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Tests certi�és pour la stabilité structurelle de systèmes

multidimensionnels

Résumé : Nous présentons dans cet article de nouvelles méthodes, basées sur des techniques de
calcul formel, pour tester la stabilité structurelle de systèmes n-D linéaires et discrets (avec n ≥
2). Plus précisément, nous montrons dans un premier temps que la condition classique de stabilité
structurelle d'une fonction de transfert rationnelle multivariée (à savoir que le dénominateur de
celle-ci n'a pas de zéros à l'intérieur du polydisque unité de Cn) est équivalente au fait que des
systèmes d'équations polynomiales, obtenus via certaines transformations, n'ont pas de zéros
réels. Nous utilisons ensuite des algorithmes de résolutions de systèmes algébriques pour véri�er
cette dernière condition et ainsi la stabilité structurelle de systèmes multidimensionnels.

Mots-clés : Systèmes multidimensionnels, stabilité structurelle, analyse de stabilité, calcul
formel, équations polynomiales
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1 Introduction

Multidimensional systems is a class of systems for which the information propagates in more
than just one dimension as for the classical dynamical systems (this dimension being the con-
tinuous/discrete time). The latter class of systems is usually referred as 1-D systems whereas
multidimensional systems are also called n-D systems, where n denotes the number of dimensions
in which the information propagates. Within the frequency domain approach, such a system is
de�ned by means of a transfert function G of the following form

G(z1, . . . , zn) =
N(z1, . . . , zn)

D(z1, . . . , zn)
, (1)

where D and N are two polynomials in the complex variables z1, . . . , zn with real coe�cients,
i.e., D, N ∈ R[z1, . . . , zn], which are supposed to be factor prime i.e., gcd(D,N) = 1, where gcd
stands for the greatest common divisor of D and N . As for 1-D systems, a fundamental issue
in the multidimensional systems theory is stability analysis. In this paper, we are interested in
testing the structural stability of multidimensional discrete linear systems de�ned by multivariate
rational transfer function. Such a system is said to be structurally stable if the denominator D
of G is devoid of zeros in the complex unit polydisc Un de�ned by:

Un :=

n∏
k=1

{zk ∈ C | |zk| ≤ 1}.

In other words, if VC(D) = {z = (z1, . . . , zn) ∈ Cn | D(z) = 0} denotes the hypersurface formed
by the complex zeros of D, then (1) is structurally stable if the following condition holds:

VC(D) ∩ Un = ∅. (2)

The simplicity of (2) signi�cantly contrasts with the di�culty to develop e�ective algorithms
and e�cient implementations for testing it. One important �rst step toward this objective was
the formulation of new conditions that are equivalent to the above condition (see (2)) but easier
to handle. The following theorems, due to Strintzis [Str77] and DeCarlo et al. [DMS77], are two
good representatives of these reformulations.

Theorem 1 ([Str77]) Condition (2) is equivalent to:

D(0, . . . , 0, zn) 6= 0, |zn| ≤ 1,

D(0, . . . , 0, zn−1, zn) 6= 0, |zn−1| ≤ 1, |zn| = 1,

...
...

D(0, z2, . . . , zn) 6= 0, |z2| ≤ 1, |zi| = 1, i = 3, . . . , n,

D(z1, z2, . . . , zn) 6= 0, |z1| ≤ 1, |zi| = 1, i = 2, . . . , n.

Theorem 2 ([DMS77]) Condition (2) is equivalent to:

D(z1, 1, . . . , 1) 6= 0, |z1| ≤ 1,

D(1, z2, 1, . . . , 1) 6= 0, |z2| ≤ 1,

...
...

D(1, . . . , 1, zn) 6= 0, |zn| ≤ 1,

D(z1, . . . , zn) 6= 0, |z1| = . . . = |zn| = 1.
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4 Bouzidi & Quadrat & Rouillier

Recent algebraic methods for testing the stability of n-D discrete linear systems are mainly
based on the conditions of Theorems 1 and 2.

However, note that the speci�c case of 2-D systems has attracted considerable attention and
numerous e�cient tests have been proposed. See, e.g., [Bis94, HJ94, Bis04, XYL+04, FCN10]
and the references therein. Common to all these tests is the fact that they proceed recursively
on the number of variables, reducing the computations with polynomials in two variables to
computations with a set of univariate polynomials with algebraic coe�cients by means of symbolic
computation tools such as resultant and subresultant polynomials (see, e.g., [BPR06]). Such a
recursive approach, which shows its relevance for 2-D systems, becomes rather involved when it
comes to n-D systems with n > 2, mainly due to the exponential increase of the degree of the
intermediate polynomials. This fact prevents these 2-D tests from being e�ciently generalized
to n-D systems.

For n-D systems with n > 2, very few implementations for the stability analysis exist. Among
the recent work on this problem, one can mention the work of [SN07] where, using an extension
of the 1-D Schur-Cohn criterion, a new stability condition is proposed as an alternative to the
conditions of Theorems 1 and 2. As a result, the stability is expressed as a positivity condition
of n− 1 polynomials on the unit polycircle:

Tn−1 :=

n−1∏
k=1

{zk ∈ C | |zk| = 1} .

Unfortunately, such a condition becomes considerably hard to e�ectively test when the involved
systems are not of low degree in few variables. To achieve practical e�ciency, [Dum06, Dum08]
proposes a sum of squares approach to test the last Decarlo's condition (Theorem 2). The
proposed method is however conservative, i.e., it provides only a su�cient stability condition.
Finally, LMI test also exist for n = 2 ([BPY+16, BCDY16]). To sum up, the existing stability
tests for n-D systems with n > 2 are either nonconservative but ine�cient or e�cient (polynomial
time) but conservative.

The contribution of this paper is threefold. First, a new algebraic approach for testing the
stability of n-D systems is presented. Our approach, which starts with the stability conditions
given by [DMS77] (see Theorem 2), transforms the problem of testing these conditions to that
of deciding the existence of real zero in some algebraic or semi-algebraic sets. Hence, state-
of-the-art real algebraic geometry techniques can then be used for this purpose. Unlike the
existing counterparts, this new approach is not conservative. Moreover, our approach shows
good practical performances for relatively small dimensions n.

Secondly, we address the speci�c case of 2-D systems with the main objective of achieving
practical e�ciency. Following the same approach as for n-D systems but taking advantage from
the recent developments in solving bivariate algebraic systems of equations (see [Bou14a]), we
propose a stability test based on the existence of real solutions of bivariate algebraic systems
which is e�cient in practice. Namely, this test makes use of the software RS3 ([Rou12]) which
provides very e�cient tools for the symbolic solving of bivariate systems of equations.

Finally, the above 2-D stability test is extended in order to handle system parameters. More
precisely, using the concept of discriminant variety developed in the computer algebra community
([LR07]), we provide a new method which, given a 2-D system depending on an arbitrary set
of real parameters, decomposes the parameter space into regions inside which the stability is
guaranteed.

The plan of the paper is the following. In Section 2.1, we �rst reformulate the last condition
of Theorem 1 as the emptiness of a certain semi-algebraic set. We then present state-of-part
computer algebra techniques (namely, Cylindrical Algebraic Decomposition, critical point meth-
ods and Rational Univariate Representation) which can be used to e�ectively study this last

Inria
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problem. In Section 2.2, we present a new approach for testing the last condition of Theorem 1
based on the Möbius transform and a critical point method. Algorithms are presented. They
are then illustrated with explicit examples in Section 2.3 and their implementations in Maple are
discussed and timings are shown. A new stability test for 2-D systems is presented in Section 3
based on a recent approach, developed by two of the authors, for the e�cient computation of
real solutions of systems of two polynomial equations in two variables. This approach is based on
the e�cient computation of Rational Univariate Representations using resultants, subresultant
sequences and triangular polynomial systems. Finally, Section 4 shows how to use the mathemat-
ical concept of a characteristic variety, developed by one of the author, to study the stability of
2-D systems with parameters. We show how the parameter space can be explicitly decomposed
into cells so that the 2-D system is either stable or unstable for all values of the parameters
belonging to each cell.

2 Stability of n-D discrete linear systems

In this section, Subsection 2.1 overviews in broad lines computer algebra methods for comput-
ing the real zeros of semi-algebraic sets (namely, unions of sets de�ned by a �nite number of
polynomial equations and inequalities) and recall the basic ideas behind these methods. Then,
Subsection 2.2 shows how we can obtain new stability conditions that can be tested e�ciently
using the previously introduced computer algebra methods. Finally, Subsection 2.3 illustrates
our stability test on non-trivial examples and show its practical e�ciency thanks to experimental
tests.

2.1 Computer algebra methods

Recall that the transfer function G de�ned by (1) is said to be structurally unstable if the set

E := VC(D) ∩ Un = {(z1, . . . , zn) ∈ Cn | D(z1, . . . , zn) = 0, |z1| ≤ 1, . . . , |zn| ≤ 1}

is not empty. The set E is a semi-algebraic subset of R2n. Indeed, if we note zk := xk + i yk,
where xk (resp., yk) is the real part (resp., the imaginary part) of zk and i is the imaginary unit,
then the polynomial D can be rewritten as follows

D(z1, . . . , zn) = R(x1, . . . , xn, y1, . . . , yn) + i I(x1, . . . , xn, y1, . . . , yn),

where R, I ∈ R[x1, . . . , xn, y1, . . . , yn], and the inequalities |zk| ≤ 1 are equivalent to x2
k+y2

k ≤ 1
for k = 1, . . . , n, which shows that E is equivalently de�ned by the following semi-algebraic set:

E ∼= {(x1, . . . , xn, y1, . . . , yn) ∈ R2n |
R(x1, . . . , xn, y1, . . . , yn) = 0, I(x1, . . . , xn, y1, . . . , yn) = 0,

x2
k + y2

k ≤ 1, k = 1, . . . , n}.
(3)

Testing (2) is thus equivalent to testing that the above semi-algebraic set is empty. This
test can be performed using classical computer algebra methods for computing the real zeros of
semi-algebraic systems which will be brie�y overviewed in the next section.

2.1.1 Cylindrical Algebraic Decomposition & Critical point methods

To study the real zeros of semi-algebraic sets, two classes of symbolic algorithms are available:
the algorithms based on Cylindrical Algebraic Decompositions (CAD) and those based on the
study of the critical points of well-chosen functions (see, e.g., [BPR06]).

RR n° 9085



6 Bouzidi & Quadrat & Rouillier

The Cylindrical Algebraic Decomposition: Introduced originally by Collins ([Col75]) in the
seventies, the cylindrical algebraic decomposition (CAD) has become a standard tool for the study
of real zeros of semi-algebraic sets. CAD refers to both an object and an algorithm for computing
this object. In short, a CAD associated to a �nite set of polynomial F = {P1, . . . , Ps} ⊂
R[x1, . . . , xn] is a partition of Rn into connected semi-algebraic sets, called cells, on which each
polynomial Pi has a constant sign (i.e., either +, − or 0). For instance, the CAD of a set of
univariate polynomials in R[x] is an union of points and open intervals that form a partition of
R. Such a partition is called F -invariant. Let Πk : Rn −→ Rn−k denote the projection onto the
�rst n− k components of Rn. The CAD is called cylindrical since for every two cells c1 and c2,
we either have Πk(c1) = Πk(c2) or Πk(c1)∩Πk(c2) = ∅. This implies that the images of the cells
by Πk de�ne a cylindrical decomposition of Rn−k.

Example 1 A CAD associated to P = x2
1 + x2

2 − 1 ∈ Q[x1, x2] is a partition of R2 into the
following algebraic sets (cells) in each of which the polynomial P has a constant sign:

� C1 = {(x1, x2) ∈ R2 | x1 < −1},

� C2 = {(x1, x2) ∈ R2 | x1 = −1, x2 < 0},

� C3 = {(x1, x2) ∈ R2 | x1 = −1, x2 = 0},

� C4 = {(x1, x2) ∈ R2 | x1 = −1, x2 > 0},

� C5 = {(x1, x2) ∈ R2 | − 1 < x1 < 1, x2
1 − x2

2 − 1 > 0, x2 < 0},

� C6 = {(x1, x2) ∈ R2 | − 1 < x1 < 1, x2
1 − x2

2 − 1 = 0, x2 < 0},

� C7 = {(x1, x2) ∈ R2 | − 1 < x1 < 1, x2
1 − x2

2 − 1 < 0},

� C8 = {(x1, x2) ∈ R2 | − 1 < x1 < 1, x2
1 − x2

2 − 1 = 0, x2 > 0},

� C9 = {(x1, x2) ∈ R2 | − 1 < x1 < 1, x2
1 − x2

2 − 1 > 0, x2 > 0},

� C10 = {(x1, x2) ∈ R2 | x1 = 1, x2 < 0},

� C11 = {(x1, x2) ∈ R2 | x1 = 1, x2 = 0},

� C12 = {(x1, x2) ∈ R2 | x1 = 1, x2 > 0},

� C13 = {(x1, x2) ∈ R2 | x1 > 1}.

The CAD algorithm mainly consists of two distinct phases: a projection phase and a lift-
ing phase. During the projection phase, one proceeds recursively on the number of variables.
Starting from the initial set of polynomials F1 = {P1, . . . , Ps}, a �rst set of polynomials F2 ⊂
R[x1, . . . , xn−1] is computed which has the property that a partition of Rn−1 that is F2-invariant,
naturally lifts to a partition of Rn that is F1-invariant. Then, from F2, another set F3 ⊂
R[x1, . . . , xn−2] with the same property is computed and so on, until obtaining a set of univari-
ate polynomials Fn. At each step, the projection essentially consists in computing resultants
(and subresultants) for all possible pairs of polynomials as well as their discriminants (see, e.g.,
[BPR06]).

Inria
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Example 2 The projection phase for Example 1 consists in only one projection and yields the
discriminant −4x2

1 + 4 of P = x2
1 + x2

2 − 1 with respect to x2.

Starting from the set of univariate polynomials, the lifting step, which also proceeds recur-
sively, consists in isolating the real roots of univariate polynomials with real algebraic numbers
as coe�cients, which can be viewed as solving a so-called triangular zero-dimensional system,
namely, a system with a �nite number of complex solutions having a triangular form.

Example 3 Continuing Example 2, the real roots of −4x2
1 + 4 are �rst isolated, which yields a

partition of R that consists of the cells ] −∞,−1[, {−1}, ] − 1, 1[, {1} and ]1,+∞[. Then, the
real roots of the polynomial x2

1 + x2
2 − 1 are isolated for each x1 in these cells, which yields the

partition of R2 given in Example 1.

Although the computation of the CAD answers our problem i.e,. deciding the existence of
real zeros, the partition of Rn given by the CAD gives more information than required. Moreover,
its computation requires a number of arithmetic operations which is doubly exponential in the
number of variables of the polynomial ring, i.e., n, due to, at least, the iterative computation
of the resultants (and subresultants). Despite of this, it is worth mentioning that, to some
extent, most of the existing algorithms for testing the stability of multidimensional systems can
be viewed as particular variants of the CAD.

Critical point methods: Instead of a complete partition of the real space, critical points based
methods basically compute at least one point in each real connected component of a given semi-
algebraic set, which is su�cient to answer our question. Roughly speaking, the basic principle of
these methods consists in computing the critical points of a well-chosen function restricted on an
algebraic set. Under certain conditions, the set of critical points is de�ned by a zero-dimensional
polynomial system (i.e., which admits a �nite number complex solutions) and it meets each real
connected component of the original semi-algebraic set.

Example 4 We consider again the polynomial given in Example 1, i.e., P = x2
1 + x2

2 − 1. Our
goal is to compute at least one point in the single real connected component of the algebraic set
VR(P ) = {α = (α1, α2) ∈ R2 | P (α) = 0}. Let Π : R2 −→ R denote the projection onto the
�rst component x1 of (x1, x2) ∈ R2. The critical points of Π restricted to VR(P ) are the points
of VR(P ) on which the derivative ∂P

∂x2
vanishes. They are given as the real zeros of the following

system 
P = x2

1 + x2
2 − 1 = 0,

∂P

∂x2
= 2x2 = 0,

which yields (1, 0) and (−1, 0). These points belong to the real connected component of P = 0.

Let us consider the real hypersurface

VR(P ) := {α = (α1, . . . , αn) ∈ Rn | P (α) = 0}

de�ned by P ∈ Q[x1, . . . , xn]. Let us suppose that VR(P ) is smooth, i.e., it does not contain
singular points, namely, points where the rank of the Jacobian matrix is not maximal, and VR(P )
is compact (i.e., closed and bounded) for the so-called Zariski topology (see, e.g., [CLO07]). The
set of critical points of the projection with respect to some variable xi restricted to VR(P ) de�ned
by

CΠ(VR(P )) :=

{
α ∈ VR(P ) | ∂P

∂xk
(α) = 0, ∀ k ∈ {1, . . . , i− 1, i+ 1, . . . , n}

}
, (4)

RR n° 9085



8 Bouzidi & Quadrat & Rouillier

is �nite and meets each real connected component of VR(P ) (see [BGHM01, SEDS03]).
There are several ways to circumvent the hypotheses (i.e., compactness and smoothness). For

instance, we can use a distance function to a �xed point instead of the projection function to get
rid of the compactness assumption ([Sei54]), deform the variety to get a compact and smooth
one ([RRSED00]), introduce more general notions of critical points ([BGHP05]), or separately
study the subsets of singular points of the variety ([ARD02]).

For systems of polynomial equations and, more generally systems of polynomial inequalities,
several strategies have been proposed by di�erent authors (see, e.g., [BPR06, BGHM01]). Some
are based on the use of sums of squares to reduce the problem of studying an algebraic set to
the problem of studying an hypersurface ([BPR06]), on the use of in�nitesimal deformations by
adding some variables to avoid singularities and to deal with inequalities ([BPR06]), or on the
introduction of a special kind of critical points (generalized critical values) to circumvent the
compactness hypothesis. But the basic ideas stay the same.

As already said, critical points methods compute less information than the CAD but they are
su�cient in our case since we just have to decide if a semi-algebraic set is empty. Moreover, a key
advantage of these methods is that they transform the problem into solving a zero-dimensional
polynomial system and this transformation is performed within a number of arithmetic operations
that is single exponential in the number n of variables.

Remark 1 In practice, for systems depending on strictly less than 3 variables, the use of CAD
is usually preferred since, it provides more information than the critical point methods for a
negligeable additional cost.

2.1.2 Symbolic resolution of univariate polynomials and zero-dimensional systems

The methods described in Section 2.1.1 are based on the resolution of univariate polynomials
and, more generally, on zero-dimensional polynomial systems. For stability analysis of multidi-
mensional systems, we mainly have to decide whether or not a polynomial system admits real
solutions. For polynomial systems with a �nite number of solutions, we can use an additional
processing that turns this last problem into computing a univariate parameterization of all the
solutions.

Given a zero-dimensional polynomial system and I ⊂ Q[x1, . . . , xn] the ideal generated by the
corresponding polynomials, a Rational Univariate Representation (RUR) of VC(I) is de�ned by a
separating linear form t := a1 x1+. . .+an xn and univariate polynomials f, f1, fx1 , . . . , fxn ∈ Q[t]
such that we have the following one-to-one correspondence between VC(I) and VC(f):

φt : VC(I) ≈ VC(f) := {β ∈ C | f(β) = 0}
α 7−→ t(α) = a1 α1 + . . .+ an αn(

fx1
(β)

f1(β)
, . . . ,

fxn(β)

f1(β)

)
←− [ β.

(5)

If (5) is a RUR of VC(I), then the bijection φt between the zeros of I and those of f preserves
the multiplicities and the real zeros ([Rou99]).

According to its de�nition, the computation of a Rational Univariate Representation can be
divided in two independent parts. The �rst one consists in computing a separating linear form
for V (I), that is a linear combination of the variables a1 x1 + . . . + an xn so that the following
map

V (I) −→ C
(α1, . . . , αn) 7−→ a1 α1 + . . .+ an αn

Inria



Certi�ed Non-conservative Tests for the Structural Stability of Multidimensional Systems 9

is injective. The second part consists in computing the univariate polynomials f, f1, fx1 , . . . , fxn

that de�ne the one-to-one mapping given in (5).
If we suppose that a separating linear form t := a1 x1 + . . .+an xn is given, the polynomials of

the RUR can be computed by means of simple linear algebra operations. Indeed, provided that I
is a zero-dimensional ideal, the quotient algebra A := Q[x1, . . . , xn]/I is then a �nite-dimensional
Q-vector space which dimension is equal to the number of complex zeros of

VC(I) = {α = (α1, . . . , αn) ∈ Cn | ∀ P ∈ I : P (α) = 0}

counted with multiplicities, and using Gröbner bases (see, e.g., [CLO07]), one can compute a
basis of the Q-vector space A as well as the matrix associated with the Q-endomorphism of A
de�ned by multiplying any element of A by an element P ∈ Q[x1, . . . , xn] as follows

MP : A −→ A
π(a) 7−→ π(P a),

(6)

where π : Q[x1, . . . , xn] −→ A denotes the Q-algebra epimorphism which sends a to its residue
class π(a) in A. Then, the �rst polynomial of the RUR f is the characteristic polynomial of Mt.
Moreover, if

f(t) :=
f

gcd(f, ∂f/∂t)
=

d∑
i=0

ai t
d−i ∈ Q[t]

denotes the square-free part of f and if we note

Hj(t) :=

j∑
i=0

ai t
j−i, j = 0, . . . , d− 1,

then, the other polynomials of the RUR are de�ned as follow:
f0 :=

d−1∑
i=0

Trace(M i
t )Hd−i−1(t),

fxk
:=

d−1∑
i=0

Mxk
M i
t Hd−i−1(t), k = 1, . . . , n.

As mentioned above, the computation of the RUR requires to �nd a separating linear form.
Based on the fact that the number of non-separating linear form is bounded (see [Rou99]),
a classical strategy consists in choosing an arbitrary linear form, computing a RUR candidate
using this form, and then checking that this RUR candidate is really a RUR. This last step is
done by checking that some polynomials resulting from the RUR belong to the radical of the
ideal (see [Rou99]). Other strategies exist for checking that a linear form is separating. Some
require the computation of the number of distinct zeros of the ideal using a well-suited quadratic
form ([Rou99]) and others make use of computations modulo prime numbers in order to predict
a separating linear form. However, in the general case, the computation of a separating form is
known to be as di�cult as the computation of the polynomials of the RUR.

Finally, note that alternative algorithms exist for the computation of univariate represen-
tations which do not require the pre-computation of a Gröbner basis (see, e.g., [GLS01]). In
addition, for the speci�c case of polynomial systems with only two variables, univariate rep-
resentations as well as separating forms can be e�ciently obtained using algorithms based on
resultants and subresultants sequence (see [Bou14b]). For more details, see Section 3.

RR n° 9085



10 Bouzidi & Quadrat & Rouillier

Once a RUR (5) is known, computing the real solutions of I, namely computing VR(I) =
{(x1, . . . , xn) ∈ Rn | ∀ P ∈ I : P (x1, . . . , xn) = 0} (resp., deciding whether or not the polynomial
system de�ned by I has real solutions) reduces to computing the real roots of the univariate
polynomial f1 ∈ Q[t] (resp., deciding whether or not f1 has real roots). This can be done using
classical bisection algorithms such as Sturm's sequences or methods based on Descarte's rule of
signs (see, e.g., [BPR06]) which gives a set of intervals which isolate the real roots of f1.

Example 5 Let us illustrate the concept of univariate representation with the polynomial system
which encodes the critical points of P = x2

1 + x2
2 − 1 = 0 as de�ned in Example 4, namely:

x2
1 + x2

2 − 1 = 0,

∂P

∂x2
= 2x2 = 0.

(7)

We note that (7) forms a Gröbner basis of the ideal I =

〈
P,

∂P

∂x2

〉
for the graded reverse

lexicographic order (see, e.g., [CLO07]) and a basis of the Q-vector space A = Q[x1, x2]/I is
given by the monomials {1, x1}, which implies that the number of complex solutions counted with
their multiplicities is equals to two. Since the univariate polynomial in x2 i.e., 2x2, has degree
one, t = x2 is not a separating form. We can obtain a RUR of (7) by computing a Gröbner basis
of I for a monomial ordering that eliminates x2 such as:{

x2
1 − 1 = 0,

x2 = 0.

Example 6 Another example is given by the following polynomial system:{
P1 = 36x2

1 x2 − 10x1 − 6x2 = 0,

P2 = 12x2
1 + 30x1 x2 − 2 = 0.

(8)

Computing a Gröbner basis of the ideal I = 〈P1, P2〉 generated by (8) for the graded reverse
lexicographic order, we obtain that I = 〈9x2

2 + 1, 6x2
1 + 15x1 x2 − 1〉, which shows that (8) is

equivalently de�ned by these two polynomials. On the above Gröbner basis of I, we can then
read that the dimension of the Q-vector space A = Q[x1, x2]/I is 4: the set of monomials
{1, x1, x2, x1 x2} does not satisfy Q-linear relations which are algebraic consequences of (8). As
a consequence, (8) admits 4 complex solutions counted with their multiplicities. Let us solve (8).
Computing a Gröbner basis of I for an order which eliminates x2 ([CLO07]), we get that the
ideal I = 〈36x4

1 + 13x2
1 + 1, 36x3

1 + 19x1 + 15x2〉. Hence, (8) can be parametrized as follows: x2 = − 1

15
x1 (36x2

1 + 19),

36x4
1 + 13x2

1 + 1 = 0.

Solving the last univariate equation, we obtain that the four solutions of (8) are of the form of:(
x?1, x

?
2 = − 1

15
x?1 (36x?1

2 + 19)

)
, x?1 ∈

{
± i

2
,± i

3

}
.

In particular, (8) does not admit real solutions, a fact that could be directly checked by applying
Descartes' rule of signs on the univariate polynomial 36x4

1 + 13x2
1 + 1.
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2.2 Real algebraic stability conditions

As shown at the beginning of Section 2.1, (2) can be reduced to checking the emptiness of
the semi-algebraic set of R2n de�ned by (3). This problem can be achieved using the methods
described in Section 2.1.2. However, such an approach presents an important drawback: it
doubles the number of variables (see (3)), which yields an overhead of computations in practice
due to the exponential cost of the methods described in Sections 2.1.1 and 2.1.2.

To avoid this computational issue, we can start directly with the DeCarlo et al.'s stability
conditions (see Theorem 2). From the computational point of view, the �rst n conditions of
Theorem 2 can easily be checked using classical univariate stability tests (see, e.g., [Mar49,
Jur64, Bis84, Bis02]). We are then left with the last condition of Theorem 2, i.e.:

VC(D) ∩ Tn = ∅. (9)

This condition replaces the search for zeros ofD in the unit polydisc Un (see (2)) by the search
for zeros over the unit polycircle Tn. Now, our approach to test the above condition (9) consists
in applying a transformation that maps the unit poly-circle Tn to the real space Rn. More
precisely, for each complex variable zk, we perform a change of variable zk := φ(xk) such that
zk ∈ T if and only if xk ∈ R. In particular, such a transformation allows us to keep unchanged
the number of variables. A classical transformation that satis�es the above requirement is the
so-called Möbius transformation which de�nition is recalled in the next de�nition.

De�nition 1 Denoting the extended complex plane by C, namely, C := C ∪ {∞}, a Möbius
transformation is the following rational function

φ : C −→ C

z 7−→ a z + b

c z + d
,

where a, b, c, d ∈ C are �xed and satisfy a d− b c 6= 0. We formally write:

φ

(
−d
c

)
=∞, φ(∞) =

a

c
.

Denoting by H the class of circles of arbitrary radius in C (this class includes lines which
can be considered as circles of in�nite radius). Then, the set of Möbius transformations have
the property of mapping H to itself, i.e., each circle in C is mapped to another circle in C.
In particular, the following transformation φ(z) =

z − i
z + i

, which corresponds to the Möbius

transformation with a = 1, b = −i, c = 1 and d = i, maps the extended real line R := R ∪ {∞}
to the complex circle T.

Remark 2 Di�erent transformations such as the classical parametrization of T \ {−i} de�ned
by

∀ tk ∈ R, xk =
2 tk

1 + t2k
, yk =

1− t2k
1 + t2k

, k = 1, . . . , n,

with the notation zk = xk + i yk, also ful�ll the above requirement but usually yield a polynomial
with higher degree than the one obtained by a Möbius transformation.

Accordingly, the following result holds.

Proposition 1 Let D ∈ R[z1, . . . , zn]. Two polynomials R and I can be obtained such that:
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12 Bouzidi & Quadrat & Rouillier

VC(D) ∩ [T \ {1}]n = ∅ ⇐⇒ VR(〈R, I〉) = ∅.

Proof 1 Given a polynomial D(z1, . . . , zn), we can handle the following substitution

zk =
xk − i
xk + i

=
x2
k − 1

x2
k + 1

− i 2xk
x2
k + 1

, k = 1, . . . , n, (10)

which yields a rational function in C(x1, . . . , xn) whose numerator can be written as

R(x1, . . . , xn) + i I(x1, . . . , xn),

where R, I ∈ R[x1, . . . , xn]. If (z1, . . . , zn) is a zero of D(z1, . . . , zn) that belongs to [T \ {1}]n,
then, by construction,

(x1, . . . , xn) =

(
i (z1 + 1)

1− z1
, . . . ,

i (zn + 1)

1− zn

)
is a real zero of R(x1, . . . , xn) + i I(x1, . . . , xn). Conversely, if (x1, . . . , xn) is a real zero of
R(x1, . . . , xn) + i I(x1, . . . , xn), then

(z1, . . . , zn) =

(
x1 − i
x1 + i

, . . . ,
xn − i
xn + i

)
is also a zero of D(z1, . . . , zn) that belongs to [T \ {1}]n.

Remark 3 If we denote by dk the degree of D with respect to the variable zk, then we can easily
check that the transformation used in the proof of Proposition 1 (see (10)) yields two polynomials
R and I of total degrees at most

∑n
k=1 dk.

Example 7 Let us consider D(z1, z2) = (2 z2
1 + 10 z1 + 12) + (z2

1 + 5 z1 + 6) z2. Applying the
transformation (10) for k = 1, 2, we obtain the following polynomial system of total degree 3{

R = 36x2
1 x2 − 10x1 − 6x2 = 0,

I = 12x2
1 + 30x1 x2 − 2 = 0,

which was considered in (8).
We can also consider

D(z1, z2) = −3 z2
1 z

2
2 + 2 z2

1 z2 + 2 z1 z
2
2 − 3 z2

1 + 4 z1 z2 − 3 z2
2 + 2 z1 + 2 z2 − 3

which, after transformation (10) for k = 1, 2, yields the following two polynomials of total degree
2: {

R = 0,

I = x2
1 + x2

2 − 1 = 0.

According to Proposition 1, we can test that a polynomial D ∈ R[z1, . . . , zn] does not have
complex zeros in [T \ {1}]n by �rst computing the polynomials R(x1, . . . , xn) and I(x1, . . . , xn)
and then checking that the following polynomial system{

R(x1, . . . , xn) = 0,

I(x1, . . . , xn) = 0,
(11)
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does not have any solution in Rn by means of the techniques described in Section 2.1.
Note that to check the last condition of Theorem 2, the above test is not su�cient since it

excludes the points of the poly-circle that have at least one coordinate equal to 1. Hence, we
also have to check that the polynomial D does not vanish at any of these points. Let us explain
how this can be done in a systematic manner. Starting with D, we �rst compute the following
polynomials:

Di(z1, . . . , zk−1, zk+1, . . . , zn) := D(z1, . . . , zk−1, 1, zk+1, . . . , zn), k = 1, . . . , n.

To eachDk, we then apply the Möbius transformation (10) for zj with j = 1, . . . , k−1, k+1, . . . , n,
followed by the test of Proposition 1. Similarly as above, this test allows us to check whether
or not each Dk does not have complex zeros on [T \ {1}]n−1. But we still need to check that
Dk does not vanish at the excluded points, namely, points that have at least one coordinate
in {z1, . . . , zk−1, zk+1, . . . , zn} equal to 1. This can then be done in the same way as above
by considering the polynomials Dkl obtained by substituting the variable zl by in the Dk's.
Proceeding recursively until obtaining univariate polynomials of the formD(1, . . . , 1, zk, 1, . . . , 1),
we can then check that D does not vanish on the unit poly-circles T.

Note that at the step m of the above process, the set of polynomials we have to consider are
exactly the polynomials obtained from D after substituting m of the n variables zi's by 1. From
this observation, we obtain the following algorithm to check (10) based on Theorem 2.

Algorithm 1 1: procedure IntersectionEmpty(D(z1, . . . , zn)) . return true if D satis�es
(9)

2: for k = 0 to n− 1 do

3: Compute the set Sk of polynomials obtained by substituting k of the variables zi's by
1 in D(z1, . . . , zn)

4: for each Dk in Sk do

5: {R, I} = Möbius_transform(Dk)
6: if VR({R, I}) 6= ∅ then
7: return False
8: end if

9: end for

10: end for

11: return True
12: end procedure

Let us now state our n-D stability test.

Algorithm 2 1: procedure IsStable(D(z1, . . . , zn)) . return true if D satis�es (2)
2: for k = 1 to n do

3: if D(1, . . . , zk, . . . , 1) is not stable then

4: return False
5: end if

6: end for

7: return IntersectionEmpty(D(z1, . . . , zn))
8: end procedure

Remark 4 In Algorithm 1, the polynomials considered at the last step are D(1, . . . , zk, . . . , 1)
for k = 1, . . . , n. Since the stability of these polynomials are checked at step 1 of Algorithm 2,
we can skip this test in Algorithm 2 by stopping Algorithm 1 at step n− 2.
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14 Bouzidi & Quadrat & Rouillier

Remark 5 From the computational cost viewpoint, it should be stressed that the most dominant
part of Algorithm 1 is the �rst iteration of the outer loop which consists in checking that the
polynomial D(z1, . . . , zn) is devoid from zero in the poly-circle Tn. Indeed, for any iteration k of
the outer loop, the algorithm performs

(
n
k

)
calls to the routine for checking the existence of real

zeros of an algebraic system with n− k variables. Since this checking step requires a cost that is
at least single exponential in the number of variables (see [BPR06]), this implies that the cost of
the outer loop, and thus of the whole algorithm, is dominated by the cost of the �rst iteration.

2.3 Examples and experiments

Let us illustrate Algorithms 1 and 2 with some explicit examples.

Example 8 We consider D(z1, z2) = (2 z2
1 + 10 z1 + 12) + (z2

1 + 5 z1 + 6) z2 which appears in
several articles on the stability analysis ([XYL+04, LXL13]). It is known that D is structurally
stable. Let us check again this result.

The �rst step of our procedure consists in checking that the two polynomials D(z1, 1) =
3 z2

1 + 15 z1 + 18 and D(1, z2) = 12 z2 + 24 are stable, which can be directly checked by, e.g.,
inspecting their solutions (i.e., {-3, -2} and {-2}).

In a second step, we apply Algorithm 1 to D(z1, z2). As we have already checked that D(z1, 1)
and D(1, z2) are stable, we only have to consider D(z1, z2) itself. Using the Möbius transforma-
tion (10), this polynomial yields the polynomial system de�ned by (8). In Example 6, we proved
that (8) does not admit real solutions.

Example 9 If we consider

D(z1, z2) = −3 z2
1 z

2
2 + 2 z2

1 z2 + 2 z1 z
2
2 − 3 z2

1 + 4 z1 z2 − 3 z2
2 + 2 z1 + 2 z2 − 3,

then, the Möbius transformation (10) yields only one polynomial x2
1 +x2

2−1 (see Example 7) that
admits an in�nite number of zeros. Checking for the existence of real zeros of this polynomial
can be done by checking for the existence of real solutions for the system of its critical points (see
(7)).

Example 10 We consider D(z1, z2, z3) = (z2
1 + z2

2 + 4) (z1 + z2 + z3 + 5) which is known to
be structurally stable ([LXL13]). Our procedure �rst checks that the polynomials D(z1, 1, 1) =
(z2

1 + 5) (z1 + 7), D(1, z2, 1) = (z2
2 + 5) (z2 + 7) and D(1, 1, z3) = 6 z3 + 42 are stable. Then,

applying Algorithm 1 to D, we have to test the existence of zeros on the polycircle of the following
polynomials 

D(z1, z2, z3) = (z2
1 + z2

2 + 4) (z1 + z2 + z3 + 5),

D(z1, 1, z3) = (z2
1 + 5) (z1 + z3 + 6),

D(1, z2, z3) = (z2
2 + 5) (z2 + z3 + 6),

D(z1, z2, 1) = (z2
1 + z2

2 + 4) (z1 + z2 + 6),

(12)

by considering the set of polynomial systems obtained by applying the Möbius transformation
(10) to each of them. The main di�cult computation is to decide whether or not the following
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Certi�ed Non-conservative Tests for the Structural Stability of Multidimensional Systems 15

polynomial system, which corresponds to D(z1, z2, z3), has real solutions:



48x3
1 x

3
2 x3 − 72x3

1 x
2
2 − 96x3

1 x2 x3 − 72x2
1 x

3
2 − 184x2

1 x
2
2 x3 − 96x1 x

3
2 x3

+24x3
1 + 120x2

1 x2 + 72x2
1 x3 + 120x1 x

2
2 + 176x1 x2 x3 + 24x3

2 + 72x2
2 x3

−40x1 − 40x2 − 24x3 = 0,

36x3
1 x

3
2 + 100x3

1 x
2
2 x3 + 100x2

1 x
3
2 x3 − 68x3

1 x2 − 36x3
1 x3 − 124x2

1 x
2
2

−180x2
1 x2 x3 − 68x1 x

3
2 − 180x1 x

2
2 x3 − 36x3

2 x3 + 44x2
1 + 116x1 x2

+68x1 x3 + 44x2
2 + 68x2 x3 − 12 = 0.

Using one of the methods described in Section 2.1.1, we can check that the above polynomial
system does not have real zeros. Similarly, the second, third and fourth polynomials of (12) can
be proved to be devoid from zeros in the corresponding polycircle, and we �nd again that D is
stable.

Our stability test was implemented in a Maple routine named IsStable. It takes a polynomial
de�ning the denominator of a transfer function in input and returns true if this polynomial
satis�es (10) and false otherwise. For testing the �rst n conditions of Theorem 2, we use the
classical 1-D Bistritz test (see [Bis84]) that was implemented in Maple. To test the emptiness of
a real algebraic set, which is the main critical step in Algorithm 1, we have implemented the two
presented methods 1. The �rst one uses the classical cylindrical algebraic decomposition. Such
a decomposition is provided by the Maple routine CylindricalAlgebraicDecompose which can
be found in the native package RegularChains[SemiAlgebraicSetTools]. The second method
is based on the computation of the set of critical points of a given function restricted to the real
algebraic set under consideration. An e�cient implementation of this method has been done is
the external Maple library RAGlib ([SED07]) (see the command HasRealSolutions). Finally,
we use the routine Isolate of the Maple package RootFinding in order to compute numerical
approximations of the solutions through the computation of a univariate representation.

In Table 1, we show the average running times in CPU seconds of the IsStable routine
for random (sparse or dense) polynomials in 2, 3 and 4 variables with rational coe�cients2.
The two running time columns correspond to the two variants IsStableCAD and IsStableCRIT

(depending on the method used for testing the emptiness of a real algebraic set) of the routine
IsStable.

1The user can choose one of these two methods by means of an option in the routine IsStable.
2The experiments were conducted on 1.90 GHz 3-Core Intel i3-3227U with 3MB of L3 cache under a Linux

platform.
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16 Bouzidi & Quadrat & Rouillier

Data Running time

nbvar degree density IsStableCAD IsStableCRIT

2

3
sparse 0.039 0.074
dense 0.047 0.078

5
sparse 0.055 0.087
dense 0.17 0.13

8
sparse 0.29 0.21
dense 2.74 0.61

10
sparse 1.91 0.38
dense 8.59 1.82

3

3
sparse t/o 0.31
dense t/o 0.36

5
sparse t/o 0.51
dense t/o 1.05

8
sparse t/o 2.31
dense t/o 9.77

10
sparse t/o 4.71
dense t/o 38.70

Table 1: CPU times in seconds of IsStableCAD and IsStableCRIT run on random polynomials
in 2, 3 and 4 variables with rational coe�cients. t/o: time out

Remark 6 Note that Algorithm 2 can check the structural stability of polynomials in 4 variables
with degree up to 12 in less than 20 minutes. However, when the polynomials have more variables
(i.e., larger than 4) or have larger degrees, these methods do not return a result in a reasonable
time.

3 A stability test for 2-D systems

In Section 2, a general framework was proposed for the stability analysis of n-D systems with
n ≥ 2. In this section, we restrict the study to the particular case of n = 2 and we show that
substantial improvements with respect to practical e�ciency can be obtained by using state-
of-the-art algorithms developed in [Bou14a] for the computation of the solutions of bivariate
algebraic systems of equations.

Recall that testing the stability of a 2-D system can be reduced to deciding whether an
algebraic system of the form of {R(x1, x2) = I(x1, x2) = 0} admits real solutions. In the present
case, without loss of generality, we can assume that the ideal I generated by the two polynomials
R and I is zero-dimensional, i.e., gcd(R, I) = 13. Our contribution in this section is a dedicated
method for deciding if a system of two polynomial equations in two variables, having a �nite
number of complex solutions, admits real solutions.

Since the ideal I is zero-dimensional, we can use the univariate representation techniques
described in Section 2.1.2 to reduce the problem of deciding the existence of real solutions of
I to that of deciding the existence of real roots of a univariate polynomial. Indeed, under the

3If gcd(R, I) is non-trivial, then it is su�cient to compute their gcd G in Q[x1, x2] and to consider the two

zero-dimensional systems: the system
{
R
G ,
I
G

}
and the system

{
G, ∂G

∂x1

}
which encodes the critical points of G

with respect to x1.
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hypothesis that I is zero-dimensional, the quotient algebra A := Q[x1, x2]/I inherits a �nite-
dimensional Q-vector space structure and, for any polynomial P ∈ Q[x1, x2], we can de�ne the
Q-endomorphism MP of A de�ned by (6) whose the characteristic polynomial can be written as
follows

CP (t) = det(t Id −MP ) =
∏

(α1, α2)∈V (I)

(t− P (α1, α2))µ(α1, α2), (13)

where Id denotes the identity matrix of size d = dimQ(A) and µ(α1, α2) the multiplicity of
(α1, α2) as a zero of I.

Furthermore, if P = x1 +a x2 is a separating form of V (I)4, then the polynomial CP coincides
with the polynomial f of the Rational Univariate Representation of I computed with respect to
P (see (5) and Section 2.1.2) which yields an important property regarding to the existence of
real solutions of V (I) and of CP . The following result can be proved considering a univariate
representation of the solutions (see, e.g., [Rou99]).

Theorem 3 Let P = x1 + a x2 be a separating form for V (I). Then, the univariate polynomial
CP has real roots if and only if V (I) has real solutions.

Consequently, the computation of a separating form of V (I) and the corresponding polynomial
CP reduces the problem of searching for real solutions of V (I) to the problem of searching for real
roots of CP . In the following, instead of the classical strategy which requires computations in the
quotient algebra A := Q[x1, x2]/I, we propose an alternative approach based on the computation
of the so-called resultant polynomial as well as the computation of a generic position. Thus,
before going further, let us introduce the concept of resultant and subresultant sequences, as well
as some of their basic properties which are useful for the description of our algorithm.

3.1 Resultant and subresultant sequence

Let A be a unique factorization domain ([CLO07]), e.g., A := K[y], where K is a �eld. Let
f =

∑p
i=0 ai x

i ∈ A[x] and g =
∑q
j=0 bj x

j ∈ A[x], that is, the ai's and bj 's belong to A. Let
us suppose that ap 6= 0 and bq 6= 0 so that degx f = p and degx g = q, and p ≥ q. Let
A[x]n = {P ∈ A[x] | degx P ≤ n} be the set of polynomials with degree at most n and {xi}i=0,...,n

the standard basis of the free A-module A[x]n of rank n. We set A[x]n = 0 for negative integer
n. For 0 ≤ k ≤ q, we can consider the following homomorphism of free A-modules:

ϕk : A[x]q−k−1 × A[x]p−k−1 −→ A[x]p+q−k−1

(U, V ) 7−→ U f + V g.

Using the standard basis of A[x]q−k−1 (resp., A[x]p−k−1, A[x]p+q−k−1) and identifying the poly-
nomial

∑q−k−1
i=0 ui x

i ∈ A[x]q−k−1 with the row vector (u0, . . . , uq−k−1) ∈ A1×(p−k), we obtain
that

ϕk(u0, . . . , uq−k−1, v0, . . . , vp−k−1) = (u0, . . . , uq−k−1, v0, . . . , vp−k−1)Sk,

4It has been shown that a separating form can be sought in the following set of linear forms{
x1 + a x2 | a = 0, . . . ,

d (d−1)
2

}
, where d denotes the cardinal of V (I), i.e., the dimension dimQ(A) of A as

a Q-vector space. Indeed, such a set contains at least one separating form since the number of non-separating

forms is bounded by the number
d (d−1)

2
of lines passing through two distinct points among d points in the plane.
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where the matrix Sk is the matrix de�ned by:

Sk =

(
Uk
Vk

)
∈ A(q−k+p−k)×(p+q−k),

Uk =


a0 a1 . . . aq−k . . . ap 0 . . . 0
0 a0 . . . aq−k−1 . . . ap−1 ap . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 a0 . . . . . . . . . . . . ap

 ∈ A(q−k)×(p+q−k),

Vk =


b0 b1 . . . bp−k . . . bq 0 . . . 0
0 b0 . . . bq−k−1 . . . bq−1 bq . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 b0 . . . . . . . . . . . . bq

 ∈ A(p−k)×(p+q−k).

To be coherent with the degree of polynomials, we attach index i− 1 to the ith column of Sk
so that the index of the columns goes from 0 to p+ q − k − 1.

De�nition 2 For 0 ≤ j ≤ p + q − k − 1 and 0 ≤ k ≤ q, let srk,j be the determinant of the
submatrix of Sk formed by the last p + q − 2 k − 1 columns, the column of index j and all the
p + q − 2 k rows. The polynomial Sresk(f, g) = srk,k x

k + . . . + srk,0 is the kth subresultant of
f and g, and its leading term srk,k is the kth principal subresultant of f and g. The matrix
S0 ∈ A(p+q)×(p+q) is the Sylvester matrix associated with f and g, and Resx(f, g) = detS0 is the
resultant of f and g.

Remark 7 For k < j ≤ p+ q − 2 k − 1, we note that srk,j = 0 since srk,j is the determinant of
a matrix having twice the same column. Moreover, we can check that we have:

srq,q = bp−qq , ∀ q < p, Sresq(f, g) = bp−q−1
q g.

Since A is an integral domain, we can consider its �eld of fractions which we denotes by F,
namely, F := {nd | 0 6= d, n ∈ A}, and the Euclidean domain F[x]. Since f, g ∈ F[x], we can
de�ne the greatest common factor gcd(f, g), which is de�ned up to a non-zero element of F, so
that we can suppose that gcd(f, g) ∈ A.

Theorem 4 ([BPR06]) The �rst Sresk(f, g) such that srk,k 6= 0 is equal to gcd(f, g).

Now, if we consider two polynomials in two variables f =
∑p
i=0 ai(x1)xi2 and g =

∑q
j=0 bj(x1)xj2,

and x = x2 so that A = K[x1] and A[x] = K[x1, x2], then we have the important results.

Theorem 5 ([BPR06]) Let f(x1, x2), g(x1, x2) ∈ K[x1, x2] be two bivariate polynomials.

� The roots of Resx2
(f, g)(x1) are the projection onto the x1-axis of the common solutions of

f and g and of the common roots of ap and bq.

� For any α root of Resx2
(f, g) such that ap(α) and bq(α) do not both vanish, the �rst

polynomial Sresk(α, x2), for increasing k, that does not identically vanish is of degree k
and is the gcd of f(α, x2) and g(α, x2), up to a nonzero constant in the �eld of fractions of
A(α).

The subresultant sequences can be computed either by means of determinant computations
or by applying a variant of the classical Euclidean algorithm (see [BPR06]). The latter method,
combined with evaluation/interpolation strategies, turns out to be much more e�cient in practice,
especially for the case of univariate or bivariate polynomials.
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3.2 Computation of a separating form of bivariate polynomial systems

Given a linear form x1 + a x2 (not necessarily separating), the following theorem shows that, up
to a non-zero factor in Q, the univariate polynomial Cx1+a x2

(see (13)) is equal to the resultant
of the two polynomials obtained by applying a change of variables to R and I.

Theorem 6 ([BLPR15b]) Let R, I ∈ Q[x1, x2] and let us de�ne the polynomials

R′(t, x2) := R(t− a x2, x2), I ′(t, x2) := I(t− a x2, x2), (14)

where a ∈ Z is such that the leading coe�cient of R′ and I ′ with respect to x2 are coprime.
Then, the resultant of R′ and I ′ with respect to x2, denoted by Resx2

(R′, C′), is equal to:

c
∏

(α1, α2)∈V (I)

(t− α1 − aα2)µ(α1,α2), c ∈ Q \ {0}.

In practice, the computation of Cx1+a x2
as a resultant (see Theorem 6) is much more e�cient

than computing the characteristic polynomial of the Q-endomorphism Mx1+a x2
(see (6)) since

the computation of the matrixMx1+a x2 usually requires the costly pre-computation of a Gröbner
basis of the ideal I = 〈R, I〉 for the graded reverse lexicographic order.

Let us now focus on the computation of a separating form for V (I). Below, we propose a
method that consists in applying a change of variables to the initial system and then, using
resultant and subresultants, to check whether or not the resulting system is in generic position
as de�ned below.

De�nition 3 Let f(x1, x2), g(x1, x2) ∈ Q[x1, x2]. If ]S denotes the cardinality of a �nite set S,
then the system {f, g} is said to be in generic position with respect to x1 if we have:

∀ α ∈ C, ] {β ∈ C | f(α, β) = g(α, β) = 0} ≤ 1.

Let us �rst illustrate our approach with an example.

Example 11 Consider the following polynomial ideal I = {f = x2−x2
1, g = x2

1 +x2
2− 2} whose

set of solutions V (I) consists in four points of C2. The resultant Resx2
(f, g) of f and g with

respect to x2 is equal to x4
1 + x2

1 − 2. The roots of Resx2(f, g) correspond to the projections of
the four solutions of V (I) onto the x1-axis. Since all these roots are distinct, x1 is a separating
form (see Figure 1 for the real solutions of V (I)). The fact that the solutions of V (I) project
distinctly onto x1 can be algebraically described by the fact that for each root α of Resx2

(f, g),
the gcd x2 + α2 of f(α, x2) = x2 − α2 and g(α, x2) = x2

2 + α2 − 1 has only one root.
Let us now consider the polynomial ideal I ′ = {f = (x1 − 2)2 + x2

2 − 2, g = x2
1 + x2

2 − 2}.
The resultant Resx2

(f ′, g′) of f ′ and g′ with respect to x2, namely, 16 (x1 − 1)2, has a single
(real) root 1 of multiplicity 2, and gcd(f ′(1, x2), g′(1, x2)) = x2

2 − 1 admits two distinct roots
−1 and 1 which correspond to two di�erent solutions of V (I ′). This means that the system
is not in generic position, and thus that x1 is not a separating form (see Figure 2). In order
to compute a separating form for V (I ′), we can apply a change of variables to f ′ and g′, for
instance t = x1 + x2, and then compute the resultant of these new polynomials f ′(t− x2, x2) and
g′(t−x2, x2) with respect to x2. This yields the polynomial t (t−2) whose two distinct roots {0, 2}
are the projections of the solutions onto the t-axis (see Figure 3). For α1 = 0 (resp., α2 = 2),
the gcd of f ′(−x2, x2) and g′(−x2, x2) (resp., of f ′(2−x2, x2) and g′(2−x2, x2)) is x2 +1 (resp.,
x2− 1). Since both gcds admit only one root, then the system {f ′(t− x2, x2), g′(t− x2, x2)} is in
generic position with respect to t and thus x1 + x2 is a separating form for V (I ′).
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Figure 1: Intersection between a circle and a parabola

Figure 2: Intersection between two circles
Figure 3: After the change of variables
(x1 = t− x2, x2)

Given a linear form t = x1 + a x2, it can be shown that it is separating for V (〈R, I〉) if and
only if the system {R′, I ′} is in generic position (see De�nition 3). Algebraically, this means
that for each root α of Resx(R′, I ′) (where R′ and I ′ are de�ned as in Theorem 6), the gcd of
R′(α, x) and I ′(α, x), denoted G(α, x), has exactly one distinct root.

To check the above genericity condition, we can consider a triangular description of the
solutions of {R′, I ′} given by a �nite union of triangular systems:

V (〈R′, I ′〉) =

l⋃
k=1

{
(α, β) ∈ C2 | rk(α) = Gk(α, β) = 0

}
.

Such a triangular description can be obtained via a triangular decomposition algorithm based
on the resultant and subresultant polynomials (see Algorithm 1 of [BLPR15b] for more details).
Such a triangular decomposition yields a set of triangular systems of the form {rk(t),Sresk(t, x2)}k=1,...,l,
where l = min{degx2

R′, degx2
I ′}, Resx2

(R′, I ′) =
∏l
k=1 rk(t), rk ∈ K[t] is the factor of

Resx2
(R′, I ′) (possibly equal to 1) whose roots α's satisfy the property that the degree of

G(α, x2) (i.e., gcd(R′(α, x2), I ′(α, x2))) in x2 is equal to k and Sresk(t, x2) =
∑k
i=0 srk,i(t)x

i
2
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is the kth subresultant of R′ and I ′. Once a triangular decomposition {rk(t),Sresk(t, x2)}k=1,...,l

of {R′, I ′} is computed, the genericity condition is equivalent to the fact that Sresk(t, x2) can
be written as (ak(t)x2 − bk(t))k modulo rk(t), with gcd(ak, bk) = 1. The next theorem checks
this last condition.

Theorem 7 ([DMR08]) Let R(x1, x2), I(x1, x2) ∈ Q[x1, x2]. De�ne the polynomials R′(t, x2),
I ′(t, x2) as in Theorem 6, and let {rk(t),Sresk(t, x2)}k=1,...,l be the triangular decomposition of
{R′, I ′}. Then, {R′, I ′} is in generic position if and only if we have

k (k − i) srk,i srk,k − (i+ 1) srk,k−1 srk,i+1 = 0 mod rk, (15)

for all k ∈ {1, . . . , l} and for all i ∈ {0, . . . , k − 1}.

Finally, our algorithm for checking whether the system {R, I} admits real solutions consists
in computing the above triangular decomposition for the system {R′, I ′} obtained after applying
an arbitrary linear change of variable t = x1 + a x2. If the condition of Theorem 7 is satis�ed,
then x1 + a x2 is a separating form. It then remains to check if the resultant Resx2

(R′, I ′) of
R′ and I ′ with respect to x2 has real roots, a fact which can be done using, for instance, Sturm
sequences ([BPR06]).

Remark 8 In practice, several strategies are used in order to reduce the computational time of
the above algorithm. For instance, the computation is stopped when the resultant, computed for
some linear form x1 +a x2, that is the resultant of R(t−a x2, x2) and I(t−a x2, x2) with respect
to x2, is devoid from multiple factors, which implies that the form x1 + a x2 is separating by
Theorem 6. The computation is also stopped when the computed resultant does not have real
zeros, since it implies that the system does not have real zeros as well. Another improvement is
the way we can choose the form x1 + a x2 candidate to be a separating form. Indeed, in order to
increase the probability that a form is separating, a �rst computation is performed modulo a prime
number p (coe�cients are then considered in the �nite �eld Fp = Z/Z p). Such a computation
turns out to be very fast since it avoids coe�cient swells in the algorithm. Providing that a linear
form is separating modulo a prime p, then, with high probability, it is also separating over Z and
we can choose it as a candidate for the algorithm over Z.

3.3 Experiments

In order to measure the gain of our algorithm with respect to the general algorithm described
in Section 2, we compare it with the general method Isolate partially developed by the same
authors and available in the package RootFinding of the Maple computer algebra system. This
function �rst computes a Rational Univariate Representation ([Rou99]) from a Gröbner basis
computed with the F4 algorithm ([Fau99]), and then uses of a variant of Descartes algorithm
([RZ03]) as well as multi-precision interval arithmetic ([RR05]) to isolate the real roots of the
system.

For the present experiments, we re-use black boxes developed for the algorithms described in
[BLPR15a, BLPR13, Bou14b] which use exactly the same technical base to design the component
of the algorithm that computes the univariate polynomial Cx1+a x2 and performs the separation
check. All the other components are shared with the Maple RootFinding[Isolate] function.

For dense polynomials with coe�cients that can be encoded on 23 bits (such as if there were
coming from �oating point numbers), the results − obtained on a core i7 3.5 Ghz with 32 GB
of memory − are summarized in the following table in which Degree denotes the total degree
of the polynomial D(z1, z2) to be studied, ]V (I) the number of complex roots of the bivariate
system to be solved to decide stability, RootF inding the computational time of the function
RootFinding[Isolate] and Dedicated the computational time of our new dedicated algorithm.
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Degree ]V (I) RootFinding Dedicated
10 200 2.3 < 1
15 450 29.8 < 1
20 800 223.4 < 1
25 1280 866.9 1.42
30 1800 3348.2 2.79
35 2450 > 1 hour 7.81
40 3200 > 1 hour 15.51

For these examples, note that we did not report the computation times required for the two
1-D stability tests (i.e., the stability test for D(1, z2) and D(z1, 1)) since they are small compared
with the resolution of the bivariate polynomial system.

Finally, we point out that our naive implementation of the Möbius transform in Maple is the
main bottleneck of our dedicated algorithm compare with the extremely e�cient algorithm for
the real solution computation of systems of two polynomials in two variables.

4 A stability test for 2-D systems with parameters

In what follows, let u = {u1, . . . , um} denote a set of parameters. In this last section, we study the
structural stability of 2-D systems given by a transfer function of the form of (1) that depends
on the set of parameters u, i.e., where n = 2 and D ∈ Q[z1, z2, u]. In other words, our goal
is to study (2) in terms of the parameters uk's. Roughly speaking, our approach consists in
computing a set of polynomials {h1, . . . , hs}, where hk ∈ Q[u1, . . . , ur] for k = 1, . . . , s, satisfying
the property that the stability of (1) does not change provided that the sign of the sequence
{h1, . . . , hs} does not change. Then, Rm can be decomposed into cells in which the signs of
{h1, . . . , hs} remain the same and the cells for which the system is structurally stable can then
be selected by testing the structural stability of the system for a single parameter's value in each
cell.

Considering D(z1, z2, u) as a polynomial in the variables z1 and z2 with coe�cients in
Q[u1, . . . , ur], we can apply the transformation given in Section 2.2, which yields the follow-
ing set of conditions: 

D(z1, 1, u) 6= 0, |z1| ≤ 1,

D(1, z2, u) 6= 0, |z2| ≤ 1,

V (〈R(x1, x2, u), I(x1, x2, u)〉) ∩ R2 = ∅.
(16)

We start with the study of the �rst two conditions involving univariate polynomials with
parameters. We �rst transform these conditions so that continuous stability tests can be applied.
More precisely, we can apply the following change of variables

s1 =
1− z1

1 + z1
, s2 =

1− z2

1 + z2

to the polynomialsD(z1, 1, u) andD(1, z2, u). We denote byD1(s1, 1, u), respectivelyD2(1, s2, u),

the numerator of D
(
−1− s1

1 + s1
, 1, u

)
, respectively of D

(
1,−1− s2

1 + s2
, u

)
. The �rst two conditions

of (16) then become: {
D1(s1, 1, u) 6= 0, ∀ s1 ∈ C : Re(s1) ≥ 0,

D2(1, s2, u) 6= 0, ∀ s2 ∈ C : Re(s2) ≥ 0.

Inria



Certi�ed Non-conservative Tests for the Structural Stability of Multidimensional Systems 23

Then, we can use a classical result of Liénard and Chipart ([BPR06, Thm. 9.30]) that
expresses the stability condition of a continuous polynomial D(s) as a positivity condition of its
coe�cients as well as a certain signed principal subresultant sequence of two polynomials F (s)
and G(s) satisfying D(s) = F (s2) + sG(s2) (see [BPR06, Thm. 9.30]). Using the specialization
property of subresultants (see [BPR06]), we can generalize this result to the case of univariate
polynomials depending on parameters. In particular, applying this test to the polynomials
D1(s1, u) and D2(s2, u) yields a set of polynomials depending only on the parameters u, and
the stability of D1(s1, u) and D2(s2, u), and thus of D(z1, 1, u) and D(1, z2, u), is then satis�ed
providing that these polynomials {hi(u)}i=1,...,t are all positive.

The next problem is to decide whether or not the following system{
R(x1, x2, u) = 0,

I(x1, x2, u) = 0,
(17)

admits real solutions. In what follows, we can assume that (17) is generically zero-dimensional,
that is, for almost all values of the parameters u ∈ Cm, (17) admits a �nite number of complex
solutions. The main tool we use to solve this problem is the so-called discriminant variety, �rst
introduced in [LR07], and recalled in the next section.

4.1 Discriminant varieties: de�nition and properties

Before recalling the de�nition of a discriminant variety of an algebraic set, let us start with some
useful notations.

For a set of polynomials p1, . . . , pl ∈ Q[x1, . . . , xn−m, u1, . . . , um], the corresponding algebraic
set is de�ned as:

S = {α ∈ Cn | p1(α) = 0, . . . , pl(α) = 0}. (18)

We consider the canonical projection onto the parameter space Cm, namely, the following map

Πu : Cn −→ Cr

(x1, . . . , xn−m, u1, . . . , um) 7−→ (u1, . . . , um),

and we denote by Πu(S) the so-called Zariski closure of the projection of S onto the parameter
space Cm. For more details, see [CLO07].

De�nition 4 ([LR07]) With the above notations, an algebraic set V of Cm is called a discrim-
inant variety of S if the following two conditions are satis�ed:

1. V is contained in Πu(S).

2. The connected components U1, . . . ,Us of Πu(S) \ V are analytic submanifolds (note that if
Πu(S) is connected, there is only one component).

3. For j = 1, . . . , s, (Π−1
u (Uj) ∩ S,Πu) is an analytic covering of Uj.

In broad terms, a discriminant variety yields a partition of the parameter's space Cm into cells
U , such that for each cell, the cardinal of Π−1

u (µ) ∩ S, where µ ∈ Cm, is locally constant on U ,
and Π−1

u (U) ∩ S consists of a �nite collection of sheets which are all locally homeomorphic to
U .

A consequence of De�nition 4, stated in the following theorem, is a fundamental property
of the discriminant variety regarding to the number of solutions. In this theorem, we assume
that the polynomial system S de�ned by (18) is generically zero-dimensional, i.e., for almost all
values of the parameters µ ∈ Cm, the polynomial system Su=µ, obtained by substituting the
parameters u to µ admits a �nite number of complex solutions.
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Theorem 8 ([LR07]) Let S be an algebraic system and U1, . . . ,Us de�ned as in De�nition 4.
Then, for two vectors of parameters µ, ν ∈ Uj, the specialized polynomial systems Su=µ and Su=ν

have exactly the same number of zeros.

For a given set S, the smallest algebraic variety V that satis�es the conditions of De�nition 4
is called the minimal discriminant variety (see [LR07]).

Example 12 A classical exemple of a discriminant variety is the zeros of the discriminant of a
quadratic univariate polynomial f := a x2+b x+c whose coe�cients are given as parameters. This
discriminant is given as b2−4 a c and satis�es that for all a0, b0 and c0 such that b20−4 a0 c0 6= 0,
the polynomial a0 x

2 + b0 x+ c0 has exactly two distinct roots.

In the sequel, we simplify say �discriminant variety� for �minimal discriminant variety�.

4.2 Computation of discriminant varieties

For a system F de�ned by a set {p1, . . . , pl} ⊂ Q[x1, . . . , xn−m, u1, . . . , um], by means of variable
eliminations using, e.g. standard Gröbner bases computations (see, e.g., [LR07]), we can compute
a sequence of polynomials {h1, . . . , hs} ⊂ Q[u1, . . . , um] whose zeros de�ne the discriminant
variety of F . For instance, in the case of the quadratic polynomial given in Example 12, the
discriminant is computed by eliminating the variable x in the system de�ned by f and its
derivative ∂f

∂x with respect to x, which can be done, e.g. by computing the resultant of f and ∂f
∂x

with respect to x.
In our setting, namely a system of two polynomial equations in two variables S = V (〈R, I〉),

the discriminant variety, denoted by VD, consists in the union of the following two subsets (see
[LR07] for details):

� The set O∞ of α ∈ Cm such that Π−1
u (U)∩S is not compact for any compact neighborhood

U of α in Cm.

� The set Oc of the union of the critical values of Πu and of the projection of the singular
points of V (S) onto Cm.

Intuitively, O∞ represents parameter values such that there exist either vertical leafs of solu-
tions or leafs that go to in�nity above some of their neighborhoods, while Oc represents parameter
values such that above some of their neighborhoods, the number of leafs varies. Thus, the minimal
discriminant variety VD roughly represents parameter values over which the number of solutions
of (17) changes. Furthermore, an important remark for the computation of the discriminant
variety of S is that both O∞ and Oc are algebraic sets. VD can thus be described as the union
of two algebraic sets that can be computed independently.

Both O∞ and Oc are projections of algebraic set. Computing these varieties remains to elim-
inating variables in the systems of equations corresponding to these varieties, which corresponds
to the following problem: given I = 〈f1, . . . , fl〉 ⊂ K[x1, x2, u], compute Πu(V (I)) = V (Iu),
where Iu ⊂ K[u] is de�ned by Iu = I ∩K[u]. Algorithmically, Iu can be obtained by means of a
Gröbner basis for any elimination ordering < satisfying u < x1, x2. More precisely, it su�ces to
compute a Gröbner basis for such an ordering and to keep only the polynomials that belong to
K[u].

In [LR07], it was shown that the set Oc is equal to Πu(V (〈R, I, Jacx1,x2
(R, I)〉)), where

Jacx1,x2
(R, I) denotes the determinant of the Jacobian matrix with respect to the variables x1

and x2. Hence, computing an ideal Ic such that Oc = V (Ic) remains to computing the determi-
nant Jacx1,x2(R, I) and a Gröbner basis of the ideal 〈R, I, Jacx1,x2(R, I)〉 for any elimination
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monomial ordering < satisfying u < x1, x2. It was also noticed that such an elimination ordering
allows us to compute an ideal I∞ ⊂ Q[u] such that O∞ = V (I∞). Precisely, suppose that G is a
reduced Gröbner basis of 〈R, I〉 for a monomial ordering <u,x1,x2

, that is, the product of two
degree reverse lexicographic orderings <u for the parameters and <x1,x2

for the variables. For
more details, see [CLO07]. Let us de�ne the following ideal

Ii∞ = {LM<x1,x2
(g) | g ∈ G, ∃m ≥ 0, 1 ≤ i ≤ 2, LM<x1,x2

(g) = xmi },

where LM< denotes the leading monomial of a polynomial for an admissible monomial ordering
< (see [CLO07]). Then, we have:

� Ii∞ ⊂ K[u] is a Gröbner basis for <u.

� O∞ = V (I1
∞)

⋃
V (I2

∞) = V (I1
∞
⋂
I2
∞).

4.3 Discussing the number of real solutions

Once a discriminant variety VD of S = V (〈R, I〉), represented by a set of polynomials {h1, . . . , hs},
is computed, we can compute a CAD adapted to these polynomials (see Section 2.1) in order to
obtain a partition of the parameter space Cm de�ned by the discriminant variety VD and the
connected components of its complementary Cm \VD (which has the property that over any cell
U that does not meet WD, Π−1

u (U) is an analytic covering of U). In particular, the number of
zeros of S is constant over any connected set that does not intersect the discriminant variety.

Also, for computing the constant number of solutions over a connected component that does
not meet the discriminant variety, it su�ces to take a particular value of parameter values µ in
this component and then solve the corresponding zero-dimensional polynomial system Su=µ.

Remark 9 Note that the structure of the solutions is not known above the discriminant variety
itself. Since the discriminant variety is a set of null measure, it is useless here to study what is
going on for such parameter values. However, the discriminant variety is de�ned by a polynomial
system which can be added to the original system in order to follow the study recursively.

The discriminant variety is de�ned for the complex solutions of (17). For real solutions, only
two cases may occur:

1. Πu(S ∩ Rm+2) ⊂ VD. We then need to study S ∩Π−1
u (VD) instead of S.

2. Πu(S ∩Rm+2)*VD. Then, we have VD ∩Rm is a discriminant variety for S ∩Rm+2, which
is the usual situation.

In the second case, note that if VD is minimal for S, then VD ∩Rm is not necessarily minimal
for S ∩ Rm+2.

4.4 Computing stability regions

Let us now come back to the original problem, namely the computation of the regions of the
parameter space such that (16) are satis�ed, and thus de�ne stable systems. As mentioned at
the beginning of Section 4, we can compute a set of polynomials {pi(u)}i=1,...,t such that the �rst
two conditions of (16) are satis�ed if and only if pi(u) > 0 for i = 1, . . . , t. We can also compute
a set of polynomials {qj(u)}j=1,...,s that de�nes a partition of the parameter space in which the
number of real solutions of (17) is constant. Now, considering the global set of polynomials
F := {p1(u), . . . , pt(u), q1(u), . . . , qs(u)}, we can compute a CAD adapted to F (see Section 2.1).
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This yields a disjoint union of cells in Rm in which the signs of all the polynomials of F (both pi's
and qi's) are constant. In particular, inside each of these cells, both the sign of the polynomials
pi's and the number of real solutions of (17) are constant. This implies that the system is either
stable or unstable. To determine the cells for which the system is stable, it su�ces to select a
simple point u = µ in each cell and to test (16) after the evaluation of the parameters.

Finally, in practice, to reduce the running time computation, we only compute the cells that
have maximal dimension during the CAD.

4.5 An illustrating example

We consider a 2D system de�ned by a transfer function G (see (1)) depending on the parameters
u = {u1, u2} and whose denominator D is de�ned by:

D(z1, z2) = (4u1 + 2u2 + 3) z1 + (−2u1 + 1) z2 + 2 (2u1 − u2 − 1) z1 z2

+(2u1 − 2u2 + 4) z2
1 z2 + (−u1 − u2 + 1) z1 z

2
2 .

Applying the algebraic transformation de�ned in Section 2.2 to D, the bivariate polynomial
system (17) is de�ned by:

R(x, y) = 7u1 x
2 y2 − 3u2 x

2 y2 + 7x2 y2 + u1 x
2 + 7u1 y

2 − 5u2 x
2 + u2 y

2

−x2 − 3 y2 + u1 − u2 − 11,

I(x, y) = 10u1 x
2 y − 8u1 x y

2 + 6u2 x
2 y + 4u2 x y

2 + 4x2 y − 6x y2

−8u1 x+ 10u1 y + 4u2 x+ 6u2 y − 6x+ 4 y.

Figure 4: Global view - Parameter space decomposition

The minimal discriminant variety of this bivariate system with respect to the projection onto
(u1, u2) can be obtained by means of the Maple function RootFinding[Parametric][Discriminant Variety].
The discriminant variety is the union of 8 lines, 2 quadrics and 1 curve of degree 6 de�ned by:
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� [u1], [u2], [4u1 − 2u2 + 3], [u1 − u2 − 11], [u1 − 5u2 − 1], [5u1 + 3u2 + 2],
[7u1 − 3u2 + 7], [7u1 + u2 − 3].

� [6u2
1 + 4u1 u2 + 2u2

2 − 8u2 + 1], [6u2
1 − 6u1 u2 − 4u2

2 + 25u1 + 3u2 + 11].

� [1276u6
1 − 2828u5

1 u2 − 168u4
1 u

2
2 + 2896u3

1 u
3
2 + 1544u2

1 u
4
2 + 340u1 u

5
2

+ 76u6
2 + 874u5

1 − 10474u4
1 u2 − 4984u3

1 u
2
2 − 4300u2

1 u
3
2 − 1866u1 u

4
2 + 14u5

2

− 72u4
1 − 6542u3

1 u2 + 6663u2
1 u

2
2 − 1396u1 u

3
2 − 1053u4

2 − 239u3
1 − 2461u2

1 u2

+ 8675u1 u
2
2 + 665u3

2 + 170u2
1 − 1834u1 u2 + 2064u2

2 + 301u1 − 557u2 + 91].

Now, computing the conditions on the parameters u that discriminate the situations where
D(z1, 1) (resp., D(1, z2)) has (or not) roots in the complex unit disc lead to following 5 lines

[4u1 + 2u2 + 3], [7u1 − 3u2 + 7], [4u1 + 3], [−2u1 + 1], [3u1 − u2 + 4],

where [7u1 − 3u2 + 7] is already in the discriminant variety.
Decomposing the parameter space cylindrically with respect to these 14 curves gives 1161

cells shown in Figure 4.

Figure 5: Zoom u1 = −4 . . . 2, u2 = −7 . . . 7 - Parameter space decomposition

For parameters which belong to these cells, the system is either stable or unstable. To test the
stability of the corresponding system, it is su�cient to test the stability of the system obtained
by evaluating the parameters u to a numerical value µ in this cell and to count the number of real
solutions of the (non parametric) zero-dimensional polynomial system (17) de�ned with u = µ,
and to perform the stability test of D(z1, 1) and D(1, z2).

It should be noticed that in some regions of the parameter space, some cells are very small.
Finally, it turns out that 118 of these regions correspond to unstable systems. For instance,

the cell containing the pair (u1 = −.4717912847, u2 = −.5389591122) de�nes unstable systems
while the cell containing the pair (u1 = −.6152602220, u2 = −.5389591122) as well as the cell
containing the pair (u1 = −.3942379536, u2 = −.5389591122) de�ne stable systems (see Figure
6).
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Figure 6: Zoom around an unstable region : u1 = −0.4 . . .−0.6, u2 = −0.4 . . .−0.6 - Parameter
space decomposition

5 Conclusion

The main goal of this paper was to point out some advantages of using classical techniques from
the computer algebra community in the context of the stability analysis of multidimensional
systems. Indeed, using state-of-the-art algorithms for solving algebraic systems of equations,
several methods for the study of structural stability of these systems have been developed. The
novelty of these methods compared to the existing ones is that they are both non-conservative and
show promising results in practice especially for 2D and 3D systems. Moreover, despite of their
own interests for testing the stability, the obtained algorithms can also be used for solving similar
problems such as the computation of stabilizing feedback control for 1D linear systems or for the
stabilization of n-D systems. From the computational point of view, we would try to improve
the practical behavior of these methods in the case of n-D systems (n > 3) by investigating the
use of numerical routines while keeping the exactness aspect of the approach since it is critical in
our problems. This investigation will be the subject of further works. In addition, other classes
of linear systems such as time-delay systems share the same type of representation, and can thus
be addressed using the same computer algebra techniques.
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