Stabilization of infinite-dimensional linear systems: An algebraist's point of view

Alban Quadrat

INRIA Sophia Antipolis, APICS project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr
www-sop.inria.fr/cafe/Alban.Quadrat/index.html

A workshop on linear system theory,
Model reduction
Sde Boker (15-19/09/08)
Thank you very much Paul!

Outline

- The fractional representation approach to analysis and synthesis problems developed by Desoer, Callier, Vidyasagar, Francis... was successful for finite-dimensional systems.

> M. Vidyasagar, Control System Synthesis:
> A Factorization Approach, MIT Press, 1985.

- However, it is still in progress for infinite-dimensional systems.
R. F. Curtain, H. J. Zwart, An Introduction to ∞-Dimensional Linear Systems Theory, TAM 21, Springer, 1991.
- The goal of this talk is to give a simple overview of certain results recently obtained based on algebraic analysis approach.
- In particular, we shall introduce the concept of fractional ideals to study transfer functions within a module-theoretic approach.

Examples of transfer functions

- Ordinary differential equation:

$$
\dot{z}(t)=z(t)+u(t), \quad z(0)=0 \quad \Rightarrow \widehat{z}(s)=\frac{1}{(s-1)} \widehat{u}(s) .
$$

- Differential time-delay equation:

$$
\left\{\begin{array}{l}
\dot{z}(t)=z(t)+u(t), \\
y(0)=0, \\
y(t)=\left\{\begin{array}{ll}
0, & 0 \leq t<h, \\
z(t-h), & t \geq h,
\end{array} \Rightarrow \widehat{y}(s)=\frac{e^{-h s}}{(s-1)} \widehat{u}(s) .\right.
\end{array}\right.
$$

- Partial differential equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} z}{\partial t^{2}}(x, t)-a^{2} \frac{\partial^{2} z}{\partial x^{2}}(x, t)=0, \\
z(x, 0)=0, \quad \frac{\partial z}{\partial t}(x, 0)=0, \quad \Rightarrow \widehat{y}(s)=\frac{\left(e^{-\frac{\bar{x}}{a} s}-e^{-\frac{(21-\bar{x}) s}{a}}\right)}{\left(1-e^{-\frac{2 a}{I} s}\right)} \widehat{u}(s) . \\
z(0, t)=u(t), \quad z(I, t)=0, \\
y(t)=z(\bar{x}, t),
\end{array}\right.
$$

Examples of transfer functions

- Heat equation:

$$
\left\{\begin{array}{l}
\frac{\partial z}{\partial t}(x, t)-\lambda^{2} \frac{\partial^{2} z}{\partial x^{2}}(x, t)=0, \\
z(x, 0)=0, \\
z(0, t)=u(t), \quad z(I, t)=0, \\
y(t)=z(\bar{x}, t),
\end{array}\right.
$$

- Telegraph equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} z}{\partial t^{2}}(x, t)-a^{2} \frac{\partial^{2} z}{\partial x^{2}}(x, t)-k z(x, t)=0, \\
z(x, 0)=0, \quad \frac{\partial z}{\partial t}(x, 0)=0, \\
z(0, t)=u(t), \quad \lim _{x \rightarrow+\infty} z(x, t)=0, \\
y(t)=z(\bar{x}, t),
\end{array} \Rightarrow \widehat{y}(s)=e^{\frac{-\sqrt{s^{2}-k}}{a} \bar{x}} \widehat{u}(s)\right.
$$

Stabilization problems

- Let the open-loop $\widehat{u} \longmapsto \widehat{y}=p \widehat{u}$ be unstable.
- Is it possible to find a controller c such that the closed-loop is stable (e.g., for all $u_{1}, u_{2} \in L^{2}\left(\mathbb{R}_{+}\right)$or $L^{\infty}\left(\mathbb{R}_{+}\right)$)?

- Can we parametrize the set of all stabilizing controllers of p ?
- Is it possible to find robust/optimal controllers c of p ?
- Is it possible to find stable controllers c of p ?

The fractional representation approach

- (Zames) The set of transfer functions has the structure of an algebra (parallel + , serie \circ, proportional feedback. by \mathbb{R}).
- (Vidyasagar) Let A be an algebra of stable transfer functions with a structure of an integral domain ($a b=0, a \neq 0 \Rightarrow b=0$). $Q(A)=\{p=n / d \mid 0 \neq d, n \in A\}$ represents the class of systems:

$$
p \in A \Leftrightarrow p \text { is stable, } p \in K \backslash A \Leftrightarrow p \text { is unstable }
$$

- (Zames) The algebra A should be a normed algebra so that the errors in the modelization \& approximation of the real plant by the mathematical model can be considered

$$
\text { (e.g., Banach algebra: }\|a b\|_{A} \leq\|a\|_{A}\|b\|_{A}, \quad\|1\|_{A}=1 \text {). }
$$

Example: Hardy algebra

- Let us define the right half plane $\mathbb{C}_{+}=\{s \in \mathbb{C} \mid \operatorname{Re} s>0\}$.
- The Hardy algebra $H^{\infty}\left(\mathbb{C}_{+}\right)$(Banach algebra) is defined by: $H^{\infty}\left(\mathbb{C}_{+}\right)=\left\{\right.$holomorphic fcts in $\left.\mathbb{C}_{+}\left|\|f\|_{\infty}=\sup _{s \in \mathbb{C}_{+}}\right| f(s) \mid<+\infty\right\}$.
- The Hardy algebra $H^{\infty}\left(\mathbb{C}_{+}\right)$is the algebra of transfer functions of $L^{2}\left(\mathbb{R}_{+}\right)-L^{2}\left(\mathbb{R}_{+}\right)$-stable shift-invariant ∞-dimensional systems.
- $R H_{\infty}=\mathbb{R}(s) \cap H^{\infty}\left(\mathbb{C}_{+}\right)$
$=\left\{\left.\frac{n}{d} \right\rvert\, 0 \neq d, n \in \mathbb{R}[s], \operatorname{deg} n \leq \operatorname{deg} d, d(\bar{s})=0 \Rightarrow \operatorname{Re} \bar{s}<0\right\}$
is the algebra of exponentially-stable finite-dimensional plants.

Example: Wiener algebra

- $L^{1}\left(\mathbb{R}_{+}\right)=\left\{f:\left[0,+\infty\left[\rightarrow \mathbb{R}\left|\|f\|_{1}=\int_{0}^{+\infty}\right| f(t) \mid d t<+\infty\right\}\right.\right.$, $I^{1}\left(\mathbb{Z}_{+}\right)=\left\{a: \mathbb{Z}_{+}=\{0,1, \ldots\} \rightarrow \mathbb{R}\left|\left\|\left(a_{i}\right)_{i \in \mathbb{Z}_{+}}\right\|_{1}=\sum_{i=0}^{+\infty}\right| a_{i} \mid<+\infty\right\}$.
- The Wiener algebra \mathcal{A} is defined by:

$$
\begin{aligned}
\mathcal{A}=\left\{f=g+\sum_{i=0}^{+\infty} a_{i} \delta_{\left(t-h_{i}\right)} \mid\right. & g \in L^{1}\left(\mathbb{R}_{+}\right),\left(a_{i}\right)_{i \in \mathbb{Z}_{+}} \in I^{1}\left(\mathbb{Z}_{+}\right), \\
& \left.0=h_{0} \leq h_{1} \leq h_{2} \leq \ldots\right\} .
\end{aligned}
$$

- \mathcal{A} is a Banach algebra w.r.t. $\|f\|_{\mathcal{A}}=\|g\|_{1}+\left\|\left(a_{i}\right)_{i \in \mathbb{Z}_{+}}\right\|_{1}$.
- $\hat{\mathcal{A}}=\{\mathcal{L}(f) \mid f \in \mathcal{A}\}, \quad\|\widehat{f}\|_{\hat{\mathcal{A}}}=\|f\|_{\mathcal{A}}$.
- \mathcal{A} is the algebra of $L^{\infty}\left(\mathbb{R}_{+}\right)-L^{\infty}\left(\mathbb{R}_{+}\right)$-stable shift-invariant ∞-dimensional systems.

Examples

- $R H_{\infty}$: algebra of exponentially-stable finite-dimensional plants:

$$
p=\frac{1}{s-1}=\frac{\left(\frac{1}{s+1}\right)}{\left(\frac{s-1}{s+1}\right)}, \quad \frac{1}{s+1}, \quad \frac{s-1}{s+1} \in R H_{\infty} \Rightarrow p \in Q\left(R H_{\infty}\right)
$$

- $\hat{\mathcal{A}}$: algebra of BIBO-stable ∞-dimensional plants:

$$
p=\frac{e^{-h s}}{s-1}=\frac{\left(\frac{e^{-h s}}{s+1}\right)}{\left(\frac{s-1}{s+1}\right)}, \quad \frac{e^{-h s}}{s+1}, \quad \frac{s-1}{s+1} \in \hat{\mathcal{A}} \Rightarrow p \in Q(\hat{\mathcal{A}}) .
$$

- $H^{\infty}\left(\mathbb{C}_{+}\right)$: algebra of $L^{2}\left(\mathbb{R}_{+}\right)$-stable ∞-dimensional plants:

$$
p=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)} \in Q\left(H^{\infty}\left(\mathbb{C}_{+}\right)\right): 1+e^{-2 s}, 1-e^{-2 s} \in H^{\infty}\left(\mathbb{C}_{+}\right)
$$

(Weakly) coprime factorization

- Let A be an algebra of stable transfer functions and:

$$
K=Q(A)=\{n / d, 0 \neq d, n \in A\} .
$$

- Definition: $p \in K$ admits a weakly coprime factorization if:
$\exists 0 \neq d, n \in A: p=n / d, \quad \forall k \in K: k n, k d \in A \Rightarrow k \in A$.
- Definition: $p \in K$ admits a coprime factorization over A if:

$$
\exists 0 \neq d, n, x, y \in A: \quad p=n / d, \quad d x+n y=1
$$

- A coprime factorization is a weakly coprime factorization:

$$
\forall k \in K: k n, k d \in A \Rightarrow k=(k d) x+(k n) y \in A .
$$

Internal stabilizability (Desoer)

- Let A be an algebra of stable transfer functions, $K=Q(A)$.
- Let $p \in K$ be a plant and $c \in K$ a controler.
- The closed-loop system is defined by:

$$
\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
1 & c \\
-p & 1
\end{array}\right)\binom{e_{1}}{e_{2}}, \quad\left\{\begin{array}{l}
y_{1}=e_{2}-u_{2} \\
y_{2}=u_{1}-e_{1}
\end{array}\right.
$$

- Definition: c internally stabilizes p if we have:

$$
H(p, c)=\left(\begin{array}{cc}
1 & c \\
-p & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{1+p c} & -\frac{c}{1+p c} \\
\frac{p}{1-p c} & \frac{1}{1+p c}
\end{array}\right) \in A^{2 \times 2} .
$$

Then, c is called a stabilizing controler of p.

Strong and simultaneous stabilizabilities

- Let A be an algebra of stable transfer functions, $K=Q(A)$.
- Definition: $p \in K$ is strongly stabilizable if there exists a stable controller c, i.e., $c \in A$, which internally stabilizes p.
- Definition: The plants $p_{1}, \ldots, p_{n} \in K$ are simultaneously stabilizable if $\exists c \in K$ which internally stabilizes p_{1}, \ldots, p_{n}.
- Interests of the strong stabilizability:

Safety, good ability to track reference inputs.

- Interests of the simultaneous stabilizability:

The controller is designed to stabilize a family of plants (e.g., operating conditions, failed modes, loss of sensors/actuators).

Robust stabilizability

- Let A be a Banach algebra of stable transfer functions

$$
\left(\text { e.g., } A=H^{\infty}\left(\mathbb{C}_{+}\right), \widehat{\mathcal{A}}, A(\mathbb{D}), W_{+}\right)
$$

- Definition: Let c be a stabilizing controller of $p \in Q(A)$. Then, c robustly stabilizes p if $\exists \epsilon>0$ such that c internally stabilizes:
(1) Additive perturbations:

$$
B_{1}(p, \delta)=\left\{p+\delta \mid \forall \delta \in A,\|\delta\|_{A}<\epsilon\right\}
$$

(2) Multiplicative perturbations:

$$
B_{2}(p, \delta)=\left\{p /(1+\delta p) \mid \forall \delta \in A,\|\delta\|_{A}<\epsilon\right\}
$$

(3) Relative additive perturbations:

$$
B_{3}(p, \delta)=\left\{p(1+\delta) \mid \forall \delta \in A,\|\delta\|_{A}<\epsilon\right\}
$$

(9) Relative multiplicative perturbations:

$$
B_{4}(p, \delta)=\left\{p /(1+\delta) \mid \forall \delta \in A,\|\delta\|_{A}<\epsilon\right\} \ldots
$$

A fractional ideal approach (SCL 03)

- A is an integral domain of SISO stable plants and $K=Q(A)$.
- Let $p \in K$ be a plant and let us introduce the fractional ideal:

$$
J=(1, p) \triangleq A+A p
$$

- J is defined by all the stable linear combinations of 1 and p.
- Why do we need 1? Algebraic answer: the structural properties of a plant p only depend on the system:

$$
y-p u=0 \Leftrightarrow\left(\begin{array}{ll}
1 & -p
\end{array}\right)\binom{y}{u}=0
$$

Analysis answer: the structural properties of a plant p depend on the graph of the unbounded operator:

$$
u \longmapsto y=p u .
$$

Theory of fractional ideals

"Dedekind's invention of ideals in the 1870s was a major turning point in the development of algebra", Stillvell.

- Definition: An A-submodule J of $K=Q(A)$ is a fractional ideal of A if $\exists 0 \neq d \in A$ such that $(d) J=\{d j \mid j \in J\} \subseteq A$.
- A fractional ideal $J \subseteq A$ is called an ideal of A.
- A fractional ideal J is principal if $\exists k \in K$ s.t. $J=A k=(k)$.
- $I J=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in I, b_{i} \in J\right\}, A: J=\{k \in K \mid(k) J \subseteq A\}$.
- A fractional ideal J is invertible if $\exists I \in \mathcal{F}(A)$ such that $I J=A$.

If J is invertible then its inverse J^{-1} is unique and defined by $A: J$.

Main results (SCL 03)

- Let A be a ring of stable transfer functions and $K=Q(A)$.
- Let $p \in K$ be a transfer function.
- Let $J=(1, p)$ be a fractional ideal, $A: J=\{d \in A \mid d p \in A\}$.
- Theorem: 1. p is stable iff $J=(1)=A$ iff $A: J=(1)=A$.

2. p admits a weakly coprime factorization iff:

$$
\exists 0 \neq d \in A: \quad A: J=(d) .
$$

Then, $p=n / d,(n=d p \in A)$, is a weakly coprime factorization.
3. p is internally stabilizable iff J is invertible, i.e., iff:

$$
\exists a, b \in A, \quad a+b p=1, \quad a p \in A
$$

If $a \neq 0$, then $c=b / a$ is a stabilizing controller of p and:

$$
J^{-1}=(a, b), \quad a=1 /(1+p c), \quad b=c /(1+p c) .
$$

Main results (SCL 03)

4. $c \in K$ internally stabilizes $p \in K$ iff we have:

$$
(1, p)(1, c)=(1+p c)
$$

5. $c \in K$ externally stabilizes $p \in K$, i.e., $p c /(1-p c) \in A$, iff:

$$
(1, p c)=(1+p c)
$$

6. p is strongly stabilizable iff there exists $c \in A$ such that:

$$
(1, p)=(1+p c)
$$

7. p admits a coprime factorization iff J is principal.

Then, there exists $0 \neq d \in A$ such that $(1, p)=(1 / d)$ and $p=n / d$ is a coprime factorization of $p(n=d p \in A)$.

Proof 1

- $J=(1, p), \quad A: J=\{d \in A \mid d p \in A\}$. If J is invertible, then

$$
\begin{gathered}
1 \in J J^{-1}=(1, p)(A: J)=\{\alpha+\beta p \mid \alpha, \beta \in A: J\} \\
\Leftrightarrow \exists a, b \in A:\left\{\begin{array}{l}
a+b p=1, \\
a p \in A, \quad b p \in A .
\end{array}\right.
\end{gathered}
$$

If $a \neq 0$, then $c=b / a \in K$ satisfies:

$$
H(p, c)=\left(\begin{array}{cc}
\frac{1}{1+p c} & -\frac{c}{1+p c} \\
\frac{p}{1+p c} & \frac{1}{1+p c}
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
a p & a
\end{array}\right) \in A^{2 \times 2}
$$

$\Rightarrow c=b / a$ internally stabilizes $p \quad(a=0 \Rightarrow c=1+b$ IS $p)$.

- If p is internally stabilizable, then there exists $c \in K$ s.t.:
$a=1 /(1+p c) \in A, \quad a p=p /(1+p c) \in A, \quad b=c /(1+p c) \in A$.
Let $I=(a, b)$. Then, $a+b p=1 \in I J \Rightarrow I J=A_{\Rightarrow} \Rightarrow I=J^{-1}$.

Example

- $A=H^{\infty}\left(\mathbb{C}_{+}\right), \quad p=\frac{e^{-s}}{(s-1)} \in Q(A), \quad J=(1, p)$.

$$
\operatorname{gcd}\left(\frac{e^{-s}}{s+1}, \frac{s-1}{s+1}\right)=1 \Rightarrow A: J=\{d \in A \mid d p \in A\}=\left(\frac{s-1}{s+1}\right) .
$$

- p is internally stabilizable iff

$$
\begin{array}{r}
b \in(A: J): a+b p=1 \Leftrightarrow \exists x, y \in A:\left\{\begin{array}{l}
a=\left(\frac{s-1}{s+1}\right) x, \\
b=\left(\frac{s-1}{s+1}\right) y, \\
a+b p=1 .
\end{array}\right. \\
a+b p=1 \Leftrightarrow\left(\frac{s-1}{s+1}\right)(x+p y)=1 \quad \Leftrightarrow x=\frac{s+1}{s-1}-p y \\
\Leftrightarrow x=\frac{(s+1)-e^{-s} y}{s-1} .
\end{array}
$$

- $x \in A \Rightarrow\left((s+1)-e^{-s} y(s)\right)(1)=0 \Rightarrow y(1)=2 e$.

Example

- Hence, we can take:

$$
y(s)=2 e \Rightarrow x(s)=1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right) \in A
$$

- Therefore, we get:

$$
\left\{\begin{array}{l}
a=\left(\frac{s-1}{s+1}\right) x=\left(\frac{s-1}{s+1}\right)\left(1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)\right) \\
b=\left(\frac{s-1}{s+1}\right) y=2 e\left(\frac{s-1}{s+1}\right) \\
a+b p=1
\end{array}\right.
$$

\Rightarrow A stabilizing controller c of p is defined by:

$$
c=\frac{b}{a}=\frac{2 e(s-1)}{(s-1)+2\left(1-e^{-(s-1)}\right)}=\frac{2 e(s-1)}{s+1-2 e^{-(s-1)}} .
$$

Proof 2

- $J=(1, p)$ is principal iff there exists $0 \neq k \in K$ s.t. $J=(k)$, i.e., iff there exist $0 \neq d, n, x, y \in A$ s.t.:

$$
\left\{\begin{array} { l }
{ 1 = d k , } \\
{ p = n k , } \\
{ k = x + y p }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ k = 1 / d , } \\
{ p = n / d , } \\
{ 1 / d = x + y (n / d) , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
k=1 / d \\
p=n / d \\
d x+n y=1
\end{array}\right.\right.\right.
$$

$\Rightarrow p$ admits a coprime factorization $p=n / d$ iff $J=(1 / d)$.

- A principal fractional ideal $J=(k) \neq 0$ is invertible:

$$
J^{-1}=(1 / k)
$$

\Rightarrow if p admits a coprime factorization then p is stabilizable.

- $(d x)+(d y) p=1$, i.e., $a=d x, b=d y \in J^{-1}=(d)$,

$$
\Rightarrow c=b / a=y / x \in \operatorname{Stab}(p)
$$

Example

- Let $A=H^{\infty}\left(\mathbb{C}_{+}\right)$and $p=\frac{e^{-s}}{(s-1)} \in K=Q(A)$.
- Let $J=(1, p)$ be the fractional ideal of A generated by 1 and p.
- $J=\left(\frac{s+1}{s-1}\right)$ is a principal ideal as we have:

$$
\left\{\begin{array}{l}
1=\left(\frac{s-1}{s+1}\right)\left(\frac{s+1}{s-1}\right) \\
\frac{e^{-s}}{(s-1)}=\left(\frac{e^{-s}}{s+1}\right)\left(\frac{s+1}{s-1}\right) \\
\frac{(s+1)}{(s-1)}=\left(1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)\right)+2 e \frac{e^{-s}}{(s-1)}
\end{array}\right.
$$

$p=\frac{n}{d}, d=\frac{(s-1)}{(s+1)}, n=\frac{e^{-s}}{(s+1)}$, is a coprime factorization of p :

$$
(\star) \Leftrightarrow\left(\frac{s-1}{s+1}\right)\left(1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)\right)+\left(\frac{e^{-s}}{s+1}\right)(2 e)=1
$$

Example

- Let A be the Wiener algebra W_{+}of holomorphic functions in the unit disc \mathbb{D} whose Taylor series converge absolutely:

$$
W_{+}=\left\{f(z)=\sum_{i=0}^{+\infty} a_{i} z^{i}\left|\sum_{i=0}^{+\infty}\right| a_{i} \mid<+\infty\right\} .
$$

- A is the algebra of the BIBO-stable causal filters.
- Let us consider $J=(1, p)$ where $p=e^{-\left(\frac{1+z}{1-z}\right)}$

$$
\left\{\begin{array}{l}
n=(1-z)^{3} e^{-\left(\frac{1+z}{1-z}\right)} \in A, \\
d=(1-z)^{3} \in A,
\end{array} \quad \Rightarrow p=\frac{n}{d} \in Q(A)\right.
$$

- The ideal $A: J=\{d \in A \mid d p \in A\}$ of A is not finitely generated
(R. Mortini \& M. Von Renteln, "Ideals in Wiener algebra", J. Austral. Math. Soc., 46 (1989), 220-228).
$\Rightarrow p$ does not admit a (weakly) coprime factorization and p is not internally stabilizable.

Example

- Let A be the disc algebra $A(\mathbb{D})$ of holomophic functions in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ which are continuous on the unit circle $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$.
- We have $n=(1-z) e^{-\left(\frac{1+z}{1-z}\right)} \in A, \quad d=(1-z) \in A$,

$$
\Rightarrow p=\frac{n}{d}=e^{-\left(\frac{1+z}{1-z}\right)} \in Q(A), \quad J=(1, p) .
$$

- The ideal $A: J=\{d \in A \mid d p \in A\}=\{d \in A \mid d(1)=0\}$ of A is maximal and is not finitely generated
(R. Mortini, "Finitely generated prime ideals in H^{∞} and $A(\mathbb{D})$ ", Math. Z., 191 (1986), 297-302).
$\Rightarrow p$ does not admit a (weakly) coprime factorization and p is not internally stabilizable.

Proof 3

- If p is strongly stabilizable then there exists $c \in A$ such that:

$$
a=\frac{1}{1+p c} \in A, \quad a p=\frac{p}{1+p c} \in A, \quad b=\frac{c}{1+p c}=c a \in A .
$$

Using the fact that $c \in A$, we obtain:

$$
J^{-1}=(a, b)=(a)=\left((1+p c)^{-1}\right) \Rightarrow J=\left(J^{-1}\right)^{-1}=(1+p c)
$$

- We suppose that there exists $c \in A$ such that $(1, p)=(1+p c)$

$$
\begin{gathered}
\Rightarrow \exists 0 \neq d, n \in A:\left\{\begin{array} { l }
{ 1 = d (1 + p c) , } \\
{ p = n (1 + p c) , }
\end{array} \Rightarrow \left\{\begin{array}{l}
p=\frac{n}{d}, \\
d+n c=1,
\end{array}\right.\right. \\
\Rightarrow\left(\begin{array}{cc}
\frac{1}{1+p c} & -\frac{c}{1+p c} \\
\frac{p}{1+p c} & \frac{1}{1+p c}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
d & -d c \\
n & d
\end{array}\right) \in A^{2 \times 2}
\end{gathered}
$$

$\Rightarrow c \in A$ internally stabilizes p, i.e., p is strongly stabilizable.

Example

- $A=H^{\infty}\left(\mathbb{C}_{+}\right), \quad K=Q(A), \quad p=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)} \in K$.
- We have $J=(1, p)=\left(\frac{1}{1-e^{-2 s}}\right)$ because:

$$
\begin{aligned}
& \left\{\begin{array}{l}
1=\left(1-e^{-2 s}\right) \frac{1}{\left(1-e^{-2 s}\right)}, \\
p=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)}=\left(1+e^{-2 s}\right) \frac{1}{\left(1-e^{-2 s}\right)}, \\
\frac{1}{\left(1-e^{-2 s}\right)}=\frac{1}{2} \times 1+\frac{1}{2} \frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)}
\end{array}\right. \\
& \Rightarrow \text { coprime factorization }\left\{\begin{array}{l}
p=\frac{\left(1+e^{-2 s}\right)}{\left(1-e^{-2 s}\right)}, \\
\frac{1}{2}\left(1-e^{-2 s}\right)+\frac{1}{2}\left(1+e^{-2 s}\right)=1
\end{array}\right.
\end{aligned}
$$

$\Rightarrow c=1$ is a stable stabilizing controller of p.

- Check: $1+p c=\frac{2}{\left(1-e^{-2 s}\right)}$ and $J=\left(\frac{1}{1-e^{-2 s}}\right)=(1+p c)$.

Bass stable rank (Feintuch, Blondel, SIAM 04)

- Definition: The stable rank of a ring A equals 1 , denoted by $\operatorname{sr}(A)=1$, if, for every d and n of A satisfying $d x+n y=1$ for certain x and y of A, then there exists $c \in A$ such that:

$$
d+n c \in \mathrm{U}(A)=\{a \in A \mid \exists b \in A: a b=b a=1\} .
$$

- Theorem: Let A be a ring of transfer functions and $K=Q(A)$. Then, every transfer function $p \in K$ which admits a coprime factorization is strongly stabilizable iff $\operatorname{sr}(A)=1$.
- Example: The following Banach algebras $H^{\infty}\left(\mathbb{C}_{+}\right)$,

$$
H^{\infty}(\mathbb{D}), A(\mathbb{D}), W_{+}, L_{1}\left(\mathbb{R}_{+}\right)+\mathbb{C} \delta, L^{\infty}(i \mathbb{R}), \mathbb{C}(s) \cap H^{\infty}\left(\mathbb{C}_{+}\right)
$$

have a stable rank equal to 1
(Treil 92, Jones/Marshall/Wolff 86, Rupp 90, Mikkola/Sasane 07, Handelman 79).

Topological stable rank (SIAM 04)

- $U_{n}(A)=\left\{a=\left(a_{1}, \ldots a_{n}\right) \in A^{n} \mid \exists b=\left(b_{1}, \ldots, b_{n}\right): a b^{T}=1\right\}$.
- Definition: If A is a Banach algebra, then the topological stable range $\operatorname{tsr}(A)$ of A is the least integer n such that $\mathrm{U}_{n}(A)$ is dense in $A^{1 \times n}$ for the product topology (else we set $\operatorname{tsr}(A)=\infty$).
- Proposition (Rieffel, 83): $\operatorname{sr}(A) \leq \operatorname{tsr}(A)$.
- Theorem: Let A be a Banach algebra such that $\operatorname{tsr}(A)=2$, then every system - defined by a transfer function $p=n / d$ $(0 \neq d, n \in A)$ - is as close as we want to a plant which admits a coprime factorization, i.e.:

$$
\forall \epsilon>0, \exists\left(d_{\epsilon}, n_{\epsilon}\right) \in \mathrm{U}_{2}(A):\left\{\begin{array}{l}
\left\|d-d_{\epsilon}\right\|_{A} \leq \epsilon, \\
\left\|n-n_{\epsilon}\right\|_{A} \leq \epsilon
\end{array}\right.
$$

- Theorem: $\operatorname{tsr}\left(H^{\infty}(\mathbb{D})\right)=2$ (Suárez 96), $\operatorname{tsr}(A(\mathbb{D}))=2$ (Rieffel 83), $\operatorname{tsr}\left(W_{+}\right)=2$ (Sasane).

Robust stabilization

- Let $p \in Q(A)$ and $\delta \in A$.
- $c \in Q(A)$ internally stabilizes p and $p+\delta$ iff we have:

$$
\begin{aligned}
& \left\{\begin{array}{l}
(1, p)(1, c)=(1+p c), \\
(1, p+\delta)(1, c)=(1+(p+\delta) c),
\end{array}\right.
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
(1, p)(1, c)=(1+p c), \\
(1, p)(1, c)=(1+(p+\delta) c),
\end{array}, ~\left\{\begin{array} { l }
{ (1 , p) (1 , c) = (1 + p c) , } \\
{ (\frac { 1 + (p + \delta) c } { 1 + p c }) = (1 + \frac { \delta c } { 1 + p c }) = A , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
c \operatorname{IS} p, \\
1+\frac{\delta c}{(1+p c)} \in \mathrm{U}(A) .
\end{array}\right.\right.\right.
$$

- If A is a Banach algebra, then (small gain theorem):

$$
\|1-a\|_{A}<1 \Rightarrow a \in \mathrm{U}(A)=\{a \in A \mid \exists b \in A: a b=b a=1\} .
$$

\Rightarrow A sufficient condition for robust stabilization is:

$$
\|\delta\|_{A}<\|c /(1+p c)\|_{A}^{-1} .
$$

Robust stabilization

- Let A be a Banach algebra, $p \in Q(A)$ and $\delta \in A$.
- c internally stabilizes p and $p /(1+\delta p)$ iff we have:

$$
\begin{gathered}
\left\{\begin{array}{l}
(1, p)(1, c)=(1+p c), \\
\left(1, \frac{p}{(1+\delta p)}\right)(1, c)=\left(1+\frac{p c}{(1+\delta p)}\right),
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
(1, p)(1, c)=(1+p c), \\
(1+\delta p, p)(1, c)=(1+p c+\delta p),
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array} { l }
{ (1 , p) (1 , c) = (1 + p c) , } \\
{ (\frac { 1 + p c + \delta p } { 1 + p c }) = (1 + \frac { \delta p } { 1 + p c }) = A , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
c \text { IS } p, \\
1+\frac{\delta p}{(1+p c)} \in \mathrm{U}(A)
\end{array}\right.\right.
\end{gathered}
$$

\Rightarrow A sufficient condition for robust stabilization is:

$$
\|\delta\|_{A}<\|p /(1+p c)\|_{A}^{-1}
$$

General Q-parametrization (SCL 03)

- Theorem: Let c be a stabilizing controller of $p \in Q(A)$,

$$
a=1 /(1+p c), \quad b=c /(1+p c), \quad J=(1, p)
$$

Then, all stabilizing controllers of p are

$$
c\left(q_{1}, q_{2}\right)=\frac{b+a^{2} q_{1}+b^{2} q_{2}}{a-a^{2} p q_{1}-b^{2} p q_{2}}, \quad(\star)
$$

where q_{1} and q_{2} any element of $A: a-a^{2} p q_{1}-b^{2} p q_{2} \neq 0$.

1. (\star) depends on only one free parameter
$\Leftrightarrow p^{2}$ admits a coprime factorization $p^{2}=s / r$.

$$
(\star) \Leftrightarrow c(q)=\frac{b+r q}{a-r p q}, \quad \forall q \in A: a-r p q \neq 0 .
$$

2. If p admits a coprime factorization $p=n / d, d x+n y=1$:

$$
(\star) \Leftrightarrow c(q)=\frac{y+d q}{x-n q}, \quad \forall q \in A: x-n q \neq 0
$$

Solving Zames-Francis' conditions

- Let $p \in Q(A)$ be an internally stabilizable plant

$$
\begin{gathered}
\Leftrightarrow \exists a, b \in A, \quad a+b p=1, \quad a p \in A, \quad(\star) \\
\Leftrightarrow \exists b \in A, \quad b p, \quad p(1+b p) \in A . \quad \text { (Zames-Francis) }
\end{gathered}
$$

- If $a \neq 0$, then $c=b / a=b /(1+b p)$ internally stabilizes p.
- $J=(1, p)$ is invertible and $J^{-1}=(a, b) \Rightarrow J^{2}=\left(1, p, p^{2}\right)$

$$
\begin{aligned}
& \Rightarrow J^{-2}=\left(J^{2}\right)^{-1}=\left\{\alpha \in A \mid \alpha p, \alpha p^{2} \in A\right\} \\
& \Rightarrow J^{-2}=\left(J^{-1}\right)^{2}=(a, b)^{2}=\left(a, a b, b^{2}\right)
\end{aligned}
$$

- Using (\star), we get $a b=(b) a^{2}+(a p) b^{2} \in\left(a^{2}, b^{2}\right)$

$$
\Rightarrow J^{-2}=\left(a^{2}, a b, b^{2}\right)=\left(a^{2}, b^{2}\right)
$$

Solving Zames-Francis' conditions

- Let us find all the possible a^{\prime} and b^{\prime} satisfying:

$$
\begin{equation*}
\exists a^{\prime}, b^{\prime} \in A, \quad a^{\prime}+b^{\prime} p=1, \quad a^{\prime} p \in A, \tag{1}
\end{equation*}
$$

- Using the fact that $a, b, a p \in A$ and $a+b p=1$, we get:

$$
\begin{gather*}
\left(b^{\prime}-b\right) p=a-a^{\prime} \in A, \quad\left(b^{\prime}-b\right) p^{2}=\left(a-a^{\prime}\right) p \in A, \\
\Rightarrow b^{\prime}-b \in\left\{\alpha \in A \mid \alpha p, \alpha p^{2} \in A\right\}=\left(a^{2}, b^{2}\right), \\
\Rightarrow \exists q_{1}, q_{2} \in A: \quad\left\{\begin{array}{l}
b^{\prime}=b+q_{1} a^{2}+q_{2} b^{2}, \\
a^{\prime}=a-\left(q_{1} a^{2}+q_{2} b^{2}\right) p,
\end{array}\right. \tag{2}\\
\Rightarrow c^{\prime}=\frac{b^{\prime}}{a^{\prime}}=\frac{b+q_{1} a^{2}+q_{2} b^{2}}{a-\left(q_{1} a^{2}+q_{2} b^{2}\right) p} \in \operatorname{Stab}(p) .
\end{gather*}
$$

- We can check that, for all q_{1} and $q_{2} \in A$, (2) satisfies (1).

Zames-Francis Q-parametrization

- Let $p=\frac{n}{d}$ be a coprime factorization of p over A :

$$
\begin{gathered}
d x+n y=1 . \\
\Rightarrow J=(1 / d) \Rightarrow J^{-2}=\left(d^{2}\right) \\
\Rightarrow a=d x, b=d y \in J^{-1}=(d): a+b p=1, \quad a p \in A . \\
\Rightarrow c(q)=\frac{b+q d^{2}}{a-q d^{2} p}=\frac{d y+q d^{2}}{d x-d n q}=\frac{y+q d}{x-n q} .
\end{gathered}
$$

- Conclusion: We have just found again Zames-Francis and Youla-Kučera parametrizations of all stabilizing controllers of p.

Distributed delay

- $p=e^{-s} /(s-1)$ is stabilized by the controller (distributed delay):

$$
\begin{gathered}
c=2 e(s-1) /\left(s+1-2 e^{-(s-1)}\right) \\
\left\{\begin{array}{l}
a=\frac{1}{(1+p c)}=\frac{\left(s+1-2 e^{-(s-1)}\right)}{(s+1)} \in H^{\infty}\left(\mathbb{C}_{+}\right) \\
b=\frac{c}{1+p c}=\frac{2 e(s-1)}{(s+1)} \in H^{\infty}\left(\mathbb{C}_{+}\right) \\
a p=\frac{p}{(1+p c)}=\frac{e^{-s}}{(s+1)} \frac{\left(s+1-2 e^{-(s-1)}\right)}{(s-1)} \in H^{\infty}\left(\mathbb{C}_{+}\right) .
\end{array}\right.
\end{gathered}
$$

- We obtain that all stabilizing controllers of p have the form:

$$
c(q)=\frac{2 e+q \frac{(s-1)}{(s+1)}}{1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)-q \frac{e^{-s}}{(s+1)}}, q=\left(1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)\right)^{2} q_{1}+4 e^{2} q_{2}
$$

\Rightarrow the Youla-Kučera parametrization for the coprime factorization:

$$
p=\frac{n}{d}, n=\frac{e^{-s}}{(s+1)}, d=\frac{(s-1)}{(s+1)}, d\left(1+2\left(\frac{1-e^{-(s-1)}}{s-1}\right)\right)+n(2 e)=1
$$

K. Mori, CDC 1999, 973-975

- Let $A=\mathbb{R}\left[x^{2}, x^{3}\right]$ be the ring of discrete time delay systems without the unit delay.
- A is used for high-speed circuits, computer memory devices...
- $p=\left(1-x^{3}\right) /\left(1-x^{2}\right) \in Q(A), \quad J=(1, p)$.
- Using $\left(1-x^{3}\right)\left(1+x^{3}\right)=\left(1-x^{2}\right)\left(1+x^{2}+x^{4}\right)$, we get

$$
p=\frac{\left(1-x^{3}\right)}{\left(1-x^{2}\right)}=\frac{\left(1+x^{2}+x^{4}\right)}{\left(1+x^{3}\right)} .
$$

$A: J=\left(1-x^{2}, 1+x^{3}\right)$ is not principal because $(x+1) \notin A$.
$\Rightarrow p$ does not admit a (weakly) coprime factorization.

- $J(A: J)=\left(1-x^{2}, 1+x^{3}, 1-x^{3}, 1+x^{2}+x^{4}\right)$.
- $\left(1+x^{3}\right) / 2+\left(1-x^{3}\right) / 2=1 \in J(A: J)$

$$
\Rightarrow\left\{\begin{array}{l}
a=\left(1+x^{3}\right) / 2 \in A: J, \\
b=\left(1-x^{2}\right) / 2 \in A: J, \\
a+b p=1,
\end{array}\right.
$$

$\Rightarrow c=b / a=\left(1-x^{2}\right) /\left(1+x^{3}\right)$ internally stabilizes p.

- $J^{-1}=\left(1-x^{2}, 1+x^{3}\right) \Rightarrow J^{-2}=\left(\left(1-x^{2}\right)^{2},\left(1+x^{3}\right)^{2}\right)$.
- $(x+1) \notin A \Rightarrow J^{-2}$ is not principal ideal of A.
\Rightarrow All stabilizing controllers of p have the form
$c\left(q_{1}, q_{2}\right)=\frac{2\left(1-x^{2}\right)+\left(1+x^{3}\right)^{2} q_{1}+\left(1-x^{2}\right)^{2} q_{2}}{2\left(1+x^{3}\right)-\left(1+x^{3}\right)\left(1+x^{2}+x^{4}\right) q_{1}-\left(1-x^{2}\right)\left(1-x^{3}\right) q_{2}}$,
for all $q_{1}, q_{2} \in A$ such that the denominator exists.

Convexity of $H(p, c)$

- Let c_{\star} be a stabilizing controller of $p \in Q(A)$.
- All stabilizing controllers of p are parametrized by

$$
\begin{gathered}
c\left(q_{1}, q_{2}\right)=\frac{\left(1+p c_{*}\right) c_{*}+q_{1}+q_{2} c_{*}^{2}}{\left(1+p c_{*}\right)-q_{1} p-q_{2} p c_{*}^{2}} \\
\forall q_{1}, q_{2} \in A:\left(1+p c_{*}\right)-q_{1} p-q_{2} p c_{*}^{2} \neq 0 .
\end{gathered}
$$

- Then, the closed-loop system

$$
\begin{gathered}
\binom{e_{1}}{e_{2}}=\left(\begin{array}{cc}
\frac{1}{1+p c} & -\frac{c}{1+p c} \\
\frac{p}{1+p c} & \frac{1}{1+p c}
\end{array}\right)\binom{u_{1}}{u_{2}} \text { is affine/convex in the } q_{i}^{\prime} \text { s } \\
\left(\begin{array}{cc}
\frac{1}{1+p c_{*}}-q_{1} \frac{p}{\left(1+p c_{*}\right)^{2}}-q_{2} \frac{p c_{*}^{2}}{\left(1+p c_{*}\right)^{2}} & -\frac{c_{*}}{1+p c_{*}}-q_{1} \frac{1}{\left(1+p c_{*}\right)^{2}}-q_{2} \frac{c_{*}^{2}}{\left(1+p c_{*}\right)^{2}} \\
\frac{p}{1+p c_{*}}-q_{1} \frac{p^{2}}{\left(1+p c_{*}\right)^{2}}-q_{2} \frac{\left(p c_{)^{2}}\right.}{\left(1+p c_{*}\right)^{2}} & \frac{1}{1+p c_{*}}-q_{1} \frac{p}{\left(1+p c_{*}\right)^{2}}-q_{2} \frac{p c_{*}^{2}}{\left(1+p c_{*}\right)^{2}}
\end{array}\right) \\
\text { i.e., } \quad \forall \lambda \in A: \quad H\left(p, c\left(\lambda q_{1}+(1-\lambda) q_{1}^{\prime}, \lambda q_{2}+(1-\lambda) q_{2}^{\prime}\right)\right) \\
=\lambda H\left(p, c\left(q_{1}, q_{2}\right)\right)+(1-\lambda) H\left(p, c\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right) .
\end{gathered}
$$

Sensitivity minimization

- Let A be a Banach algebra (e.g., $\left.H^{\infty}\left(\mathbb{C}_{+}\right), \widehat{\mathcal{A}}, W_{+} \ldots\right)$.
- Let c_{\star} be a stabilizing controller of $p \in Q(A)$ and:

$$
a=1 /\left(1+p c_{\star}\right), \quad b=c_{\star} /\left(1+p c_{\star}\right) \in A .
$$

- Let $w \in A$ be a weighted function. Then, we have:

$$
\inf _{c \in \operatorname{Stab}(p)}\|w /(1+p c)\|_{A}=\inf _{q_{1}, q_{2} \in A}\left\|w\left(a-a^{2} p q_{1}-b^{2} p q_{2}\right)\right\|_{A}(\star)
$$

i.e., (\star) is a convex problem in the q_{i} 's!

- If $p=n / d$ is a coprime factorization $(x, y \in A, d x+n y=1)$

$$
\Rightarrow a-a^{2} p q_{1}-b^{2} p q_{2}=d(x-q n) .
$$

$\forall q \in A, \quad \exists q_{1}, q_{2} \in A: \quad q=x^{2} q_{1}+y^{2} q_{2}, \quad$ where:

$$
\begin{gathered}
q_{1}=d^{2}(1+2 n y) q, \quad q_{2}=n^{2}(1+2 d x) q . \\
(\star) \Leftrightarrow \inf _{q \in A}\|w d(x-n q)\|_{A} .
\end{gathered}
$$

Classification of the rings A (SIAM 03)

- Theorem: Let A be a integral domain of stable transfer functions and $K=Q(A)$.

1. Every transfer function $p \in K$ admits a weakly coprime factorization iff A is a GCDD, i.e., any two elements of A admits a greatest common divisor (coherent Sylvester domain).
2. Every transfer function $p \in K$ is internally stabilizable iff A is a Prüfer domain, i.e., any f.g. ideal of A is invertible.
3. Every transfer function $p \in K$ admits a coprime factorization iff A is a Bézout domain, i.e., any f.g. ideal of A is principal (Vidya.).

- $R H_{\infty}$ is a PID \Rightarrow GCD, Prüfer and Bézout domains.
- $H^{\infty}\left(\mathbb{C}_{+}\right)$is a GCDD but is not a Prüfer and a Bézout domain.

Pre-Bézout rings

- Definition: An integral domain A is a pre-Bézout ring if, for every pair (d, n) of elements of A which admits a greatest common divisor $\operatorname{gcd}(d, n)$, then there exist $x, y \in A$ satsifying:

$$
d x+n y=\operatorname{gcd}(d, n)
$$

- Example: $A(\mathbb{D})$ and W_{+}are pre-Bézout ring.
- Proposition: Let A be a pre-Bézout ring. Then, $1 \Leftrightarrow 2$:

1. $p \in Q(A)$ admits a weakly coprime factorization.
2. $p \in Q(A)$ admits a coprime factorization.

- Some of the previous results are nicely explained in the booklet:
A. Sasane, Algebras of Holomorphic Functions and Control Theory.

Operator-theoretical approach (Acta 05)

- Let \mathcal{F} be a A-module, $p \in Q(A)$ and $u \in \mathcal{F}$.
- What is the meaning of $p u$?

$$
\begin{aligned}
& p u=y \Leftrightarrow \forall d \in A: J,(d p) u=d y \quad(\star) . \\
\Rightarrow & \left\{\begin{array}{l}
\operatorname{ann}_{\mathcal{F}}(A: J)=\{z \in \mathcal{F} \mid \forall d \in A: J, d z=0\}, \\
\overline{\mathcal{F}}=\mathcal{F} / \operatorname{ann}_{\mathcal{F}}(A: J),
\end{array}\right.
\end{aligned}
$$

and we denote by \bar{y} the residue class of y in $\overline{\mathcal{F}}$ satisfying (\star).

- We can introduce the following two A-modules:

$$
\left\{\begin{array}{l}
\operatorname{dom}_{\mathcal{F}}(p)=\{u \in \mathcal{F} \mid p u \in \overline{\mathcal{F}}\} \\
\operatorname{graph}_{\mathcal{F}}(p)=\left\{\left.\left(\begin{array}{ll}
u & p u
\end{array}\right)^{T} \in \mathcal{F} \times \overline{\mathcal{F}} \right\rvert\, u \in \mathcal{F}\right\}
\end{array}\right.
$$

- If \mathcal{F} be a torsion-free A-module, i.e.,

$$
t(\mathcal{F})=\{z \in \mathcal{F} \mid \exists 0 \neq d \in A, d z=0\}
$$

then we have $\overline{\mathcal{F}}=\mathcal{F}$ (e.g., H^{2} is a torsion-free (flat) H^{∞}-module).

Operator-theoretical approach (Acta 05)

- We have the exact sequence of A-module:

$$
\begin{align*}
& 0 \longleftarrow J \stackrel{f}{\longleftarrow} A^{1 \times 2} \stackrel{g}{\longleftarrow} A: J \longleftarrow 0, \tag{ㅁ}\\
& A^{1 \times 2} \xrightarrow{f} J \quad A: J \xrightarrow{g} A^{1 \times 2} \\
& \left(\begin{array}{ll}
a & b
\end{array}\right) \longmapsto a+b p, \quad d \longmapsto\left(\begin{array}{ll}
-d p & d
\end{array}\right) .
\end{align*}
$$

- Applying $\operatorname{hom}_{A}(\cdot, \mathcal{F})$ to (\square) gives the exact sequence $0 \longrightarrow \operatorname{hom}_{A}(J, \mathcal{F}) \xrightarrow{f^{\star}} \mathcal{F}^{2} \xrightarrow{g^{\star}} \operatorname{hom}_{A}(A: J, \mathcal{F}) \longrightarrow \operatorname{ext}_{A}^{1}(J, \mathcal{F}) \longrightarrow 0$, which yields, after some computations, to the exact sequence

$$
\begin{gathered}
0 \longrightarrow \operatorname{dom}_{\mathcal{F}}(p) \xrightarrow{\binom{1}{p}} \mathcal{F} \times \overline{\mathcal{F}} \xrightarrow{\sigma} \operatorname{hom}_{A}(A: J, \mathcal{F}) \longrightarrow \operatorname{ext}_{A}^{1}(J, \mathcal{F}) \longrightarrow 0, \\
\forall u \in \mathcal{F}, \quad \forall \bar{y} \in \overline{\mathcal{F}}, \quad \sigma\left(\left(\begin{array}{ll}
u & \bar{y}))=y-p u .
\end{array}\right.\right.
\end{gathered}
$$

Conclusion (MCSS06 $\times 2$)

- The extension of the previous results to MIMO systems uses the so-called theory of lattices.
- If $P \in K^{q \times r}$, then we have the lattices:

$$
\mathcal{L}=\left(\begin{array}{ll}
I_{q} & -P
\end{array}\right) A^{q+r}, \mathcal{M}=A^{1 \times(q+r)}\binom{P}{I_{r}}
$$

$$
A: \mathcal{L}=\left\{\lambda \in A^{1 \times q} \mid \lambda P \in A^{1 \times r}\right\}, A: \mathcal{M}=\left\{\lambda \in A^{r} \mid P \lambda \in A^{q}\right\}
$$

- Moreover, if $P=D^{-1} N=\widetilde{N} \widetilde{D}^{-1}, R=\left(\begin{array}{ll}D & -N\end{array}\right) \in A^{q \times(q+r)}$ and $\widetilde{R}=\left(\begin{array}{ll}\widetilde{N}^{T} & \widetilde{D}^{T}\end{array}\right)^{T} \in A^{(q+r) \times r}$, then we have the lattices:

$$
\mathcal{P}=R A^{q+r}, \mathcal{Q}=A^{1 \times(q+r)} \widetilde{R},
$$

$A: \mathcal{P}=\left\{\lambda \in K^{1 \times q} \mid \lambda R \in A^{1 \times(q+r)}\right\}, A: \mathcal{Q}=\left\{\lambda \in K^{r} \mid \widetilde{R} \lambda \in A^{q+r}\right\}$

- Certain of these lattices were already used by Paul in his famous paper "Algebraic system theory: an analyst's point of view" \circlearrowright.

Short bibliography

- A. Q., "On a generalization of the Youla-Kučera parametrization.

Part I: The fractional ideal approach to SISO systems", SCL, 50 (2003), 135-148.

- A. Q. "On a general structure of the stabilizing controllers based on stable range", SIAM, 42 (2004), 2264-2285.
- A. Q., "An algebraic interpretation to the operator-theoretic approach to stability. Part I: SISO systems", Acta Applicandæ Mathematicæ, 88 (2005), 1-45.
- A. Q., "A lattice approach to analysis and synthesis problems", MCSS, 18 (2006), 147-186.
- A. Q., "On a generalization of the Youla-Kučera parametrization.

Part II: The lattice approach to MIMO systems", MCSS, 18 (2006), 199-235.

