) 2 ext’ (ker m, N) @ ext’y (P, N) = ext’, (ker w, N),
7 extl (ker 7’ @ P, N) = ext’ (ker 7/, N) @ ext’y (P, N) = ext’(ker 7/, N),

and thus, ext’,(ker m, N) & ext’, (ker 7/, N) for i > 1, which shows that ext’,(ker 7, N) depends
only on M and N (up to isomorphism) for i > 1.

Combining Remark 2 with Theorem 3, we obtain the following result.

Proposition 1 ([50]). Let (2) be a short exact sequence of left (resp., right) D-modules and
M a projective left (resp., right) D-module. Then, for every left (resp., right) D-module N, we
have ext'H(M", N) = ext’y (M, N) fori > 1.

Let us introduce important invariants of modules and rings.

Definition 4 ([50]). 1. The left projective dimension of a left D-module M, denoted by
Ipdp (M), is the minimum of the lengths of projective resolutions of M. If no such integer

exists, then we set Ipd, (M) = oo. Similarly for the right projective dimension rpdp(N)
of a right D-module N.

2. The left global dimension (resp., right global dimension) of a ring D, denoted by lgd(D)
(resp., rgd(D)), is the supremum of lpdp (M) (resp., rpdp(N)) for all left D-modules M
(resp., all right D-modules N).

3. If the left and the right global dimension of D coincide, then the common value is called
the global dimension of D and is denoted by gld(D).
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Proposition 2 ([10]). Let D be a noetherian ring and M a finitely generated left D-module.
Then, we have: '
Ipdp (M) =sup{i € N | extr (M, D) # 0}.

Similarly for the right projective dimension rpd,(N) of a right D-module N.

Proposition 3 ([50]). lgd(D) < n iff ext's(M,N) = 0 for all left D-modules M and N, and
for all i > n.

Theorem 4 ([50]). If D is a noetherian ring, then lgld(D) = rgld(D).

Example 3. If £ is a field, then gld(k[z1,...,z,]) = n [50]. If k is a field of characteristic 0,

K =Ror C,and D = A, (k), Bn(k), Dp(k), or Dy (k'), then gld(D) = n [9, 10, 30].

We are now in a position to recall how the properties stated in Definition 1 can be checked
by means of homological techniques for a noetherian reqular domain D, namely a noetherian
domain D of finite global dimension gld(D).

Theorem 5 ([1, 14, 30, 38, 40]). Let D be a noetherian domain with a finite global dimension
gld(D) = n, M = DY? /(D4 R) a finitely presented left D-module, and N = D?/(R DP) the
so-called Auslander transpose right D-module of M.

1. The following left D-isomorphism holds:
t(M) = ext} (N, D). (9)

2. M is torsion-free iff ext}, (N, D) = 0.
3. The following long exact sequence holds
0 — extL (N, D) — M — homp(homp(M, D), D) — ext%(N,D) — 0,  (10)
where € is defined in 3 of Definition 1.
4. M is reflezive iff ext’,(N,D) =0 fori=1, 2.
5. M is projective iff ext,(N,D) =0 fori=1,...,n.

Remark 3. The Auslander transpose right D-module N = D?/(R DP) depends on the left
D-module M = D'? /(D4 R) up to a projective equivalence: if M = M’ = D¢’ /(D'*¢" R'),
then N @ Dwtd) =~ N’ @ DW'+9) where N’ = DY /(R' D¥) [1]. See [18] for a constructive
proof. Using Remark 2, the additivity of the functor ext’,(-,F) (see, e.g., [50]) then yields
ext’ (N, F) 2 ext’, (N, F) for all left D-modules F and for i > 1. Therefore, the results stated
in Theorem 5 do not depend on the chosen presentation of M.

Theorem 5 was implemented in the OREMODULES package [15] for the class of Ore algebras of
functional operators implemented in the Maple package Ore_algebra (e.g., PD, shift, difference,
time-delay operators) for which Buchberger’s algorithm terminates for any admissible term order
and which computes a Grobner basis [14]. Using the OREMODULES package, we can effectively
check whether or not the left D-module M = D'*?/(D1X4 R) admits torsion elements or is
torsion-free, reflexive or projective. For applications of Theorem 5 to mathematical systems
theory and mathematical physics, see [15].
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Let us recall how to compute the torsion left D-submodule t(M) of M = D'*?/(D'*4 R).
We first consider @ € DP*™ such that kerp(R.) = Q D™. Then, we get the exact sequence

0— N pe L pr & pm Then, 1 of Theorem 5 shows that the defect of exactness at
D'*P of the complex D*4 SR, pixp 29, pixm g defined by

exth (N, D) 2 ¢(M) = kerp(.Q)/imp(.R) = (D'*9 R') /(D' R), (11)

where R' € D7*P is any matrix such that kerp(.Q) = D¢ R’. Moreover, the standard third
isomorphism theorem [50] then yields:

M/t(M) = [D'*? /(D™ R)]/[(D'*" R)/(D"** R)| = D"7/(D"*" R'). (12)

We note that a right analogous of Theorem 1 asserts that homp(M, D) = kerp(R.). Hence,
if homp(M, D) = 0, then 0 «— N «— D1 L pP o (s an exact sequence, and thus the

defect of exactness of the complex D*¢ —f% DIxp (o at DI*P s exth(N,D) = t(M) =
DYP /(D4 R) = M by (9), i.e., M is a torsion left D-module. Conversely, if M is a torsion
left D-module and f € homp(M, D), then for every m € M, there exists d € D \ {0} such
that dm = 0, which yields d f(m) = f(dm) = 0, and thus f(m) = 0 since D is a domain and
f(m) € D. Thus, f =0, i.e.,, homp(M, D) = 0. We obtain the following corollary of Theorem 5.

Corollary 1 (see, e.g., [14]). Let M be a finitely generated left module over a noetherian domain
D. Then, M is a torsion left D-module iff homp (M, D) = 0.

Let us now introduce a lemma which gives a finite presentation of a factor module.

Proposition 4 (see, e.g. [16]). Let R € DI*? and R' € DY*P satisfy D'*1 R C D7 R', i.e.,
are such that R = R" R’ for a certain R" € D99, Moreover, let Ry € D" *% be a matriz such
that kerp(.R') = Dixr’' R, and let m and 7' be respectively the following canonical projections:

e D1><q’ R — (D1><q’ R/)/(Dlqu), p D1><q’ _ Dlxq’/(Dlqu//+D1Xr' R/Q)
Then, the left D-homomorphism v defined by

Dlxq’/(Dlxq R//+D1><r’ R/2) L, (D1><q’ R/)/(Dlxq R)

©'(\) — 7w(AR), (13)

is an isomorphism and its inverse .~ is defined by:
(Dlxq’ R/)/(Dlxq R) i) Dlxq’/(Dlxq R + D1><7” Ré)
T(AR) — @'(N).
Applying Proposition 4 to the left D-module ¢(M) = (D'*¢ R')/(D'*? R), we obtain
t(M) o Dlxq’/(Dlxq R" + Dlxr' RIQ) _ Dlxq’/(Dlx(q-H"’) (RIIT RIQT)T), (14)
where R” € D% and R}, € D" *9 are defined by R = R” R' and kerp(.R) = D" R},

If t(M) = 0, then using (11), the complex D*4 SR, pixp 2@, piam ig exact at D'P and
thus it defines the beginning of a free resolution of the left D-module L = D'*™/(D'x4 Q). Up
to isomorphism, a finitely generated torsion-free left D-module M can then be embedded into
a finite free left D-module since M = DY*P/(D'*4 R) = imp(.Q) C D**™. If F is an injective
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left D-module, then applying the exact functor homp(-,F) to the above beginning of a free

resolution of L, we obtain the exact sequence F4? L g & Fm ie., kerg(R.) = QF™, ie.,
@ is a parametrization of kerz(R.). The computation of parametrizations is implemented in
the OREMODULES package. This package allows one to explicitly parametrize underdetermined
linear functional systems appearing in mathematical physics and in control theory (see [15]).

The above techniques will be generalized in Section 3 to determine the so-called grade filtra-
tion of a finitely generated left D-module M.

To finish with this section, we shortly recall a few classical results on homomorphisms of
finitely presented modules that will be used in the next sections.

Proposition 5 ([16, 18]). Let M = D'? /(D4 R) (resp., M’ = DY?' /(D9 R')) be a left
D-module finitely presented by R € DUP (resp., R' € DY*V") and w: D'*P — M (resp.,
7' DY — M) the canonical projection onto M (resp., M'). Then, every f € homp(M, M)
is defined by f(w(\)) = @' (AP) for all \ € D'P, where P € DP*?" satisfies RP = QR' for a
certain Q) € DI*d’, Moreover, we have:

1. ker f = (D" 8)/(D**9 R), where the matriz S € D"*P is defined by:
kerp(.(PT RTYTY=D™ (S -T), TeD™.
In particular, f is injective iff there exists a matriz F' € D"*? such that S = F R.
2. im f = (D¥P P+ DY R') /(D7 R') = coim f = D /(D" S).

3. coker f = DV’ /(D™P P+ D4 R'). Thus, f is surjective iff (PT RT)T admits a left
inverse over D, i.e., X € DV *P qnd Y € DP*? egist such that X P +Y R = I.

4. [ is an isomorphism, i.e., M = M’', iff there exists F' € D"*% such that S = F R and the
matriz (PT R™)T admits a left inverse over D. If X € DP'¥P s defined as in 3, then
f~t € homp(M’, M) is defined by f~ (x'(N)) = n(N X) for all X' € D',

2.2 Baer’s extensions

In this section, we give another interpretation of the abelian group exth (M, N) which will be
used in Section 4. To do that, let us introduce a few more definitions (see, e.g., [50]).

Definition 5. 1. Let M and N be two left D-modules. An extension of M by N is a short
exact sequence of left D-modules of the form:

e:0—N-“E2 m—0. (15)

2. Two extensions e;: 0 — N N E; N M — 0 of M by N for i =1, 2 are said to be
equivalent, which is denoted by e ~ eq, if there exists a left D-isomorphism ¢: Fh4 — FE»
such that ag = ¢poay and B1 = (G209, or equivalently, such that the following commutative
exact diagram holds:

0 N_“ g g 0
J/ d)
a2 B2
0 N Fy M 0
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3. Let [e] be the equivalence class of the extension e for the equivalence relation ~. The set
of all equivalence classes of extensions of M by N is denoted by ep(M, N).

The next theorem, which can be traced back to Baer’s work, plays an important role in
homological algebra. In particular, it explains the terminology extension used for ext}j(M ,N).

Theorem 6 ([50]). Let M and N be two left D-modules. Then, we have:
exth(M,N) = ep(M,N).

The next theorem gives an explicit description of the isomorphism stated in Theorem 6 in
the case where M and N are two finitely presented left D-modules.

Theorem 7 ([46, 47]). Let M = DYP/(D'*9R) and N = DY*s/(D'*tS), n: DV*P — M
(resp., §: DY — N ) be the canonical projection onto M (resp., N ), and Ry € D™ a matriz
such that kerp(.R) = D" Ry, and Q = {X € D?** | 3Y € D"™t: Ry X =Y S}. Then, every
equivalence class of extensions of M by N is defined by the following short exact sequence

e:0—N-E2 Mo, (16)

R -A

where E = DY@+s) /(D1X(@+) 1) and L = < 0 g

> c D(att)x(p+s) for a certain A € Q,

«

N % E E 2 om
o(p) — ou(0 L)), o) — 7w, 0)7),

and o: DY*Pts) — FE s the canonical projection onto E. Finally, the equivalence class €]
depends only on the residue class €(A) of the matriz A in the following abelian group:

Q/(RDP** 4 DT' §) = exth (M, N). (17)

Remark 4. The extension e of Theorem 7 is trivial, i.e., E = N @ M, iff there exist U € DP**
and V € D9 such that A = RU +V S, i.e., iff e(A) = 0. If D is a commutative polynomial
ring over a computable field &, then using Kronecker product and Grébner/Janet bases, we can
check whether or not this identity holds and if so, compute solutions U and V. See, e.g., [47, 54].

The next corollary shows how to determine €(A) for a given extension e of M by N.

Corollary 2 ([47]). With the notations of Theorem 7, lete': 0 — N - F —“5 M — 0 be an
extension of the left D-module M = D'*P /(D4 R) by the left D-module N = D'*%/(D'*t §),
{fiti=1..p (resp., {ei}i=1,.q) the standard basis of D**P (resp., D'*9), y; = n(f;), and z; € F

a pre-image of y; under v for all j = 1,...,p. Then, we have Z§:1 Rijzj € imu for all
i=1,...,q, and, since u is injective, there exists a unique n; € N satisfying u(n;) = Z§:1 R;j z;.
If we consider a pre-image a; € DY of n; under 8, i.e., n; = 6(a;) for alli =1,...,q, then the

extensions € and (16) are equivalent, where E = DY (P+s) /(D1¥(@+8) 1) and:

ai

L= ( ]g _SA ) e D) A= | | eD?.

Qq
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Equivalently, the following commutative exact diagram holds

D1><q D1><p T M 0
% |+
0 N “ F—" M 0,

where ¥ and ¢ are respectively defined by:
: D>XP — F ¢: D4 — N
fi — z,j=1...,p, e, — n;=06(a;),i=1,...,q.
Theorem 7 and Corollary 2 will be abundantly used in Section 4. For more results on Baer’s

extensions, examples and applications to mathematical systems theory, see [4, 46, 47, 50, 54].

The next proposition shows how the presentation of the left D-module E defining the ex-
tension of M by N (see Theorem 7) changes with the presentations of M and N.

Proposition 6. With the notations of Theorem 7, let M = D'*P/(D'*4 R), N = D'*s/(D*t §),

and E = DY*(+s) /(DIX(@+) L) be three left D-modules defining the extension e of M by N (16).
Moreover, let f and g be two left D-isomorphisms defined by

fi M = DlXp/(DquR) s M = D1Xp’/(D1><q’ R,)
m(A) — 7(AP),
g: N = D1><s/(D1><t S) . N' = Dlxg’/(Dlxt’ S’)
o(p) — &(pX),
where ©' (resp., 8') is the canonical projection onto M’ (resp., N'), i.e., P € DP*¥ X € D**¥
are such that there exist Q € D1*9 , P' ¢ DP'*P Q' € DY*1 Y € D X' e D5'*5 Y' € D%t
T € DP*4, T' € DP'* | Z € D**t, and Z' € D¥*Y satisfying the following identities:

RP=QR, SX=Y9,
R'P'=Q'R, S'X'=Y'S, (18)
I,=PP +TR, I,=XX'+785,
I, =P P+TR, I,.=X'X+275.
Then, the extension e yields the following extension of M’ by N’
o -1
L0 N 2 g Il oy, (19)

which implies that the left D-module E admits the following presentation

/ /
o[ B TEAX ) p@snxees)
0 s’ ’

i.e., E = E' = D> WHs) /(DI ) [N where this left D-isomorphism is explicitly defined by

p:E — F B — E
o(v) — J(vU), dW) — o'l
/
U= P TAX c D(p+8)><(]7/+3/) U/ _ P 0 c D(p’+s’)x(p+s)
O X ’ 0 X/ ’

and o : DY*@W'+s) — B/ s the canonical projection onto E'.
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Proof. With the notations (18), 4 of Proposition 5 yields:

f_lt M = D1><p’/(D1><q’ R/) s M= DlXp/(Dqu R)
o(\N) — (NP,

g—1: N’ = Dlxs’/(Dlxt’ Sl) . N = Dlxs/(Dlxt S)

o'(p) > o(p X).

Using (18), we get (I, —QQ' —RT)R=R—-QQ'R—RTR=R—RPP —RTR =0. Thus,
if kerp(.R) = D'*" Ry, then there exists Th € D?*" such that:

I,=QQ + RT +Ts Rs. (20)

Now, clearly, (16) yields (19). Moreover, since A € €2 (see Theorem 7), there exists B € D"**
such that Ry A = B S. Hence, using this identity, (18) and (20), we obtain

(R -A P TAX\ [ RP (RT-1I,)AX
LU_<0 S)(o X >_<o SX )

_ ( QR —(QQ A+Ty(RyA)X ) _ ( QR —(QQ A+TyBS)X >

0 Yy s 0 Yy s
B QR -QQ AX -T,BYYS B Q -1T,BY R —-Q AX _vr
B 0 Y s’ o 0 Y 0 S/ - )

where V' is the first matrix appearing in the last but one equality, which shows that ¢ is well-
defined by Proposition 5. Similarly, using (18), we get

Dy R —Q AX P 0\ [(RP -QAXX
Lo S/ 0o X'/ 0 S’ X'
QR —QA(I,—Z5) Q QAZ (R _A> .
— = :VL,
0 Y'S 0o Y 0 S

where V' is the first matrix appearing in the last but one equality, which yields ¢ € homp(F’, F)
defined by ¢(o'(v')) = o(v' U’) for all v/ € D**P'+5') by Proposition 5. Using (18), we also have

, P TAX P 0 PP TAXX'
UvU" = =
0 X 0 X’ 0 XX’
_(L-TR TAUL-ZS)) _, T -TAZ R A
a 0 I,— 78 o 0oz 0o S )
which shows that ¢ o ¢ = idg. Moreover, using (18), we obtain

(PT-TQYR=PTR-TQR=PTR-TRP =P (I,-PP)— (I, —P' P)P =0,

which shows that there exists L € DP' " such that P’T —T" Q' = L Rs. Using Ry A = B S and
SX =Y (see (18)), (PPT-T' Q)AX =L(RyA)X =LBSX =LBY S, and then

— P 0 P TAX\ (PP PTAX
o x 0 X N 0 X'X

B I,-T'R PTAX _ T" —-LBY R —-Q AX
RR 7760 0 Lh-z'¢s ) " o 7 0 s’ ’
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which shows that ¢ o ¢ = idgs, and thus proves that ¢ is a left D-isomorphism and ¢ = ¢~ 1.

O]

2.3 Pure modules and grade filtration

Let us introduce the concept of the grade number of a finitely generated left D-module M.

Definition 6 ([9, 10]). The grade number of a nonzero finitely generated left D-module M is
defined by jp(M) = inf {i € N | ext’, (M, D) # 0}. If M = 0, then we set jp(M) = co. A
similar definition holds for right D-modules.

If M # 0, then jp(M) is then the smallest integer such that exth(M)(M, D) #0.

Remark 5. If gld(D) is finite and M is a nonzero left D-module, then using Proposition 3,
ext’, (M, D) = 0 for all i > gld(D), which yield 0 < jp(M) < gld(D).

Let us now introduce the concept of pure module that will play an important role.

Definition 7 ([10]). A finitely generated left D-module M is said to be pure or jp(M)-pure if
Jjp(N) = jp(M) for all nonzero left D-submodules N of M.

Remark 6. If M is a pure left D-module, then for every m € M \ {0}, the cyclic left D-module
D m generated by m satisfies jp(Dm) = jp(M). More generally, if N is a left D-submodule
of a jp(M)-pure left D-module M, then N is also a jp(M)-pure left D-module since every left
D-submodule of N is a left D-submodule of M and jp(N) = jp(M).

In what follows, we shall mainly focus on the class of Auslander reqular rings.

Definition 8 ([10]). A ring D is called an Auslander regular ring if D is a noetherian ring of
finite global dimension gld(D) which satisfies the Auslander condition, namely, for every i € N,
for every finitely generated left (resp., right) D-module M, and for every left (resp., right)
D-submodule N of ext’, (M, D), then jp(N) > i.

Remark 7. If D is an Auslander regular ring, then for a nonzero finitely generated left
D—module M, taking N = ext,(M,D) in Definition 8, we get jp(extiD(M,D)) > i, ie.,
ext), (ext}, (M, D), D) = 0 for 0 < j < i. Similarly, considering ext},(M, D) instead of M in
Definition 8, then N C ext,(ext’; (M, D), D) # 0 yields jp(N) > i.

Theorem 8 ([10]). Let D be an Auslander reqular ring and M a nonzero finitely generated left
D-module. Then, we have:

1. M is pure iff M is a left D-submodule of extjDD(M) (extj,f’(M)(M,D), D).
2. M is pure iff ext’,(ext’; (M, D), D) = 0 for i # jp(M).

3. Ifext’,(ext’s (M, D), D) # 0, then ext’, (ext’, (M, D), D) is a pure left D-module with grade
number i, i.e., jp(exth(extl, (M, D), D)) = i.

Example 4. By 1 of Theorem 8, M is O-pure iff M is a left D-submodule of homp (homp (M, D), D).

If D is a domain, then using 3 of Theorem 5, we deduce that M is O-pure iff M is a torsion-free
left D-module. In particular, the left D-module M /t(M) is either zero or O-pure.
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Let us now show that pure modules naturally appear in the study of a finitely generated left
module M over an Auslander regular ring D. Let us consider:

ti(M)={me M |jp(Dm) =i}, i=0,...,n=gld(D), tnt1(M)=0. (21)
To prove that the t;(M)’s are left D-modules, we need the following important result.

Proposition 7 ([10]). If 0 — M’ — M — M" — 0 is a short exact sequence of left
modules over an Auslander regular ring D, then:

jp(M) = inf {jp(M'), jp(M")}.

Remark 8. If ext’,(M’, D) = 0 and ext’,(M”,D) = 0 for 0 < i < j, then Theorem 3 yields
ext’, (M, D) = 0 for 0 < i < j, which shows that jp(M) > inf{jp(M’), jp(M")}. Thus, the
Auslander regularity condition is only used to prove the other inequality.

Let us now explain why ¢;(M) is a left D-module. If m € ¢;(M) and d € D, then dm € Dm,
i.e., D (dm) C Dm. Then, applying Proposition 7 to the following short exact sequence

0— D(dm) — Dm — Dm/D (dm) — 0,

we get jp(D (dm)) > jp(Dm) > i, ie., dm € t;(M). Let us now consider m; and mq € t;(M).
Then, we have m; + my € Dmy + Dmgy. Since D (m; + ma) € Dmy + D mg, similarly as
previously, Proposition 7 yields jp(D (m1 + m2)) > jp(Dmi + Dmsg). Now, applying again
Proposition 7 to the following two standard short exact sequences

00— Dmi NDmg— Dmi &Dmys — Dmy +Dmy — 0,

00— Dmy — Dmi1®Dme — Dmg — 0,
(see, e.g., [50]), we then obtain the following inequality and equality

Jp(Dmi+ Dmg) > jp(Dmy & Dmgy),
Jp(Dmy @ Dmg) =inf{jp(Dm1),ip(Dma)} =1,
which yields jp(D (m1 +m2)) >4, i.e., m1 + ma € t;(M).

If M’ is a left D-submodule of M such that jp(M') > i and if m’ € M’ \ {0}, then applying
Proposition 7 to the short exact sequence 0 — Dm' — M’ — M'/(Dm') — 0, we get
jp(Dm') > jp(M') > i, ie., m' € t;(M), and thus M’ C t;(M), which proves that ¢;(M) is the
largest left D-submodule L of M (D is a noetherian ring) which satisfies jp(L) > i.

Note that to(M) = {m € M | jp(Dm) > 0} = M. Thus, the following filtration of M holds:

0=tny1(M) Cto(M) Ctp 1 (M) C--- Ct:1(M) Cto(M) =M. (22)
If D is a domain, then using Corollary 1, we get t1(M) = t(M) since:
met(M) & exth(Dm,D)=0 < jp(Dm)>1 < m et (M).
It can easily been seen that a module M is i-pure iff ¢;(M) = M and t;41(M) = 0.

Lemma 1. The left D-module t;(M)/t;+1(M) is either zero or is i-pure.
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Proof. Let us suppose that P = t;(M)/t;+1(M) is nonzero. Applying Proposition 7 to the short
exact sequence 0 — t;11(M) — t;(M) — P — 0, we get jp(P) > jp(t;(M)) > i, and
thus P C t;(P) C P, ie., t;(P) = P. Let us now check that ¢;11(P) = 0, which will prove
the result. Composing the two canonical projections «: t;(M) — P = t;(M)/t;+1(M) and
B: P — P/ti+1(P), we get the following commutative exact diagram:

0 0
ti+1(M) ker(ﬂ o a)
0 (M) (M) 0
« Boa
0 ti1(P) P— " P/ia(P) 0.
0 0

The snake lemma (see, e.g., [50]) then yields the following short exact sequence:
0 — tit1(M) — ker(Boa) — tip1(P) — 0.

Using Proposition 7, we have jp(ker(f o «)) = inf{jp(tix1(M)), jp(ti+1(P))} > i + 1. Since
tiy1(M) Cker(foa) Ct;(M)C M, we obtain ker(3 o a) = t;+1(M), and thus ¢;41(P) = 0 by
the above short exact sequence. ]

According to Lemma 1, (22) is called the grade filtration (purity filtration) of M (see [10]).

Theorem 9 ([9, 10, 11]). Let D be a ring equipped with a filtration {Dy},>_1 (D_1 = 0) such
that the associated graded ring gr(D) = @, cn Dr/Dr—1 satisfies the following three properties:

1. gr(D) is a commutative ring.
2. gr(D) is a noetherian ring.

3. gr(D) is a regular ring of pure dimension d € N, namely, gld(gr(D)wm) is equal to d for all
localizations gr(D)y, of gr(D) at maximal ideals m of gr(D).
Then, the following results hold:

1. gld(gr(D)m) is equal to the Krull dimension Kdim(gr(D)m) of the noetherian local ring
gr(D)m, which also equal to the dimension dimg(py, /m(m/m?) of m/m? as a gr(D)y/m-
vector space. This common value d for all mazximal ideals m of gr(D) is denoted by dim(D).

2. If M # 0 is a left D-module M, then the characteristic ideal J(M) of gr(D), defined by

J(M) = \/anngr(D) (ex(M)) = {a € gr(D) | 3k € N: aF gr(M) = 0},

does not depend on any good filtration of M (e.g., if M = Zf:j Dy; then {M,}ren defined
by M, = Z§:1 D, yj for allr € N is a good filtration of M, and gr(M) =>"_, gr(D)y;).
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3. If the dimension of M is defined by dimp(M) = Kdim(gr(D)/J(M)), then
ip(M) = dim(D) — dimp (M), (23)
i.e., the codimension of M 1is equal to the grade number of M.

A ring D satisfying (23) is called a Cohen-Macaulay ring. A natural substitute for dimp(-)
for more general k-algebras is the so-called Gel’fand-Kirillov dimension GKdim (see, e.g., [35]).

If D satisfies the hypotheses of Theorem 9, then dim(D) = gld(gr(D)) since we have
gld(gr(D)) = SuPmemax(gr(n)) 8ld(gr(D)m), where Max(gr(D)) is the set of the maximal ide-
als of gr(D) (see, e.g., [50]).

Example 5. If k is a field of characteristic 0 and A a differential field (namely, a field with a dif-
ferential ring structure) of characteristic 0 (e.g., k, k(x1,...,2y,)), or k[z1,..., 2y, k[z1,. .., z5],
kE'{x1,...,z,} where k' = R or C, then the ring D = A(01,...,d,) of PD operators with coeffi-
cients in A is Auslander regular and Cohen-Macaulay (see [9, 10, 11]). In particular, if {D;}i>_1
is the order filtration of D, namely D; is the A-submodule of D formed by the PD operators of
order less than or equal to ¢, and x; is the class of 9; in D;/Dy, then gr(D) = A[x1,. .., Xn)-
Thus, if A is a differential field of characteristic 0 (e.g., k, k(z1,...,xy)), then dim(D) = n, and
if A=k[xy,..., 2], k[z1,...,2,], or K'{x1,...,2,}, then dim(A) = n and dim(D) = 2n.

Corollary 3 ([9, 10, 11]). Let D be an Auslander regular ring and a Cohen-Macaulay ring, and
M a nonzero finitely generated left D-module. Then, we have:

1. dimp(ext,(M, D)) < dim(D) — 1.

2. dimp(ext?? ™) (M, D)) = dim(D) — jp(M).

3. If ext’, (ext, (M, D), D) # 0, then dimp(ext’,(ext’, (M, D), D)) = dim(D) — i.
4. If M is an i-pure left D-module, then dimp(M) = dim(D) —i.

If D is an Auslander regular ring with gld(D) = n, then a nonzero finitely generated left
D-module M is called holonomic (resp., subholonomic) if jp(M) = n (resp., jp(M) >n—1). It
is convenient to assume that M = 0 is also holonomic so that M is holonomic if jp(M) > n. If
D is also a Cohen-Macaulay ring, then M # 0 is holonomic (resp., subholonomic) iff dimp (M) =
dim(D) — n (resp., dimp(M) < dim(D) — n + 1). In particular, if D is one of the rings of PD
operators defined in Example 5, then we find again the classical definitions of holonomic and
subholonomic modules over a ring of PD operators (see, e.g., [9, 10, 11, 33]).

Let us state a few remarks on holonomic modules. If 0 — M’ — M — M" — 0
is a short exact sequence and jp(M') = jp(M") = i, then jp(M) = i by Proposition 7. In
particular, if M’ and M" are two holonomic left D-modules, so is M. The converse result also
holds since Proposition 7 and jp(M) > n yield jp(M’) > n and jp(M"”) > n. Thus, M is a
holonomic left D-module iff M’ and M” are two holonomic left D-modules. Finally, a simple
module (i.e., a module containing no nontrivial submodules) left A, (k)-module is not necessarily
holonomic as shown in [52]. But, a simple module over an Auslander regular ring D is pure.
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3 Grade filtration

The goal of the section is to show how the grade filtration (22) of a finitely generated left module
M over an Auslander regular ring D can be explicitly computed. Since we are motivated by
developing an effective algorithm which can be implemented in computer algebra systems, in
what follows, we shall only use free resolutions of modules and not the more general projective
resolutions. This extension can easily be done and it is left to the interested reader.

Let D be a noetherian regular ring, i.e., a noetherian domain D with a finite global dimension
gld(D) = n, and M a finitely generated left D-module. Let us consider a free resolution of M:

Ri—q
Pkt

0 — M <& Dixpo ﬂ pDixp ﬁ DLxpi-1 ﬁ Dlxpi & (24)

Using (7) and Proposition 3, the defects of exactness of the following complex
0— pro By ppe B R e B ppy B ppigy T2 (25)
are the right D-modules defined by:

extOD(M, D) = kerp(R;.),
extt, (M, D) 2 kerp(R;41.)/(R; DPi-1), 1<i<n, (26)
ext’,(M,D) =0, i>n.

To characterize the ext’,(M,D)’s for all 0 < i < n, we need to study kerp(R;;1.). For
1 < k < n+41, considering the beginning of a free resolution of the finitely generated right
D-module kerp(Ry.), we obtain the following long exact sequence of right D-modules

R 1k
DP(-1k Rok- DPok Rk DP1k Rak- o DR gk Bk, DPkk kR, Ny — 0, (27)

where for k from 1 to n + 1, we have set Rxr = Rk, pkk = Pk, D(k—1)k = Pk—1 = D(k—1)(k—1) and:
Nij = cokerp(Ryg.) = DP¥* /( Ry, DP(=DFk).

Let us explain why this choice of the notations is natural. If we consider a squared-line paper
sheet where each square has coordinates (j, k) € N2, and if the long exact sequence (27) is placed
at k' level with DPs* at position (j, k), then the horizontal arrow of the right D-homomorphism
Rjj,. arrives at DPi* with j < k (a good mnemonic device). For instance, the first three horizontal
exact sequences can be arranged as follows:

pr-1is fos o ppey B ppg o Ros o ppog Hss o ppgy K33 N33 — 0,
Ro2. Ria. Ros.

pp-12 020 ppoz M2 pypip 11220 pypsy 22, Noy — 0,
Rox. Ri1.

pr-un 20, ppo 2 pen S N 0.

Since (25) is a complex, Ryy R—1)(k—1) = Br Bk—1 = 0 for all k = 2,...,n + 1, and thus
Ri—1y(k—1) DP*=20=D C kerp(Rpg.) = R—1yp DP*-2*, which shows the existence of a matrix
Fl—gyp € DPU=2RXPe=2(=1) such that:

Vk=2,...,n+1, Rg_1)k-1) = R—)x Fla—2)k- (28)
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Then, using (28), we get R_1) Fr—2)k Rk—2)(k—1) = R—1)(k—1) Be—2)(k—1) = 0, i.e.,
Flo—ayk Rg—2)k—1) DPE=9¢=1 Ckerp(Rp_1)k-) = R(p—2)pDP*=k,
and thus, there exists a matrix F{j;_s), € DP9k *P(:-3)(:-1 such that:
VE=2...,n4+1, Fy ok Ru_2k-1) = Rk Fr_s)- (29)

Similarly, we can show that for k = 3,...,n+1, there exist matrices F;_j) € DP =)k XP(k—j)(k—1)
with 7 = 3,..., k such that:

Fla—jye Re—jy(h-1) = Rio—jpi Flr—j—1- (30)
Let us denote by:
Roo =0, Ngg = DP*/0= D po; =poo, p-10=0. (31)

Using (27), (28), (29), (30) and (31), we get the following commutative diagram formed by n+2

horizontal exact sequences (where to reduce the size of the diagram, we set m =n + 1):

DP-1m Rom. Dpom Rim. DPim Ram. Dp2m Ram. DP3m Ram. DPpam Rsm- DPpsm Rom-
F_1m. Fom. Fim. Fom. F3m. Fam,. Fspm.
prin B0 ppon _Bine - ppy,  Bene gy, Bene ppg, Bane ppy, B g, oo
F_1n. Fon. Fin. Fop. F3p,. Fap,. Fsp,.

F_14. Fog. Fy. Foy.
DP-13 98-, ppos Ras P13 Ras. P23 Ras. ppss "33 Nas 0

F_13. Fos. Fis.
Dp-12 Ro2 DPo2 Raa. P12 Raa. DP22 f22 N22 0

F_12. Foa.
DP-11 Ro1. DPpo1 Bu P11 i Nig 0

0 Dpoo ", Ny 0.

(32)

Now, if we denote by N(;_;y; the finitely presented right D-module defined by

N(kfj)k = COkeI‘D(R(k,j)k.) = Dp““_j)k/(R(k,j)k Dp““_j_l)k),
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then, (32) can be truncated to get the following commutative diagram formed by horizontal
exact sequences:
Ri(ni1y-

Ro(na1)- K1(n+1)
_

DP-1(n+1) DPo(n+1) DP1i(n+1) Nl(n+1) 0

F_1(nt1)- Fo(n+1)- Fi(ni1y-

DP-1n Ron- DPon Rin. DPin Fin Ny, 0
F_1n, FOn- Fln-
F_14. Foy. Fiyg. (33)

DP-13 Ros. DPo3 Ris. P13 k13 Nis 0
F_13 Fos Fi3

Dp-12 Roa- DPoz Rz P12 R12 Nio 0
F_12. Foo.

DpP-11 Rox. Dpo1 R P11 k11 Nip 0

D00 K00
0 D Noo 0.

Fork=1,....n4+1and j =0,...,k — 1, using the exactness of the following complex

R i 1\k- Rip— k-
DP(k—j—2)k ki Dk DP(k—j—1)k G LN DP(k—j)k

at DPG—i-Dk we get N_j_1), = cokerp(R—j_1)r.) = imp(R—j),-) which, when combined

with the short exact sequence 0 — imp(R—jy.) — DPGE=* il Ng—jye — 0, yields
the following short exact sequence of right D-modules:
0 — Ng—j1)r —> DP¢=*F — Ng_jy — 0. (34)

Using (26), we obtain the following characterization of the right D-modules ext’, (M, D)’s:

ethb(M, D) = kerD(R(iH)(iH).)/imD(Rii.) = (Ri(i+1) Dp(i*1)<i+1))/(Rii Dp(ifl)i),
0<i<n, (35)
ext’,(M,D) =0, i>n.

Since Nj; = DPii /(R;; DPG-01), Nyg1) = DPi0HD [(Ryiq.0) DPE-DEED), pi 4y = pig, and Noo =
DrPoo(35) and the third isomorphism theorem of module theory (see, e.g., [50]) yield the following

short exact sequence of right D-modules:

0 — exth(M, D) — Ny — N1y — 0, i=0,...,n. (36)
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Applying the contravariant left exact functor homp( -, D) to the short exact sequence of (36)
and using Theorem 3, we obtain the following long exact sequences:

0 —  exth(Noi,D) — exth(Noo, D) —  exth(extd (M, D), D)
— extlD(N(n, D) —_— ethD(Noo, D),
— extgl(Ni(Hl), D) — exto!(Ny, D) — exthy!(extl, (M, D), D) (37)
—  exth(Nyq1), D) —  exth(Ny,D) —  extl(ext’, (M, D), D)
AR extigl(Ni(iH), D) — extigl(]\f,-i, D) — e, i=1,...,n.
In what follows, we shall assume that D satisfies the following property
Vi>1, exty!(exth(M,D),D)=0, (38)

for all finitely generated left D-modules M. In particular, by Remark 7, this condition holds if
D is an Auslander regular ring (see Definition 8).

We note that extlD(Noo, D) is reduced to 0 since Nog = DP is a free, and thus a projective
right D-module (see Remark 2). Using (38), the above long exact sequences then yield the
following long exact sequences of left D-modules:

0—  ext)(Not,D) — exth(Noo,D) — exth(ext) (M, D),D) — exth (N, D) — 0,
0 — exth(Niyis1),D) — exthh(Ny, D) — exth(extl(M,D),D), i=1,...,n. ”
39
Applying Proposition 1 to (34) for k =i+ 1 and 5 = 0,...,7 — 1, i.e., to the short exact
sequence 0 — N(;_j)(j41) — DPG-+0G+D — Ni;_ i q)41) — 0, we obtain:

Vi=1,...,n, ext3 (N1t D) = exth(Nyii1), D) 2 ... Zextp(Nigp1), D). (40)
Similarly, applying Proposition 1 to (34) for k =i+ 1 and j = 0 gives:
ext ?(Niiz1yi+1), D) = exty ! (Nigi11), D). (41)
Applying Proposition 1 to the above short exact sequence with ¢ = 0 and j = 0, we get:
ext?,(N11, D) = exth (N1, D).
Thus, the first long exact sequence of (39) yields the following one

0 — ext(Nop, D) 2% exth (Noo, D) 22 ext® (exth (M, D), D) — ext)(Nyy, D) — 0,

(42)
and (39) and (40) yield the following exact sequence of left D-modules
0— extigl(N(Hl)(iH), D) LGN extly (Nii, D) 25 extly (ext’ (M, D), D) — coker y;; — 0,
(43)
where: ‘ .
Vi= 1, R N coker Yii - eXtZB_I(Ni(i+1), D) = ethQ(N(i+1)(i+1), D) (44)
Hence, if we introduce the following finitely generated left D-modules
Vi=0,...,n+1, T2 exth(Ny,D), (45)
then (43) can be rewritten as the following exact sequences:
0— Tip1 RIGENNG JRRIIR exts(ext'y(M, D), D) — cokery;; — 0, i=1,...,n. (46)
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Remark 9. If D is an Auslander regular ring, then using (45) and Remark 7, 7T; is either zero
or jp(T;) > i. Moreover, according to 3 of Theorem 8, ext’,(ext, (M, D), D) is either zero or is
i-pure. In particular, T; /(1) (Ti41) is a left D-submodule of ext’, (ext’, (M, D), D), and thus it
is either zero or is i-pure by Remark 7. Finally, using Remark 7 and (44), we find that coker 7;;
is either zero or jp(coker~;;) = jD(extiDJrQ(N(iH)(iH), D)) >i+2.

Using (40), up to isomorphism, the left D-modules T}’s are the defects of exactness at D1*Po:
of the horizontal complexes of the following commutative diagram (marked in red)

.R R
D1><P—1(n+1) O(nt1) Dlxp()(n+1) tnt1) D1><P1(n+1)
Fo1(ng1) Font1) Fint1)
D1><P71n -Ron DlXPOn Lin D1><P1n
~F71n -FOn ~F1n
Fqg Foy Fia
D1xp-13 Fos D1xpos Fas D1xpi3
F_13 .Fos Fi3
D1ixp-12 o2 D1xpo2 a2 D1xp12
F_1o .Fo2
Dixp-11 o D1xpo1 i Dlxpu
0 D1xPpoo 0,
i.e., we have:
1x : ;
To = D "Po T, =kerp(.Ro;)/imp(.Ry;), i=1,...,n+1. (47)

If pi: kerp(.Ro;) — T; = kerp(.Rp;)/(DY*Pti Ry;) is the canonical projection onto the D-
module T; for i = 1,...,n + 1, then 7(;11); € homp(T;4+1,T;) (see (46)) is defined by:

V A € kerp(.Ro(it1)),
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The inclusion kerp(.Ro;) € D**Pot yields the following commutative exact diagram

0 0
0— DlXPll Rll —_ kerD('Rﬂl) - Tl 0
J J’Ylo
0 Dlxpu Ri1 D1xpo1 ﬂ' M 0,
0
where 19 € homp(77, M) is defined by
VX €kerp(.Ro1), 7o(pi(A) =7(N), (49)

and 7 is the canonical projection onto M = D*Po1 /(D1XP11 R11) i.e., 410 = idp,. In particular,
Y10 is injective. Moreover, using Ty = kerp(.Ro1)/(DY*P1t Ryy) C M = Dxpor/(DI*Pu Ry,
the third isomorphism theorem of module theory (see, e.g., [50]) gives:

M/Ty =2 D71 [ kerp(.Roy). (50)

Finally, if D is a domain, then 1 of Theorem 5 shows that 77 = t(M) and M /Ty = M /t(M).
Let us now study the long exact sequences (42) and (46) for i =n — 1, n.

A right D-module analogous of Theorem 1 shows that ext? (Noi, D) = kerp(.Ro1). Using
(31), To = ext%(Nog, D) = homp(DPo, D) = DIxpoo = DIXpor (see (47)). The long exact
sequence (42) then becomes the following one:

0 — kerp(.Ro1) 2% DY¥Por 22, oxt? (ext® (M, D), D) — ext)(Ny1, D) — 0.

Proposition 3, gld(D) = n and (44) yield coker y,_1y(m-1) C ext%“(Nm,D) =0, ie.,
coker Y(p—1)(n—1) = 0. Thus, setting i =n — 1 in (46), we get the following short exact sequence

Tn(n—1
Moy S

Y(n—1)(n—1)

0— 1T, ext, ! (ext?, ' (M, D), D) — 0,

which shows that:
Tt/ (Va1 (Tn)) = exts ! (ext; (M, D), D). (51)

Proposition 3, gld(D) = n and (44) imply that coker 7, C ext%H(N(nH)(nH), D) =0, i.e.,
coker v,,, = 0. By Proposition 3, we also have:

To1 = eXt%+1(N(n+1)(n+1)7 D) =0.

Thus, setting i = n in (46), we obtain the following short exact sequence

0 — T, 1 ext (ext (M, D), D) — 0,

which shows that:
T, = exth(exth(M, D), D). (52)
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Therefore, the following exact sequences of left D-modules hold

0 — T, T ext™ (ext (M, D), D) — 0,

0— Th IntnD), Th-1 — coker vV, (n—1) — 0,

0— T; Jien, Ti—1 — coker ;1) — 0,

0— Ty o, T — coker yo1 — 0,

0 —s Ty o, M 2, M/T, — 0,

0— kerp(.Ro1) — Dxpor -, M/Ty 0,

0—  M/Ty —  ext(ext) (M, D),D) — exth (N1, D) — 0,
(53)

where: ‘ ‘

Vi=2,...,n, cokerv;_1) C exth(exty(M,D),D). (54)

Now, since the v;;_1)’s are injective left D-homomorphisms and 719 = id7,, we can define
the following sequence {M;}i—o,. r of left D-submodules of M as follows:

Mo=M, My =v0(T1)=T1, Vi=2,...,n, M;=(y00921°7320°" " °%i-1))(Ti)

ot
g5

(55)

Using (48) and (49), the left D-module M; can be explicitly characterized by:
Vi=1,...,n, M;=m(kerp(.Ro;) (Foi ... Fp2)). (56)
The inclusion ’Yi(¢_1)(Tz‘) C T;_1 yields M; € M;_1, and we get the following filtration of M:
0= M1 C My, C My 1 C---CMyC M C My=M. (57)

Remark 10. Let us explain why the left D-modules M;’s depend only on M and not on the
free resolution (24) of M. Using Remark 3, the Auslander transpose right D-module N;; =
DPii [(Ry; DPG-1#) of the left D-module cokerp(.Ry) = DYPi/(D*Pt-1i R;;) depends only
on cokerp(.R;;) up to projective equivalence. Using Remark 1 and the exactness of the free
resolution (24) of M, we find that the right D-modules

cokerD(.Rii) = COkel"D(.Ri) = l)b(p"’1 Ri—l = keI'D(.Ri_Q), 7 > 3,
cokerp(.Ra2) = cokerp(.Rg) = DYP1 Ry = ker,
cokerp(.Ry1) = cokerp(.Ry) = M,

depend on M up to projective equivalence. Thus, the right D-module N;; depends only on M up
to a projective equivalence for ¢ > 1. Using Remark 2, M; 2 T; = extiD(Nii, D) finally depends
only on M for ¢ > 1 and not on the free resolution (24) of M.

Let us state a few consequences of the above results.
Corollary 4. 1. The following long exact sequences of left D-modules hold

Li+1

0 — My 5 M; =5 extly(exthy(M, D), D) — C; — 0, i=0,...,n, (58)
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where C; = cokere; is isomorphic to a left D-submodule of extigz(N(,-H)(i_i_l),D) for all
i=0,...,n—2 (with equality for i =0), Cp,_1 =0, C,, = 0. In particular:

M, = ext(exth(M, D), D), My_1/M, = ext’s (ext}y *(M, D), D).

2. IfMZZO, thenMi:MHl ::ano

Proof. 1. Using the last short exact sequence of (53), M = My and M; = Tj, we obtain
(58) for i = 0, where Cyp = ext%(Ni1,D). Let us now suppose that i = 1,...,n and let
Qi = Y10 © Y21 © Y32 © * ** © Yi(i—1) be the left D-isomorphism from T; to M; (see (55)). Then,
the long exact sequence (46) yields (58) where ¢;11 = a; 0 Y(;41)i © ai;ll =ida,,,, & = Vi © a;l
and C; = cokerg; = coker-y; C extlgz(N(Hl)(iH),D) by (44). Since gld(D) = n, we get
Cn—1 = C, = 0. Finally, (58) for i = n, M, 41 = 0 and C,, yield M,, = ext}(ext}, (M, D), D),
and (58) for i =n — 1 and Cy,—; = 0 implies that M,,_1 /M, = ext’s *(ext}y *(M, D), D).

2. The equality is a direct consequence of (57).

3. If jp(M) = 0, then the result holds since M = Mj. Let us suppose that jp(M) > 1. Then,
ext?, (ext’,(M, D), D) = 0fori=0,...,jp(M)—1since extl,(M,D) = 0fori =0,...,jp(M)-1.
Using (58), we get M;y1 = M; for i = 1,...,jp(M) — 1. Finally, the last short exact sequence
of (53) yields M/M; =0, i.e., M = M, which finally proves the result. O

Let us give consequences of the above results for an Auslander regular ring D.
Proposition 8. If D is an Auslander regular ring and gld(D) = n, then we have:
1. If M; is nonzero, then jp(M;) > i fori=0,...,n.

2. If M;/M;+1 is nonzero, then M;/M;+1 is an i-pure left D-module for i =0,...,n. More-
over, if M;+1 = 0, then M; is either zero or an i-pure left D-submodule of M. In particular,
M, is either zero or a n-pure left D-module.

3. If C; is nonzero, then jp(C;) > i+ 2 fori=0,...,n—2.
4. M; = My iff extly(ext’y (M, D), D) = 0.

Proof. 1. Since M; 2 T; = ext;(Ny;, D) for i = 1,...,n, Remark 7 then shows that jp(M;) > i.
Moreover, My = M, and thus jp(My) > 0.

2. By 3 of Theorem 8, ext’,(ext’, (M, D), D) is either zero or i-pure, and so is the left D-
module M;/M;;1 = ime; C exth(ext’; (M, D), D) (see Remark 6). In particular, if M; 1, = 0,
then M, is either zero or an i-pure left D-submodule of M. Finally, M,, = ext},(ext, (M, D), D)
(see 1 of Corollary 4) implies that M, is either zero or n-pure.

3. Since C; = cokerg; is isomorphic to a left D-submodule of extigz(N(i +1)(i+1), D) for
i=0,...,n—2 (see 1 of Corollary 4), then Remark 7 then yields jp(C;) > i+2 fori =0,...,n—2.

4. If M; = M;4q, then (58) gives C; 2 ext®,(ext’;(M, D), D). On the one hand, by 3 of
Theorem 8, C; is either zero or i-pure, and thus we either have C; = 0 or jp(C;) = i. On the
other hand, using 3, if C; # 0, then jp(C;) > i + 2, which shows that C; = 0. Conversely, if
ext’, (ext’, (M, D), D) = 0, then (58) yields M; = M; ;. O
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If D is also a Cohen-Macaulay ring, then using Corollary 3, we obtain:
Vi=0,...,n, dimp(M;) <dim(D)—i, dimp(M;/M;y1) = dim(D) — 1. (59)

Let us now show that the filtration {M;}i—o, ., of M defined by (55) is exactly the grade
filtration {t;(M)}i=o,...n of M defined in (21) when D is an Auslander regular ring.

Theorem 10. Let D be an Auslander regular ring and M a finitely generated left D-module.
Then, we have t;(M) = M; for alli =0,...,n = gld(D), i.e., the grade filtration (22) of M and
the filtration (7) of M coincide.

Proof. Let us first prove that 0 # M; C t;(M). By 1 of Proposition 8, jp(M;) > i. If m € M;,
then applying Proposition 7 to the short exact sequence 0 — Dm — M; — M;/(Dm) — 0,
we obtain jp(Dm) > jp(M;) =i, and thus m € t;(M), i.e., M; C t;(M).

Following [9], let us now prove t;(M) C M; by induction on i, i.e., t;(M) = M; by the above
point. We first note that to(M) = M = My, which proves the result for ¢ = 0. Let us now assume
that tZ(M) = Mz and let us show that it yields ti—i—l (M) == Mi-i—l- Since Mi+l - ti—i—l(M) - ti(M),
we get tiy1(M)/M;y1 C t;(M)/M;+1 = M;/M; ;. Using 2 of Proposition 8, M;/M;;, is either
zero or an i-pure left D-module. If M;/M;11 = 0, then t;11(M)/M;y1 =0, i.e., tiv1(M) = My,
which proves the result. Hence, let us assume that M;/M;,; is an i-pure left D-module. Then,
by definition of a pure module, its left D-submodule t;11(M)/M;1; is also either zero or i-pure.
If tip1(M)/M;4q is i-pure, then jp(t;y1(M)/M;11) = i. But, applying Proposition 7 to the
following short exact sequence

0 — M1 — tiy1(M) — tix1 (M) /M1 — 0

gives jp(tiv1(M)/Mit1) > jp(tix1(M)) > i+ 1, which yields a contradiction. Thus, we obtain
tiy1(M)/M;y1 =0, i.e., tjv1(M) = M; 41, which finally proves the result by induction. O

Remark 11. We can combine Theorem 10 and Proposition 8 to find again 2 of Theorem 8.
Indeed, using Theorem 10, M # 0 is i-pure it M = My = ... = M; # 0 and M;11 = M;1 o =
.. = M,+1 = 0. By 4 of Proposition 8, the equalities are equivalent to ext, (ext¥ (M, D), D) =0
fork=0,...,i—1land k = i+1,...,n. Let us study the inequality. Combining M; # 0, M;+; =0
and (58), ext’,(ext’, (M, D), D) then contains the nonzero left D-submodule M;, which shows
that ext®,(extl, (M, D), D) # 0. Since ext’,(ext’; (M, D), D) # 0 yields M # 0, M # 0 is then
an i-pure left D-module iff ext® (ext¥ (M, D), D) = 0 for k # i and ext®,(extl, (M, D), D) # 0.

The existence of the filtration (57) only requires that D is a noetherian regular domain
which satisfies (38). If D is an Auslander regular ring, then Theorem 10 proves that (57) is
exactly the grade filtration (22) of M. If D is also a Cohen-Macaulay ring, then using (59),
the filtration {M;}i—o,.. n of M gives a built-in classification of the elements of M by means
of their (co)dimensions. This filtration is sometimes called the codimension filtration of M (or
equidimensional decomposition in algebraic geometry).

Remark 12. If D satisfies the hypotheses of Theorem 9, then Theorem 9 shows that the
characteristic ideal J(M) of gr(D) does not depend on the choice of a good filtration of M. The
characteristic variety of M is then defined by char(M) = {p € Spec(gr(D)) | J(M) C p}, where
Spec(gr(D)) is the set of prime ideals of gr(D) endowed with the Zariski topology. A well-known
result in algebraic analysis states that a short exact sequence of left D-modules

0— M —M-—M —0
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yields the equality char(M) = char(M’) U char(M") (see, e.g., [30, 33]). Applying this result to

the short exact sequences 0 — M; 1 — M; — M;/M; 1 — 0 for i = 0,...,n, we get:
char(M) =] char(M;/Mi;1). (60)
1=0,...,n

It can be proved that the characteristic variety char(P) of an i-pure module P is equidimensional
in the sense that every irreducible component of char(P) has dimension dim(D) — i (see, e.g.,
[10]). Hence, (60) is an equidimensional decomposition of the affine algebraic variety char(M).

Theorem 10 shows that the grade filtration of M can be computed by means of elementary
methods of module theory and homological algebra. In particular, we do not need to com-
pute a Cartan-FEilenberg resolution P*® (see, e.g., [50]) of the complex (25) (called Rhom (M, D)
within derived categories (see, e.g., [25])), the total complex Tot(homp(P**, D)) of the dou-
ble complex homp(P*®, D), and the spectral sequence associated with the first filtration of
Tot(homp(P*®, D)). For more details, see [2, 9, 10, 11, 23, 25, 32, 50]. Our approach has then
the advantage to be easily implementable in any computer algebra system containing an im-
plementation of Grobner bases for (noncommutative) polynomial rings (e.g., Maple, Singular,
Macaulay2, Magma, Mathematica). Another advantage will be explained in Section 4.

The filtration (57) is a particular case of the more general bidualizing filtration {M;}i=o. ... n
of a finitely generated module M over a regular ring D [9, 10], of which the existence can be
proved by means of a spectral sequence argument. In this case, M;/M;;1 is then a left D-
subguotient (i.e., a quotient of a left D-submodule) of ext’,(ext’, (M, D), D), and not simply a
left D-submodule as shown above for an Auslander regular ring D. Finally, we note that the
results developed in [9, 49] were extended in [32] for an Auslander-Gorenstein ring D, namely a
noetherian ring of finite injective dimension m as a left/right D-module (i.e., ext’, (M, D) = 0 for
i > m and for all finitely left/right D-modules M) [50] which satisfies the Auslander condition
(see Definition 8).

Let us sum up the above results in the following algorithm.

Algorithm 1. e Input: A noetherian regular ring D satisfying (38), gld(D) = n, and
R € D,

e Output: A sequence {T;}i=1,. , of finitely generated left D-modules defined by (45) and
a sequence {y19 € homp (71, M) }U{v(41); € homp(Tit1,T;)}i=1,..,n of D-homomorphisms
defined by (49) and (48) such that {M; = (yip0y210y320 -0 ’Yi(i_l))(Ti)}i:I,...,n is a
filtration of M (the grade filtration of M when D is an Auslander regular ring).

1. Set Ry = R, p1 = p, p2 = ¢, and M = DY¥P1/(D¥P2 R}),
2. Compute matrices Ry € DPx*Pe-1 for k = 2,... n such that (24) is an exact sequence.
3. Set Prk = Pk, P(k—1)k = Pk—1 = P(k—1)(k—1)> Fkk = Ri, and Nyg = DP* [( Ry, DP(=DF),

4. For k =1,...,n and for j = 1,..., k, compute matrices R_jy, € DPr-)k*Pk--Dk such
that (27) is an exact sequence.

5. For k = 2,...,n, compute matrices F(j_gy, € DP=2k*PU=2(—-1 such that:

Ri—1y(k-1) = Be—1)k Flr—2)k-
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6. For k=2,...,n and for j =2,...,k, compute F(z_;; € DP=i)k *P(—j)(k—1) gatisfying:
gk Bk—5) (h-1) = B—jok Flr—j-1)k-

7. Return the matrices Ry;, R1;, and Fp; defining the left D-module T; = kerp(.Ro;)/imp(.R1;)
fori=1,...,n, y10 = id7, : T} = kerp(.Ro1)/imp(.R11) — M = DY*Pot /imp(.Ry1), and
Yii—1) € homp (T3, T;—1) by (48) for i =2,...,n.

Remark 13. Using 3 of Corollary 4, i.e., M = M;, ), let us explain how Algorithm 1 can
then be speeded up when jp(M) > 1 by avoiding the computation of the left D-modules T;’s for
i=1,...,7p(M). Since ext’, (M, D) =0 fori=0,...,jp(M)—1, then (25) yields the following
free resolution of N;, ar)jp ()

Ri. Rs. Rjp - , Kjp (M)jp (M)
DPo DPip () —)NjD(M)jD(M) — 0. (61)

Applying Proposition 1 to (61), we get ext?(M)(NjD(M)jD(M),D) > exth (Ny1, D) = My, where
Ni1 = DP/(Ry DPo). Moreover, since jp(M) > 1, homp(M, D) = 0, and using Theorem 1,
kerp(R;.) & homp(M, D) = 0, and thus M; = ext},(N11, D) 2 M. Hence, we do not need to
compute the beginning of a free resolution of the right D-module Ny for k =1,...,jp(M), i.e.,

we can only consider k = jp(M) +1,...,n in 4 of Algorithm 1.

Algorithm 1 with its improvement explained in Remark 13 are implemented in the Maple
package PURITYFILTRATION [45] built upon OREMODULES [15]. The PURITYFILTRATION pack-
age allows us to compute the grade filtration of a finitely generated left D-module M, where
D is an Ore algebras available in OREMODULES. If an involution 6 of D (namely, §: D — D
satisfies G(dl + dg) = Q(dl) + 9(6[2), H(dl d2) = 9((12) g(dl) for all dq, ds € D, and 0% = idD)
exists, then we can compute the matrices R,_j), defined in 4 of Algorithm 1 by left Grébner
basis techniques. For more details, see [14]. Algorithm 1 has also recently been implemented
in the homalg based package AbelianSystems [7] by M. Barakat (University of Kaiserslautern)
and the author.

Let us now determine a finite presentation of the left D-modules 7;’s defined by (45). To
do that, we first consider the beginning of a finite free resolution of P; = D'*P-1i /(D'*Poi Ry.),
namely, matrices R}; € DPi*Poi and R), € DP2*Pii such that kerp(.Rp;) = D1 R}, and
kerp(.R};) = D2 Rl for i = 1,...,n. We obtain the commutative diagram (68) formed by
horizontal exact sequences.

Remark 14. If Ry, = 0, i.e., kerp(Ryx.) = 0, then applying the functor homp( -, D) to the

short exact sequence 0 — DPok Pk, powe Sk, Ny — 0, we get the following complex:

0 « D1XPok Lk DIxpik

Hence, we have kerp(.Rog) = DY*Pok e, R}, = I, . P\, = pok, and Rh = 0.

Combining (56) with kerp(.Ro;) = D'Pii R:., we obtain the following explicit characteri-
zation of the M;’s, i.e., of the t;(M)’s when D is an Auslander regular ring (see Theorem 10):

My = (D™Piu R},) /(DY P11 Ryy),
{ 1= w/( 1) (62

Mi = (DIXP/U ( /11 FOi - FOQ))/(D1><P11 RH), 1= 2, o, n.

Hence, (62) shows that the residue classes of the rows of the matrix R}, Fy; ... Foz in the left
D-module M = D*Po1 /(D*P11 Ry1) generate the left D-module M;.
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Algorithm 2. e Input: A noetherian regular ring D satisfying (38), gld(D) = n, and
R € D7*P,

e Output: A sequence {M;}i—1, ., of left D-submodules of M defined by (62), i.e., the
grade filtration (57) of M when D is an Auslander regular ring.

1. Apply Algorithm 1 to D and R € D9%P to obtain Ry; € DP0i*P-1i for 4 = 1,...,n, and
Fy; € DPoixPoG-1) for 4 =2,...,n.

2. Compute R}; € DP1¥Poi guch that kerp(.Ro;) = D'*Pui R, fori=1,...,n.

3. Return the matrices R}, Fy; ... Foz (or their reductions with respect to DYPut Ryy) for
1=1,...,n.

Algorithm 2 is implemented in the PURITYFILTRATION package [45].

Let us now compute a finite presentation of the left D-module M;’s. The identity Ry; Ryp; = 0
yields D'P1i Ry; C kerp(.Ro;) = DVP1i R, and thus there exists RY, € DP1*Pii such that:

Vi=1,...,n, Ry =R/ R (63)
Applying Proposition 4 to the left D-module T;, we obtain

Vi=1,....,n, Tj=kerp(.Ro;)/imp(.Ry;) = (D" R};)/(D"P" Ry;)

A ylxp, 1xp1; ! 1xph, p! (64)
> L £ DV /(DVXP1 RY, 4+ DV RY),
where the above left D-isomorphism y; is defined by
L, = Dlxp’n/(Dlxpn Rl + D1xPh, R;) X7 = (Dlxp'h- R’li)/(Dlxp:u Ry) (65)

pi(A) — pi(ARy),
and p}: DYPhi — [; is the canonical projection onto the left D-module L;. The inverse
X; * € homp(T;, L;) is then defined by x;* (pi(AR};)) = pi(A) for all A € DV¥Phs,

Let us complete the commutative diagram (68) to determine the left D-homomorphism
V(i+1); induced by the left D-homomorphism 7(;41); and the left D-isomorphisms x; and ;1.
Using (30) with k = j =4 and i = 2,...,n, we obtain Fy; Ry;—1) = Ro; F1;. Pre-multiplying
this identity by /12-, we get R,M Fo; RO(ifl) = Rlli Ry; F_1; = 0, and thus DX (R/h Fyi) C
kerp(.Ro(i—1)) = DVPr-n R/l(i—l)’ which proves the existence of Fy; € DP1i*Pii-1) guch that:

Similarly, we can prove the existence of a matrix Fj, € DP2i*P2(i-1) guch that:
Vi=2,...,n, Ry F{;=F3;Ry, i (67)

Thus, the commutative diagram (69) formed by horizontal exact sequences holds.

Let us now deduce identities which will be used in what follows. Combining (28), (29), (30),
(63) and (66), for i =1,...,n, we get
Figiqny (BY; Ry;) = Frny Ru = Ry Foary = (R Rigeny) Fois
- Rlll(i—i-l) Fll(i—i-l) 1in
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R} R}
D1xp-1n Fon D1xpon n D1xpi, n D1%XPa,
F_qn Fon
1xp Ron-1) 1xp 'Rll(”—l) 1xp/ /2(71—1) 1xp!
D —1(n—1) D 0(n—1) D 1(n—1) D 2(n—1)
Fgno1) Fo(n—1)
(68)
Fqg Foa
IxXp_q: -Ro3 1% po- Ry 1x7/ 23 1x7!
Dixp-13 D1xpo3 D1*XPi3 D**P23
Fa3 .Fos
1x o2 1x SAE 1xp) 22 1xp)
D pP—12 D Po2 D XPio D XPoo
F_1o .Foz
R .R!
Dixp-11 o D1xpo1 11 D1><p/11 21 D1><p/21'
R/ .R!
DIXp-1n Fon D1xpon in n D%,
-F—ln ~F0n Flln FQI"’L
Ror R Rl
DIXP-1(n-1) 0(n—1) D1XPo(n-1) 1) 2(n-1) D1><p’2(n_1)
Fo1n-1) Fon-1) 'F{(nq) 'FQI(nfl)
(69)
Foia Fos F, F},
R} .R!
D1xp-13 Fos D1%po3 13 2 D1xphs
F_13 .Fos .Fll3 .F2/3
R/ .R!
D1xp-12 Foz D1xpoz 12 22 D1xpho
F_12 .Fop2 Fiy Fo
R} R}
Dlxp-1 fiox D1xpo1 U 21 D1xXPhy
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/ /
Dixp-13 -Ros D1xros s 'R23 D1><P/23
1"
% A .R13
.R03 ~R13
DlxpP-13 D1xros Dlxpis .F2'3
F_q3 Fos \
.X22
v v / \
Dixp-12 -Roz Dixpoz2 vz Ries D1XP22
-
F_13 Fos Fis
1"
. Ip 12 'IP02 R12
Roz R
DiXpP-12 D1*xpo2 Dixpi2 .F2'2
F_qis Foa \
X2
. / \
Dixp-11 Foy plxpo1 v Lo DixPay
F_12 v v
.F02 ) 'Ipll
1"
. ~IP711 = -IPm ~R11
Dlxp-11 LRor Dixpor Ry plxru

Figure 1: Bottom part of the main diagram defining the grade filtration of M

and thus (Fy(i41) 1(1+1) F/(z+1)) 1 =0, ie.,

DD (Fyin) RY; = R0 Fiign) € kerp(Ry) = D7 Ry,
which proves the existence of a matrix X;o € DP1+1*P2i guch that:
Vi=1,...,n—1, Fy R — R 1) Fiip) = Xi2 Ry (70)
Now, Y(i+1)i € homp(Tj11,T;) then gives rise to Yi+1)i € homp(L;y1, L;) defined by
Vi=1,..,n =1, Fp1i=X; ' ©V(is+1)i © Xi+1, (71)
where the x;’s are defined by (65) and ~(;4.1); is defined by (48). Using (66), we get

Vil N)) = (G Ho 7(i+1)i)(ﬂi+1(>\ Rii1) = X; (0 A Rl i1y Fogir))

/ / / (72)
=X; (pl(AFl('H—l) 1)) = pi(A Fl(z‘+1))a

for all A € DV*Pi6+), Moreover, using (67) and (70), for i =1,...,n — 1, we obtain
R / B ( F1(2+1)/R/1/Z~ - {Qz R, > _ ( Figitn X ) < v ) (73)
/ ) - - / 9
Raity He Faivn) T2 0 F(H—l) 2

which yields the following commutative exact diagram

: (RYE, RELDT P
Dlx(pl(i+1)+p2(i+1)) 1(i4+1) 2(i41) DIXpl(i-H) 141 Lz‘_;’_l 0
'G/1(i+1> J'Fl/(wrl) jWiH)i
. R//T R/T T /
D1xPritpy;) (A 2) D1xPh; hi L; 0,

(74)
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where Gll(i-i—l) e DParOFPaan) X (PritP) §o the first matrix appearing in the last equality of
(73).

The identities Rj3 = RY; R}y (see (63)) and R); R}, = 0 yield the following commutative
exact diagram

DIX(pri+ph) (R R Dixphy Pl L 0
‘( [P011 ) “R’n Nym:'ylooxl
Dlxpi R D1xpor m M 0,
(75)
where 7,5 = 710 © x1 € homp(Ly, M) is defined by:
VA DY 30004 (N) = w(A RL). (76)

The matrices previously introduced can be rearranged into the three dimensional diagram
whose bottom part is shown in Figure 1. Each two dimensional diagram of Figure 1 commutes
except for the two diagrams marked in green (“faces in the depth direction”) (see (70)). The hori-
zontal sequences are either complexes (marked in red) or are exact sequences (marked in blue and
in green). The vertical sequences are not complexes. The defect of exactness T; = ext (Ny;, D)
of the i*" horizontal complex at D'*P0 (marked in red) is isomorphic to the cokernel L; of
the left D-homomorphism D*(Prit+rh) — DI1xP1; defined by the two left D-homomorphisms
R DYPri — DYXPand LRb;: DYPsi — DY arriving at (marked in green),
ie., L; = DVPu /(DY @uitre) (RYT REEYT). The left D-homomorphism v;;_1): Ty — Ti—1
defined by (48), i.e., by means of the left D-homomorphism .F; (marked in red), induces
Yiti—1) € homp(Li, L;—1) defined by (72), i.e., by means of the left D-homomorphism
(marked in green).

Algorithm 3. e Input: A noetherian regular ring D satisfying (38), gld(D) = n, and
R € D?*P,

e Output: A sequence {L;};=1 ., of finitely presented left D-modules and a sequence
{F10 € homp (L1, M)} U {F(y1); € homp(Lit1, Li)}i=1,...n—1 of left D-homomorphisms
defined by (65).

1. Apply Algorithm 2 to D and R € D?*P to get matrices Ry, € DP0i*P-ti for ¢ = 1,...,n,
matrices Fy; € DPoi*Po-1) for ¢ = 2,...,n, and matrices R}, € DP1i*Poi such that
kerp(.Ro;) = DVPu R fori=1,...,n.

2. Compute Rb; € DP2:*Pii such that kerp(.R!;) = D' P2 Ry, for i =1,...,n.
3. Left factorize Ry; by R}, to get RY; € DP1ixPy such that Ry; = R R) fori=1,...,n.
4. Compute F|, € D"*Pi-1) such that R}, Fo; = Fl, Ry fori=2,....n.

5. Return the left D-modules L; = D7 /(D' @ritph) (RYT RINTY for 4 = 1,...,n, the
matrix R}, which defines 7, € homp(Ly, M) defined by (76), and the matrices Fl’(
which define ¥ (;;.1y; € homp(Liy1, L) by (72) fori=1,...,n — 1.

i+1)
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Algorithm 3 is implemented in the PURITYFILTRATION package [45].

Using 3 of Proposition 5, we obtain the following explicit finite presentation of coker Y(i+1)it

coker ;4 1y; = DVPui /(DY FY, + DYPi Ry 4+ DVPR RY), i=1,...,n— 1. (77)
We shall denote by o; : DY*P1i — coker Y(i+1)i the canonical projection onto coker 7y q);-

Up to isomorphism, the short exact sequences

Y(i+1)i
0 —Tit1 ——

T; — cokery(it1y; — 0, i=1,...,n—1,
defined in (53) (see also (46)) give rise to the following exact sequences:

Y(i+1)i
_

0— Lin1 L; i>coker7(i_~_1)z- —0, ¢=1,...,n—1 (78)

Since both 719 and x1 are injective so is 7, and (75) yields the following short exact sequence

0— L1 2% M 25 M/M; — 0, (79)
where M/M; =2 Dot [ kerp(.Roy) = DY*Pot /(DY¥Pia RY ) (see (50)).
We recall that coker¥( i) = coker~yy1y; C extt, (extl, (M, D), D) (see (54)), and thus

coker ¥ (; 41); is either zero or an é-pure left D-module when D is an Auslander regular ring (see
3 of Theorem 8 and Remark 7). Exact sequences (78) and (79) will be used in Section 4.

Remark 15. Let us point out that the left D-modules M;’s can also be characterized by means
of the left D-homomorphisms %;;_1y’s. Combining (74) with (75), we obtain the following
commutative exact diagram:

. R//_T R/T T /
D1><(p1i+p'2¢) (A7 %) DlXp/li Pi LZ 0
I _ _ _
<G,17, e Gy ( e )) (FY; - Fiy Ryy) Y10 © Y21 © -+ ©Vi(i—1)
D1xpi1 i D1xpo1 m M 0.

By construction (see (66)), the identity R}, Fi; ... Fioa = F|, ... F{5 R}; holds. Hence, using
(62) and 2 of Proposition 5, we obtain:

im (F19 0 %21 © -+ 0 Fi(i-1)) = (DVPai (FY; ... Fly Ryy) + DYP0 Ryy) /(DYP1 Ryy) = M;.

Hence, the residue classes of the rows of the matrix R}, Fy; ... Fioa = FJ, ... F{5 R}, in the left
D-module M = D'*Po1 /(D*P11 Ry;) generates the left D-module M; for i =1,...,n.

Finally, we explain an efficient way to obtain the grade filtration of a nontrivial ext’, (N, D)
for i > 1. We consider the case of a right D-module N (the case of a left D-module is similar).
Let us first study the case of ext}, (N, D), where N = D?/(R DP). If we introduce the Auslander
transpose M = D'*P /(D4 R) of N, then the above results shows that t; (M) = ext}, (N, D),
and thus the grade filtration of exth (NN, D) can be obtained by computing the grade filtration
of M. Let us now study the case i > 2. Considering a free resolution (4) of N and introducing
the right D-module P = D%-1/(S; D%) = imp(S;—1.), then applying Proposition 1 to the
long exact sequence 0 «— N «— Do S opa B2 S22 D2 P 0, we get
ext’, (N, D) & exth(P,D) = t1(L), where L = D% /(D'*Pi-1 G;) is the Auslander transpose
of P, which shows that the grade filtration of L gives the grade filtration of ext’,(N, D). The

corresponding algorithm is implemented in the PURITYFILTRATION package [45].
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4 Equidimensional triangularization of linear systems

The purpose of this section is to apply Theorem 7 on Baer’s extensions to the short exact
sequences (78) and (79) to obtain a block-triangular matrix which presents the finitely generated
left D-module M, and whose block-diagonal matrices are presentation matrices of the pure left
D-modules M;/M; 1, where the M;’s are the left D-modules defined by the filtration (57) of M.

To simplify the exposition, we only consider the first three terms of the filtration (57) of M,
namely, M3 C My C M; C M, to obtain a presentation matrix P of M based on the presentation
matrices of the left D-modules M3, Ms/Ms, M;/Ms and M /M. If D is an Auslander regular
ring, then M/M; (resp., My/Ma, My/M3) is O-pure (resp., 1-pure, 2-pure). The left D-module
M3 satisfies jp(Ms) > 3 but it is generally not 3-pure (it is the case if gld(D) = 3). But, from
the clear pattern of the presentation matrix P, we can easily determine the general result.

We point out that the approach used here emphasizes another main advantage of our ap-
proach over the ones based on more sophisticated techniques of homological algebra. If we do
no want to separate the elements of M of grade number greater than or equal to j, then we only
need to compute the first j terms of the filtration (57) of M. But, it does not seem to be easy
to stop a spectral sequence computation to only get the first steps of the grade filtration (57).

By (78) and (79), the following short exact sequences hold

i 0 _
0 — L3 —% Ly —2 coker y3, — 0,

0 — Ly 225 Ly 25 coker¥y, — 0, (80)

0 — L1 2% M 2 M/My — 0,

where L; (resp., coker ;1) is defined by (64) (resp., (77)) and M/M; = Dxpo1 /(DYXPu Ry ).

Using the definitions of Lo, L3, and coker s, (see (65) and (77)), the following commutative
exact diagram holds

1x 7 1xp! /
D> P12 Ryy + D7*P22 Ry

(FE R RE)T

DX (Pi5+p12+phs) DY 2, cokeryzy ——— 0
ldlz P
5 0 5
0 Ls z Lo : coker gy ——— 0,
0

where 1y : D' PiatP1240%) _ L3 is the left D-homomorphism defined by:

| opsle) i=1,...,phs,
¢2(€i) = . / / /
0, i =pi3+1,...,p13 + P12 + pho.
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Applying Theorem 7 to the first short exact sequence of (80) with the matrix

A— (II; of OT)T € DWPistpi2+phy) xpis
P13

(see Corollary 2), we obtain the following characterization of the left D-module Ls in terms of
the presentations of the left D-modules L3 and coker7¥s,.

Proposition 9. With the previous hypotheses and notations, let us consider

H —]p/13
7 /1/2 0
Qs = ( ,12 > € DWP2tPn)xp - p, = by 0 € DWPistP12+phy tP13+pag) X (P1o+P1s)
22 0 /1/3
0 Ry

and the following two finitely presented left D-modules:

Ly = DV¥ha /(DVP2 Ry + DY¥7ez Rly),
Ey = DlX(p’12+P’13)/(D1X(p’13+p12+p’22+p13+p§3) Py).

If 09 : DY (Pi2tP1s) s By s the canonical projection onto Eo, then we have Fy = Lo, where
the left D-isomorphism is defined by:

bo: Ly — Fj ¢5t: By — Lo

po(p) +— o2u(ly, 0)), 02(v) +— ph(v (L FH)T).

(81)

Proof. Let us consider the following matrices:

0 L, 0 00

V2:(Ip/12 0)€Dp/12><(pl12+p/13)’ W2_<0 0 L 0o

+Dha) X (Ph3+P12+Dho+P13+Dh;
> eD(pIQ p22) (p13 P12TPooTP13 p23)7

P22
0 0
. Iy 0
X, = ( ijz ) c ]_)(17/12+p/13)><p'127 Y, = 0 Ip’22 c DPi3+P12+Pos+P13+P53) X (Pr2+P50)
s Fig =X
0 Fi

Using (67) and (70), we can easily check that Qo Vo = W Py (resp., P, Xo = Y5 Q2), which
by Proposition 5 induces ¢2 € homp (Lo, F3) defined by (81) (resp., 12 € homp(Es, Ls)). Since
Vo Xo = Ipfl , we get 19 o ¢o = idy,, which shows that ¢, is injective. Using 3 of Proposition 5,
the left D-module coker ¢o is finitely presented by the matrix (Vi PJ)T, which admits the
following left inverse over D:

Iy 0 0 0 0 ) X (Pl pra- by pra-pha)
Fly —I; 0 0 0

Hence, coker¢s = 0, i.e., ¢o is surjective, and thus ¢o is an isomorphism, Fy = Lo, and

¢3! = 1ho. O
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Using the left D-isomorphism ¢, 1. By — L, defined by (81), the second short exact se-
quence of (80) yields the following short exact sequence

- —1
Y210 P
_

0— FE» Ly O, coker Y91 — 0, (82)

where using (72), the left D-homomorphism 7y, o ¢5 L. By — L, is defined by:

/ / I / F,
Yve DlX(P12+p13)’ ~ -1 —~ / Pi2 _ 12 ‘
v (Va1 0 03 )(02(V) =71 [ P2 [V Fl, PV Fl, Fl,

Using the definitions of L1, Fs, and coker7y; (see (65), Proposition 9 and (77)), we get the
commutative exact diagram

1xp11 N 1xp, /
DY*Pit RY 4 DI*Po RY

(FE R RET

D1><(p’12+p11+p'21) DlXplll L} Cokerﬁ21 PN O
Jd’l F1
= —1
Y210 ¢ 0 _
0 Ey 2 Ly - coker y5; — 0,
0

where tp1 : DY*PratP1itp21) By is the left D-homomorphism defined by

Q2(ij)7 .] = 17"'7p,127
Oa j:p/12+17'-'7p€[2+p11+p/21a

Y1(f5) —{

. . / /
{fiti=1,..p\,+p11+pp, 18 the standard basis of D (Piatputran) and:

Ip/12 0
F= 0 0 c D(p/12+p11+pl21)><(pl12+17/13)_
0 O

Applying Theorem 7 to the short exact sequence (82) with the matrix A = F (see Corol-
lary 2), we obtain the following proposition.

RR n°® 7769



inria-00632281, version 1 - 14 Oct 2011

Grade filtration of linear functional systems 39

Proposition 10. With the hypotheses of Proposition 9 and the previous notations, let us con-
sider the following two matrices

/
Fiy —Ip/12 0
/1’1 0 0
/21 0 0
0 F1/3 —I /! / / / / / / / /
P = P13 e D(plg-l—znl-&-:ﬂgl-1-11713-‘:-1712-1—11322-&-’117134-[)23)><(11711+1712-|—1713)7
0 i 0
12
/
0 29 0
i
0 0 13
/
0 0 23
1
Q) = /11 c D(p11+p’21)xp’11,
21

and the following two finitely presented left D-modules:

L= Dlxp’u/(plx(mﬁp’gl) Q1),
E, = DIX(p31+p’12+p’13)/(D1X(p’12+p11+p/21+p’13+p12+p/22+p13+p’23) P).

If 01: DX PP tpis) FE1 is the canonical projection onto E1, then we have Ey = L1, where
the left D-isomorphism is defined by:

o B — Ly

o1 L1 — Ep Iy, (83)
pi(v) — o(v(Ly, 0 0)), o1(A) — pi | A Fy
Fis Iy

Finally, we have Ly = My, with the following left D-isomorphisms:

xi: i — M it My — I
pi(v) — =m(vRYy), (v Ryy) — p(v).

Proof. Let us consider the following matrices:

Vi = (Ip’n 0 ()) € DPuxPiutrite) X = (]Z/H FiY (Fl Fl,)D)T e DP11+PL+Phs) Pl

(0 L, 0 00000
“Vo o I, 00000

) e D(p11+p’21)X(10’12er11+p/21er’lgerlz+1D’22+p13+p’23)7

P2

0 0
Ipy, 0

0 Ip/21

0 0 / / / / / /

Yi — c D(p12+p11+P21+p13+p12+p22+1713+p23)><(p11+p21)‘

Ipn —Xi2

0 F;,
Fi3 —Fi3X12 — Xo2 Fyy

0 F3 Fy
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Using (67) and (70), we can check that Q1 Vy = Wi P (resp., Py X1 = Y1 Q1), which by
Proposition 5 induces ¢; € homp(Li, Eq) defined by (83) (resp., 1 € homp(E1, L1)). Since
Vi Xy =1Iy , we get 11 o ¢1 = idr,, which shows that ¢; is injective. Using 3 of Proposition 5,
the left D-module coker ¢; is finitely presented by the matrix (V' P{)T, which admits the
following left inverse over D:

Iy, 0 0 0 0 0 00O
Fly —-I,, 00 0 0000O0]|e DP11+PLP13) X (P11 +PioTP11+PY) +P) 5 +P12+Phy +P13+Ph3)
12
FlsF, —F{3 0 0 —Iy, 00 00
Hence, coker¢; = 0, i.e., ¢1 is surjective, and thus, ¢; is an isomorphism, F; = L;, and
¢f1 = 1. Finally, the last result of Proposition 10 was already proved in Remark 15. O

Using Proposition 10 and Remark 15, 7, o qbfl: Ey — M is then defined by:

/

11
(xaiodr N aW) =7 [A|  FpRy
Fi3 Fip By

Then, the third short exact sequence (80) yields the following one:

— -1
Y10° ¢1
—_——

0— B M 2 M/M; — 0. (84)
Now, we can easily check that the following commutative exact diagram holds

/

R ,
DIxpi o plxpor T M/M; 0

|+ §
Y10 O¢f1

0 Ey M M/M; —— 0,

where ¢: DYPuu — B is defined by ¢ (gr) = o01(gx (Ip;, 0 0)), and {gk}p=1,.p,, is the

standard basis of D1*P11, Then, we can apply Theorem 7 to the short exact sequence (84) with
A=, 0 0)€ DPuxPhatPiatris) (see Corollary 2) to get the following theorem.

Theorem 11. Let D be a noetherian domain which satisfies (38). With the previous notations,
let us consider the following matrix

1 — Iy, 0 0
0 Ky -1y 0
0 R} 0 0
0 1 0 0
P = 0 0 Fly —I, | € D(PritP1o P11 Py +P15FP12+Phy +P13+P25) X (P01 +P1 +P1HPs)
0 0 1a 0
0 0 99 0
0 0 0 s
0 0 0 ha
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and the following two finitely presented left D-modules:

M = D¥por /(DYXP11 Ry ),
E = DY Po1tp1+p1oHp1s) /( DI (Pra P10 tP11+ph +Ph5 tP12+pop p134003) P,

If o: DY PortPi+P1+Pis) s B s the canonical projection onto E, then we have E = M, where
the left D-isomorphism is defined by:

bV E — M

Ipol

1 (85)
Fiy Ry ‘
Fi3 Fiy Ry,

¢o: M — F
T(A) — oA (lp, 0 0 0)), ofe) +— m|e

Proof. Let us consider the following matrices:

V=0

o1 0 0 0) € DPorx(Portpiitpiatphs)

W:< L 0 Iy, 00 0 0 0 0)6Dpu><(p’11+p’12+p11+p’21+p’13+p12+p’22+p13+p’23)7

Ip()l
/
X = , 11/ c D(p01+P/11+p'12+p'13)><P01’
F12 11

/ / /
F13F12 11

Y = 0 c D(pﬁl+p'12+p11+17'21+P'13+p12+p'22+1713+p'23)><p11_

Using (67) and (70), we can check that R;; V = W P (resp., PX =Y Ry1), which by Propo-
sition 5 induces ¢ € homp(M, E) defined by (85) (resp., ¥ € homp(E, M)). Moreover, since
VX = I,,, we get 1 o ¢ = idps, which shows that ¢ is injective. Using 3 of Proposition 5,
the left D-module coker ¢ is finitely presented by the matrix (VT PT)T| which admits the
following left inverse over D:

Ipg, 0 0 00 0 0000
1 Iy, 0 00 0 0000
Fl,Ry,  —Fly I, 00 0 0000

e DPo1+p 1 +P o +P11+Ph1 +P13 P12 +Pho+P13+Ph3) X (Po1+P] 1 +P12+Pl3)

Hence, coker ¢ = 0, i.e., ¢ is surjective, and thus, ¢ is an isomorphism, £ = M, and ¢! = 1. [
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We note that (70) for i = 1 and Fiz = I, yield the following identity:
11 = Ry Fiy + X12 Ry (86)

Since the third column of P contains RY,, the third row of P containing the matrix R/, can be
removed. We then obtain the following straightforward corollary of Theorem 11.

Corollary 5. With the hypotheses and the notations of Theorem 11, if

’11 _Ip'u 0 0

0 ’21 0 0

0 0 Fig =1y (Ph1+Pho+Py +Ph3+P124+Pho +P134Dh3) X (P01 4P 1 +P1 o +P)s)
QI . 013 € D\P11TP12TP21 TP13TP12TP22 TP13 T P23 Po1+p];+P]s p137

0 0 19

0 0 R, 0

0 0 0 -

0 0 0 -

then we have
1x 1x
M — D pOl/(D p11 Rll)
~ f = DY Portpitpiatpis) /( DIX (P tPiotph +Pis T2t phs T3 4Rhs) ()

where the isomorphism is defined by (85).

Let F be aleft D-module. Then, M = E and Theorem 1 imply that kerz(R11.) = kerg(P.) =
kerz(Q.). Applying the functor homp(-,F) to the diagram defined in Figure 1, we obtain the
diagram of abelian groups defined in Figure 2 formed by horizontal complexes of abelian groups.
More precisely, using (85) and R = Rj1, we obtain the following corollary.

Corollary 6. If D is a noetherian domain which satisfies (38), R € D¥P, and F a left D-
module, then

kerr(R.) = kerr(Q.),

i.e., the following system equivalence holds

Ry (-1 =0,
Flom —1m =0,
R/21 T =0,
Flam0 — 13 =0,
Rn=0 & e (87)
Ry 12 =0,
Ry 13 =0,
\ RYs 13 =0,
under the following invertible transformations:
v: kerg(Q.) — kerg(R.) 77t kerg(R) — kerr(Q.)
¢ ¢ Ipo,
(3 S I B 1 . (88)
T Ty F{, R}y
73 73 Fi3 Fiy Ry
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/
FP-13 Ros. JFPo3 R13'
A A
FP-13 : “L03- FPo3 L Tus- Fys.
F_is. Fos. \ X
22.
/
FP-12 Roz FPo2 Ris. \
F_y3
H Fos. A Fis.
o ".IP712- R . ’ IP02' R
FP-12 . At02- FPo2 L T2 Fy,.
F_qs. Foo \ X
12.
5> /
AF” 11 jl(JI- fpﬂl R11~ fp/ll \
F712 o - F02 . Ipll .
o Ip—ll' o v IPOl' e '
FP-11 Ror. FPo1 Rii. Frin

Figure 2: Dual of Figure 1

Remark 16. Let D be both an Auslander regular ring and a Cohen-Macaulay ring. If we set

/ /
F12 F/ F13 17
_ p! _ i / 12 _ 1" _ 13
So = 11> S1 = 11 ’ Sl - / , 52 = 12 , S3= ] ’
/ 21 / 23
21 22
then:

1. kerz(S3.) & homp(Ls, F) = homp(ext?, (N33, D), F) is either 0 or has dimension less than
or equal to dim(D) — 3,

2. kerz(S3.) = homp(coker 735, F) = homp(coker y32, F) has dimension dim(D) — 2 when it
is nongzero,

3. kerz(S1.) = kerz(S].) = homp(coker7y;, F) = homp/(coker a1, F) is either 0 or has
dimension dim(D) — 1,

4. kerr(Sp.) = homp (M /M, F) has dimension dim(D) when it is nonzero.

If R3 has full row rank, i.e., kerp(.R3) = 0, then N33 = ext3D(M7 D), and thus ext3D(N33, D)=
ext?, (ext?,(M, D), D), and kerx(Ss.) has dim(D) — 3 when it is nonzero.

The solution of the linear system kerxz(R.) can then be obtained by integrating the linear
system kerz(@Q.), i.e., by integrating in cascade the linear system kerz(Ss3.) of dimension less
than or equal to dim(D) — 3, then the inhomogeneous linear systems of dimension respectively
dim(D) — 2, dim(D) — 1 and dim(D). Finally, if F is an injective left D-module, then the linear
system kerz(R};.) of dimension dim(D) is parametrizable and kerz(R},.) = Ro1 FP-1.
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Example 6. Let us consider an example studied by Janet and considered again in [38] defined
by the D = Q[0h, 02, 03]-module M = D*4/(D'*6 R) finitely presented by the following matrix:

0 —-201 03—20—01 —1

0 95-20 28 -39, 1
| O 6o 20050 -1
0 -8 & 0
& O -0 0
o o 20, 0

The D-module M admits the following finite free resolution:

.R R .R3
0 M ™ D1><4 D1><6 2 D1><4 3 D 0’

200 Oy —0y —03 03 0
Ry — 201 0o —201+ 02 —03 801 —03 —802+203
0 01 — 0o 01 — 0o 03 —801+05 80y — O3 ’
0 0 0 o1 -0 02

R3 = (81 82 — 82 63)

Using the notations Rj; = R, Res = Ro, and Rs3 = Rs3, the commutative diagram (32)
becomes the following commutative diagram

Ris.

0 D pt_fes pa T M8 N 0
Fos. IFB. H
0 p3 ez pe e pa w2 N 0
=
0 p fo pa M pe N 0
0 D* ™ . N 0,

whose horizontal sequences are exact and with the following notations:

1 0 0
1 -1 40,—-03 0 —03 02 0 O
Rop = —1 Ry = 1 40,—035 03 Ry — 0 0O 1 0
1 0 0p—0y O 0 0 -1 04
0L — 209+ 03 0 01 — O 0 o 0 0 09
0 0 o1
_82
o, 0 —201 —01—20,+03 -1
Rz = 0 , Fo2 = 0 -1 —1 0 ,
o, 1 -1 -2 0
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0 0 0 1 -1 0
2 1 -1 0 0 0
Fi3 = , Foz=(0 0 1),
200 Oy —201+0y —03 801 —03 —80,+203
0 0 0 0 0 1

Rp3 = 0, and Rpz = 0. Using Remark 14 with po3 = 1 and po2 = 3, we get Rj3 =1, R}, = I3,
5 =0, Ry =0, and R)3; = 0. Then, (69) becomes the following the commutative diagram

R
0 D Y D 0
J -Fo3 J s
0 D1X3 R D1><3 0

J Foz J Fiy
/

D Ro D1><4 iy D1><3 0’
with the following notations:
10 -1 0 0 —20; 1
n=101 1 0 ) F1/3:F037 Flp=10 -1 0
0 0 0h—20,+03 -1 1 —1 0

Moreover, using (63), we have R{s = Ri3, R]5 = Ry2, and:

0 —20 1
0 —281+085 —1
, | s 6o 1
U710 —61406, 0
(92 —61 0
o _—) 0

Since kerp(.R3) = 0, N33 = ext, (M, D) and thus ext?, (N33, D) & ext}(ext, (M, D), D),
which shows that {M;}i—o,.. 3 defined by (57) is the grade filtration of M.

Using (45) and (64) with Ny; = DS/(R1; D*), Nog = D*/(Rgy D®), and N33 = D/(R33 D*),
we obtain the finitely left D-modules:
Ly = DY3 /(D6 Rl|) 22 extl,(Ny1, D) 2 t(M),
Ly = DV3 /(D6 Ry5) = ext?)(Naz, D),
L3 = D/(D1X4 ng) = eXt%(Ngg, D)
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Corollary 5 yields M = E = DY /(D17 Q). where the matrix @ is defined by:

10 -1 0 -1 0 0 0 0 0 0
01 1 0 O -1 0 0 0 0 0
0 0 1—20,+03 -1 0 0 -1 0 0 0 0
0 0 0 0 0 -200 1 -1 0 0 0
00 0 0 O -1 0 0 -1 0 0
0 0 0 0 1 -1 0 0 0 -1 0
0 0 0 0 0 0 0 O 0 1 -1
0 0 0 0 O 0 0 1 0 0 0
Q=00 0 0 O 0 0 -1 401—03 O 0
0 0 0 0 0 0 0 1 401—03 03 O
0 0 0 0 0 0 0 0 01—02 O 0
0 0 0 0 O 0 0 0 01—-02 0 0
0 0 0 0 0 0 0 0 0 o 0
0 0 0 0 0 0 0 0 0 0 —09
0 0 0 0 0 0 0 0 0 0 —03
0 0 0 0 O 0 0 O 0 0 0
0 0 0 0 0 0 0 0 0 0 O

Let us explicitly compute ker#(Q.), where F = C*°(R3). We first integrate the last diagonal
block of @, i.e., the O-dimensional (holonomic) linear system kerz(Rj3.):

—627‘3 = 0,
—(937'3:0, & m=c €R
0173 =0,

Then, we integrate the inhomogeneous linear system in 7 = (121 722 723)” and 73 formed by
the third triangular block of ) (whose homogeneous part is purely subholonomic), namely:

)
Tog — 713 = 0,
Tog = T3 = C1,
To1 = 0,
—To1 + (4 o — 83) Tog = 0, =4
To1 + (401 — 03) To2 + O3 123 = 0,

[ (01— 02) T2 =0,

721 = 0,
(481 — 83) 729 — 0,
(61 — 82) T29 = 0.

We obtain 191 = 0, 72 = fi(x3 + i (x1 + x2)), where f is an arbitrary smooth function, and
Tog = c1, where c; is an arbitrary constant. Then, we integrate the inhomogeneous linear system
inT = (r1 712 713)7 and 7 formed by the second triangular block of @, namely:

=201 112 + 713 — 721 = 0, T2 = =722 = —f1(x3 + § (21 + 32)),
—T12 — Tog = 0, & T = —Tao + o3 = — fi(zs + 1 (v1 + 22)) + ¢,
T11 — T2 — To3 = 0, Ti3 = —201To2 + To1 = —% fi(zs + § (z1 + 22)).

The entries of 71 are 1-dimensional and not 2-dimensional. This result comes from the fact that
the matrix S| defined in Remark 16 admits a left inverse over D. Thus, we have M; /My = 0,
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i.e., My = My, which yields kerz(S].) = homp(coker ¥y, F) = homp (coker y21, F) = 0. Finally,
we integrate the inhomogeneous linear system in ¢ = ({; ... ¢4)? and 7 formed by the first
triangular block of P, namely:

G —¢@—11=0, G—CG=-filzz+ 1 (z1+32)) + a1,
G+ —T12=0, S G+ G=—filzs+ 1 (z1+12)),
(01 =202 +03) (3 — G — 113 =0, (01 =205+ 05) (3 — Ca = —5 fi(zs + % (21 + 22)).

(89)
The torsion-free D-module M /t(M) = D**/(D'*3 R},) can be parametrized by means of Ry,
i.e., M/t(M) = D™ Ry;. Since F is an injective D-module, the linear system kerz(R};.) is
parametrized by Ro, i.e., kerg(R};.) = Ro1 F. Since R}, admits the right inverse over D

1 0 0
01 0

X = ,
00 O
0 0 -1

the Quillen-Suslin theorem (see, e.g., [21, 50]) implies that M/t(M) is a free D-module of rank
1. The general F-solution of (89) is then defined by { = Rgp1 £+ X 71 (for more details, see [46]):

G =& filws+ 1 (@1 +32)) + i,

VECCREY, VhECTR), Ve ek | @7 ¢ f@mtilmta),
(3 =¢,
CGa=(01—202+03) &+ %f1(903 + i (z1 + x2))-

Finally, using the D-isomorphism ~ defined by (88), we obtain

(

—2011m2+03m3 —202m3 — O1nz —nyu =0,

O3m2 —201m2+202m3 — 301 M3 +m4 =0, m=¢&— filas+ (214 22)) + a1,

O3m —601m —202m3 —501m3 —na =0, o me = —&— fi(zs + 3 (21 + 22)),

Oamo — O1mo + Oamz — O1m3 =0, ns =&,

Oanp —O1mo — Jomg — 01 m3 =0, 774:(81—2824-83)5—1—%]&1(1‘34-%(%'1—|-£L'2)),
O1m —Oine —201m3 =0,

(90)
where & (resp., fi, c1) is an arbitrary function of C°°(R?) (resp., C°°(R), constant).

For more examples coming from mathematical physics, mathematical systems theory, and
algebraic geometry, see [45]. For instance, using the PURITYFILTRATION package, we can show
that the torsion submodule of the differential module M defined by the linearized Einstein
equations in the vacuum (see, e.g., [14]) is 1-pure (see [45]), and thus every nontrivial torsion
element m of M defines a pure differential module of dimension 3.

Using the regular patterns of the matrix P and (85), we can easily generalize Theorem 11,
Corollary 6 and Remark 16 as follows.
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Theorem 12. Let D be a noetherian regular ring D satisfying (38), gld(D) = n, and R € DT*P.
Then, there exists a matriz R € DY*P of the form

1 —Iy, 0 0 0 0
/

O F12 _Ip/12 0 0 0

0 1 0 0 0 0

0 - 0 0 0 0

0 0 0 0

R=| o o L0 0
/

0 0 0 0 Fl(n_l) _Ipll(n—l)

0 0 0 0 R’l’(nfl) 0

0 0 0 0 R/2(n—1) 0

0 0 0 0 0 e

0 0 0 0 0 -
such that M = DYP /(D4 R) = M = D'P/(D'R). Moreover, if © : DY*P — M s the
canonical projection onto M and R}, € Dp/HXpOl, then there exist matrices Fy, for i =2,...,n
such that:

M — M
Ipg,
R /
oM — M 11
) — FA(py 0 -+ 0)), () — 7| p Fip By

Flp - Fla Ry
If F is a left D-module, then kerr(R.) = kerr(R.), where:

7: kerg(R.) — kerg(R.) F 1 kerg(R) — kerr(R.)

C C Ip01
Gl T 1

— =, n o . = . 7.
Tn n F{n'”FIIQ /11

Finally, if D is an Auslander reqular ring, then the grade filtration {M;}i=o,.. n of M is defined
by the left D-module M; finitely presented by (R{T  RINT, and M; /M4y is the i-pure left D-
module finitely presented by Ry, for i=0, by (/7 R{T RINT fori=1,...,n—1, and by
(RYT RENT for i =n.

Remark 17. We note that M; = M;,; iff S; = (F{T  R{T RIT admits a left inverse over D.
It shows that the matrix R can sometimes be simplified especially if Grobner/Janet bases can be
computed over D, since the matrix S; does not generally form a Grobner/Janet basis. Moreover,
elementary operations can also be applied to simplify the matrix S; (see, e.g., Example 6).
Using inductively Proposition 6, we can then obtain a simple presentation matrix of M with a
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triangular-block form and whose diagonal blocks present the left D-modules M;/M;.1’s when
they are nontrivial. Such a procedure is implemented in the PURITYFILTRATION package. For
related results, see Appendix A of [2]. Finally, if D is a commutative polynomial ring, then
Remark 4 can also be used to check whether or not M; = M;/M; 1 & M;41, i.e., whether or not
the corresponding matrix (IZ;_ 07 07)T can be replaced by the trivial matrix (07 07 07)T

(which generally helps the integration of the corresponding linear functional system).

Even if the size of the matrix R is larger than the one of R, the presentation matrix R is more
tractable for a fine study of the module properties of the left D-module M = M than R, for the
study of the structural properties of kerz(R.), as well as for computing closed-form solutions of
kerz(R.) (when they exist). For instance, overdetermined/underdetermined linear PD systems
kerz(R.), which cannot be directly integrated by means of standard computer algebra systems

such as Maple, can be done using their equivalent forms kerz(R.). See Appendix and [45].

5 An embedding theorem

If D is a domain, then a torsion-free left D-module M can be embedded into a free left D-
module (see the comment after Proposition 4), and thus into a projective left D-module. Using
Example 4, we deduce that a O-pure left D-module M can be embedded into a left D-module
of projective dimension 0. This result is a particular case of the following general result.

Proposition 11 ([10]). Let D be an Auslander reqular ring and M an i-pure left D-module.
Then, M can be embedded into a left D-module P; of left projective dimension i, i.e., there exist
a left D-module P; with lpdp(P;) =i and an injective homomorphism €; € homp (M, F;).

Proof. Let us give a constructive proof of the result. Let us first prove the result for a 0-
pure module M = DYP/(D*9R), ie., to(M) = M and t;(M) = 0. Since jp(M) = 0,
kerp(R.) = homp(M,D) # 0 (see Theorem 1), which shows that the Auslander transpose
Ny = DPY/(Ryy DPOV) of M = DYPo1 /(DYXPit Ry1) (Ry1 = R, po1 = p, p11 = ¢) admits a free

R_11.
resolution of the form ... ——% DpP-11 ELIEN Dpot EIZEEN pru 2L N — 0, where Ry # 0.
Since T1 = ext}:)(NH, D) = M; =t;(M) =0 (see Theorem 10), then we get the exact sequence

pixp-1 Lo plxpor L pixpn which yields M = cokerp(.Ri1) 2 imp(.Ro1) € DYP-11,

where D1XP-11 ig a free left D-module, i.e., Ipd(D!*P-11) = (.

Let us now suppose that ¢ > 1. Since M is i-pure, jp(M) = i. Hence, if (24) is a
free resolution of M, then N;; = DPii/(R;; DPG-1i) admits the free resolution (61), where
Ri; = R;, pii = pi, and p;;41) = pii (see the notations of Section 3). Now, ext, (M, D) =
kerp(R(it1y(i+1)-)/imp(Riz.) = (Ri(i41) DPE-DGED) /(Ry; DPG-i) is a left D-submodule of the
left D-module N;;. Using Proposition 4, we obtain

exth (M, D) & DPG-06+0 /((Fi_1ya41)  Ri—1yi+1)) DPEDFPE2600),

and the following commutative exact diagram holds:
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(F—n@+y)  Ra-1)@+1)-

DPG—1)iTP(i—2)(i+1) DPG—1)(i+1) extiD(M, D) 0
h (Ip(i—l)i 0) : Riiy1)- u
DPGi—-1)i Dpii " Nii 0.

Let go = pi—1)(i+1)s @ = P(i—1)i + Pa-2)G+1), @1 = (Fa—n+1)  Ra-1)6+1))s Lo = Rigiv1),
and L; = (Ipuim 0). Extending the free resolution of ext®, (M, D), u € homp(ext®, (M, D), Ny;)
then induces the following commutative exact diagram:

pu O pe @0 9 pun % pw_, ext(M,D) — 0
BL’H’L BLZ hLl BLO hu
Rii—1)(i—1)- ’ ’
prou _ for ppe P o DO G ey By R Ny

(1)

Since jp(M) =i > 1, Theorem 1 shows that kerp(Ri;.) = homp(M,D) = 0, i.e., Rgy =0

(see also Remark 13). Since D is Auslander regular (see Remark 7), homp(ext’, (M, D), D) =0

for i > 1. Applying the contravariant left exact functor homp( -, D) to the above commutative
exact diagram, we get the following commutative diagram:

DXai+1 Qi1 D1xa Qi o Q2 Dlxa @ D1xao 0
1x R R-1)6-1) s Ri; Ixpis

0 D+ xPpo1 . D Pi—1)(i—1) D XPii 0.

(92)

Since D is Auslander regular, ext%(ext%(M, D),D)=0for j=1,...,i— 1, which shows
that the top horizontal complex of (92) is exact at D'*% for j = 0,...,i—1. The defect of exact-
ness of the top horizontal complex at D*% is ext’,(ext’, (M, D), D) = kerp(.Q;+1)/imp(.Q;),
and the defect of exactness of the bottom horizontal complex at DI*Pot is ext?) (N, D) =
DY*po1 /(DY*P11 Ry1) = M. Hence, .L; induces the following canonical left D-homomorphism

git M — kerp(.Qit1)/imp(.Q;) = ext’y(extt, (M, D), D)
m(A) — o(AL;),

where 0: kerp(.Qi11) — kerp(.Q;11)/imp(.Q;) is the projection, and A € D'*Por. Since M is
i-pure, 1 of Theorem 8 implies that g; is an injective left D-homomorphism.

The exactness of the top horizontal complex of (92) at D'*% for j = 0,...,i — 1 shows that
the left D-module P; = D'*% /(D'*%-1 Q;) admits a free resolution of length i, which implies
that ext?,(P;, D) = 0 for all j > i. The free resolution of ext’, (M, D) defined by (92) shows that
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ext’, (P, D) & ext, (M, D) # 0, which proves that Ipd,,(P;) = i by Proposition 2. Finally, since
kerp(.Qir1) € D% kerp(.Qir1)/imp(.Q;) is a left D-submodule of P; = DY¥% /(D¥4i-1 Q,),
¢; induces an injective left D-homomorphism €;: M — P; defined by €;(7()\)) = 0;(A L;) for all
A € DXPo1 where o; : D% — P; is the canonical projection onto P;. ]

The constructive proof of Proposition 11 is implemented in the PURITYFILTRATION package.
A proof of Proposition 11 based on Spencer cohomology [51] was recently obtained in [39].

Example 7. Let D be an Auslander regular ring with gld(D) = n and M a nonzero holonomic
left D-module. In particular, pd, (M) < n. By definition of a holonomic module, jp(M) = n,
and thus ext’, (M, D) # 0 and ext}, (M, D) = 0 for i > n, which proves that lpd,(M) = n by
Proposition 2. Since M is n-pure, we can take P,, = M and ¢, = idj; in Proposition 11.

Example 8. Let D be an Auslander regular ring and M # 0 a left D-module defined by the
free resolution 0 — DP 2 pIxp T, pr (. Since M = exth(extl, (M, D), D), i.e., M is
1-pure, and lpdp(M) = 1, we can then take P, = M and €; = idy; in Proposition 11. If D is
also a Cohen-Macaulay ring, then dimp (M) = dim(D)—1. If D is the ring of PD operators with
coefficients in a differential field K of characteristic 0, then this result proves Janet’s conjecture
[26], which was first obtained by Johnson in [28] (see also [40, 41]).

Corollary 7. Let D be an Auslander reqular ring, M = D**P/(D**9 R) an i-pure left D-module,
and F an injective left D-module. Then, there exist two matrices Q € D**" and L € DP*" such
that the left D-module P = DY*" /(D> Q) is such that Ipd(P) =i, and

kerr(R.) = L kerz(Q.),
i.€., an i-pure linear system is the image of a linear system of projective dimension 1.

Proof. The proof of Proposition 11 shows that the following commutative exact diagram holds

Qi

0 P, — 7 plxa D1xdi1
€ ],Li [l/i—l
™ 1 R 1
0 M D1xpo1 DAxpi1,

|
|

where R11 = R, po1 = p, and p11 = ¢. Applying the contravariant exact functor homp( -, F) to
(93), we obtain the following commutative exact diagram

(93)

0 — - kers(Q1.) Fao % Fua
Jef jLi. jLi—L
0 ——— kerz(Ri1.) Fron L Fen,

which shows that € : kerr(Q;.) — kerz(R.) is defined by €/ (§) = L; £ for all £ € kerz(Q;.).
Using Theorem 3, the short exact sequence 0 — M —— P; — coker ¢; — 0 yields the long ex-
act sequence 0 — homp (coker €;, F) — homp(P;, F) — homp (M, F) — ext},(coker¢;, F).
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Since F is an injective left D-module, ext},(coker¢;, F) = 0 (see Definition 3), which shows that
€r is surjective, i.e., using Theorem 1, for every n € kerr(R.), there exists £ € kerz(Q);.) such that
n = L;£&. We note that €/ is also injective iff homp(coker¢;, F) 2 kerg((LT Q;)T.) = 0. O

Example 9. Let M be the D = Q[01, 02, J3]-module finitely presented by the following matrix:

9 0
R=| 0 o e D32,
Oy —0s

Then, the D-module M admits the following free resolution:
0Oe— M pi2 Ll pstep. o g =(-0, 85 0y).

Clearly, ext?,(M, D) = D/(d1,84,03) # 0, which shows that pd,(M) = 2 by Proposition 2.
Using Algorithm 1, we can check that M = M; = t(M) and My = ext?,(Na2, D) = 0, where
Noy = D/(01, Da, 03), which shows that M is a 1-pure D-module. With the notations of Section 3
and of the proof of Proposition 11, i.e., R11 = R, Rgs = Ra, kerp(Ra2.) = R12 D3, kerp(Ry2.) =
R02 D, R12 F02 = R11, Ql = (F02 Rog), LO = ng, and L1 = (IQ 0), where

J3 01 O 00 -0
Rio=| 0o 0 0O , Foe=11 0 |, Rp= 03 ;
0 0y —05 01 0o

we obtain ext}, (M, D) = kerp(Ra2.)/(R11 D?) = (R12 D3)/(R11 D?) = D3/(Q1D3?). By Propo-
sition 11, the D-homomorphism e¢: M — P; = D3 /(D3 Q1) defined by €1 (7(\)) = o1(\ L1)
is injective. Since the matrix @1 has full row rank and P; # 0, pdp(P1) = 1, which shows that
the 1-pure D-module M can be embedded into the D-module P; of projective dimension 1.
Finally, if F = C*(RR?) is the injective D-module of smooth functions (see Example 2), then

kerp(Q1.) = {(83 ¢(w2,x3) Do p(wa,w3)  — plwa,3))" |V ¢ € CF(R?)},
which gives ker]:(R.) =1, ker}-(Q1.) = {(03 gf)(xg,xg) O ¢($2,$3))T ‘ Ve COO(]R2)}
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6 Appendix: The PURITYFILTRATION package

We demonstrate the PURITYFILTRATION package (Maple 15) dedicated to grade filtration and
its applications. It uses the OREMODULES package [15] and the OREMORPHISMS package [17].
> with(OreModules):
> with(OreMorphisms):
> with(PurityFiltration):
Since the notation D is protected in Maple, in what follows, we shall use A instead of D.
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6.1 Grade filtration of linear PD systems

Example 10. Let A be the ring of PD operators in d; = 8%1 and dy = 8%2 with coefficients in

Qlz1, x2].
> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]]):

Let us consider the following matrix R € A3*3 of PD operators first considered by Janet and
studied in J.-F. Pommaret, “Algebraic analysis of control systems defined by partial differential
equations”, Lecture Notes in Control and Inform. Sci., 311, Springer, 2005, pp. 155-223.

> R:=matrix(3,3,[0,d[2]-d4d[1],d[2]-d[1],d[2],-d[1],-d[2]-d[1],d[1],-d[1],
> -2%d[1]]1);

0 dy—dy do—dy
R:=|dy —di —da—d
d —d —2d;
Let us compute the grade number ja(M) of the A-module M = A3 /(A3 R).

> GradeNumber(R,A);
0

Let us check that j4(M) = codim4 (M) by computing the codimension of M.

> Codimension(R,A);
0

Let us check whether or not M is a pure A-module.

> IsPure(R,A);
false

Since M is not a pure A-module, it admits a nontrivial grade filtration. Let us compute it.
> G:=GradeFiltrationByGenerators(R,A);
1 0 -1

“=lg 1

AL -1 1 2],2]]

We obtain that the A-modules M; = (A2 G11)/(AY3 R) and My = (A Ga1)/(AY3 R) define
the grade filtration of M, where G;; is the first matrix of the i entry of G' (the second entry
G2 is the index ¢ of the submodule M;). If 7: A3 — M is the canonical projection onto
M, {f;}j=123 the standard basis of A1*3, {y; = m(f;)}j=123 a family of generators of M, and
y=(y1 w2 y3)T, then M is defined by the relations Ry = 0. Then, we have:

My=M= Ay + Ayz + Ays,
My = A(y1 —y3) + A(y2 +v3),
My =A(-y1 +y1 +2y3),
M3:0.

If an option is added to the command GradeFiltrationByGenerators, then we can also obtain
the PD equations satisfied by the generators of the A-module M; for ¢ = 0,1,2. The PD
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operators annihilating the j* generators of M; are the entries of j* block-diagonal matrix of
the matrix in front of the matrix G;1, i.e.,

> H:=GradeFiltrationByGenerators(R,A,opt);
—do + dy 0 1 0 -1 1] [
) 0 1 1 ) )

0 —dy + dy
shows that z; = y; — y3 (resp., zo = y2 + y3) satisfies the PD operators appearing in the first
(resp., second) block-diagonal matrix of the matrix appearing in front of G;1, i.e., (d1—dg2) 21 =0
(resp., (d1—d3) z2 = 0). The generator z5 = —y1+y2+2 y3 of Mo satisfies dy z3 = 0 and d; z3 = 0.

do
dq

H=|

],[—1 1 2],2]

A presentation matrix of the A-module M;/M;; is computed by the command PureFactors_NR:

> J:=PureFactors_NR(R,A);
| 0 dy |]

e 10 —1 1 -1
Mo 1 1 |0 —dy+dy )
2

We get M /My = A3 /(A2 1), My /My = AY2 /(A2 Jy), and My = AY*2/(A1*3 J3), where
J; is the i*" matrix of J. The suffix _NR stands for “NonReduced”, i.e., the matrix J;’s does not
generally form a Grébner basis or is not simplified. To obtain such a presentation matrix of the
A-module M;/M;; for i =0, 1,2, we can use the command PureFactors

> F:=PureFactors(R,A);

dq

F:=[[0],[] ~do+di], ]
da

i.e., we have:

M/M; =2 A/(AF)) = A,

My/My = A/(AFy) = A/(A(dy — d2)),

My = A/(AlXQFg) = A/(Adl + AdQ)

Let us compute the codimension of the A-module M;/M;; for i =0,1,2:

> map(Codimension,F,A);
[0,1,2]

Thus, codim4 (M /M) = 0, codimy(M;/Msz) = 1, and codimy4 (M) = 2, i.e., dimy (M /M) = 2,
dim4 (M /M) =1, and dimy(Mz) = 0.

Let us now check that the A-module M;/M;;, is i-pure for i = 0,1, 2:

> map(IsPure,F,A);
[0,1,2]

Another way to define the grade filtration {M;}i—o, . 2 of M is by means of finitely presented
A-modules L; = M; and injective 6; € homa(L;, M) for i = 1,2 (see Algorithm 3).

> H:=GradeFiltrationByMorphisms(R,A);
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0 —do+dy 1 0
1 0 -1 0 do—dy do—dy
H = [[ d2 _d2 ) ]7[ 0 dl )
0 1 1 -1 1 2
dq —do 0 ds

We have L1 = AY2/(AV3 Hyp) and Ly = AY2/(AY™3 Hyy), where H;; is the first matrix
in the ¢ entry of H. Moreover, the injective A-homomorphism 6;: L; — M is defined by
0:(pL(\)) = (X Hj2), where H;s is the second matrix in the i*! entry of H and p/ is the canonical
projection onto L;. Let us check again that the A-homomorphisms 6;’s are injective.

> seq(TestInj(H[i] [1],R,H[i][2],A),i=1..2);
true, true

Let us now compute an A-module M isomorphic to M which is finitely presented by the matrix
R defined by means of the grade filtration of M (see Theorem 12).

> P:=PurePresentation_NR(R,A);

1 0 -1 -1 0 0 0
01 1 0 ~1 0 0
0 do—dy do—dy 00 0 0 do—dy —1 0
P=[|d —d —dy—di |,|0 0 0 -1 1 0o -1 |,
d  —d —2d, 00 0 0 0 1 0
00 0 0 0 1 —dy
(00 0 O 0 0 —di |
1 0 0 ]
0 1 0
1 000000 0 0 1
01 0000GO0],| 1 0 -1 ]
0010000 0 1 1
0 do—dy do—dy
—1 1 2 |

We get M = AXT/(ATP) =2 M = AY™3/(A3 Pp), where P; is the i matrix of P. If
7 is the canonical projection onto M, then ¢: M — M defined by p(7(\)) = T(\ P3) is an
isomorphism, whose inverse ¢~ 1: M — M is o~} (7 (1)) = 7(p Py).

Let us check that ¢ is an isomorphism and ¢! is defined by P;.
> TestIso(P[1],P[2],P[3],A);
true

> TestIso(P[2],P[1],P[4],A);
true

The matrix R, defined by the above matrices .J;’s, can be simplified by computing a Grébner
basis of the A-module defined by the matrix J; for ¢ = 1,2,3. This can be obtained by using
the command PurePresentation:
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> Q:=PurePresentation(R,A);

0 0 0
0 do—di do—dy 1 1 -1 0 0 1
0 —do+d; O
Q:Z[ do —dq —do —dy |, , | -1 1 0 , 0 1 1 ]
0 0 dy
dq —d; —2d; 1 0 O -1 1 2
0 0 do

We obtain M = A3 /(A>3 Q) = L = A3 /(A3 Qy), where Q; is the i matrix of Q. The
isomorphism ¢: M — L is defined by ¢ (7w(\)) = 9(AQ3), where ¥ is the canonical projection
onto L. Let us check that 1 is an isomorphism.

> TestIso(Q[1],Q[2],Q[3]1,A);
true

Now, ¢p~1: L — M is defined by ¥~ (9(u)) = 7(u Q4).

> TestIso(Q[2],Q[1]1,Q[4]1,4);
true

The presentation matrix Qo of the A-module L is defined by the presentation matrices F;’s
of the pure A-modules M;/M;y; for i = 0,1,2. The fact that F; = 0 explains why the
first row of Q2 is 0. The presentation matrix )2 can be again simplified using the command
SimplifiedPresentation.

> S:=SimplifiedPresentation(Q[2],A);

100
0 —dy+dy 0 100
010
S:=[|0 0 d |,]01 0], ]
00 1
0 0 ds 00 1
000

We have L = A3/(A™3S)), where S; is the first matrix of S (the second and the third
matrices Sy and Ss defining the identity homomorphism between the two different presentations
of L).

Let us compute a presentation of the A-module M; = t(M) based on the terms {M;};—1 2 of the
grade filtration of Mj.

> T:=PurePresentationOfTorsionSubmodule(R,A);

dy—di 0 0 do—di do—ds
0 1 1
T=[ 0 d|,|d -d -d-d |, ]
112
0 do d —dy —2d;

The first (resp., second) matrix T} (resp., T5) of T is a presentation of ¢(M) (resp., M), i.e.,
t(M) =2 K = A2 /(A3 Ty) (vesp., M = A3 /(A3 Ty)). The third matrix T3 of T defines
the embedding of the A-module K into M, i.e., defines an injective ¢ € hom4 (K, M) defined by
L(o(v)) = n(vT3), where o: A?*? — K is the canonical projection onto K.

> TestInj(T[1],T[2],T[3],A);

true
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The form of the matrix S; shows that L &2 A @ K, and the form of the matrix 77 shows that

t(M) =M = Ml/Mg @® M>. Thus, we obtain:

M:A@Ml/Mg@MQ :A@A/(A(dg —dl))@A/(Adl +Ad2)

Let us finally check that K is a torsion A-module, i.e., codimy (M) > 1.

> Codimension(T[1],A);

Example 11. Let A be the ring of PD operators in d; = %, do = 8%2’ and ds = 8%3 with

coefficients in Q[x1, x2, x3]

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],

> polynom=[x[1],x[2],x[3]]):

and R the system matrix of the linear PD system defined by the left hand side of (90):

> R:=matrix(6,4,[0,-2xd[1],d[3]-2+d[2]-d[1],-1,0,d[3]-2*d[1],2*d[2]-3xd[1],
> 1,d[3],-6*d[1],-2+d[2]-5*d[1],-1,0,d[2]-d[1],d[2]-d[1],0,d[2],-d[1],
> -d[2]-d[1],0,d[1],-d[1],-2%d[1],0]);

[0 —2d; d3—2dy—d; —1]
0 d3—2d, 2dy—3d; 1
ds —6d; —2dy —5d;  —1
R =
0 dy—d dy — dy 0
ds —dy —dy — dy 0
| dy —dy —2d, 0

Let us study the A-module M = A4 /(A6 R). Let us first compute its grade number j4(M).

> GradeNumber(R,A) ;
0

Let us check that ja(M) = codim4 (M) by computing the codimension of M.

> Codimension(R,A);

0
Let us check whether or not M is a pure A-module.

> IsPure(R,A);
false

Let us now compute the grade filtration {M };—¢, 3 of M:

> G:=GradeFiltrationByGenerators(R,A);

10 -1 0
0 110
G:=][|0 1 1 0 |,1],[ 190 2L[[1 -1 =2 0],3]
0 0 —2do+ds+di -1
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We have 0 C M3 C My C My C My = M, where

( My = A1><4/(Al><6 R),
My = (A™? Gu) /(AVC R),
My = (AP Ga) /(AVOR),
Mz = (AG31)/(A™C R),
My =0,

where G is the first matrix of the i*' entry of G (the second entry Gjy is the index i of the
submodule M;). Equivalently, if m: A1** — M is the canonical projection, {fi}j=1,.. 4 the
standard basis of A%, and {y; = 7(fj)}j=1,...a a family of generators of M, then:

,

Mo= Ay + Aya + Ays + Ay,

My =A(y1 —y3) + A(ya +ys3) + A((—2da + ds + d1) y3 — ya),
My =A(y2+y3) + A(—y1 +y2 + 2y3),

Mz = A(y1 —y2 —2y3),

My = 0.

If we add an option to the command GradeFiltrationByGenerators, then we also obtain
the annihilators of the above family of generators of the A-modules M;’s (see Algorithm 2):

> GradeFiltrationByGenerators(R,A,opt);

[ 4dy — ds 0 0
4d; — ds 0 0
10 -1 0
0 4dy — ds 0
[ o1 1 0 |,1],
0 4dy — ds 0
0 0 —2dy+dg+dp -1
0 0 4dy — ds
I 0 0 4dy —ds |
[ 4dy—ds 0 ] ]
4dy —ds 0 ds
[ 0 d vob bl L[| d | 1 -2 0],3]
3 ) 72) 2 ) 1 - - )
-11 20
0 do di
L O dl_ -

The matrix in front of G;; defines the PD operators which annihilate the generators of M;
(which are defined by the residue class of the rows of G; in M). For instance, the first generator
z1 = y1 — y3 of M satisfies (4dy — d3)z1 = 0 and (4d; — ds3) z; = 0 (similarly for the second
z9 = y2+ys and third generator z3 = (—2dy+ds+d1) y3 —y4 of My). Similarly, M, is generated
by zo and z3 = —y1 + y2 + 2y3 which satisfies d; z3 = 0 for ¢ = 1,2, 3. Finally, 23 generates M3
and satisfies d; z3 =0 for i = 1,2, 3.

Another way to define the grade filtration {M;}i—o, 3 of M is by means of finitely presented
A-modules L; = M; and injective 6; € homy(L;, M) for i = 1,2,3 (see Algorithm 3).

> H:=GradeFiltrationByMorphisms(R,A);
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0 2d; —1
0 2ds -1
ds 0 -2
10 -1
2ds 0 -1
H:=] 101 1 B
2d; 0 -1
0 0 —2dy+ds+dy -1
0 ds -2
0 0 —ds+4do
0 0 4d;—ds
[ 1 0 0 ]
0 0 di
0 —2dy d3—2dy—dy -1 dq
0 0 ds
[ o1 1 0 |L[| d |,[1 -1 =2 0]]]
0 0 ds
-1 1 2 0 ds
0 4di—ds 0
_0 —ds+4dy O ]

We have L1 = A1X3/(A1><8 HH), L2 = A1><3/(A1><6H21)’ and L3 = A/(A1X3H31), where Hil is
the first matrix in the i entry of H. Moreover, the injective A-homomorphism 6;: L; — M
is defined by 6;(p;(\)) = (A Hj2), where H;g is the second matrix in the ith entry of H and
p; is the canonical projection onto L;. Let us check again that the A-homomorphisms 6;’s are
injective.
> seq(TestInj(H[i][1],R,H[1][2],A),i=1..3);
true, true, true

Let us now compute a presentation of the pure A-modules M;/M;.q fori=0,...,3:

> J:=PureFactors_NR(R,A);

[0 0 —1 ]
1 0 0 _ -
da
1 0 —1 0 0 —-2d; 1 -1 —4dy +ds 0 p
3
:[ 01 1 0 , 0 1 0 1 —4di+ds —dj 0
0 0 —2do+ds+d;y -1 —1 1 0 0 do — d 0 J
—u1
0 do — d —ds
0 0 —d

If J; is the i matrix of J, then M/M; = AV4 /(A3 ), My /My = AY3 /(A3 ],),
My/Ms = AV3J(AYXT J3), and M3 = A/(AY*4 ).

Let us compute the codimension of the A-module M;/M;q for i =0,...,2:
> map(Codimension,J,A);

[0, 00,2, 3]
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In particular, we have codim4(M;/Msy) = oo, i.e., M; = Ms. Let us now check that that the
A-module M;/M;, is either 0 or i-pure for i =0,...,3:

> map(IsPure,F,A);
[0, 00,2, 3]
The presentation matrix J; of M;/M;,1 does not generally form a Grobner basis or is not
simplified, which explains the suffix NR of the command PureFactors_NR, which stands for

“NonReduced”. To get such a presentation, we can use the command PureFactors_R, where R
stands for “Reduced”:

> K:=PureFactors_R(R,A);

1 0 0

10 —1 0 010 dy
0 0 1

K:==[|0 1 1 o |,]100], | do |

0 4dy—ds O

0 0 —2dy+ds+dy -1 0 0 1 ds
0 —ds+4dy 0

Hence7 M/Ml = A1X4/<A1X3K1)7 MI/MQ = A1><3/(A1><3K2)’ MQ/M?) = A1><3/(A1><4 K3)7 and

Mz = A/(AY3 Ky), where K; is the i*" matrix of K.

We can simplify again the presentation of the A-module M;/M; ;1 for i = 0,...,3 by means of
the elementary operations. This can be obtained by the command PureFactors.

> F:=PureFactors(R,A);

dq
4dy —ds
F=qlo] 1] Ady —d3 | =)
ds

If F; is the i*" matrix of F, then M/M; = A/(AF) = A, My/My = A/(AF) = AJA = 0,
My /M3 = A/(AY2 F3), and M3 = A/(AY3 Fy).

Let us check whether or not the A-module M;/M;;; is 0 or i-pure for i =0, ...,3.

> map(IsPure,K,A);
[0,00,2,3]

Let us compute a finite presentation of the A-module M based on the presentation of the pure
factors M; /M1 = cokery(.F;) for i =0,...,3.

> P:=PurePresentation_NR(R,A):

We get that the A-module M finitely presented by the matrix P; defined by

> P[1];
[0 —2d1 d3—2dy—di —1 ]
0 ds—2d; 2dy — 3d; 1
ds —6d; —2dy —5dy -1
0 dy—dy do — d; 0
do —d; —do — dy 0
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is isomorphic to the A-module M finitely presented by the matrix P, defined by:

> P[2];

(1 0 —1 0 -1 0 0 0 0 0 0 |
01 1 0 0 -1 0 0 0 0
0 0 —2dy+ds+d, -1 0 0 —1 0 0 0 0
00 0 0 0 —-2d 1 -1 0 0 0
0 0 0 0 0 1 0 o0 -1 0 0
0 0 0 0 -1 1 0 0 0 -1 0
0 0 0 0 0 0 0 o0 0 -1 -1
0 0 0 0o 0 0 0 1 0 0 0
0 0 0 0 0 0 0 —1 —4di4+d3 0 0
0 0 0 0 0 0 0 1 —4di4+ds —d3 0
0 0 0 0 0 0 0 0 dy—ds 0 0
0 0 0 0 0 0 0 0 do—dy —do O
0 0 0 0 0 0 0 0 0 —d; 0
0 0 0 0 0 0 0 0 0 0 dy
0 0 0 0 0 0 0 0 0 0 ds
0 0 0 0 0 0 0 0 0 0 0

[ 00 0 0 0 0 0 0 0 0 —d |

In other words, M = A4/(AX6 P)) = M = A1 /(AY17 Py)) and P» is the block-triangular
matrix defined in Theorem 12. The corresponding isomorphism is defined by the following
matrix

> P[3];

1
0
0

o o O

0
0
0

S = O O
= o O O

0 0 0 0 0
00 0 0 0
0 0 0 0 0
0 0 0 0 0

o O = O

0 0 0

ie., o: M — M is defined by ¢(7()\)) = 7(A P3), where 7: A —— M is the canonical
projection onto M. Let us check again that ¢ is an isomorphism.

—~

> TestIso(R,P[2],P[3],4);
true

Moreover, ¢! is defined by ¢! (7(1)) = 7(1 Py), where P; is defined by:

> P[4];
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10 0 0
0 1 0 0
0 0 1 0
0 0 0 1
10 -1 0
0 1 1 0
0 0 —2dy+ds+di —1
0 —2dy ds—2dy—di 1
0 1 1 0
-1 1 2 0
1 -1 ~2 0 |

Let us check again that the A-homomorphism from M to M defined by Py is an isomorphism.

> TestIso(P[2],R,P[4],A);
true

Let us now compute another presentation matrix ) of the A-module M whose diagonal blocks
are the presentation matrices K;’s of the pure A-modules M;/M; 1’s.

> Q:=PurePresentation_R(R,A):

We get that the A-module M finitely presented by the matrix 1 defined by

> Ql1l;
0 —2d;  d3—2dy—d; -1
0 d3—2d, 2dy—3d, 1
ds —6d; —2dy —5dy -1
0 do—dy do — dy 0
da —dy —dg — dy 0
4 —d —2d, 0

is isomorphic to the A-module M finitely presented by the matrix Q2 defined by
> Ql2];
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o O O O O O O o o o o o =
o O O O o o o o o o o =+~ o

fe., M = A% /(AX6 Q) gﬁ:Alxll/(Alwaﬂ.

by the following matrix
> QI3];

ie., ¥(m(A)) =T(AQ3). Let us check again that ¢ is an isomorphism.

> TestIso(R,Q[2],Q[3],A);

> Q[4];

RR n°® 7769

-1
1

o O O O o o o o o o

0
0
0
0

—2dy+d3+ dy

0
0
0

0

=)
—_

o O O O o o o o o o

0
0
0
1

|
—_

o O O O o o o o = o o o

0
0
0
0

|
—

0
0
0

0

)

o O O O o o o o o +~ o

true

Moreover, ¥y~ M — M is defined by v T (1)) = m(pn Q4), where @y is defined by:

0
0
0
0

|
=)

o O O O o o o = o o

The isomorphism :

0
0
0
0

S O =

o o o o o

o O O O o O =

0
0
0
0

4dy —ds
—dz +4ds

1
0
0
0

0
0
0

o O = O O = O O o o
o o = O O O O o o o

M—DM is defined
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10 0 0
0 1 0 0
0 0 1 0
0 0 0 1
10 -1 0
0 1 1 0
0 0 —2dy+ds+di —1
0 —2dy ds—2dy—di 1
0 1 1 0
-1 1 2 0
1 -1 ~2 0 |

Let us check again that 1! is an isomorphism.

> TestIso(Q[2],R,Q[4],A);

true

We can simplify again the presentation matrix ()2 by means of elementary operations. This can
be achieved using the command PurePresentation.

> S:=PurePresentation(R,A);

0 —2d; d3 —2do—dy —1 _ _
—4dy+ds 0 O
0 ds—2d; 2dy — 3dy 1
—4dy+ds 0 O
ds —6d; —2dy —5dp -1
S:=] , 0 0 dp |,
0 do—dy do — dj 0
0 0 do
ds —d; —dy — dy 0
0 0 ds
dq —dy —2d; 0 - -
-1 —1 1
0O -1 -1 0
-1 1 0
o o -1 0]
0 -1 0
1 -1 -2 0
2dy 2do—dy—ds O

We obtain M = [ = A3 /(AYX5 S5), where Sy is the second matrix of S. The isomorphism
@: M — L is defined by ¢(m(\)) = 9¥(\ S3), where S3 is the third matrix of S, A € A4 and
9¥: AY3 — L is the canonical projection onto L.

Let us check again that ¢ is an isomorphism.

> TestIso(R,S[2],S[3],4A);

true

Moreover, o~ 1: L — M is defined o= 1(9()) = m(p Sy) for all u € A>3 where Sy is the fourth
matrix of S.
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> TestIso(S[2],R,S[4],A);
true

From the presentation matrix S, we get M = Ms @© M; /M35 @ A.

A presentation of the torsion submodule ¢(M) = M; of M based on the terms {M;};—1 23 of the
grade filtration of M7 can be computed using the command PurePresentationOfTorsionSubmodule.

> T:=PurePresentationOfTorsionSubmodule(R,A);

_ i 0 —2dy  d3—2dy—d; -1
4dy —ds 0
0 d3—2d; 2dy —3d; 1
ddy—ds 0
ds —6d; —2dy—5dy -1 0 1 1 0
T:=]| 0 di |, , ]
0 do—dy dy —dy 0 1 -1 -2 0
0 da
da —dy —dy — dy 0
0 ds
- - dq —dy —2dy 0

We can check that the A-homomorphism ¢: (M) = A2 /(AVST)) — M = AY4/(AXOTy)
defined by «(o(v)) = w(v 1) is injective.

> TestInj(T[1],T[2],T[3],A);

true
Let us check that the A-module finitely presented by 17 is torsion.

> Codimension(T[1],A);
2

Let us compute a solution of the linear system kerr(71.) = homp(t(M), F).

> z:=Integration0fTorsionDSubmodule(R,A);
_F1 (1/4%2 + 1/4%1 +.7}3)
_C1

Let us check that z is a solution of kerz(77.).

> ApplyMatrix(T[1],z,A);

0
0
0
0
0

Finally, let us try to integrate the linear system kerz(R.) = homp (M, F). We obtain

> y:=Integration0fDModule(R,A,x1i);
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Y3 (x1, @2, 23) + _F1 (1/4xa+ 1/4 21 + x3) + _C1 — &1 (21,72, 73)
—_ys (1, 22,23) + _F1 (1/4 29 + 1 /421 + 23) + &1 (21,22, T3)
Y= Y3 (21, T2, 73) — &1 (21, T2, T3)
—1/2D(.F1)(1/4xo + 1/4 21 + 23) + a%l,yg (21,9, 23) — 2 aim,yg (1,22, 23)

| ot ys (@1, @2, 03) — 261 (w1, 02, 03) + 2 g6 (w1, w2, w3) — g6 (1, 22, 23) |

where ¢ and y3 are two arbitrary functions of x1, z9, x3 (their difference can be replaced in y
by a single function of x1, x2, x3), F} an arbitrary function of 1 variable, and _Cy an arbitrary
constant. Let us finally check that y is a solution of kerr(R.).

> ApplyMatrix(R,y,A);

o o o o o o

2]

Example 12. Let A be the ring of PD operators in d; = 8%17 dy = 8%27 ds = 8%37 and dy = 5~

with coefficients in Q[z1, z2, T3, 4]

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> diff=[d[4],x[4]],polynom=[x[1],x[2],x[3],x[4]1]):

and the linearized Einstein equations in the vacuum defined by the following matrix R € A10*10:

R := evalm(

[[d[2]~2+d[3]"2-d[4]"2, d[1]"2, d[1]"2, -d[1]"2, -2*xd[1]1*d[2], O, O,
-2xd[1]1*d[3], 0, 2*d[1]1*d[4]],

[d[2]"2, d[1]"2+d[3]"2-d[4]"2, d[2]"2, -d[2]"2, -2*xd[1]=*d[2], -2*xd[2]=*d[3],
0, 0, 2xd[2]*d[4], 0],

[d[3]"2, d[3]1°2, d[1]"2+d[2]"2-d[4]"2, -d[3]"2, 0, -2*d[2]*d[3], 2*d[3]*d[4],
-2xd[1]1%d[3], 0, O],

[d[4]"2, d[4]"2, d[4]"2, d[1]"2+d[2]"2+d[3]"2, 0, 0, -2xd[3]*d[4], O,
-2xd [2]*d[4], -2*xd[1]*d[4]],

[0, 0, d[1]1*d[2], -d[1]1*d[2], d[3]"2-d[4]"2, -d[1]1*d[3], 0, -d[2]*d[3],
d[1]*d[4], d[2]*d[4]],

[d[2]*d[3], 0, 0, -d[2]1*d[3],-d[1]1*d[3], d[1]1"2-d[4]"2, d[2]*d[4],
-d[1]1*d[2], d[3]*d[4], O],

[d[3]1*d[4], d[3]*d[4], 0, O, O, -d[2]*d[4], d[1]"2+d[2]"2, -d[1]*d[4],
-d[2]*d[3], -d[1]1*d[3]],

[0, d[1]*d[3], 0, -d[11*d[3], -d[2]*d[3], -d[1]1*d[2], d[1]*d[4],
d[2]~2-d[4]"2, 0, d[3]1*d[4]],

[d[2]*d[4], O, d[2]*d[4], O, -d[11*d[4], -d[3]1*d[4], -d[2]*d[3], O,
d[1]-2+d[3]"2, -d[1]1*d[2]],

[0, d[1]*d[4], d[1]1*d[4], 0, -d[2]*d[4], O, -d[1]1*d[3], -d[3]*d[4],
-d[1]1*d[2], d[2]"2+d[3]"2]]1):

vV V.V VVVVVVVVYVVVVVVVVYVYV
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Let M = AX10/(A™10 R) be the A-module finitely presented by R. Let us first compute the
codimension of M.

> Codimension(R,A);
0

We get codimy (M) = 0, i.e., dima (M) = 4. Let us check that ja(M) = codim(M).

> GradeNumber(R,A);
0

Let us now compute the grade filtration {M;}i—o.. 4 of M.
> G:=GradeFiltrationByGenerators(R,A):
We get a 2-step filtration of M since G contains only 2 elements:

> nops(G);
2

The A-module M = t(M) is defined by the residue classes of the rows of the first matrix of the
first entry G of G defined by:

> G[1];
[0 0 —dydy 0 0  dsdy  daods 0 —d3> 0 ]
0 —dsdy O 0 0  dody —do 0 dods 0
0 0 0 dods 0 dy? —dady 0 —dzdy 0
0 —dy? —d® —dp?—ds®> 0 0 2 dsdy 0 2 dody 0
0 —d4? 0 —dy? 0 0 0 0 2 dady 0
0 0 —dy> —d3* 0 0 2 dsdy 0 0 0
0 dsdy 0 0 0 —dody  do? 0 —dyds 0
0 dy? 0 dy? 0 0 0 0  —2dedy 0
0 dy? dy>  d?+ds® 0 0 —2dgdy 0  —2dydy O
[ 0 0 dydy 0 0 0 —dyd3  —dsdy 0 ds? .
0 0 0 —dyds 0 0 didy — —dg? 0 dsdy |’
0 0 dy? ds? 0 0 —2dsdy O 0 0
0 0  —dydy 0 0  didy  dads 0 —d3? 0
0 0 —didy 0 0 0 dids  dzdy 0 —d3?
0 0 0 dydy dy? 0 0 0 —didy  —dody
0 0 0 dods 0 ds? —dady 0 —dsdy 0
0 0 0 dyds 0 0 —didy  dy? 0 —ds3dy
0 0 0 dydy dy? 0 0 0 —didy  —dody
0 0 0 0 dsdy —dydy  didy 0 0 —dyds
(0 0 0 0 0 —didy 0 dydy  dyds  —dads |
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In other words, we have t(M)

(1. Since we have

>

G[2];

[0,2]

we get My = 0, which shows that the grade filtration of M is 0 = My C M; C M.

Let us now compute a presentation of the pure A-modules M/M; and M.

> F:=PureFactors(R,A):

Let us check whether or not the A-module M;/M; 1 is 0 or i-pure for i = 0,1, 2.

> map(IsPure,F,A);

We obtain that 0-pure A-module M/M; = M /t(M) is finitely presented by the following matrix:

>

F[1]1;

[ dy? d? 0
ds> 0 di?
d? 0 0

0 d3? dy?
0 d? 0
0 0 dy
dads 0 0
dady 0 0
dsdy 0 0
0 dids 0
0 didy O
0 dgdy O
0 0 didy
0 0 didy
0 0 dody
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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dids

dids

dads
0
0

—2d1dy
0

0
0
0
0

—dyds
—dydy

—dyds
—dady
0
ds?
0
0
dy?
0
0
0
dsdy

[0, 1, o0]

0

—2dads

o O E" o O
N

—dids

—dydy
—dyds
0
—dsdy
0
0
dy?
dydy
0

|
)
O O Qa o o o o o

=

—

[\ w
S
=

o O

do?
0
—dyds
—dads
0
—dydy
—dady
0
dydy

—2dyds

o o O

—dids

—dydy
do?
0
0
—dyds
—dsdy
0
0
dy?
0
—dady
—dody

—dydy
—dyds
0
0
ds?
—dydy
0
—dsd,
—dyds
—dyds

—dyda

dods
0

My = (A20Gq) /(A9 R), where G1; is the first entry of

Moreover, the 1-pure A-module M; = (M) is finitely presented by the matrix F,. Since Fj is
a large matrix, let us print it in pieces.
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> with(linalg):
> p:=coldim(F[2]);
p =10
> q:=rowdim(F[2]);
g :=25
> submatrix(F[2],1..q,1..5);
i 0 —d 0
0 —da dy
0 0 0
dy 0 da
0 0 0
0 0 0
—d 0 0
0 0 dy
0 0 0
0 0 ds
0 0 0
0 0 0
0 —dy da
ds 0 0
—da 0 —dy
0 —ds 0
di®> —ds®> 0 dady
0 0 0
0 0 0
0 0 do®—dy?
0 0 0
0 0 0
0 0 0
0 0 0
L0 0 0

> submatrix(F[2],1..q9,6..p);
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[ 0 —ds 0 0 0 i

—d3 0 0 0 0
dy 0 —ds dy 0
0 0 0 0 0
0 0 da —ds 0
0 do —ds da —d4
0 ds do 0 0
0 0 dy —d3 ds
ds 0 0 dy 0

—dy 0 0 0 —dy
0 —dy 0 0 do
0 —da 0 —dy do
0 0 0 0 0
0 da 0 0 0
0 0 — 0 0

do da 0 0 0
0 —dyds 0 0 0
0 0 2 dsdy —dy? — ds? —da® +ds?
0 0 0 di? +do® + ds® — ds? 0

dsds 0 —dydy dids 0
0 dsda —dad, dods —dads
0 0 0 0 di? + d2? + ds® — dy?
0 0 di® + d2* + ds® — ds? 0 0

do? + d3? — d4? 0 dids —dydy 0
| 0 di? 4 d3? — dy? dads —dady dads ]

6.2 Equidimensional decomposition of affine algebraic varieties

Example 13. Let us consider the commutative polynomial ring A = Q[x, y, 2]
> A:=DefinelOreAlgebra(diff=[x,s1],diff=[y,s2],diff=[z,s3],polynom=[s1,s2,s3]):
and the matrix R € A3 defined by:

> R:i=evalm([[x"3+x"2%y+x"2%z-x"2-x*z-y*z-2"2+2z] , [Xx"2%y*z+x"2*%y-y*z~2-y*z] ,
> [x72%y"2-x"2%y-y " 2%z+y*z]]) ;

x3+x2y+z2z—az2—x2—yz—22+z
R .= 22yz + 2%y — y2® —yz
z2y? — 2%y — y’2 +yz

Let us consider the A-module M = A/I, where I = A3 R is the ideal of A generated by the
three entries of R. The A-module M was first considered in Exercise 4.4.5 of G.-M. Greuel,
G. Pfister, “A Singular Introduction to Commutative Algebra”, Springer, 2002, p. 261.
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Let us first try to solve the polynomial system defined by I using the Maple command solve:

> solve(convert(R,set));
{x:x,y:y,z:mz},{x:Root()f (,Zz—l—l),y:y,z:—l},
{zt=2,y=0,z2=—2z+1} {z=1y=1,2=—-1}

The Maple output shows that the complex algebraic variety V(1) defined by the ideal I is formed
by a point, 3 curves and a hypersurface. In particular, V(I) is not equidimensional. Hence, let
us check again that M is not a pure A-module.

> IsPure(R,A);
false

Let us now compute the grade filtration of M.

> G:=GradeFiltrationByGenerators(R,A);
G:= H[ 1 ]71]’[[ $2—Z],2},[[ x2y—yz],3]]

If 7: A — M is the canonical projection onto M and u = 7(1) the generator of M, then we
have My = Au= M, My = A(z? — 2)u, M3 = A(y (2% — 2) u), and My = 0.

If an option is added to the command GradeFiltrationByGenerators, then the annihilator of
the generators of the A-modules M;’s are also computed and returned in the first matrix of each
entry of the output.

> H:=GradeFiltrationByGenerators(R,A,opt);

B2ty +r?r—a? —xz—yz—22+2 t+y+z—1
H:=[ 22yz + 22y — y2? —yz 1] yz+y [ 2?—21,2,
a*y? — 2y — y’z +yz v’ —y
z4+1

(| y—=1|,[ 2®y—yz],3]]

r—1

Hence, we get My = A/(AY3 Hy1) = M, My =2 A/(AY3 Hoy), and M3 =2 A/(AY™3 Hgp), where
H;; is the first matrix in the ‘P entry of H.

Another way to define the grade filtration {M;}i—o,. 3 of M is by means of finitely presented
A-modules L; = M; and injective 6; € homy(L;, M) for i = 1,2,3 (see Algorithm 3).

> J:=GradeFiltrationByMorphisms(R,A);

2?y® — 2’y — y?2 +yz y' -y
J =] 22yz + 2’y — y2® — yz NN yz+y 22—z ),
P4 Py+air—at—rz—yzr— 22+ 2 T+y+z—1
y—1
(| z+1 |, [ y(z®=2) ]]]
x—1
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We obtain L1 = A/(AY3 J11), Ly = A/(AY3 Jo1), and Ly = A/(AY*3 J31), where J;; is the
first matrix of the i*® entry of J. Moreover, the injective A-homomorphism 6;: L; — M is
defined by 6;(pi(\)) = 7(\ Ji2), where J;2 is the second matrix in the it entry of J and p!, is the
canonical projection onto L;. We find L; = My, Lo & My, and L3 =2 Mjs. Let us check again
that the A-homomorphisms 6;’s are injective:

> seq(TestInj(J[i] [1],R,J[1]1[2],A),i=1..3)
true, true, true

Let us compute a finite presentation of the A-module M;/M;;, for i =1,2,3.

> F:=PureFactors(R,A);

y—1
F::[[l],[mz—z],[gv_gi_i_z | 2+1 ]
z—1

We obtain M/M1 = A/(AFl) = 07 i.e., M = M1 = t(M), Ml/M2 = A/(AFQ), MQ/Mg =
A/(AY? Fy), and M3 = A/(AY3 F3), where F; is the i'" matrix of F.

Let us check again that the A-modules M;/M;.1’s are either 0 or i-pure.

> map(IsPure,F,A);
[00,1,2,3]

We find again that M/M; = 0 and M;/Ms (resp., My/Msz and Ms3) is 1 pure (resp., 2 and 3
pure).

Let us now compute a presentation of the A-module M based on the grade filtration of M.

> P:=PurePresentation(R,A);

(10 0 0 |
0 22—z -1 0
2yt —a? —xz—yzr— 22+ 2 0 0 y -1
P =] 22yz + 2%y — y2? —yz .10 0 r—14+=z 1 ,
22y? — 2%y —y’2 +yz 0 0 0 y—1
0 0 0 z+1
[0 0 0 ax—1|
_ 0 -
(1 10 0], 21 ]
xt—z
| 2’y —yz |

We obtain M = A/(AV3 P)) = M = AY4/(A™7T Py), where P; is the i*" matrix of P. If
7 is the canonical projection ontcLM, then ¢: M — M defined by ¢(7()\)) = T(A P3) is an
isomorphism, whose inverse ¢~ 1: M — M is o~ (7(1)) = 7(p Py).

Let us check that ¢ is an isomorphism and ¢~ is defined by P;.
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> TestIso(P[1],P[2],P[3],A);
true
> TestIso(P[2],P[1],P[4],4);

true

Since My = t(M) = M, we can simply compute a new presentation of M based on the grade
filtration of t(M).

> Q:=PurePresentationOfTorsionSubmodule_R(R,A);

[ 2?2 — 2 -1 0
0 Y —1
B4y +air—a® —xz—yzr— 22+ 2 1

0 r—1+z2 1
Q= : w?yz 4+ 2ty —yz? —yz |t —z ]

0 0 y—1
m2y2—x2y—yzz+yz xzy—yz

0 0 z+1

|0 0 r—1 |

We get M1 = M = A/(AV3Qq) & My = A3 /(A™C Qq), where this A-isomorphism is defined
by the matrix of Q3.

Finally, let us check again that Q3 defines an isomorphism from M to M.

> TestIso(Q[1],Q[2],Q[3],4);
true

Example 14. Let us consider the commutative polynomial ring A = Q[x1, x2, 3, x4]

> A:=DefineOreAlgebra(diff=[x[1],s1],diff=[x[2],s2],diff=[x[3],s3],diff=
> [x[4],s4],polynom=[s1,s2,s3,s4]):

and the matrix R € A>3 defined by:

> Ri=evalm([[x[1]73], [x[2]"3], [(x[1]"2+x[2] "2)*x[4]+x[1]*x[2]*x[3]]]);
r3
R := x93
(9612 + 3322) T4+ X12273
Let us consider the A-module M = A/I, where I = A3 R is the ideal of A generated by

the three entries of R, first considered in F. S. Macaulay, “The Algebraic Theory of Modular
Systems”, Cambridge 1994 (first published in 1916), p. 44.

Let us first try to solve the polynomial system defined by I using the Maple command solve:

> solve(convert(R,set));

{.’El = OJxQ = O7$3 =T3,T4 = .’134}

According to Maple, the affine algebraic variety V (I) defined by I is the 2-dimensional algebraic
variety (x1 = 0, x9 = 0, x3 = x3, ©4 = x4). In particular, if this result is correct, then V(I)
would be an equidimensional affine algebraic variety.
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Let us compute the grade filtration of M.

> G:=GradeFiltrationByGenerators(R,A);

Tow1?
—11792

G=[[[1],1,[[1],2,] | 3L —e?ae? | 4]

12

—zo11>

If 7: A — M is the canonical projection onto M and u = 7(1) the generator of M, then
My =Au=M, My =Au=M, My = A(za2?)u+ A(x123)u, My = A (2% 2%)u, and M5 = 0.
Hence, the command solve does not compute the whole solution set of the polynomial system
defined by I. In particular, V(I) is not an equidimensional affine algebraic variety.

Let us now compute a finite presentation of the A-module M;/M;; for i =0,...,4.

> F:=PureFactors(R,A);

0 — X9
[ 13 | T2 0 _
3 1
Z2 —T4 —x3
T2
— 2
F.—[[l],[l], 12 s 0 —I1 5 ]
z3
1‘2.%'12 I 0
Tq
| wax1? + 24w + 317073 | —T3 —T4 -
2 2
3™ — T4 0

We get M/M1 = A/(AFl) = 0, Ml/MQ = A/(AFQ) = 07 MQ/Mg = A/(A1X5F3>, Mg/M4 =
A2 J(AYT By, and My = AJ(AY4 Fy).

Let us now check that the A-modules M;/M;.1’s are either 0 or i-pure.
> map(IsPure,F,A);
[00, 00,2, 3,4]
Let us compute a new presentation of the A-module M based on the grade filtration of M.
> P:=PurePresentation(R,A):
We obtain that the A-module M finitely presented by the matrix

> P[1];

.%‘13

x>
(£U12 + x22) T4+ X1T2T3
is isomorphic to the A-module M finitely presented by the matrix

> P[2];
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ie., M =M= A™6/(AY18 p)). Moreover, p: M — M defined by o(7()\)) = 7(\ P3), where
the matrix Pj is given by

> P[3];

(11 -1 00 0]

and 7: A% — M is the canonical projection onto M, is an A-isomorphism. Its inverse

@ 1 M — A1¥6 is defined by ¢! (7 (1)) = 7(u Py), where the matrix Py is defined by:

> P[4];

—.%‘121‘2 - 9523

—x1m92

2,..2 4

—T1"T2" — X2

Finally, let us check again that ¢ is an isomorphism

> TestIso(P[1],P[2],P[3],A);
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1

and ¢~ is defined by matrix Pj.

> TestIso(P[2],P[1],P[4],4);
true

6.3 Integration of linear PD systems

Example 15. Let A be the ring of PD operators in dz = 8% and dt = % with coefficients in

Q[z,1]

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dt,t],polynom=[x,t]):
and the matrix R € A'*2 of PD operators defined by:

> R:=evalm([[dt~2*(dx-dt)], [dt*dx*(dx-dt)]1]);

dt? (dz — dt)
[ dt dz (dz — dt) ]

The corresponding linear system Ry(t,xz) = 0 is defined by the following equations:

> Eqgs:=map(a->a=0,convert (ApplyMatrix(R, [y(t,x)],A),set));
3 3 3 3
Bqs = { ~ 5%y (t.2) + 555y (t,2) = 0, 5%y (t,2) — Jxy (t,2) = 0}
Let us use the Maple command pdsolve to integrate the above linear PD system.

> st:=time(): sol:=pdsolve(Egs,y(t,x)); time()-st;

Error, (in combine/power) too many levels of recursion
28.679

Maple cannot solve the linear PD system due to bugs!

Let us now study the grade filtration of the A-module M = A/(A*? R).

> G:=GradeFiltrationByGenerators(R,A,opt);
dt*dz — dt? dt
, AL

G =
| —dt3 + dt da® dz

[ —dt dz+ dt* ],2]]

If 7: A — M be the canonical projection onto M and u = 7(1) the generator of A, then

My =Au=A/(A2R) = M, My = (—dtdx + dt*)u = A/(Adt + Adx), and M3 = 0.

Let us now compute a finite presentation of the A-module M; /M, for i =0,1,2.

> F:=PureFactors(R,A);

F::[[1],[dtdx—dt2],[;li]]

We obtain M/M; = A/(AFy), Mi/My = A/(AF,) = 0, and My = A/(AY? Fy), where F; is

the i*® matrix of F.

Let us check whether or not the A-module M;/M; ., is either 0 or i-pure for i = 0,1, 2.

> map(IsPure,F,A);
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[00, 1, 2]
Let us now compute a finite presentation of M based on the grade filtration of M.

> P:=PurePresentation(R,A);

1 -1 0 ,
dt?* (dz — dt) 0 dtde—dt* 1
= , 0 1 0], 1 ]
dt dz (dz — dt) 0 0 dt
—dt dz + dt*
0 0 dz

We obtain M = A/(A™2 P)) = M = A3 /(A4 Py), where P; is the i*" matrix of P. Moreover,
the A-isomorphism ¢: M — M is defined by ¢(m(A)) = 7(A Ps), where 7: A3 — M is the
canonical projection onto M. Finally, ¢~!: M — M is defined by o=t (7(u)) = 7(u Py).

Let us now check again that ¢ is an isomorphism and ¢! is defined by Pj.
> TestIso(P[1],P[2],P[3],A);
true

> TestIso(P[2],P[1],P[4],A);

true
Let us now try to integrate the above linear PD system by using its equivalence form P z = 0.

> iv:=op(A[3]);

w:=u1x,t
> Eqgs:=map(a->a=0,convert (convert (ApplyMatrix(P[2], [zeta[1] (iv),zetal[2] (iv),
> zetal[3](iv)],A),vector),set));

Eqs =
{6 @) = G@,t) =0~ 556 (2.0) + 225G (2.0) + G (2,8) = 0, GG (2,1) = 0, 23 (w,1) = 0
We obtain

> st:=time(): =z:=pdsolve(Egs,zetall](iv),zetal2](iv),zetal[3](iv));
> time()-st;

z:={G (x,t) = _F1 (z)+ _F2(x+1t)—1/2_Cl x(x +2t),
Co(x,t)=_F1(x)+ _F2(x+t)—1/2_Clx(z+2t),(s3(x,t)=_Cl}
0.019
i.e., the general solution Z of P» z = 0 is defined by:
> Z:=evalm([[rhs(sol[1])], [rhs(sol[2])], [rhs(s01[3]1)]1]);
F1(x)+ _F2(x+1t)—1/2_Claz(x+2t)
Z:=| _FI(x)+_F2(zx+1t)—1/2_Clz(z+2t)
_C1
Let us check again that Z is a solution of the linear PD system P, Z = O:

> ApplyMatrix(P[2],Z,A);
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0
0
0
0

Now, the solution of the linear PD system Ry = 0 is defined by y = P53 z, i.e.:

> y:=ApplyMatrix(P[3],Z,A);
y:=|_FI(z)+ _F2(z+1t)—1/2_.Cla* - _Clat |
Let us check that y is a solution of the linear PD system Ry = 0.

o

This result can be directly obtained by the command IntegrationOfDModule.

> ApplyMatrix(R,y,A);

> sol:=Integration0fDModule(R,A) ;

sol := [ _F1 (z)+ _F2(z+1t)—1/2_C1z* — _C1 at |
> ApplyMatrix(R,sol,A);
0
o

Example 16. Let A be the ring of PD operators in dz = 8% and dt = % with coefficients in
Qlz, 1]

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dt,t],polynom=[x,t]):
and the matrix R € A'*2 of PD operators defined by:

> R:=evalm([[dx"2*(dt-dx)], [dt~2*x(dt-dx)]]);
dz? (dt — dx)
R .=
dt? (dt — dz)
Let us use the Maple command pdsolve to integrate the linear PD system Ry(x,t) =0, i.e.,

> iv:=op(A[3]);

w:=u=x,t
the linear system of PD equations defined by:
> Eqgs:=map(a->a=0,convert (ApplyMatrix (R, [y(iv)],A),set));
3 3 3 3
Bqs = {—5%my (,0) + Gy (2.0) = 0, 555y (2.1) — Zxy (e.) = 0}
Maple cannot integrate the linear PD system due to bugs!

> st:=time(): sol:=pdsolve(Egs,y(iv)); time()-st;
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Error, (in dchange/funcs) not implemented case of many integrals w.r.t the same
variable inside a multiple integral

0.698
Let us now compute the grade filtration of the A-module M = A/(A*2 R).

> G:=GradeFiltrationByGenerators(R,A);

—dt® + dt?’dz dt?
G =

IRREN| I

—dz?dt + dz®

],[ dt — dx },2]]

If 7: A — M is the canonical projection onto M and u = 7(1) the generator of M, then
My =Au=M=A/(AY2R), My = A(dt —dr)u == A/(Adt* + Adz?), and M3 = 0.

Let us compute a finite presentation of the A-module M;/M; ;1 for i = 0,1, 2.

> F:=PureFactors(R,A);

F;:[l],[dazdt],[dtQI]

dz?

We get M/My = A/(AFy) =0, Mi/My = A/(AF), and My = A/(AY? F3), where Fj is the
i matrix of F.

Let us check again that M;/M;; is either 0 or i-pure for i = 0, 1, 2.

> map(IsPure,F,A);
[0, 1, 2]

Since M = M; = t(M), M is a torsion A-module. Let us compute a finite presentation of M
based on the grade filtration of Mj.

> P:=PurePresentationOfTorsionSubmodule(R,A);

de —dt 1
dz? (dt — dz) 1
P = 0 dt? |, , ]
dt? (dt — dr) dt — d
0 dz?

We get L = A2/(AV3P)) C M = A/(A™2 Py). The injection ¢ : L — M is defined by
v(k(p)) = m(p Ps), where P; is the i matrix of P and x: A'*2 — L is the canonical projection
onto L. Let us check again that ¢ is an injection.

> TestInj(P[1],P[2],P[3],A);
true

Since M1 = M, ¢ is also an isomorphism, which can be easily check again.

> TestIso(P[1],P[2],P[3],4);
true

The inverse :~! : M — L of ¢+ can then be computed as follows.
> T:=InverseMorphism(P[1],P[2],P[3],A);
—dz* 0 1
re=l 0]’[ —dt? 1 0]
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Thus, t=': M — L is defined by 7! (7(\)) = k(A T}), where T} is the first matrix of 7. Let us
check again that the A-homomorphism defined by T3 defined an isomorphism.

> TestIso(P[2],P[1],T[1],4);

true
Let us try to integrate P; z = 0 using the command IntegrationOfTorsionDSubmodule.

> z:=Integration0fTorsionDSubmodule(R,A);
~1/62%_.C38 + (=1/2_C1 —1/2 _C3t—1/2 _C})2*>+ (—_C1t— _C2)x+ _F1(t+x)
(z.C3+ _Cl)t+2-C} + _C2

Let us check again that z is a solution of P; z = 0.

> ApplyMatrix(P[1],z,A);

o o O

Then, y = T} z, namely,

> y:=ApplyMatrix(T[1],z,A);
yi=[ —1/6t3.C3 —1/2¢>.C3x — 1/2¢*.C4 —1/2_C1t* — _Cltx — _C2t+ _F1 (z+1) |

is a solution of the linear PD system Ry = 0.

o

This last result can be directly be obtained using the command Integration0OfDModule.

> ApplyMatrix(R,y,A);

> y:=Integration0fDModule(R,A);
[ —1/62%.C3 —1/22%.C3t —1/22%.C4 —1/2_Cla* — _Clat— _C2x+ _FI (t +z) |

0

0
Example 17. Let A be the ring of PD operators in d; = 8%1, dy = 8%27 and d3 = 3%3 with
coefficients in the ring Q[z1, z2, z3]

Yy

> ApplyMatrix(R,y,A);

> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]1]):
and the matrix R € A2 of PD operators defined by:

> R:=evalm([[d[1]"2+d[2]*d[1]-(x[1]+x[2])*d[1]-1], [d[2]~2+d [2]*d[1]
> —(x[1]1+x[2])*d[2]-111);

R d12+d2d1—(x1+$2)d1—1
. d22+d2d1—(1‘1+$2)d2—1
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Let us try to integrate the linear PD system R7 = 0 defined by
> iv:=op(A[3]);
W i=x1, T
> Eqgs:=map(a->a=0,convert(convert (ApplyMatrix (R, [eta(iv)],A),vector),set));
Eqs =
—n( _ (.2 (2 0 0,
n (@1, 22) = ( gon (@1, 22) ) 21 — ( 521 (01, 22) | 22 + googn (21, 22) + 311277(9317502)
2
—n (z1,22) — (6%277 (331,362)> 5 (%77 (1, 962)) T2 + %fiaxln (z1,22) + (% n (21, 22) }
Maple cannot solve the linear PD system since no output is returned:

> eta:=pdsolve(Egs,eta(iv));
eta :=

Let us now compute the grade filtration of the left A-module M = A/(A*2 R).

> GradeFiltrationByGenerators(R,A,opt);

d22+d2d1 —doxr1 —doxo — 1 do
,[1]71]7[ d ,[—dl—d2+$1+ﬂ?2],2“
1

dowy — dyxo + dowy — dywy — do® + dy 2

Ifr: A— M = A/(A™?2 R) is the canonical projection and u = 7(1) the generator of M, then
=Au=M = A/(AlXQR), My = A(—dl —dy + 11 +a:2)u = A/(Ad1 —|—Ad2), and M3 = 0.

Let us compute a finite presentation of the left A-module M;/M;y; for i =0,1,2

> F:=PureFactors(R,A);
dq
F=[[1],[d+d—z-22], ]
do

We obtain M/M; = A/(AFy) =0, My/My = A/(AF), and My = A/(AY3 F3), where F; is
the ¢*® matrix of F. Let check whether or not M;/M;41 is 0 or i-pure for i = 0,1, 2.

> map(IsPure,F,A);
[00,1,2]

Let us now compute a new presentation of the left A-module M = A/(A'2? R) based on the
grade filtration of M.

> P:=PurePresentationOfTorsionSubmodule(R,A);
di+do—x1—29 1
P:=] 0 dy

d12—|—d2d1—(x1—|—x2)d1—1] [ 1
0 do

do? + dody — (21 + 22) dg — 1 —dy —da + 21 + x2

We get L = AY2/(AY3 P)) € M = A/(A2R). The injection ¢ : L — M is defined by
v(k(p)) = m(pP3), where x: A2 — [ is the canonical projection onto L and P; is the i
matrix of P. Let us check again that ¢ is injective.

> TestInj(P[1],P[2],P[3],A);

true
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Since M = M; = t(M), ¢ is also an isomorphism, which can be easily check again.

> TestIso(P[1],P[2],P[3],4);
true

The inverse t=': M — L of ¢ is then defined by

> T:=InverseMorphism(P[1],P[2],P[3],A);
d -1 0
T := [[ 10 ] , ]
dy 0 -1

ie., t71(m(N\) = k(\Ty) for all A € A. Let us check again that the A-homomorphism defined
by T} is an isomorphism.

> TestIso(P[2],P[1],T[1],4);
true

Let us now try to solve the linear PD system P; z = 0 defined by the following PD equations:

> eqs:=map(a->a=0,convert (convert (ApplyMatrix(P[1], [zeta[1] (iv),zetal[2] (iv)],
> A),vector),set));

eqs =
{—Cl (z1,22) 21 — G (21, 2) T2 + 75-C1 (w1, 02) + 505C1 (21, T2) + (2 (w1, 72) = 0,
52-Co (w1, 2) = 0, 52Ca (w1, 72) = 0}

We obtain:

> z:=pdsolve(eqgs,zetall] (iv),zetal2] (iv));

2=
{Cl (x1,22) = —1/2 <,C'1 Jrel/Aaite orf (1/22) +1/2a9) — 2 _F1 (—ay + xg)) et H(—zita2)Er
Q2 (21, 22) = -C1}

In other words, the vector Z defined by

> Z:=evalm([[rhs(sol[1])], [rhs(s01[2])]1);
~1/2 (,Cz Jrel/Aeite)  erf (1/221 + 1/239) — 2_F1 (—a1 + :1;2)) 1 (o tea)en

Z =
_C1

is a solution of the linear PD system P; Z = 0.

> ApplyMatrix(P[1],Z,A);

Now, y = 11 Z, namely,

> y:=ApplyMatrix(T[1],Z,A);
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y = [ ~1/2 (,01 el A=)’ orf (1/221 4+ 1/229) — 2 _F1 (—21 + l’z)) 172 ]

is a solution of the linear PD system Ry = 0.

o

We can directly integrate P; z = 0 using the command Integration0fTorsionDSubmodule:

> ApplyMatrix(R,y,A);

> U:=Integration0fTorsionDSubmodule(R,A);
-1/2 (,CZ Jrel/Aaite e (1/22) 4+ 1/2a0) — 2 _F1 (—21 + :):2)) e H(—eitaz)a

_C1

U :=

> ApplyMatrix(P[1],U,A);

Finally, the linear PD system Ry = 0 can also be directly integrated using the command
IntegrationOfDModule.

> X:=:=Integration0fDModule(R,A,a);
X = [ ~1/2 (,Cz el /A @) orf (1/201 +1/225) — 2_FI1 (—1 + x2)> o172 }

> ApplyMatrix(R,X,A);
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