
“LongAbstract”
2008/5/28
pagei

i
i

i

i
i

i
i

New perspectives in
algebraic systems theory

Alban Quadrat∗

Keywords. Algebraic systems theory, algebraic analysis, behavioural approach,
multidimensional and infinite-dimensional linear systems, module theory, homolog-
ical algebra, constructive algebra, symbolic computation.

1 Introduction
Many systems coming from mathematical physics, applied mathematics and en-
gineering sciences can be described by means of systems of ordinary or partial
differential equations, difference equations, differential time-delay equations. . . If
those systems are linear, then they can be defined by means of matrices with entries
in (non-commutative) polynomial rings of functional operators such as the rings of
differential operators, shift operators, time-delay operators. . . This idea can be
traced back to J. Boole’s two treatises [3, 4] on linear systems of differential and
difference equations (1859, 1860). The rings of differential operators, shift oper-
ators and time-delay operators belong to an important class of non-commutative
polynomial rings called Ore algebras ([32]) which have recently been studied in
symbolic computation ([11]) and multidimensional systems theory ([9, 10]). Alter-
natively, infinite-dimensional linear systems can be described by means of matrices
with entries in convolutional algebras ([28]) or Banach algebras such as the Hardy
algebra H∞(C+), the Callier-Desoer algebras A and Â and the Wiener algebra W+

([15, 64]). The underlying operational calculus was pioneered by O. Heaviside’s
work on linear differential equations (1880-1887).

Algebraic analysis is a mathematical theory which was created in the sixties by
B. Malgrange ([31]), L. Ehrenpreis and V. Palamodov ([35]) for the study of linear
systems of partial differential equations with constant coefficients. It was further
developed by the Japanese school of M. Sato ([58]) and particularly by M. Kashiwara
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([29]) for linear systems of partial differential equations with variable coefficients.
Algebraic analysis was introduced in mathematical systems theory by U. Oberst
([34]), M. Fliess ([18, 19]) and J.-F. Pommaret ([38, 40]) in their study of differential
linear control systems at the end of the eighties. Ideas of algebraic analysis have
recently been extended to the case of Ore algebras and coherent Banach algebras in
order to study within a unified mathematical framework the structural properties
of different classes of multidimensional linear systems ([9, 12]) and the stabilization
problems of infinite-dimensional linear systems ([45, 46]).

The purpose of these notes is to give a short introduction to the algebraic anal-
ysis approach to mathematical systems theory. Within this algebraic analysis frame-
work, we shall explain how to study in a unified way (i.e., with common concepts,
techniques, results, algorithms and implementations) time-invariant/time-varying
continuous/discrete-time 1D linear systems (state-space, polynomial or behavioural
representations) ([26, 37, 56]), multidimensional linear systems (e.g., systems over
rings, differential time-delay systems, underdetermined systems of partial differen-
tial equations) ([5, 38, 62, 66]) and infinite-dimensional linear systems within an
input-output approach (e.g., distributed-parameter systems such as partial differ-
ential, time-delay or convolutional equations) ([15, 64]). Finally, we shall show how
to combine the previous approach with constructive algebra (e.g., non-commutative
Gröbner or Janet bases ([11, 30, 55])) and symbolic computation to constructively
study multidimensional linear systems and develop dedicated packages such as Ore-
Modules ([10]), OreMorphisms ([13]), JanetOre ([55]), QuillenSuslin ([17])
or Stafford ([53]).

2 Algebraic analysis approach to systems theory
A key idea in the algebraic analysis approach to mathematical systems theory is
to associate the finitely presented left D-module M = D1×p/(D1×q R) with a linear
system defined by a matrix R ∈ Dq×p over a ring D (e.g., Ore algebras, convolution
algebras, Banach algebras), where D1×p denotes the set of row vectors of length p
with entries in D and D1×q R = {µR | µ ∈ D1×q}. We recall that the definition
of a module is the same as the one of a vector space apart from the fact that the
coefficients belong to a ring D (i.e., D admits non-trivial non-invertible elements
for the multiplication operation) and not to a field (where every non-zero element
is invertible for the multiplication operation). Moreover, if D is a non-commutative
ring, i.e., a b can be different from b a for a and b ∈ D, then we need to specify if the
elements of D act on the left or on the right on the elements of M . In particular,
M is said to be a left (resp., right) D-module if, for all a1 and a2 ∈ D and for all
m1 and m2 ∈ M , we have a1 m1 + a2 m2 ∈ M (resp., m1 a1 + m2 a2 ∈ M).

The idea of using module theory is natural as the structural properties of the
linear system can be studied by means of algebraic manipulations on the system
matrix R, i.e., by performing linear algebra over a ring which is called module theory
in mathematics ([57]). One of the main interests for introducing the left D-module
M = D1×p/(D1×q R) is that it is intrinsically defined in the sense that different
representations of the same linear system by means of different matrices R define
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the same left D-module M (up to isomorphisms). In terms of homological algebra,
the different representations of the linear system define different finite presentations
of M ([57]). Hence, even if the linear system can be described by means of different
representations (e.g., state-space or input-output representations for 1D linear sys-
tems, Roesser or Fornasini-Marchesini models for multidimensional systems), the
left D-module M intrinsically defines the underlying linear system of equations.

Another reason for introducing the left D-module M is that it allows us to give
an intrinsic formulation of the concept of the solutions space of the linear system of
equations defined by the left D-module M . Indeed, if F denotes a left D-module,
then an F-solution of the linear system of equations R y = 0, namely, η ∈ Fp

satisfying R η = 0, is in a one-to-one correspondence with a left D-homomorphism
(i.e., a D-linear application) from M to F . For instance, we can consider F to be
the space of smooth functions or distributions when D is the ring of differential or
differential time-delay operators with constant coefficients, the ring of real analytic
functions when D is the ring of differential operators with real analytic coefficients,
the Hilbert space H2(C+) when D = H∞(C+) or Â, Lp(R+) when D = A. If
we denote by homD(M,F) the abelian group (i.e., Z-module) of D-homomorphisms
from M to F , then the following isomorphism of abelian groups holds:

kerF (R.) = {η ∈ Fp | R η = 0} ∼= homD(M,F). (1)

That central observation, first due to B. Malgrange ([31]), was the starting point
of the development of algebraic analysis. From (1), we see that the solution space
homD(M,F) only depends on the left D-modules M (which intrinsically defines the
linear system of equations) and F (which defines the functional space). In partic-
ular, as M does not depend on any particular representation of the linear system,
i.e., does not depend on a particular matrix R ∈ Dq×p defining the linear system,
the solution space homD(M,F) does not depend on the particular embedding of
kerF (R.) into Fp (i.e., on the choice of specific “coordinate systems”). Similarly as
in algebraic geometry where some curves or surfaces do not necessarily have points
in certain fields or rings (e.g., no real solutions of a polynomial with real coeffi-
cients), the nature of the solution space homD(M,F) depends on F . In algebraic
geometric terms, an F-solution of the linear system of equations defined by a finitely
presented left D-module M corresponds to the so-called F-point, where M plays
the role of the underlying scheme in algebraic geometry ([16]).

We note that the right-hand side of (1) is called a behaviour within the be-
havioural approach pioneered by J. C. Willems ([37]). Hence, the behavioural ap-
proach can be studied within the algebraic analysis approach as it was first noticed
by U. Oberst in 1990 ([34]). See also [43, 48]. In particular, we obtain an intrinsic
characterization of the concept of behaviours as the algebraic analysis approach
does not depend on any embedding of the solution space into a power Fp of the
signal space F . The idea of intrinsically defining the concept of an algebraic variety
without using any particular embedding, as it is done in differential geometry by
means of atlas and charts, was the beginning of A. Grothendieck’s revolutionary
revision of algebraic geometry based on the concept of schemes ([16]).
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Another important remark concerning (1) is that the intrinsic reformulation
of the solution space kerF (R.) in terms of homD(M,F), i.e., as the set of D-linear
applications from a certain algebraic object M to F , can be seen as the passage
from classical mechanics to quantum mechanics where observables play a crucial
role. In mathematics, it is a classical technique to define algebras of functions
on (continuous, differentiable, algebraic, analytic) varieties. However, the recent
adoption of the opposite point of view consisting in defining a space by means of
an algebra of functions was extremely successful in mathematics and particularly in
operator algebras due to I. M. Gel’fand’s results ([21]), A. Grothendieck’s revision
of algebraic geometry ([16]) and A. Connes’ non-commutative geometry ([14]). See
also ([33]) for a reformulation of the differential geometry based on this idea. In
particular, this new viewpoint has refreshed our conceptions of points, spaces and
symmetries as it is well explained by P. Cartier in [8].

In the community of mathematical systems theory, the question of the math-
ematical status of the behavioural approach was raised and especially the question
to know whether it belonged to algebra or analysis. The previous explanations
show it should be considered as a geometrical theory. See also [59, 60] for inter-
esting results concerning the behavioural approach based on algebraic geometric
ideas. Another argument for this thesis is that, despite the important results in
the theory of partial differential equations obtained by M. Malgrange, L. Ehren-
preis and V. Palamodov (e.g., fundamental principle, integral representation) and
despite M. Sato’s fundamental results (hyperfunctions, microfunctions, microdiffer-
ential or microlocal operators), algebraic analysis is nowadays considered a branch
of algebraic geometry.

We can wonder what kind of geometry a behaviour kerF (R.) or, more gener-
ally, the solution space homD(M,F) can have. Following F. Klein’s ideas (Erlangen
program), a geometry can be defined by a group of symmetries. Hence, which kind
of symmetries does the solution space homD(M,F) admit? One answer is to look
at the internal symmetries of M , i.e., at the D-endomorphism ring of M , namely,
the non-commutative ring endD(M) = homD(M,M) of the D-endomorphisms of
M , and at its subgroup autD(M) formed by the D-automorphisms of M defined by
invertible D-endomorphisms of M . Indeed, if φ ∈ homD(M,F) corresponds to a
certain F-solution of the linear system of equations defined by M , then, for every
f ∈ endD(M), φ ◦ f ∈ homD(M,F) is another solution. Hence, the abelian group
homomorphism f? : homD(M,F) −→ homD(M,F) defined by f?(φ) = φ◦f , sends
any solution of the linear system to another one, i.e., f? ∈ endZ(homD(M,F)). In
particular, if f ∈ autD(M), then f? permutes the elements of the solution space
homD(M,F), i.e., defines a Galois-like transformation. For more details, see [12].

For certain classes of (non-commutative) polynomial rings, M. Janet ([25]) and
B. Buchberger ([7]) have developed two constructive algorithms which compute
new sets of generators for a (left) ideal or module, called a Janet or a Gröbner
basis. Algorithms rewriting any element of that (left) ideal or module in terms
of the new generators were obtained. More generally, normal forms of general
elements can be computed with respect to the Janet or Gröbner bases (see, e.g.,
[11, 30, 22, 55] and the references therein). For instance, the knowledge of a Janet
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or a Gröbner basis for the left D-submodule D1×q R of D1×p allows us to compute
the normal form of any element λ ∈ D1×p with respect to the basis, i.e., to compute
a distinguished representative of the residue class of λ in the quotient left D-module
M = D1×p/(D1×q R). In particular, Gröbner or Janet basis techniques allow one to
constructively work in the (left) ideals and modules (e.g., computation of kernels,
images, factorizations or left/right/generalized inverses of multivariate polynomial
matrices). They are nowadays implemented in different computer algebra systems
(e.g., Maple, Mathematica, Singular, Macaulay 2, CoCoA) for different classes of
commutative and non-commutative polynomial rings. We note that Gröbner bases
over commutative polynomial rings were introduced by L. Habets in his study of
differential time-delay systems ([23]). More recently, non-commutative Gröbner
bases have played an important role in J. W. Helton’s works and, particularly, in
those concerning H∞-control which use the package NCAlgebra ([24]).

Over certain (non-commutative) polynomial rings of functional operators for
which the concept of Gröbner or Janet bases is well-defined, such as the rings of
differential operators, shift operators, delay operators, we can constructively study
the D-endomorphism ring endD(M) of a finitely presented left D-module M as
explained in [12] and implemented in the package OreMorphisms ([13]). Those
results are useful in the study of the “geometries” of M and homD(M,F) and their
invariants (e.g., quadratic first integrals, quadratic conservation laws) ([12]) as well
as for the central issue in module theory consisting in recognizing whether or not
two finitely presented left D-modules M and M ′ are isomorphic. If D = k[s] is
a univariate commutative polynomial ring over a field k (e.g., k = Q, R), then
computing the Smith canonical forms ([26]) of two system matrices R ∈ Dq×p and
R′ ∈ Dq′×p′

and comparing their invariant factors, we can decide whether or not the
two left D-modules M = D1×p/(D1×q R) and M ′ = D1×p′

/(D1×q′
R′) are isomor-

phic. However, no Smith canonical form exists over a multivariate polynomial ring
([6]). Hence, a way to study the equivalence problem is to try to decompose the mod-
ules into direct sums of indecomposable modules (i.e., into “atoms”) and compare
them. Indeed, in the case of D = k[s], the Smith canonical form gives a decomposi-
tion of the module M into direct sums of cyclic D-modules defined by the invariant
factors, i.e., into D-modules of the form D/(D di), where di is an invariant factor
of the Smith canonical form of R. Based on the computation of idempotents of D-
endomorphisms of M , namely, f ∈ endD(M) satisfying f2 = f , the decomposition
problem is constructively developed in [12]. More generally, the factorization, reduc-
tion and decomposition problems are studied in [12] and implemented in the package
OreMorphisms ([13]). If GLp(D) = {U ∈ Dp×p | ∃ V ∈ Dp×p : U V = V U = Ip}
denotes the group of invertible matrices of the non-commutative ring Dp×p and
R ∈ Dq×p, then those problems are respectively defined by:

1. Find two matrices T ∈ Dq×r and S ∈ Dr×p satisfying R = T S.

2. Find two matrices V ∈ GLq(D) and W ∈ GLp(D) such that the new matrix
R = V R W has a block triangular form.

3. Find two matrices V ∈ GLq(D) and W ∈ GLp(D) such that the new matrix
R = V R W has a block diagonal form.
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A direct application of the first (resp., third) problem is that kerF (S.) ⊆ kerF (R.)
(resp., kerF (R.) ∼= kerF (R1.) ⊕ kerF (R2.), where R1 and R2 denote two comple-
mentary diagonal blocks). Concerning 2, if the matrix R is a 2×2 upper triangular
matrix, i.e., R21 = 0, then the integration of the linear system R η = 0 can be done
“in cascade” as we first need to integrate R22 η2 = 0 and then the inhomogeneous
linear system R11 η1 = −R12 η2. Then, η = W (ηT

1 ηT
2 )T is a solution of R η = 0.

Hence, the constructive study of the internal symmetries of the left D-module M
gives important information about the solution space homD(M,F). Finally, those
previous results are used in [6, 12, 13] to simplify classical differential time-delay
linear systems studied in the literature of control theory.

3 Dictionary between the structural properties of
linear systems and modules

In Section 2, we explained that the philosophy of algebraic analysis was to first
define the concept of equivalence of linear systems of equations in terms of iso-
morphic modules. Another interest of using algebraic analysis in mathematical
systems theory is that the structural properties of a linear system can be studied
by means of the structural properties of its underlying module as this module does
not depend on any particular representations of the system (e.g., state-space or
input-output representations). Hence, if we find a module characterization for a
structural property of time-varying linear 1D systems (e.g., controllability, observ-
ability), then testing this module property for different representations of a lin-
ear system (e.g., state-space or input-output representations) must give again the
different characterizations known within these different approaches (e.g., Kalman,
Hautus and polynomial tests ([26, 56])). This intrinsic approach contrasts with
control theory, which is historically divided into the state-space approach and the
frequency-domain approach (which are in some extent proved to be equivalent)
([26, 56]). In philosophical terms, this algebraic analysis approach can be seen as
a structuralist approach to mathematical systems theory. See [1] for a historical
account of structuralism in mathematics (epitomized by the romantic images of
N. Bourbaki and A. Grothendieck), social sciences, literature and arts.

A crucial point in module theory is that we cannot generally extract a basis
from a finite family of generators of a left D-module M as we need to invert certain
elements of D in the computation of an independent family of generators, which
is generally impossible over a ring D in contrast with the case of a field. Hence,
although its definition is similar to the one of a vector space, a left D-module M
generally does not admit a basis. A direct consequence is that module theory is a
richer algebraic theory than linear algebra in the sense that a finer classification of
the structural properties of modules needs to be developed. We shall below recall a
few of the module properties commonly used in module theory (see, e.g., [32, 57]).
In order to do that, we first need to recall certain concepts in ring theory. A ring
D is called a domain if 0 6= a ∈ D and 0 6= b ∈ D implies that a b 6= 0. A domain D
is said to be left noetherian if every left ideal of D, namely, every left D-submodule
of D, is finitely generated, i.e., admits a finite family of generators.
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Definition 1 ([32, 57]). Let M be a finitely presented left D-module over either
a left noetherian domain D or a commutative domain D. Then, we have:

1. M is free if there exists a non-negative integer r such that M ∼= D1×r.

2. M is stably free if there exist two non-negative integers r and s such that
M ⊕D1×s ∼= D1×r, where ⊕ denotes the direct sum.

3. M is projective if there exist a left D-module N and a non-negative integer r
such that M ⊕N ∼= D1×r.

4. M is reflexive if the D-homomorphism εM : M −→ homD(homD(M,D), D)
defined by εM (m)(f) = f(m), for all f ∈ homD(M,D) and for all m ∈ M , is
an isomorphism (i.e., εM is both injective and surjective).

5. M is torsion-free if the torsion left D-submodule of M defined by

t(M) = {m ∈ M | ∃ 0 6= P ∈ D : P m = 0}

is reduced to 0. Elements of t(M) are called the torsion elements of M .

6. M is torsion if t(M) = M .

From Definition 1, it is clear that a free left D-module M admits a basis.
Moreover, we can prove that a free module is stably free, a stably free module
is projective, a projective module is reflexive and a reflexive module is torsion-
free ([57]). The converse implications only hold for special rings. For instance, if
D = k[s] is a univariate polynomial ring over a field k, then a torsion-free D-module
is free. This result can be generalized to any left ideal domain, namely, a domain
over which every left ideal of D can be generated by one element (e.g., the ring
of ordinary differential operators with coefficients in a differential field ([18, 38])
such as Q(t) (the so-called Weyl algebra B1(Q)) or in the field of meromorphic
functions). However, there exist stably free but non free left modules over the Weyl
algebra D = A1(Q) of ordinary differential operators with polynomial coefficients,
but torsion-free left D-modules are stably free. In 1955, J.-P. Serre conjectured that
projective modules over a commutative polynomial ring D = k[x1, . . . , xn], where
k is a field, are free. This conjecture was proved to be true by D. Quillen and
A. A. Suslin in 1976 only (see, e.g., [17, 57]). For an implementation of the Quillen-
Suslin theorem in the package QuillenSuslin, see [17]. A theorem of J. T. Stafford
([32]) asserts that a stably free left module of at least rank 2 over the Weyl algebra
An(k) (resp., Bn(k))1, where k is a field of characteristic 0 (e.g., k = Q, R, C),
is free. See [53] for a constructive algorithm of this result and its implementation
in the package Stafford. Finally, we can prove that a reflexive finitely presented
H∞(C+)-module is free ([45]).

Over the years, a large dictionary between the structural properties of linear
systems and modules has been developed in the study of analysis and synthesis

1An(k) (resp., Bn(k)) is the ring of partial differential operators in ∂/∂1, . . . , ∂/∂n with coeffi-
cients in k[x1, . . . , xn] (resp., k(x1, . . . , xn)).
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problems such as the stabilization problems of infinite-dimensional linear systems
([15, 64]) and the variational and optimal control problems of multidimensional
linear systems ([44]). Some of those equivalences are summed up in Table 1. For
more results and details, see [9, 18, 19, 34, 36, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49,
50, 61, 63, 65, 67] and the references therein. Certain results in Table 1 are only
valid for an injective cogenerator left D-module F ([34, 48, 57, 65]). This concept
somehow plays a similar role as the one of algebraically closed fields in algebraic
geometry (e.g., C). A classical result in homological algebra asserts that every non-
commutative ring D admits an injective cogenerator left D-module F ([57]). For
more results not based on the use of injective cogenerator modules, see [48, 59, 60].
We point out that certain system properties cannot fit into Table 1 because, for
instance, they are characterized in terms of properties of different modules (e.g.,
observability).

Finally, we note that module theory was first introduced by R. Kalman in re-
alization theory ([27]). But his approach is rather different from the one developed
in algebraic analysis. We also refer the reader to the interesting works of E. W. Ka-
men ([28]), E. D. Sontag ([62]) and P. A. Fuhrmann ([20]) where module theory
plays an important role (see the references therein).

4 Constructive homological algebra & packages
The results developed in Section 3 raises the natural but important question of rec-
ognizing whether or not a finitely presented left D-module M has non-trivial torsion-
elements or is torsion-free, reflexive, projective, stably free or free. Within algebraic
analysis, the powerful techniques of homological algebra are used to study the struc-
tural properties of modules within a unified mathematical framework. More pre-
cisely, as those techniques do not depend on particular representations of the linear
system, i.e., on particular free/projective resolutions of the left D-module M defin-
ing the linear system of equations ([57]), they naturally form powerful mathematical
tools to answer the previous question. Moreover, they are generic methods which
do not depend on the underlying ring D. The particular properties of the ring D
are only used to simplify certain situations (e.g., the vanishing of certain abelian
groups defining homological invariants of the left D-module M). Hence, homologi-
cal algebra allows us to develop a unified treatment of linear systems defined over
different kind of rings.

Methods of homological algebra and category theory are sometimes called ab-
stract non-sense in the literature of mathematics with the pernicious effect of scaring
non-specialists (whereas it was first a self-mockery within the mathematical com-
munity). Contrary to this idea, homological algebra studies in full generality simple
mathematical objects which appear in different theories. As in abstract painting
where real forms are depicted in a simplified and rather reduced way (lines, circles,
squares), homological algebra only focuses on the simple but fundamental features of
certain complex mathematical objects. It is nowadays the backbone of many impor-
tant mathematical theories (e.g., algebraic topology, group theory, algebraic number
theory, algebraic geometry, analytic geometry, non-commutative geometry) and it
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Table 1. Classification of structural properties

Module M Structural properties Stabilization problems
Optimal control

Torsion Autonomous system
Poles/zeros classifications

With torsion Existence of autonomous elements

No autonomous elements, Variational problem
Controllability, without constraints

Torsion-free
Parametrizability, (Euler-Lagrange

π-freeness equations)

Reflexive Filter identification

Internal stabilizability, Existence of a
Projective Bézout identities parametrization

all stabilizing controllers
Computation of

Lagrange parameters
without integration

Flatness, Poles placement, Youla-Kučera
Free Doubly coprime factorization parametrization

Optimal controller

daily plays a more and more important role in mathematical physics. In particular,
it develops powerful mathematical tools based on abstract algebraic objects such
as complexes, exact sequences, homology and cohomology groups, chain complexes,
extension or torsion functors, spectral sequences ([57]). In recent years, using the
developments and implementations of Gröbner and Janet bases over certain classes
of Ore algebras ([11, 30, 55]), it was shown in [9, 10, 12, 13, 40, 43, 54] how to
make some of those important tools constructive. The corresponding constructive
algorithms have been implemented in the packages OreModules ([10]) and Ore-
Morphisms ([13]) and have been demonstrated in different examples appearing
in the control theory literature such as differential time-delay systems (see the li-
braries of examples of those packages). Hence, combining constructive homological
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algebraic techniques with the dictionary developed in Section 3 (see Table 1), we
can constructively determine the structural properties of the corresponding linear
system. The advantage of describing the structural properties within the language
of homological algebra is transferred to the implementation of the algorithms in
OreModules and OreMorphisms: all algorithms are stated and implemented
in sufficient generality such that the different non-commutative polynomial rings
of functional operators implemented in the package Ore−algebra (available in the
current releases of Maple) are covered at the same time.

Let us shortly explain how to test whether or not the finitely presented left
D-module M = D1×p/(D1×q R) has some non-trivial torsion elements, or is torsion-
free, reflexive or projective (projective modules being stably free for the important
Ore algebras). As explained in [9, 40] and implemented in OreModules ([10]),
if we introduce the right D-module N = Dq/(R Dp), where Dp denotes the set
of column vectors of length p with entries in D, then, based on computations of
left and right kernels of matrices, we can compute the so-called extension left D-
modules exti

D(N,D) for i = 1, . . . , gldim(D), where gldim(D) denotes the so-called
global dimension of D (e.g., gldim(D) = n if D = k[x1, . . . , xn] is a commutative
polynomial ring over a field k) ([32, 53, 57]). For instance, the left D-module
ext1D(N,D) is defined by

ext1D(N,D) = kerD(.Q)/(D1×q R),

where Q ∈ Dp×m is any matrix satisfying kerD(R.) , {ν ∈ Dp | R ν = 0} = QDm

and kerD(.Q) , {λ ∈ D1×p | λ Q = 0}. Using homological algebraic techniques, we
can prove that ext1D(N,D) only depends on M ([42]). Then, the vanishing of the
exti

D(N,D)’s classifies the structural properties of the left D-module M as shown
in Table 2.

In the particular case of a full row rank matrix R ∈ Dq×p over the commu-
tative polynomial ring D = R[x1, . . . , xn], namely, the rows of R are D-linearly
independent (i.e., kerD(.R) = 0), the previous result allows us to find again the
different concepts of primeness (see the fourth column of Table 2), which play an
important role in multidimensional systems theory and are recalled hereafter.

Definition 2 ([5, 66]). Let D = R[x1, . . . , xn] be a commutative polynomial ring,
R ∈ Dq×p a full row rank matrix, J the ideal generated by the q × q minors of R
and V (J) the algebraic variety defined by V (J) = {ξ ∈ Cn | P (ξ) = 0, ∀ P ∈ J}.

1. R is called minor left-prime if dimC V (J) ≤ n − 2, i.e., the greatest common
divisor of the q × q minors of R is 1.

2. R is called weakly zero left-prime if dimC V (J) ≤ 0, i.e., the q× q minors of R
may only vanish simultaneously in a finite number of points of Cn.

3. R is called zero left-prime if dimC V (J) = −1, i.e., the q × q minors of R do
not vanish simultaneously in Cn.



“LongAbstract”
2008/5/28
pagei

i
i

i

i
i

i
i

Table 2. Classification of structural properties

Module M exti
D(N,D) dimD(N) Primeness

With torsion t(M) ∼= ext1D(N,D) n− 1 ∅

Torsion-free ext1D(N,D) = 0 n− 2 Minor left-prime

Reflexive exti
D(N,D) = 0, n− 3
i = 1, 2

. . . . . . . . . . . .

. . . exti
D(N,D) = 0, 0 Weakly zero

1 ≤ i ≤ n− 1 left-prime

Projective exti
D(N,D) = 0, -1 Zero left-prime
1 ≤ i ≤ n

The fourth column of Table 2 can be generalized to the case of the ring D
of differential operators over a differential field K (e.g., Q(x1, . . . , xn), the ring of
meromorphic functions). See the third column of Table 2, where dimD(N) denotes
the dimension of the right D-module N , i.e., the dimension of the characteristic
variety of the linear system of partial differential equations defined by the formal
adjoint R̃ of R in the sense of the theory of distributions ([40]).

If M is a torsion-free left D-module, then the vanishing of ext1D(N,D) gives
a matrix Q ∈ Dp×m satisfying that M ∼= D1×p Q. Hence, if F denotes an injective
left D-module, we then obtain kerF (R.) = QFm, i.e., the behaviour kerF (R.)
admits the parametrization defined by Q ([9, 10, 38, 40]). Within the behavioural
approach, this parametrization is called an image representation. Moreover, if M
is a reflexive left D-module, then exti

D(N,D) = 0, for i = 1 and 2, which proves
that the new behaviour kerF (Q.) is also parametrizable, i.e., there exists P ∈ Dm×l

satisfying kerF (Q.) = P F l. If M is a projective left D-module, then we obtain
a chain of successive parametrizations, namely, we have kerF (R.) = Q0 Fm1 and
kerF (Qi.) = Qi+1 Fmi+2 , 0 ≤ i ≤ n−2. For instance, the divergence operator in R3

is parametrizable by the curl operator and the curl operator is parametrized by the
gradient operator. We can prove that if M is a free left D-module of rank m, then
there exists an injective parametrization of kerF (R.), namely, there exist Q ∈ Dp×m
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and T ∈ Dm×p satisfying that kerF (R.) = QFm and T Q = Im ([9, 17, 53]). Hence,
for every element η ∈ kerF (R.), there exists a unique ξ ∈ Fm satisfying that η = Qξ
and ξ = T η. For more details, see [17, 53] and the packages QuillenSuslin ([17])
and Stafford ([53]). The behaviour kerF (R.) is then said to be flat ([19]) and
ξ is called a flat output of the system. Finally, we refer the reader to [51, 52, 54]
for Monge parametrizations of a solution space homD(M,F) admitting non-trivial
autonomous elements, i.e., whose underlying left D-module M admits a non-trivial
torsion left D-submodule t(M). The Monge parametrization of the solution space
homD(M,F) is obtained by gluing the integration of the autonomous elements
of homD(M,F), i.e., homD(t(M),F), to a parametrization of the parametrizable
solution space homD(M/t(M),F) defined by the left D-module M/t(M).

The increasing role of homological algebra in mathematical systems theory,
mathematical physics and other fields has recently motivated the development of
packages based on more and more powerful homological algebraic techniques like,
for instance, OreModules ([10]), OreMorphisms ([13]) and homalg ([2]). We are
convinced that this phenomenon is a precursory sign of a new era when computer
algebra and symbolic computation will play the equivalent role for pure mathematics
as the one played by numerical analysis in engineering sciences.

5 Conclusion
We hope to have convinced the reader that the algebraic analysis approach to linear
systems gives an aesthetic unification of different existing theories (e.g., state-space
and input-output representation approaches, systems over rings, discrete-time or
continuous-time systems, multidimensional or infinite-dimensional systems, analysis
or synthesis problems). Within this new algebraic approach to mathematical sys-
tems theory, open questions and conjectures have been solved (e.g., intrinsic study
of the structural properties of the linear systems, generalization of the concepts
of primeness to non-full row rank matrices with coefficients in some Ore algebras
([9, 40]), constructive studies of the computation of (injective/minimal/successive)
parametrizations of multidimensional linear systems ([9, 17, 38, 39, 41, 53]), Lin-
Bose’s conjectures on a generalization of Serre’s conjecture ([17]), Lin’s conjecture
on the relations between internal stabilizability and the existence of doubly coprime
factorizations for multidimensional systems ([49]) and for general linear systems (the
so-called Vidyasagar-Schneider-Francis’ question) ([45, 47, 49]), generalization of the
Youla-Kučera parametrization of all stabilizing controllers for internally stabilizable
plants which do not necessarily admit doubly coprime factorizations ([47, 50])). In
particular, using constructive homological algebra techniques, the different results
have been implemented for some classes of linear systems into symbolic compu-
tation packages such as OreModules ([10]), OreMorphisms ([13]), JanetOre
([55]), QuillenSuslin ([17]) or Stafford ([53]). However, even if some open
problems have been solved, there remain many unanswered questions which need to
be studied. Thus, our hope for the near future is that what have been achieved (and
demonstrated therein) will entice young scientists to further develop the algebraic
analysis approach to mathematical systems theory.
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tors, Gröbner Bases in Control Theory and Signal Processing, Radon Series on
Computation and Applied Mathematics 3, pages 23–106. de Gruyter publisher,
2007. http://wwwb.math.rwth-aachen.de/QuillenSuslin/index.html.

[18] M. Fliess. Some basic structural properties of generalized linear systems. Sys-
tems & Control Letters, 15:391–396, 1990.

[19] M. Fliess and H. Mounier. Controllability and observability of linear delay
systems: an algebraic approach. ESAIM: Control, Optimisation and Calculus
of Variations, 3:301–314, 1998.

[20] P. A. Fuhrmann. Algebraic systems theory: An analyst’s point of view. Journal
of Franklin Institute, 305:521–540, 1976.

[21] I. Gel’fand, R. Raikov, and G. Shilov. Commutative normed rings. Chelsea,
1964.

[22] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra.
Springer, 2002.

[23] L. Habets. Algebraic and computational aspects of time-delay systems. PhD
thesis, University of Eindhoven (The Netherlands), 1994.

[24] J. W. Helton, M. Stankus, and J. J. Wavrik. Computer simplification of for-
mulas in linear systems theory. IEEE Transactions on Automatic Control,
43(3):302–314, 1998. http://www.math.ucsd.edu/~ncalg/.
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