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Abstract— Serre’s reduction aims at reducing the number of
unknowns and equations of a linear functional system (e.g.,
system of ordinary or partial differential equations, system
of differential time-delay equations, system of difference equa-
tions). Finding an equivalent representation of a linear func-
tional system containing fewer equations and fewer unknowns
generally simplifies the study of its structural properties, its
closed-form integration and different numerical issues. The
purpose of this paper is to present a constructive approach
to Serre’s reduction for linear functional systems.

I. AN ALGEBRAIC ANALYSIS APPROACH TO LINEAR
SYSTEMS THEORY

In what follows, D will denote a noncommutative noethe-
rian domain, namely, a unital ring satisfying that d d′ is
not necessarily equal to d′ d for d, d′ ∈ D, containing no
nontrivial zero-divisors, i.e., d d′ = 0 yields d = 0 or d′ = 0,
and every left (resp., right) ideal of D is finitely generated,
i.e., can be generated by a finite family of elements of D as
a left (resp., right) D-module ([9], [16]). Moreover, we shall
denote by D1×p (resp., Dq) the left (resp., right) D-module
formed by row (resp., column) vectors of length p (resp., q)
with entries in D and by R ∈ Dq×p a q × p matrix R with
entries in D. Moreover, we shall use the following notations:

.R : D1×q −→ D1×p

µ 7−→ µR,
R. : Dp −→ Dq

η 7−→ Rη.
(1)

Since the image imD(.R) = D1×q R of the left D-
homomorphism .R : D1×q −→ D1×p defined by (1), i.e.,
imD(.R) = {λ ∈ D1×p | ∃ µ ∈ D1×q : λ = µR}, is a
left D-submodule of D1×p, we can introduce the quotient
left D-module M = D1×p/(D1×q R) and the left D-
homomorphism π : D1×p −→ M which sends λ ∈ D1×p

to its residue class π(λ) in M . In particular, π(λ) = π(λ′)
iff there exists µ ∈ D1×q such that λ − λ′ = µR. The left
D-module M = D1×p/(D1×q R) is then said to be finitely
presented by R ([16]). Let us describe the left D-module
M = D1×p/(D1×q R) in terms of generators and relations.
Let {fj}j=1,...,p be the standard basis of the left D-module
D1×p, namely, fj is the row vector of length p with 1 at
the jth position and 0 elsewhere, and yj , π(fj) ∈ M for
j = 1, . . . , p. Since every m ∈ M has the form m = π(λ)
for a certain row vector λ = (λ1 . . . λp) ∈ D1×p,

m = π

 p∑
j=1

λj fj

 =
p∑
j=1

λj π(fj) =
p∑
j=1

λj yj ,

which shows that every element m of M can be written as a
left D-linear combination of the yj’s, i.e., {yj}j=1,...,p is a
family of generators of M . M is said to be finitely generated
([16]). If Ri• denotes the ith row of the matrix R ∈ Dq×p,
then Ri• ∈ D1×q R which yields π(Ri•) = 0, and thus

π

 p∑
j=1

Rij fj

 =
p∑
j=1

Rij π(fj) =
p∑
j=1

Rij yj = 0, (2)

for i = 1, . . . , q, and shows that the generators {yj}j=1,...,p

of M satisfy the left D-linear relations (2), or, in other
words, y = (y1 . . . yp)T ∈Mp satisfies Ry = 0.

If F is a left D-module and homD(M,F) is the abelian
group (i.e., Z-module) of the left D-homomorphisms from
M to F , then Malgrange’s remark ([8]) asserts that

kerF (R.) , {η ∈ Fp | Rη = 0} ∼= homD(M,F), (3)

where ∼= is an isomorphism, i.e., a bijective homomorphism.
The linear system kerF (R.) is also called a behaviour. The
above isomorphism χ : kerF (R.) −→ homD(M,F) can
be easily defined: for all η ∈ kerF (R.), we can defined
χ(φ) = φη ∈ homD(M,F) by φη(π(λ)) = λ η for all
λ ∈ D1×p. It is well-defined since if λ ∈ D1×q R, then
there exists µ ∈ D1×q such that λ = µR, and thus π(λ) = 0,
which, on the one hand, yields φη(π(λ)) = φη(0) = 0 and,
on the other hand, λ η = µ (Rη) = 0. The inverse χ−1

is then defined by χ−1(φ) = (φ(y1) . . . φ(yp))T ∈ Fp,
where {yj = π(fj)}j=1,...,p is a family of generators of M
as explained above. Indeed, if η = (φ(y1) . . . φ(yp))T , then

p∑
j=1

Rij ηj =
p∑
j=1

Rij φ(yj) = φ

 p∑
j=1

Rij yj

 = φ(0) = 0,

i.e., η ∈ kerF (R.), and (χ−1 ◦ χ)(φ) = χ−1(φη) = η.

The algebraic analysis approach to linear systems theory
aims at intrinsically studying the linear system kerF (R.) by
means of homD(M,F), i.e., by means of the left D-modules
M = D1×p/(D1×q R) and F ([3], [8], [10], [11]).

Definition 1 ([6], [9], [16]): Let D be a left noetherian
domain and M = D1×p/(D1×q R) the left D-module
finitely presented by the matrix R ∈ Dq×p.

1) M is free of rank r ∈ N = {0, 1, . . .} if M ∼= D1×r.



2) M is stably free of rank r − s if there exist r, s ∈ N
such that M ⊕ D1×s ∼= D1×r, where ⊕ denotes the
direct sum of left D-modules.

3) M is projective if there exist r ∈ N and a left D-
module P such that M ⊕ P ∼= D1×r.

4) M is torsion-free if the torsion left D-submodule

t(M) = {m ∈M | ∃ d ∈ D \ {0} : dm = 0}

of M is reduced to 0, i.e., t(M) = 0.
5) M is torsion if t(M) = M , i.e., every m ∈ M is a

torsion element of M , namely, m ∈ t(M).
6) M is cyclic if M is generated by one element m ∈M ,

i.e., M = Dm , {dm | d ∈ D}.

A free module is clearly stably free (take s = 0 in 2 of
Definition 1) and a stably free module is projective (take
P = D1×s in 3 of Definition 1) and a projective module is
torsion-free (since it can be embedded into a free, and thus,
into a torsion-free module) but the converse of these results
are generally not true for a general left noetherian domain.

Theorem 1 ([6], [9], [15], [16]): 1) If D is a princi-
pal left ideal domain, namely, every left ideal of D
can be generated by one element of D (e.g., the ring
of ordinary differential operators with coefficients in a
differential field such that K = R or R(t)), then every
finitely generated torsion-free left D-module is free.

2) If D = k[x1, . . . , xn] is a commutative polynomial
ring over a field k, then every finitely generated
projective D-module is free (Quillen-Suslin theorem).

3) If k is a field of characteristic 0 (e.g., Q, R, C)
and D = An(k) (resp., Bn(k)) is the first (resp.,
second) Weyl algebra of partial differential operators in
∂
∂x1

, . . . , ∂
∂xn

with coefficients in k[x1, . . . , xn] (resp.,
k(x1, . . . , xn)), then every finitely generated projective
left D-module is stably free and every stably free
left D-module of rank at least 2 is free (Stafford’s
theorem).

4) If D is the ring of ordinary differential operators with
coefficients in the ring of formal power series kJtK,
where k is a field of characteristic 0, or in the ring
of convergent power series k{t} with coefficients in
k = R or C, then every finitely generated projective
left D-module is stably free and every stably free left
D-module of rank at least 2 is free.

Let us characterize stably free and free modules.

Proposition 1 ([5], [13]): Let D be a noetherian domain,
R ∈ Dq×p a full row rank matrix, i.e., kerD(.R) = 0, and
M = D1×p/(D1×q R).

1) M is a projective left D-module iff M is a stably free
left D-module.

2) M is a stably free left D-module of rank p− q iff R
admits a right-inverse over D, namely, iff there exists
a matrix S ∈ Dp×q satisfying RS = Iq .

3) M is a free left D-module of rank p−q iff there exists

a matrix U ∈ GLp(D), where

GLp(D) =
{V ∈ Dp×p | ∃W ∈ Dp×p : V W = W V = Ip},

such that RU = (Iq 0). If we write U = (S Q),
where S ∈ Dp×q and Q ∈ Dp×(p−q), then

ψ : M −→ D1×(p−q)

π(λ) 7−→ λQ,

is a left D-isomorphism and ψ−1 is defined by:

ψ−1 : D1×(p−q) −→ M
µ 7−→ π(µT ),

where the matrix T ∈ D(p−q)×p is defined by:

U−1 =

(
R

T

)
∈ Dp×p.

Then, M ∼= D1×pQ = D1×(p−q) and the matrix Q
is called an injective parametrization of M . Finally,
{π(Ti•)}i=1,...,p−q defines a basis of the free left D-
module M of rank p− q.

Let D be a left noetherian domain and R ∈ Dq×p. Then,
the left D-submodule kerD(.R) = {µ ∈ D1×q | µR = 0}
of D1×q is finitely generated (see, e.g., [16]). Therefore,
there exists a finite family of generators {µk}k=1,...,r of
kerD(.R) and defining R2 = (µT1 . . . µTr )T ∈ Dr×p, we
get kerD(.R) = D1×r R2. Similarly, we can find a matrix
R3 ∈ Ds×r such that kerD(.R2) = D1×sR3 and so on. We
are led to the concept of a finite free resolution of M .

Definition 2: 1) A complex of left (resp., right) D-
modules, denoted by

M• . . .
di+2−−−→Mi+1

di+1−−−→Mi
di−→Mi−1

di−1−−−→ . . . ,
(4)

is a sequence of left (resp., right) D-homomorphisms
di : Mi −→ Mi−1 between left (resp., right) D-
modules which satisfy im di+1 ⊆ ker di, i.e.,

∀ i ∈ Z, di ◦ di+1 = 0.

2) The defect of exactness of (4) at Mi is defined by:

Hi(M•) , ker di/im di+1.

3) The complex (4) is exact at Mi if Hi(M•) = 0, i.e.,
ker di = im di+1, and exact if ker di = im di+1 for all
i ∈ Z. An exact complex is called an exact sequence.

4) A finite free resolution of the left D-module M is an
exact sequence of the form

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,

(5)
where Ri ∈ Dpi×pi−1 and .Ri : D1×pi −→ D1×pi−1

is defined by (.Ri)(λ) = λRi for all λ ∈ D1×pi .

If D is a left noetherian domain, then the above comment
shows that the left D-module M = D1×p/(D1×q R) admits
a finite free resolution of the form (5), where R1 = R, p0 = p



and p1 = p. If F is a left D-module, then a necessary
condition for the solvability of the inhomogeneous linear
system R1 η = ζ for a fixed ζ ∈ Fp1 is R2 ζ = 0, where
R2 ∈ Dp2×p1 is such that kerD(.R1) = D1×p2 R2. Indeed,
for every µ ∈ kerD(.R1), R1 η = ζ yields µ ζ = µR1 η = 0.
Let us study when the necessary condition R2 ζ = 0 is also
sufficient. We need to investigate the defect of exactness
kerF (R2.)/imF (R1.) of the following complex at Fp1

Fp2 R2.←−− Fp1 R1.←−− Fp0 , (6)

where Ri. : Fpi−1 −→ Fpi is defined by (Ri.)(η) = Ri η
for all η ∈ Fpi−1 and i = 1, 2. Indeed, for a fixed
ζ ∈ Fp1 , there exists η ∈ Fp0 satisfying R1 η = ζ iff
ζ ∈ imF (R1.) = R1 Fp0 and the necessary condition
R2 ζ = 0 (since R2R1 = 0) means that ζ ∈ kerF (R2.).
Therefore, there exists η ∈ Fp1 satisfying R1 η = ζ iff the
residue class of ζ in kerF (R2.)/imF (R1.) is reduced to 0.
A key result in homological algebra proves that the defect of
exactness of (6) at Fp1 depends only on M and F and not on
the choice of the beginning of the finite free resolution (5) of
the left D-module M (see [16]). Hence, up to isomorphism,
the defect of exactness of (6) at Fp1 is denoted by:

ext1
D(M,F) ∼= kerF (R2.)/imF (R1.). (7)

If the complex (6) is exact at Fp1 , i.e., ext1
D(M,F) = 0,

then the necessary condition R2 ζ = 0 for the solvability
of the inhomogeneous linear system R1 η = ζ is also
sufficient. This fact explains why the extension abelian group
ext1

D(M,F) plays an important role in linear systems theory.

II. BAER’S EXTENSIONS

In this section, we extend the results obtained in [2]. Let
D be a noetherian domain and R ∈ Dq×p a full row rank
matrix, i.e., kerD(.R) = 0. Then, we have the following
short exact sequence of left D-modules

0 −→ D1×q .R−→ D1×p π−→M −→ 0, (8)

i.e., .R is an injective left D-homomorphism (since
kerD(.R) = 0), kerD π = D1×q R and π is a surjective left
D-homomorphism (since, by definition of M , every element
m ∈M has the form m = π(λ) for a certain λ ∈ D1×p).

Let 0 ≤ r ≤ q − 1 and let us now consider the matrices

Λ ∈ Dq×(q−r), P = (R − Λ) ∈ Dq×(p+q−r),

the left D-module E = D1×(p+q−r)/(D1×q P ) finitely
presented by the full row rank matrix P . Then, the following
short exact sequence of left D-modules holds

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0, (9)

where % : D1×(p+q−r) −→ E is the canonical projection
onto E, i.e., the left D-homomorphism which sends an
element ζ ∈ D1×(p+q−r) to its residue class %(ζ) in E.

Let us study the connections between the left D-modules
M and E. If X = (ITp 0T )T ∈ D(p+q−r)×p, then the
identity R = P X induces the commutative exact diagram

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0
‖ ↓ .X

0 −→ D1×q .R−→ D1×p π−→ M −→ 0,

and the left D-homomorphism β : E −→M defined by

β(%((µ1 µ2))) = π((µ1 µ2)X) = π(µ1),

for all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r). For every m ∈M ,
there exists µ1 ∈ D1×p such that m = π(µ1) and thus
m = β(%((µ1 0))), which proves that β is surjective.

Let us study kerβ. An element %((µ1 µ2)) ∈ kerβ satis-
fies π(µ1) = 0, i.e., µ1 = ν R for a certain ν ∈ D1×q . Since
%((ν R − ν Λ)) = 0, we get %((ν R 0)) = %((0 ν Λ))

⇒ kerβ = {%((ν R µ2)) = %((0 µ2 + ν Λ))

| ν ∈ D1×q, µ2 ∈ D1×(q−r)
}

=
{
%((0 ξ)) | ξ ∈ D1×(q−r)

}
.

Let γ : D1×(q−r) −→ kerβ be the left D-isomorphism
defined by γ(ξ) = %((0 ξ)) for all ξ ∈ D1×(q−r) (i.e., γ is
injective and surjective). The canonical short exact sequence
0 −→ kerβ i−→ E

β−→ imβ −→ 0 then yields

0 −→ D1×(q−r) α−→ E
β−→M −→ 0, (10)

where α = i ◦ γ. The short exact sequence (10) is called a
Baer extension of D1×(q−r) by M (see, e.g., [16]) and we
shall simply say an extension of D1×(q−r) by M .

Let us now introduce the matrices Θ ∈ Dp×(q−r),

Λ = Λ +RΘ ∈ Dq×(q−r), P = (R − Λ) ∈ Dq×(p+q−r),

and the left D-module E = D1×(p+q−r)/(D1×q P ) finitely
presented by P . Let % : D1×(p+q−r) −→ E be the canonical
projection onto E. As previously with the left D-module E,
we obtain the extension of D1×(q−r) by M defined by

0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

where α(ξ) = %((0 ξ)) and β(%((µ1 µ2))) = π(µ1) for
all ξ ∈ D1×(q−r), all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r).

If we introduce the matrix V defined by

V =

(
Ip Θ
0 Iq−r

)
∈ GLp+q−r(D),

then P = P V induces the commutative exact diagram:

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0
‖ ↓ .V

0 −→ D1×q .P−→ D1×(p+q−r) %−→ E −→ 0.

Since V ∈ GLp+q−r(D), we get the left D-isomorphism
ψ : E −→ E defined by

ψ(%((µ1 µ2))) = %((µ1 µ2)V ) = %((µ1 µ1 Θ + µ2)),



for all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r). Then, we have

(ψ ◦ α)(ξ) = ψ(%((0 ξ))) = %((0 ξ)) = α(ξ),

for all ξ ∈ D1×(q−r), which proves α = ψ ◦ α. Now,

(β ◦ ψ)(%((µ1 µ2))) = β(%((µ1 µ2 + µ1 Θ)))

= π1(µ1) = β(%((µ1 µ2))),

for all µ1 ∈ D1×p and all µ2 ∈ D1×(q−r), which proves
β = β ◦ ψ. Thus, we get the commutative exact diagram:

0 −→ D1×(q−r) α−→ E
β−→ M −→ 0

‖ ↓ ψ ‖
0 −→ D1×(q−r) α−→ E

β−→ M −→ 0.
(11)

We are then led to the definition of equivalent extensions.

Definition 3 ([16]): Two extensions of D1×(q−r) by M

e : 0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

e : 0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

are said to be equivalent if there exists a left D-
homomorphism ψ : E −→ E satisfying α = ψ ◦ α and
β = β ◦ ψ, i.e., if (11) is a commutative exact diagram.

If e and e are equivalent extensions, then we can easily
check that ψ is necessarily a left D-isomorphism (e.g.,
apply the snake lemma ([16]) to (11)). Hence, ∼ is an
equivalence relation on the set of extensions of D1×(q−r)

by M ([16]). We denote by eD
(
M,D1×(q−r)) the set of all

equivalence classes of extensions of D1×(q−r) by M and [e]
the equivalence class of the extension e of D1×(q−r) by M .

The previous results show that the extensions of D1×(q−r)

by M defined by E and E, i.e., by means of the matrices Λ
and Λ = Λ+RΘ for Θ ∈ Dp×(q−r), are equivalent, and thus
they define the same equivalence class in eD

(
M,D1×(q−r)).

Let us now explain another relation between
eD
(
M,D1×(q−r)) and the matrices Λ and Λ = Λ + RΘ.

Using (8), i.e., R2 = 0, and F = D1×(q−r), we get
kerF (R2.) = Dq×(q−r) and (7) yields:

ext1
D

(
M,D1×(q−r)

)
∼= Dq×(q−r)/

(
RDp×(q−r)

)
. (12)

If ρ : Dq×(q−r) −→ Dq×(q−r)/
(
RDp×(q−r)) is the

canonical projection, then we have

∀ Θ ∈ Dp×(q−r), ρ(Λ) = ρ(Λ +RΘ) = ρ(Λ),

i.e., Λ and Λ = Λ + RΘ define the same residue class
in Dq×(q−r)/

(
RDp×(q−r)). We have just proved that every

element ρ(Λ) ∈ Dq×(q−r)/
(
RDp×(q−r)) defines the equiv-

alence class [e] of extensions of D1×(q−r) by M , where

e : 0 −→ D1×(q−r) α−→ E
β−→M −→ 0,

and the left D-module E is finitely presented by the matrix
P = (R − Λ), i.e., E = D1×(p+q−r)/(D1×q P ).

Let us now study the converse of this result. We first
consider the following extension of D1×(q−r) by M :

0 −→ D1×(q−r) ε−→ F
δ−→M −→ 0. (13)

Let {fi}i=1,...,p be the standard basis of D1×p, namely, fi
is the row vector with 1 at the ith position and 0 elsewhere.
Since the left D-homomorphism δ is surjective, there exists
ζi ∈ F such that δ(ζi) = π(fi) ∈M for i = 1, . . . , p. Then,

δ

(
p∑
k=1

Rjk ζk

)
=

p∑
k=1

Rjk δ(ζk) =
p∑
k=1

Rjk π(fk)

= π

(
p∑
k=1

Rjk fk

)
= π(Rj•) = 0,

for j = 1, . . . , q. Since ker δ = im ε and ε is injective,
there exists a unique element λj ∈ D1×(q−r) such that∑p
k=1Rjk ζk = ε(λj). If Λ = (λT1 . . . λTq )T ∈ Dq×(q−r),

then we get ρ(Λ) ∈ Dq×(q−r)/
(
RDp×(q−r)). Let us check

that the residue class ρ(Λ) of Λ is well-defined, i.e., it
does not depend on the choice of the pre-images ζi’s of
the π(fi)’s. Let us consider other pre-images ζi’s of the
π(fi), i.e., δ(ζi) = π(fi) for i = 1, . . . , p. Using the
same arguments, there exists λj ∈ D1×(q−r) such that∑p
k=1Rjk ζk = ε(λj) for j = 1, . . . , q. But, δ(ζi) = δ(ζi)

yields δ(ζi − ζi) = 0, i.e., ζi − ζi ∈ ker δ = im ε and thus
there exists θi ∈ D1×(q−r) such that ζi = ζi + ε(θi)

⇒ ε(λj) =
p∑
k=1

Rjk ζk = ε(λj) +
p∑
k=1

Rjk ε(θk)

= ε

(
λj +

p∑
k=1

Rjk θk

)
.

(14)

If we introduce the following two matrices

Λ =

 λ1

...
λq

 ∈ Dq×(q−r), Θ =

 θ1

...
θp

 ∈ Dp×(q−r),

then, since ε is injective, (14) yields λj = λj+
∑p
k=1Rjk θk

for j = 1, . . . , q, i.e., Λ = Λ + RΘ, and thus ρ(Λ) =
ρ(Λ + RΘ) = ρ(Λ), which proves that every extension
(13) of D1×(q−r) by M defines a unique element ρ(Λ) of
the right D-module Dq×(q−r)/

(
RDp×(q−r)). Finally, let us

show that every extension in the same equivalence class of
(13) in eD

(
M,D1×(q−r)) defines the same element ρ(Λ).

Let us consider an extension of D1×(q−r) by M in the same
equivalence class of (13), i.e., the commutative exact diagram

0 −→ D1×(q−r) ε−→ F
δ−→ M −→ 0

‖ ↓ ψ ‖
0 −→ D1×(q−r) ε′−→ F ′

δ′−→ M −→ 0,

holds for a certain left D-isomorphism ψ ∈ homD(F, F ′).
Using δ′ ◦ ψ = δ, we obtain that δ′(ψ(ζi)) = δ(ζi) = π(fi)
for i = 1, . . . , p, and applying ψ to

∑p
k=1Rjk ζk = ε(λj)

and using ε′ = ψ ◦ ε, we get
∑p
k=1Rjk ψ(ζk) = ε′(λj)



for j = 1, . . . , q, which yields the same matrix Λ =
(λT1 . . . λTq ) as previously, and thus the same ρ(Λ).

Hence, there is a one-to-one correspondence between the
elements of the right D-module Dq×(q−r)/

(
RDp×(q−r)) ∼=

ext1
D

(
M,D1×(q−r)) and the equivalence classes of exten-

sions of D1×(q−r) by M . This result is attributed to Baer. An
important consequence of this result is that every equivalence
class of extensions of D1×(q−r) by M contains an extension

0 −→ D1×(q−r) α−→ Eρ(Λ)
β−→M −→ 0,

where Eρ(Λ) = D1×(p+q−r)/(D1×q (R −Λ)) for a certain
Λ ∈ Dq×(q−r). The Baer sum [e1] + [e2] of two equivalence
classes [e1] and [e2] of extensions of D1×(q−r) by M ,
respectively defined by representatives formed by Eρ(Λ1) and
Eρ(Λ2), is the equivalence class of the extension defined by
Eρ(Λ1+Λ2). See [14], [16] for proofs. Endowed with the Baer
sum and the neutral element defined by the equivalence class
of the extension of D1×(q−r) by M defined by

Eρ(0) = D1×(p+q−r)/(D1×q (R 0)) ∼= D1×(q−r) ⊕M,

i.e., the equivalence class of the split short exact sequence

0 −→ D1×(q−r) α−→ D1×(q−r) ⊕M β−→M −→ 0,

we can prove that eD
(
M,D1×(q−r)) inherits an abelian

group structure and eD
(
M,D1×(q−r)) is isomorphic to the

abelian group ext1
D

(
M,D1×(q−r)) (see, e.g., [14], [16]).

Theorem 2 ([14], [16]): We have:

ext1
D

(
M,D1×(q−r)

)
∼= eD

(
M,D1×(q−r)

)
.

Substituting r = q−1 in (12), we obtain the isomorphism
ext1

D (M,D) ∼= Dq/ (RDp). A classical result in homolog-
ical algebra asserts that

ext1
D

(
M,D1×(q−r)

)
∼= ext1

D(M,D)1×(q−r),

for all left D-modules M . If τ : Dq −→ Dq/ (RDp) is the
canonical projection, then an element ρ(Λ) can be interpreted
as a row vector of length q − r formed by the elements
τ(Λ•i) ∈ Dq/ (RDp), where Λ•i is the ith column of the
matrix Λ ∈ Dq×(q−r), i.e.:

ρ(Λ) = (τ(Λ•1) . . . τ(Λ•(q−r))) ∈ (Dq/ (RDp))1×(q−r).

III. SERRE’S REDUCTION

In what follows, we shall assume that M is finitely
presented by a full row rank matrix R ∈ Dq×p, i.e.,
kerD(.R) = 0 and M = D1×p/(D1×q R). A natural
question is whether or not there exists ρ(Λ) such that the
left D-module Eρ(Λ) = D1×(p+q−r)/(D1×q P ) − finitely
presented by P = (R − Λ) and defining an extension
of D1×(q−r) by M − is projective, stably free or free. In
[17], J.-P. Serre studied this problem for the commutative
polynomial ring D = k[x1, . . . , xn], where k is a field.

By definition of the extension right D-module, we have:{
ext1

D (M,D) ∼= Dq/ (RDp) ,

ext1
D (E,D) ∼= Dq/

(
P D(p+q−r)) .

Now, using the following inclusions of right D-modules

RDp ⊆ P D(p+q−r) = RDp + ΛD(q−r) ⊆ Dq,

if N =
(
P D(p+q−r)) /(RDp), then the following short

exact sequence of right D-modules holds

0 −→ N
j−→ ext1

D (M,D) σ−→ ext1
D (E,D) −→ 0, (15)

where j is the canonical injection. Hence, (15) shows that

ext1
D (E,D) = 0

⇔ ext1
D (M,D) ∼= N =

(
RDp + ΛD(q−r)

)
/(RDp)

⇔ ext1
D (M,D) ∼=

(
RDp +

q−r∑
i=1

Λ•iD

)
/(RDp)

⇔ ext1
D (M,D) ∼=

q−r∑
i=1

τ(Λ•i)D

where τ : Dp −→ Dp/(RDq) is the canonical projection.
Hence, ext1

D (E,D) = 0 iff the right D-module Dp/(RDq)
is generated by {τ(Λ•i)}i=1,...,q−r of q − r elements.

Lemma 1: ext1
D (E,D) = 0 iff the right D-module

Dp/(RDq) is generated by {τ(Λ•i)}i=1,...,q−r, i.e., iff
ext1

D (M,D) can be generated by q − r elements.

ext1
D(E,D) = 0 is equivalent to Dq = P D(p+q−r). If

{gk}k=1,...,q is the standard basis of Dq , then the above
equality is equivalent to the existence of Sk ∈ D(p+q−r)

satisfying gk = P Sk for k = 1, . . . , q, i.e., to the existence
of S = (S1 . . . Sq) ∈ D(p+q−r)×q satisfying P S = Iq , i.e.,
a right-inverse of P over D, which, by 2 of Proposition 1,
is equivalent to E is a stably free left D-module.

Lemma 2: ext1
D(E,D) = 0 iff the left D-module E is

stably free of rank p− r.

Combining Lemmas 1 and 2, we get the following result.

Theorem 3: Let D be a noetherian domain, R ∈ Dq×p a
full row rank matrix, namely, kerD(.R) = 0, Λ ∈ Dq×(q−r),
P = (R − Λ) ∈ Dq×(p+q−r) and M = D1×p/(D1×q R)
(resp., E = D1×(p+q−r)/(D1×q P )) the left D-module
finitely presented by R (resp., P ) which defines the following
extension of D1×(q−r) by M :

0 −→ D1×(q−r) α−→ E
β−→M −→ 0.

Then, the following results are equivalent:
1) The left D-module E is stably free of rank p− r.
2) The matrix P = (R − Λ) ∈ Dq×(p+q−r) admits a

right-inverse with entries in D.
3) ext1

D(E,D) ∼= Dq/
(
P D(p+q−r)) = 0.

4) The right D-module Dq/(RDp) ∼= ext1
D(M,D)

finitely presented by R is generated by the family
{τ(Λ•i)}i=1,...,q−r, where τ : Dq −→ Dq/(RDp)
is the canonical projection.

Finally, the previous equivalences depend only
on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in



Dq×(q−r)/
(
RDp×(q−r)), i.e., they depend only on the row

vector (τ(Λ•1) . . . τ(Λ•(q−r))) ∈ (Dq/ (RDp))1×(q−r).

Remark 1: Theorem 3 was first obtained by J.-P. Serre in
[17] for a commutative ring D and r = q − 1. In this case,
ext1

D(M,D) is the right D-module generated by τ(Λ), i.e.,
ext1

D(M,D) is the cyclic right D-module generated by τ(Λ).

On simple examples over a commutative polynomial ring
D = k[x1, . . . , xn] with coefficients in a computable field
k (e.g., k = Q or Fp where p is a prime number),
we can take a generic matrix Λ ∈ Dq×(q−r) with a
fixed total degree in the xi’s and study the D-module
ext1

D(E,D) ∼= D1×q/
(
D1×(p+q−r) PT

)
by means of a

Gröbner basis computation and check whether or not the
D-module ext1

D(E,D) vanishes on certain branches of the
corresponding tree of integrability conditions ([12]) or on
certain parts of the underlying constellation of semi-algebraic
sets in the k-parameters of Λ ([7]). In particular, we can test
whether or not a non-zero constant belongs to the annihilator
annD(ext1

D(E,D) of the D-module ext1
D(E,D), namely,

{d ∈ D | ∀ n ∈ ext1
D(E,D), d n = 0},

i.e., whether or not annD(ext1
D(E,D) = D. Since,

homD(ext1
D(E,D), D) ∼= kerD(.R) = 0 by a right D-

module analogue of (3), ext1
D(E,D) is a torsion right

D-module (see Corollary 1 of [3]), and thus we obtain
ext1

D(E,D) = 0 iff annD(ext1
D(E,D)) = D.

The constellation technique is particularly interesting
when the finitely presented D = k[x1, . . . , xn]-module
Dq/(RDq) is 0-dimensional, i.e., when the ring A = D/I
is a finite k-vector space, where I = annD(Dq/(RDq)).
Indeed, a Gröbner basis computation of the D-module RDp

then gives a set of row vectors {λk}k=1,...,s, where λk ∈ Dq

and s = dimk(A), such that Dq/(RDq) =
⊕s

k=1 k τ(λk).
Then, we can consider a generic matrix of the form

Λ =

(
s∑

k=1

a1k λk . . .

s∑
k=1

a(q−r)k λk

)
∈ Dq×(q−r),

where the alk’s are arbitrary elements of the field k for
l = 1, . . . , (q − r) and k = 1, . . . , s, and compute the
constellation of semi-algebraic sets corresponding to the
possible vanishing of the D-module ext1

D(E,D).

Apart from the previous 0-dimensional case, we do not
know yet how to recognize the existence of Λ ∈ Dq×(q−r)

satisfying 2 of Theorem 3. However, using an ansatz, we
can give the sketch of an algorithm in the case of the second
Weyl algebra Bn(k). This case encapsulates the cases of
a commutative polynomial ring and the first Weyl algebra
An(k) since k[x1, . . . , xn] ⊂ An(k) ⊂ Bn(k).

Algorithm 1: • Input: Let k be an algebraically closed
computational field, D = Bn(k), R ∈ Dq×p a full row
rank matrix and three non-negative integers α, β and γ.

• Output: A set (possibly empty) of {Λi}i∈I such that
the matrix (R − Λi) admits a right-inverse over D.

1) Consider an ansatz Λ ∈ Dq×(q−r) whose entries have
a fixed total order α in the ∂i’s and a fixed total degree
β (resp., γ) for the polynomial numerators (resp.,
denominators) in the xj’s of the arbitrary coefficients
of the ansatz Λ.

2) Compute a Gröbner basis of the right D-module RDp.
3) Compute the normal form Λ•i of the ith column Λ•i

of Λ in Dq/(RDp) for i = 1, . . . , q − r.
4) Compute the obstructions for projectivity of the left

D-module E = D1×(p+q−r)/(D1×q (R −Λ)) (e.g.,
computation of a Gröbner basis of the right D-
module (R − Λ)D(p+q−r) or computation of the
π-polynomials of the left D-module E ([3])).

5) Solve the systems in the arbitrary coefficients of the
ansatz Λ obtained by making the obstructions vanish.

6) Return the set of solutions for Λ.

For examples, we refer the reader to [2].

IV. SERRE’S REDUCTION PROBLEM

Theorem 4: Let D be a noetherian domain, R ∈ Dq×p a
full row rank matrix, 0 ≤ r ≤ q−1 and Λ ∈ Dq×(q−r) such
that there exists U ∈ GLp+q−r(D) satisfying:

(R − Λ)U = (Iq 0). (16)

If we decompose the matrix U as follows

U =

(
S1 Q1

S2 Q2

)
, (17)

where S1 ∈ Dp×q , S2 ∈ D(q−r)×q , Q1 ∈ Dp×(p−r) and
Q2 ∈ D(q−r)×(p−r), and if we introduce the left D-module
L = D1×(p−r)/(D1×(q−r)Q2) finitely presented by the full
row rank matrix Q2, i.e., defined by the short exact sequence

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) κ−→ L −→ 0, (18)

then we have:

M = D1×p/(D1×q R) ∼= L = D1×(p−r)/(D1×(q−r)Q2).
(19)

Conversely, if M is isomorphic to a left D-module L
defined by the short exact sequence (18) for a certain matrix
Q2 ∈ D(q−r)×(p−r), then there exist Λ ∈ Dq×(q−r) and
U ∈ GLp+q−r(D) such that (R − Λ)U = (Iq 0).

Proof: ⇒ By hypothesis, we have (R − Λ)S = Iq ,
where S = (ST1 ST2 )T , which shows that P = (R − Λ)
admits a right-inverse over D. By Theorem 3, the extension
(10) of D1×(q−r) by M is then defined by a stably free
left D-module E, and thus, free of rank p − r by 3 of
Proposition 1 applied to E. Moreover, by 3 of Proposition 1,
the left D-homomorphism ψ : E −→ D1×(p−r) defined by
ψ(%((µ1 µ2))) = µ1Q1 + µ2Q2 for all µ1 ∈ D1×p and
all µ2 ∈ D1×(q−r), is a left D-isomorphism, which yields
the equivalence of extensions of D1×(q−r) by M :

0 −→ D1×(q−r) α−→ E
β−→ M −→ 0

‖ ↓ ψ ‖

0 −→ D1×(q−r) ψ ◦α−−−→ D1×(p−r) β ◦ψ−1

−−−−−→ M −→ 0.



Using the standard basis {ei}i=1,...,q−r of D1×(q−r), we get

(ψ ◦ α)(ei) = ψ(α(ei)) = ψ(%((0 ei)) = eiQ2,

for i = 1, . . . , q − r, i.e., ψ ◦ α : D1×(q−r) −→ D1×(p−r)

is defined by (ψ ◦ α)(ν) = ν Q2 for ν ∈ D1×(q−r). The
matrix Q2 has full row rank since ψ ◦ α is injective as
the composition of two injective left D-homomorphisms. If
L = D1×(p−r)/(D1×(q−r)Q2) is the left D-module finitely
presented by Q2 ∈ D(q−r)×(p−r) and κ : D1×(p−r) −→ L
the canonical projection onto L, then we get (18) and:

L = cokerD(.Q2) ∼= im (β ◦ ψ−1) = M.

⇐ Let us suppose that there exists a left D-isomorphism
γ : L −→ M , where L is defined by (18). Then, we have
the following extension of D1×(q−r) by M :

0 −→ D1×(q−r) .Q2−−→ D1×(p−r) γ ◦κ−−−→M −→ 0. (20)

By Theorem 2, the equivalence class of extension (20)
defines a unique element ρ(Λ) of the right D-module
Dq×(q−r)/

(
RDp×(q−r)), where Λ ∈ Dq×(q−r). Then, the

left D-module E = D1×(p+q−r)/(D1×q (R −Λ)) defines
the extension (10) of D1×(q−r) by M which belongs to the
same equivalence class as (20). Since extensions of D1×(q−r)

by M belonging to the same equivalence class are defined
by isomorphic central left D-modules (see the comment after
Definition 3), we obtain E ∼= D1×(p−r). Hence, E is a free
left D-module of rank p− r, which, by 2 of Proposition 1,
implies the existence U ∈ GLp+q−r(D) such that (16).

Corollary 1: With the notations of Theorem 4, the left
D-isomorphism (19) obtained in Theorem 4 is defined by:

M = D1×p/(D1×q R)
ϕ−→ L = D1×(p−r)/(D1×(q−r)Q2)

π(λ) 7−→ κ(λQ1).

Moreover, its inverse ϕ−1 : L −→ M is defined by
ϕ−1(κ(µ)) = π(µT1), where:

U−1 =

(
R −Λ
T1 −T2

)
∈ GLp+q−r(D),

where T1 ∈ D(p−r)×p and T2 ∈ D(p−r)×(q−r). These results
depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in:

Dq×(q−r)/
(
RDp×(q−r)

)
∼= ext1

D(M,D)1×(q−r).

Proof: Let us first check that ϕ is well-defined: if
λ, λ′ ∈ D1×p are such that π(λ) = π(λ′), then there exists
ν ∈ D1×q such that λ = λ′ + ν R and using (16), where
U ∈ GLp+q−r(D) is defined by (17), we get RQ1 = ΛQ2:

⇒ ϕ(π(λ)) = κ(λQ1) = κ(λ′Q1) + κ((ν Λ)Q2)
= κ(λ′Q1) = ϕ(π(λ′)).

Similarly, let us prove that the left D-homomorphism

φ : L −→ M
κ(µ) 7−→ π(µT1),

is well-defined: if µ, µ′ ∈ D1×(p−r) satisfy κ(µ) = κ(µ′),
then there exists θ ∈ D1×(q−r) such that µ = µ′+ θ Q2 and
using the identity U U−1 = Ip+q−r, we get Q2 T1 = −S2R

⇒ φ(κ(µ)) = π(µT1)) = π(µ′ T1)− π((θ S2)R)
= π(µ′ T1) = φ(κ(µ′)).

The identity U U−1 = Ip+q−r yields S1R+Q1 T1 = Ip and

(φ ◦ ϕ)(π(λ)) = φ(κ(λQ1)) = π(λQ1 T1)
= π(λ)− π((λS1)R) = π(λ),

i.e., φ ◦ ϕ = idM . Using U−1 U = Ip+q−r, we get

T1Q1 − T2Q2 = Ip−r,

⇒ (ϕ ◦ φ)(κ(µ)) = ϕ(π(µT1)) = κ(µT1Q1)
= κ(µ) + κ((µT2)Q2) = κ(µ),

i.e., ϕ◦φ = idL, and thus ϕ is an isomorphism and ϕ−1 = φ.

Corollary 2: Let F be a left D-module and:{
kerF (R.) = {η ∈ Fp | Rη = 0},
kerF (Q2.) = {ζ ∈ F (p−r) | Q2 ζ = 0}.

Then, we have kerF (R.) ∼= kerF (Q2.) and:

kerF (R.) = Q1 kerF (Q2.), kerF (Q2.) = T1 kerF (R.).

Corollary 3: Let R ∈ Dq×p be a full row rank matrix
and Λ ∈ Dq×(q−r) such that P = (R −Λ) ∈ Dq×(p+q−r)

admits a right-inverse over D. Then, Theorem 4 holds when
D satisfies one of the following properties:

1) D is a left principal ideal domain (e.g., the ring of
ordinary differential operators with coefficients in a
differential field such that R, R(t) or R{t}[t−1]),

2) D = k[x1, . . . , xn] is a commutative polynomial ring
over a field k,

3) D is one of the two Weyl algebras An(k) or Bn(k),
where k a field of characteristic 0 and p− r ≥ 2.

4) D is the ring of ordinary differential operators with
coefficients in kJtK, where k is a field of characteristic
0, or in k{t}, where k = R or C, and p− r ≥ 2.

Proof: If D satisfy one of the four conditions, then
the stably free left D-module E finitely presented by P =
(R −Λ) ∈ Dq×(p+q−r), is free of rank p−r by Theorem 1.
The result is then a consequence of Theorem 4.

If Corollary 3 holds, then it is enough to search for a
matrix Λ ∈ Dq×(q−r) such that P = (R − Λ) admits a
right-inverse over D by Proposition 1 (see Algorithm 1).

The next corollary generalizes a result of [1].

Corollary 4: With the notations of Theorem 4 and Corol-
lary 1, if the matrix Λ ∈ Dq×(q−r) admits a left-inverse
Γ ∈ D(q−r)×q , i.e., Γ Λ = Iq−r, then the matrix Q1 admits
the left-inverse T1 − T2 ΓR ∈ D(p−r)×p and the left D-
module kerD(.Q1) is stably free of rank r.



If the left D-module kerD(.Q1) is free of rank r, then
there exists a matrix Q3 ∈ Dp×r such that:

W , (Q3 Q1) ∈ GLp(D).

If we write W−1 = (Y T3 Y T1 )T , where Y3 ∈ Dr×p and
Y1 ∈ D(p−r)×p, then X , (RQ3 Λ) ∈ GLq(D) and:

V , X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

The matrix R is then equivalent to the matrix
X diag(Ir, Q2)W−1 or equivalently:

V RW =

(
Ir 0
0 Q2

)
.

Finally, the left D-module kerD(.Q1) is free when D
satisfies 1 or 2 of Corollary 3 or if D is An(k) or Bn(k) over
a field k of characteristic 0 and r ≥ 2 or if D is the ring
of ordinary differential operators with coefficients in kJtK,
where k a field of characteristic 0, or with coefficients in
k{t}, where k = R or C, and r ≥ 2.

Proof: Using (16) and (17), we get the identities:
RS1 − ΛS2 = Iq,

RQ1 = ΛQ2,

T1 S1 = T2 S2,

T1Q1 − T2Q2 = Ip−r.

(21)

Moreover, we know that there exists Γ ∈ D(q−r)×q such
that Γ Λ = Iq−r. Pre-multiplying the second equation of
(21) by Γ, we get Q2 = ΓRQ1, which, combined with
the last equation of (21), yields (T1 − T2 ΓR)Q1 = Ip−r
and proves that Q1 admits a left-inverse over D. Then, the
following short exact sequence

0 −→ kerD(.Q1) i−→ D1×p .Q1−→ D1×(p−r) −→ 0 (22)

ends with the free left D-module D1×(p−r), and thus splits,
namely, we have D1×p ∼= kerD(.Q1)⊕D1×(p−r) (see, e.g.,
[16]), which proves that kerD(.Q1) is a stably free left D-
module of rank p− (p− r) = r.

Now, let us suppose that kerD(.Q1) is a free left D-module
of rank r and let denote by ψ : D1×r −→ kerD(.Q1) a left
D-isomorphism. The split short exact sequence (22) yields

0 −→ D1×r .Y3−−→ D1×p .Q1−−→ D1×(p−r) −→ 0,
.Q3←−− .Y1←−−

(23)
where Y3 ∈ Dr×p is a matrix such that (i◦ψ)(ν) = ν Y3 for
all ν ∈ D1×r. Hence, if we write W = (Q3 Q1) ∈ Dp×p,
then the previous split short exact sequence yields

(Q3 Q1)

(
Y3

Y1

)
= Q3 Y3 +Q1 Y1 = Ip,(

Y3

Y1

)
(Q3 Q1) =

(
Ir 0
0 Ip−r

)
= Ip,

(24)

i.e., W ∈ GLp(D) and W−1 = (Y T3 Y T1 )T . The second
identity of (21) yields:

RW = (RQ3 ΛQ2) = (RQ3 Λ)

(
Ir 0
0 Q2

)
.

(25)
Using the identities of (21) and (24), we obtain

(RQ3 Λ)

(
Y3 S1

Q2 Y1 S1 − S2

)
= RS1 −RQ1 Y1 S1 + ΛQ2 Y1 S1 − ΛS2

= Iq − (RQ1 − ΛQ2)Y1 S1 = Iq,

and thus X , (RQ3 Λ) ∈ GLq(D) since D is a noetherian
ring and thus a stably finite ring (i.e., a ring over which every
left or right invertible matrix is invertible ([6])) and:

V , X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

Using (25), we finally obtain V RW = diag(Ir, Q2).

For more results on Serre’s reduction of linear systems of
partial differential equations, see [4].
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